WO2016165578A1 - 一种单封装的高强度磁场磁电阻角度传感器 - Google Patents

一种单封装的高强度磁场磁电阻角度传感器 Download PDF

Info

Publication number
WO2016165578A1
WO2016165578A1 PCT/CN2016/078639 CN2016078639W WO2016165578A1 WO 2016165578 A1 WO2016165578 A1 WO 2016165578A1 CN 2016078639 W CN2016078639 W CN 2016078639W WO 2016165578 A1 WO2016165578 A1 WO 2016165578A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive
layer
sensing unit
push
ferromagnetic
Prior art date
Application number
PCT/CN2016/078639
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US15/566,019 priority Critical patent/US10401440B2/en
Priority to EP16779553.3A priority patent/EP3285041B1/en
Priority to JP2017554295A priority patent/JP6778696B2/ja
Publication of WO2016165578A1 publication Critical patent/WO2016165578A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the invention relates to the field of magnetic sensors, in particular to a single-package high-strength magnetic field magnetoresistance angle sensor.
  • FIG. 1 is a structural view of a magnetic multilayer film 1 constituting a GMR or TMR type angle sensor, comprising an antiferromagnetic layer 2, a ferromagnetic reference layer 3, a nonmagnetic separation layer 4, and a ferromagnetic free layer 5, both ends of the magnetic multilayer film
  • the resistance is controlled by the relative angle between the ferromagnetic free layer 5 and the ferromagnetic reference layer 3.
  • the rotating permanent magnet 6 is rotated on the surface of the packaged GMR or TMR type angle sensor chip 7.
  • a magnetic field 8 wherein the rotating magnetic field 8 is required to be larger than the saturation magnetization value of the ferromagnetic free layer 5, and smaller than the anisotropic magnetization value of the ferromagnetic reference layer 3, at which time the magnetization direction of the ferromagnetic free layer 5 and the rotating magnetic field 8 The directions are the same, and the angle of the magnetic multilayer film 1 is measured by changing the angle of the rotating magnetic field.
  • a biaxial angle sensor that is, a ferromagnetic reference layer multilayer film structure including an X-axis orientation and a ferromagnetic reference layer multilayer film structure having a Y-axis orientation, and output signals of the respective ends thereof, that is, one of them
  • the sinusoidal signal 9 and the cosine signal 10 are obtained by performing an arctangent calculation on the output signal to obtain an angle signal value.
  • the angle sensor designed with the above-mentioned GMR or TMR type magnetic multilayer film structure must have a rotating external magnetic field amplitude of less than 300 G.
  • the ferromagnetic reference layer 3 may be rotated. This produces a non-linear output.
  • the ideal angle signal curve 11 when the rotating magnetic field is 50 Oe, the output curve 12 is close to the ideal sine and cosine curve 11, and when the rotating external magnetic field exceeds 400 Oe, the output curve 13 deviates from the ideal curve 11 and becomes A triangle produces an angular error curve 14.
  • the present invention proposes a single-package high field strength magnetoresistance angle sensor, The surface of the magnetic multilayer film structure 1 of the GMR or TMR type angle sensor shown in FIG.
  • the magnetic field generated on the surface of the magnetic multilayer film structure 1 of the GMR or TMR type angle sensor has a magnetic field amplitude of less than 300 G, thereby achieving the purpose of measuring a high magnetic field amplitude rotating magnetic field and reducing nonlinear errors.
  • the invention provides a single-package high-strength magnetic field magnetoresistance angle sensor, comprising:
  • At least one push-pull magnetoresistive bridge and a substrate At least one push-pull magnetoresistive bridge and a substrate
  • the push-pull magnetoresistive bridge comprises two or four magnetoresistive bridge arms, each of the magnetoresistive bridge arms comprises a plurality of magnetoresistive sensing units, and is interconnected into a two-port structure, the magnetoresistance
  • the sensing unit is of the MTJ or GMR type, the magnetoresistive sensing unit is deposited on the substrate, and all of the magnetoresistive bridge arms are electrically connected into a bridge;
  • the magnetoresistive sensing unit includes at least one pinning a layer, a ferromagnetic reference layer, a non-magnetic spacer layer, and a ferromagnetic free layer, located in the magnetoresistive sensing unit of at least one of the magnetoresistive bridge arms of any of the push-pull magnetoresistive bridges
  • the magnetization of the ferromagnetic reference layer is opposite to the magnetization of the ferromagnetic reference layer of the remaining magnetoresistive bridge arm;
  • the soft magnetic flux attenuator covers the surface of all of the magnetoresistive sensing units to attenuate an external magnetic field, in which the electronic components are connected by solder joints or through-silicon vias.
  • the number of the push-pull magnetoresistive bridges of the magnetoresistive angle sensor is at least one; and the magnetoresistive angle sensor includes at least two magnetoresistance transmissions in the same plane.
  • the number of the push-pull magnetoresistive bridges of the magnetoresistive angle sensor is at least two, and at least one ferromagnetic reference layer magnetization direction of the push-pull magnetoresistive bridge Orthogonal to the ferromagnetic reference layer magnetization direction of the remaining push-pull magnetoresistive bridge;
  • the magnetoresistive angle sensor comprises at least four magnetoresistive sensing unit slices in the same plane, and at least three of them The magnetoresistive sensing unit slice is obtained by reversing the remaining magnetoresistive sensing unit slices by 90 degrees, 180 degrees, and 270 degrees in a plane of the slice;
  • the plurality of magnetoresistive sensing unit slices are located on the same magnetoresistive sensing unit slice All of the magnetoresistive sensing units have the same ferromagnetic reference layer magnetization direction, and the magnetoresistive sensing unit slices having the same or opposite ferromagnetic reference layer magnetization directions are electrically connected by lead bonding into at least one of Push-pul
  • the number of the push-pull magnetoresistive bridges is at least two, and the ferromagnetic reference layer magnetization direction of at least one of the push-pull magnetoresistive bridges is orthogonal to the remaining a ferromagnetic reference layer magnetization direction of the pull-type magnetoresistive bridge; and comprising at least two magnetoresistive sensing unit slices, and wherein at least one of the magnetoresistive sensing unit slices is sliced relative to the remaining magnetoresistive sensing unit Rotating the phase of 180 degrees in the plane of the slice, the magnetoresistive sensing unit located on the same slice of the magnetoresistive sensing unit has an orthogonal ferromagnetic reference layer magnetization direction, and the slices are connected by lead bonding Connected as a push-pull magnetoresistive bridge.
  • the number of the push-pull magnetoresistive bridges is at least one, and the magnetoresistive sensing sensors are located on the same magnetoresistive sensing unit slice and located on the same magnetoresistive bridge arm.
  • the cells have the same ferromagnetic reference layer magnetization direction, and wherein at least one of the ferromagnetic reference layers of the magnetoresistive bridge arm has an opposite magnetization direction with respect to the ferromagnetic reference layer of the remaining magnetoresistive bridge arms, the magnetoresistance
  • the bridge arms are connected in series to form a push-pull magnetoresistive bridge.
  • the number of the push-pull magnetoresistive bridges is at least two, and the magnetoresistance transmission is located on the same magnetoresistive sensing unit slice on the same magnetoresistive bridge arm.
  • the sensing unit has the same ferromagnetic reference layer magnetization direction, and the ferromagnetic reference layer magnetization direction of at least one of the push-pull magnetoresistive bridges is orthogonal to the ferromagnetic reference layer magnetization direction of the remaining push-pull magnetoresistive bridges, And in any of the push-pull magnetoresistance bridges, at least one ferromagnetic reference layer of the magnetoresistive bridge arm is relative to the remaining The ferromagnetic reference layer of the magnetoresistive bridge arm has an opposite magnetization direction, and the magnetoresistive bridge arm is internally connected to the push-pull magnetoresistive bridge.
  • the push magnet resistance sensing unit and the magnetizing resistance sensing unit of the push-pull magnetoresistive bridge are both a single stacked layer structure, including an antiferromagnetic layer and a ferromagnetic reference layer, and the push magnet resistance is transmitted
  • the ferromagnetic reference layer of the sensing unit and the magnetizing resistance sensing unit have opposite magnetization directions; the antiferromagnetic layer of the magnetoresistive sensing unit is heated by a laser to a blocking temperature thereof, and then magnetic fields in opposite directions are respectively applied to cool To room temperature, a magnetoresistive sensing unit and a magnetizing resistance sensing unit having magnetization directions of opposite ferromagnetic reference layers are formed.
  • the push-magnetizing resistance sensing unit and the magnetizing resistance sensing unit of the push-pull magnetoresistive bridge respectively adopt two different multilayer thin film deposition structures, namely, an antiferromagnetic layer and an iron from bottom to top.
  • the push magnetoresistive sensing unit and the magnetizing resistor sensing unit are examples of the magnetizing resistor sensing unit.
  • the magnetoresistive sensing unit is a single stacked layer structure including an antiferromagnetic layer and a ferromagnetic reference layer; and the antiferromagnetic layer of the magnetoresistive sensing unit is heated by a laser to a blocking temperature thereof Then, two or four external magnetic fields respectively oriented in the orthogonal direction are respectively applied and cooled to room temperature, thereby respectively forming the push arm and the arm of the orthogonal push-pull magnetoresistive bridge.
  • the multilayer film structure of one or two bridge arms having oppositely oriented reference layer magnetization directions corresponding to the push-pull magnetoresistive bridge in one direction is: including an antiferromagnetic layer 1 and a ferromagnetic layer from bottom to top Layer, metal spacer layer, ferromagnetic reference layer, non-metal spacer layer and ferromagnetic free layer, or bottom-up including antiferromagnetic layer 1, ferromagnetic layer, metal spacer layer, ferromagnetic layer, metal spacer layer, iron a magnetic reference layer, a non-metallic spacer layer, and a ferromagnetic free layer;
  • Another multilayer film structure of one or two bridge arms having oppositely oriented reference layer magnetization directions corresponding to this orthogonal push-pull magnetoresistive bridge is: including an antiferromagnetic layer 2 from bottom to top , ferromagnetic layer, metal spacer layer, ferromagnetic reference layer, non-metallic spacer layer and ferromagnetic free layer, or from the bottom
  • the upper surface includes an antiferromagnetic layer 2, a ferromagnetic layer, a metal spacer layer, a ferromagnetic layer, a metal spacer layer, a ferromagnetic reference layer, a non-metal spacer layer, and a ferromagnetic free layer;
  • Annealing is performed when the blocking temperatures of the antiferromagnetic layer 1 and the antiferromagnetic layer 2 are respectively reached, and two external magnetic fields in the orthogonal direction are respectively applied during the cooling process, thereby obtaining an orthogonal push-pull magnetoresistive bridge.
  • a magnetoresistive sensing unit and a magnetoresistive sensing unit of the push-pull magnetoresistive bridge having orthogonal and opposite directions of ferromagnetic reference layer magnetization.
  • each of the magnetoresistive sensing unit slices corresponds to a soft magnetic flux attenuator, and the soft magnetic flux attenuator is located on a surface of all the magnetoresistive sensing units on the magnetoresistive sensing unit slice.
  • the magnetoresistive bridge arm where each of the magnetoresistive sensing units is located corresponds to a soft magnetic flux attenuator, and the soft magnetic flux attenuator is located on all the magnetoresistances of the magnetoresistive bridge arm.
  • the surface of the sensing unit corresponds to a soft magnetic flux attenuator, and the soft magnetic flux attenuator is located on all the magnetoresistances of the magnetoresistive bridge arm.
  • each of the magnetoresistive sensing units corresponds to a soft magnetic flux attenuator, and the soft magnetic flux attenuator is located on a surface of the magnetoresistive sensing unit.
  • the input and output terminals of the push-pull magnetoresistive bridge are connected by leads to pins on the same lead frame.
  • the lead frame and the push-pull magnetoresistive bridge are sealed in a plastic to form a standard semiconductor package.
  • each of the described magnetoresistive sensing unit slices is tested and graded prior to assembly to more closely match the transmission curve between the magnetoresistive sensing unit slices.
  • the magnetoresistive sensing unit is located on a slice of the magnetoresistive sensing unit, and the number of the magnetoresistive sensing unit slices is four and disposed around the ASIC dedicated integrated circuit to make the push-pull magnetic
  • the resistive bridges have a common geometric center, and the pins of the magnetoresistive sensing unit slices are closely adjacent.
  • the magnetoresistive sensing unit slice is located directly above the ASIC dedicated integrated circuit, and is arranged at a rotation of 90 degrees between the magnetoresistive sensing unit slices of the four rotational phases, and any one of the magnetoresistive sensing
  • the short sides of the unit slices are arranged adjacent to the long sides of the adjacent magnetoresistive sensing unit slices.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit.
  • the ASIC-specific integrated circuit includes an ESD anti-static protection circuit and is used for two
  • the output of the quadrature axial push-pull magnetoresistive bridge performs a computational processing circuit that causes the angular value to be output in digital form.
  • Figure 1 shows the structure of a TMR or GMR magnetoresistive sensing unit
  • FIG. 2 is a schematic diagram of the measurement of the angle of the rotating magnetic field by the magnetoresistive angle sensor
  • Figure 3 is a signal output diagram of a two-axis magnetoresistive angle sensor
  • Figure 4 is a single-axis TMR or GMR magnetoresistive angle sensor for different amplitudes of rotating magnetic field signal diagram and measurement error;
  • Figure 5 is a basic structural diagram of a high magnetic field strength magnetoresistive angle sensor
  • Figure 6 is a schematic diagram of a high magnetic field magnetoresistance angle sensor for measuring a high intensity external magnetic field
  • Figure 7 shows the change of the external magnetic field attenuation rate of the high magnetic field strength magnetoresistance angle sensor with the flux attenuator
  • Figure 8 is a schematic view showing the structure of the inverted slice of the high magnetic field strength magnetoresistance angle sensor
  • FIG. 9 is a sectional structural view of a high magnetic field strength magnetoresistance angle sensor
  • FIG. 10 is a uniaxially inverted slice structure diagram of a high magnetic field strength magnetoresistive angle sensor
  • 11 is a push-pull full-bridge structure diagram of a single-axis flip slice high magnetic field strength magnetoresistance angle sensor
  • FIG. 12 is a structural view of a biaxially inverted slice of a high magnetic field strength magnetoresistance angle sensor
  • Figure 13 is a push-pull full-bridge structure diagram of a biaxially inverted sliced high magnetic field magnetoresistance angle sensor
  • Figure 14 is a schematic diagram of a biaxially inverted slice structure of a high magnetic field strength magnetoresistance angle sensor
  • Figure 15 is a diagram showing the structure of a biaxially inverted slice of a high magnetic field strength magnetoresistance angle sensor
  • Figure 16 is a single-axis single-chip structure diagram of a high magnetic field strength magnetoresistive angle sensor
  • 17 is a two-axis single-chip structure diagram of a high magnetic field strength magnetoresistive angle sensor
  • Figure 18 is a two-axis single flip slice structure diagram of a high-intensity magnetoresistive angle sensor
  • 19 is a structural diagram of a single-axis single-chip structure high magnetic field strength magnetoresistive angle sensor push arm and arm magnetic multilayer film;
  • 20 is a structural diagram of a magnetic multilayer film of a push arm and a pull arm corresponding to a X-axis and a Y-axis of a high-field-strength magnetoresistance angle sensor of a two-axis single-chip structure;
  • Figure 21 is a two-axis single-turn slice structure high magnetic field strength magnetoresistance angle sensor X and Y axis of the push arm and the arm of the magnetoresistive sensing unit on the wafer;
  • Figure 22 is a diagram showing the distribution of the magnetoresistive sensing unit of the push arm and the arm of the X-axis and the X-axis of the high-field-strength magnetoresistive angle sensor of the two-axis single-chip structure on the wafer;
  • 23 is a magnetic multilayer thin film laser-assisted thermal annealing device for a single-chip structure high magnetic field strength magnetoresistive angle sensor push arm and arm;
  • Figure 24 is a graph showing the angular error of the high magnetic field strength magnetoresistance angle sensor and the magnetoresistive angle sensor as a function of the amplitude of the rotating magnetic field.
  • Figure 5 is a schematic diagram showing the attenuation of the magnetic field by the magnetoresistive sensing unit 16 having a surface covered with a soft magnetic flux attenuator 17, wherein 15 is the substrate, the GMR or TMR magnetoresistive sensing unit 16 and the soft magnetic flux attenuation are located above the substrate 15.
  • the devices 17 are all circular in shape to ensure uniformity of rotation in various angular directions under the action of a rotating external magnetic field, wherein the soft magnetic flux attenuator 17 is located on the surface of the GMR or TMR magnetoresistive sensing unit and has the same center.
  • the magnetoresistive sensing unit 16 and the soft magnetic flux attenuator 17 are arranged in an array structure in which the distance between the centers of the adjacent magnetoresistive sensing units is d, and the diameter of the soft magnetic flux attenuator 17 is D.
  • FIG. 6 is a magnetic field distribution diagram of the magnetoresistive sensing unit array along the X direction, and it can be seen that the magnetic field amplitudes at the four magnetoresistive sensing units of m1, m2, m3, and m4 are greatly reduced with respect to the external magnetic fields at both ends. And the external magnetic field distribution is basically the same at the four magnetoresistive sensing units, indicating good uniformity.
  • Figure 7 is a graph showing the ratio of the attenuation magnetic field of the soft magnetic flux attenuator to the external magnetic field as a function of the soft magnetic flux attenuator size D.
  • the ratio of the attenuation magnetic field is defined as the ratio of the magnetic field amplitude to the external magnetic field at the magnetoresistive sensing unit shown in Fig. 6. It can be seen from Fig. 7 that as the size D of the soft magnetic flux attenuator increases, the amplitude of the magnetic field attenuation gradually increases.
  • FIG. 7 shows the ratio of the attenuation magnetic field of the soft magnetic flux attenuator to the external magnetic field as a function of the soft magnetic flux attenuator size D.
  • the attenuation magnetic field ratio is also related to the size of the magnetoresistive sensing unit, and the size of the magnetoresistive sensing unit is increased, and the distribution at the bottom of the magnetic field distribution curve is widened, so that the average magnetic field amplitude is also relatively increased.
  • the magnetic field attenuation rate in Figure 7 is between 0.06 and 0.23, that is, when the magnetic field amplitude of the magnetoresistive sensing unit is 300G, the measured external magnetic field ranges from 1500 to 5000G, so the magnetic field attenuator is greatly improved.
  • the range of amplitude of the rotating magnetic field is between 0.06 and 0.23, that is, when the magnetic field amplitude of the magnetoresistive sensing unit is 300G, the measured external magnetic field ranges from 1500 to 5000G, so the magnetic field attenuator is greatly improved.
  • the range of amplitude of the rotating magnetic field is greatly improved.
  • FIG. 8 is a schematic diagram of a reverse slice structure of a high field magnetoresistive angle sensor including two slices 18 and 19, and two slices having the same structure, one of which is relatively rotated relative to the other 180 degrees, wherein each slice includes two soft magnetic flux attenuators and their covered magnetoresistive sensing units 20 and 21, 22 and 23, and pins 25 and 24 at the periphery, since the two slices are rotated 180 degrees relative to each other Therefore, the ferromagnetic reference layer of the magnetoresistive sensing unit has opposite magnetization directions, so that a push-pull bridge structure can be formed, and a lead connection is used between the two slices.
  • FIG. 9 is a block diagram of a single slice 26 including sensing sections 27 and 27' consisting of two array magnetoresistive sensing units 28 and a soft magnetic flux attenuator 29 overlying the surface of the magnetoresistive sensing unit 28, either The magnetoresistive sensing units in the sensing section are connected in series to form a two-port structure, and are connected to the pins through wires 30, wherein the pins of one sensing section are 31 and 32, and the other sensing section The pins on both ends are 33 and 34.
  • each port includes two upper and lower pins, namely 32 and 32', 31 and 31', 33 and 33', 34 and 34', and 31' And 33' intertwined to facilitate cross-connection between the leads.
  • connection mode is a push-pull full-bridge structure as shown in Figure 11. In fact, there may be a half-bridge and a quasi-bridge structure.
  • FIG. 12 is a schematic structural view of a biaxial inversion slice 40 of a high-intensity magnetoresistive angle sensor, including two orthogonal X-axis uniaxial inversion slices 41 and a Y-axis uniaxial inversion slice 42, and the Y-axis is uniaxially
  • the inversion slice 42 is obtained by inverting the X axis by 90 degrees, and in the placement position, the X axis single axis inversion slice 41 and the Y axis single axis are respectively placed separately, and further includes an X axis single axis inverse
  • the two X-axis and Y-axis push-pull full-bridge structures corresponding to Figure 12 are shown in Figure 13.
  • FIG. 14 is a schematic structural view of a dual-axis inversion slice 47 of another high-intensity magnetoresistive angle sensor, including an ASIC unit 52, two single-axis inversion slices 48, 49 corresponding to the X-axis, and two single-axis corresponding to the Y-axis.
  • Figure 15 is a schematic view showing the structure of a two-axis inversion slice 56 of a type II high-intensity magnetoresistive angle sensor, corresponding to two single-axis inversion slices 59 and 60 of the X-axis and two single-axis inversion slices 57 and 58 corresponding to the Y-axis.
  • the four rotational phase magnetoresistive sensing unit slices are rotated by 90 degrees, and the short side of any of the magnetoresistive sensing unit slices and the adjacent magnetic resistance The long sides of the sensing unit slices are arranged adjacent to each other.
  • the magnetoresistive sensing unit slice is connected to the pin 62 on the ASIC unit slice 61 via the lead 63.
  • the lead 64 is present on the ASIC unit slice 61, and finally connected through the power, ground and signal output port 65 of the ASIC unit slice 61.
  • 16 is a schematic structural view of a single-axis single-chip 66 of a high-field magnetoresistance angle sensor, wherein 67 corresponds to a magnetoresistive sensing unit of two push arms of a push-pull magnetoresistive sensor, and 68 corresponds to two of a push-pull magnetoresistive sensor.
  • a soft magnetic flux attenuator of the push arm 69 corresponds to the magnetoresistive sensing unit of the two arms
  • 70 corresponds to the soft magnetic flux attenuator, wherein the push arm and the arm have opposite ferromagnetic reference layer magnetization directions and are located in the same slice On, 71 is the port.
  • FIG. 17 is a schematic diagram showing the structure of a two-axis single-chip 72 of a high-field magnetoresistance angle sensor in which an X-axis magnetoresistive angle sensor 73 and a Y-axis magnetoresistive angle sensor 74 are located on the same slice.
  • the magnetization reference layer magnetization direction of the X-axis magnetoresistive angle sensor 73 is the X and -X directions
  • the ferromagnetic reference layer magnetization direction of the Y-axis magnetoresistive angle sensor 74 is the Y and -Y directions.
  • FIG. 18 is a schematic structural view of a two-axis single flip slice 720 of a high field magnetoresistance angle sensor, wherein the slice 731 includes two sets of magnetoresistive sensing units 7310 and 7311 having a magnetization direction of a quadrature ferromagnetic reference layer, and the slice 721 can In order to flip the slice 731 by 180 degrees in the plane of the slice, Among them, 7311' and 7310' have opposite ferromagnetic reference layer magnetization directions with 7310 and 7311 slices, respectively, and 7310 and 7310' constitute push-pull magnetoresistive sensor unit bridges in one direction, and 7311 and 7311' constitute The push-pull magnetoresistive sensing unit bridge in the orthogonal direction, the two slices 731 and 721 are connected by wire bonding.
  • FIG. 19 shows an implementation of a magnetic multilayer film structure having a magnetization direction of an opposite reference layer corresponding to a push arm and a arm of a single-axis single-chip 66 structure corresponding to a high-field magnetoresistance angle sensor on the same chip.
  • 75 corresponds to the magnetic multilayer film structure of the push arm
  • 82 corresponds to the magnetic multilayer film structure of the pull arm
  • both structures include the antiferromagnetic layers 76 and 83, the ferromagnetic layers 77 and 84, 86, and the metal layers 78 and 85.
  • the magnetic multilayer film has a different deposition order in which the antiferromagnetic layers 76 and 83 have the same magnetization state, and the ferromagnetic layers 77 and 84 adjacent thereto have the same magnetization direction, the ferromagnetic reference layer 79 and the ferromagnetic layer.
  • 77 has an opposite magnetization direction by the exchange coupling of the metal layer 77.
  • the ferromagnetic reference layer in 75 is antiparallel to the ferromagnetic layer 77, and the ferromagnetic layer 86 in 82 also has an antiparallel to the ferromagnetic layer.
  • a metal layer 87 is introduced again between the ferromagnetic reference layer 88 and the ferromagnetic layer 86 corresponding to 82, thereby causing the ferromagnetic reference layer 88 to have the same magnetization direction as the ferromagnetic layer 84.
  • the magnetic multilayer film structure 75 of the push arm and the magnetic multilayer film structure 82 of the pull arm have opposite Ferromagnetic reference layer magnetization direction. In actual deposition, except that the magnetic multilayer thin of the push arm and the pull arm have different deposition orders, since the antiferromagnetic layer is the same and has the same magnetization state, there is only one magnetic annealing.
  • 20 is a push arm and a pull arm of an X-axis magnetoresistive angle sensor 73 of a two-axis single-chip 72 structure corresponding to a high-field magnetoresistance angle sensor, and a push arm and a pull arm of the Y-axis magnetoresistive angle sensor 74 are located on the same chip.
  • Four different magnetic multilayer film structures 91 of which correspond to the magnetic multilayer film structure of the push arm of the X-axis magnetoresistive angle sensor, 92 corresponds to the magnetic multilayer film structure of the arm of the X-axis magnetoresistive angle sensor, and the reverse
  • the magnetization direction of the ferromagnetic layer AF1 and the magnetization direction of the reference ferromagnetic layer are in the X or -X direction
  • the magnetic multilayer film structure of 93 corresponds to the push arm of the Y-axis magnetoresistance angle sensor
  • the 94 corresponds to the Y-axis magnetoresistive angle.
  • the magnetic multilayer film structure of the arm of the sensor, the magnetization direction of the antiferromagnetic layer AF2 97 and 98 and the magnetization direction of the reference ferromagnetic layer are in the Y or -Y direction, and the multilayer film sequence of the push arm and the arm is Similar in Figure 18. This requires two different antiferromagnetic layers AF1 on the same chip.
  • AF2 each has two different multilayer film deposition sequences, and two different magnetic field annealing temperatures and annealing magnetic field directions are required for AF1 and AF2, assuming that one of the blocking temperatures of AF1 and AF2 is Tb1 and Tb2 Where Tb1>Tb2, when the magnetic field is annealed, the magnetic field annealing of Tb1 is first performed to obtain the X magnetic field direction, and then the magnetic field annealing is performed on Tb2 to obtain Y magnetic field annealing.
  • 21 is a distribution diagram of two different orientation X and Y-axis magnetoresistive sensing units of a two-axis single flip slice 720 structure corresponding to a high field magnetoresistance angle sensor on a wafer 200, in order to ensure distribution on a wafer.
  • it is necessary to distribute the multilayer thin film units in different ferromagnetic reference layer directions in different regions, wherein 201 is represented as a Y-axis oriented antiferromagnetic layer, and 202 is an X-axis oriented antiferromagnetic layer.
  • Layers distributed in different regions of the wafer 200, are defined by orthogonal different X-axis and Y-axis orientations by depositing different sequences of ferromagnetic layers and metal layers on the antiferromagnetic layer. In the region, the patterning of the tunnel junction cells needs to be performed the same after all of the deposited multilayer film sequences and orientations have been completed.
  • X and Y-axis magnetoresistive sensing elements are distributed on the wafer 200, in order to ensure the difference in distribution on the wafer.
  • 203 and 205 are respectively represented as Y-axis oriented antiferromagnetic layers, and 204 and 206 are opposite to X-axis orientation.
  • Ferromagnetic layers distributed in different regions of the wafer 200, and then depositing different sequences of different ferromagnetic layers and metal layers on the antiferromagnetic layer to determine positive X-axis, negative X-axis orientation, and positive Y-axis, negative
  • the Y-axis orientation also in different regions, the patterning of the tunnel junction cells needs to be performed the same after all of the deposited multilayer film sequences and orientations have been completed.
  • FIG 23 is a diagram showing a single-axis single-chip structure 66 corresponding to a high-field magnetoresistance angle sensor and a magneto-resistance angle sensor of a two-axis single-chip 72 structure.
  • the heating auxiliary annealing device includes a laser source 100 for emitting a laser beam 105 aligned with the magnetic film 103, an optical attenuator 107, a rear end of the laser beam 105 emitted via the laser source 100, and a mirror 106 for The direction of propagation of the laser beam 105 attenuated via the optical attenuator 107 is changed, and the focusing objective 101 is used to focus the laser beam 105 redirected via the mirror 106 into a spot, and the movable platform 102 is mounted thereon for clamping A jig of the magnetic film 103, and two electromagnets 108 and 109 in the orthogonal direction.
  • a CCD camera 99 is also included, on the mirror 106 With a slit, the CCD camera 99 passes through the slit of the mirror 106 to adjust the mirror 106 to align the spot with the magnetic film 103, where 104 is the light entering the CCD camera 99.
  • the laser spot directly selects the magnetoresistive sensing unit corresponding to the push arm and the arm on the magnetic multilayer film, and performs rapid heating to the reverse
  • the blocking temperature of the ferromagnetic layer is above, and then, during the cooling process, the bidirectional electromagnets 108 and 109 are activated to directly determine the magnetization direction of each of the magnetoresistive sensing units, so that the corresponding single-axis magnetoresistance angle sensor can be directly obtained.
  • 24 is a comparison diagram of angular errors of a high field strength magnetoresistance angle sensor and a magnetoresistive angle sensor without a magnetic flux attenuator according to the present invention, wherein 300 is an error diagram of a magnetic flux angle sensor without an added magnetic flux attenuator, which can be seen.
  • the angular error range can reach 10-12 degrees when it exceeds 400 Oe, and the high-intensity magnetoresistive angle sensor of the present invention has less than 2 degrees of error at 1400 Oe, and the performance is greatly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种单封装的高强度磁场磁电阻角度传感器(73,74),包括至少一个推挽式磁电阻电桥以及位于所述推挽式磁电阻电桥上的软磁通量衰减器(17,29,68,70),所述推挽式磁电阻电桥包含多个磁电阻传感单元(16,20-23,28,67,69,7310,7310',7311,7311'),所述磁电阻传感单元(16,20-23,28,67,69,7310,7310',7311,7311')为MTJ或者GMR类型,每个磁电阻传感单元(16,20-23,28,67,69,7310,7310',7311,7311')包含至少一个钉扎层(76,83,95-98)、一个铁磁参考层(79,88)、一个非磁性间隔层(80,89)以及一个铁磁自由层(81,90),所述铁磁自由层(81,90)为低纵横比椭圆形或者圆形,以使所述铁磁自由层(81,90)磁化强度能够沿任意方向外磁场对齐排列;所述软磁通量衰减器(17,29,68,70)覆盖在所有磁电阻传感单元(16,20-23,28,67,69,7310,7310',7311,7311')表面,以衰减高强度外磁场到磁电阻传感单元(16,20-23,28,67,69,7310,7310',7311,7311')可测量范围内;所述推挽式磁电阻电桥具有单向的或相互正交的参考层磁化方向。该磁电阻角度传感器能够测量高强度磁场旋转角度,并具有低功耗、小尺寸的优点。

Description

一种单封装的高强度磁场磁电阻角度传感器 技术领域
本发明涉及磁性传感器领域,特别涉及一种单封装的高强度磁场磁电阻角度传感器。
背景技术
图1为构成GMR或者TMR类型角度传感器的磁多层薄膜1结构图,包括反铁磁层2、铁磁参考层3、非磁性隔离层4以及铁磁自由层5,磁多层薄膜两端的电阻受铁磁自由层5和铁磁参考层3之间相对夹角的控制,实际工作时,如图2所示,旋转永磁体6在封装的GMR或者TMR类型角度传感器芯片7的表面产生旋转磁场8,其中要求旋转磁场8大于铁磁自由层5的饱和磁化强度值,并且小于铁磁参考层3的各向异性磁化强度值,此时铁磁自由层5的磁化方向与旋转磁场8的方向一致,通过测量磁多层薄膜1两端的电阻随旋转磁场角度的变化,从而对其角度进行测量。图3为双轴角度传感器即包含一个X轴取向的铁磁参考层多层薄膜结构以及一个具有Y轴取向的铁磁参考层多层薄膜结构,其各自两端结构的输出信号,即其中一个为正弦信号9,另一个为余弦信号10,通过对其输出信号进行反正切计算,得到其角度信号值。
但实际上,采用以上的GMR或者TMR类型的磁多层薄膜结构设计的角度传感器,其旋转外磁场幅度必须小于300G,对于更高幅度的旋转外磁场,会导致铁磁参考层3发生旋转,从而产生非线性的输出。如图4所示,理想角度信号曲线11,旋转磁场为50Oe时,其输出曲线12接近理想的正余弦曲线11,而当旋转外磁场超过400Oe时,其输出曲线13偏离理想曲线11,变成三角形,产生角度误差曲线14。
然而,许多应用要求的工作旋转外磁场幅度都大于300G,而且还要求低的非线性误差,因此,急需开发一种新型的能够在高强度旋转磁场条件下工作并产生低的非线性误差的角度传感器。
发明内容
为了解决旋转磁场幅度高于300G时所产生的由于铁磁参考层3的磁矩旋转所产生的角度传感器的非线性误差问题,本发明提出了一种单封装的高场强磁电阻角度传感器,通过在图1所示的GMR或者TMR类型角度传感器的磁多层薄膜结构1的表面覆盖一层软磁薄膜材料作为通量衰减器,将高于300G磁场幅度的旋转磁场进行衰减,使之在GMR或者TMR类型角度传感器的磁多层薄膜结构1的表面上所产生的磁场幅度小于300G,从而达到测量高磁场幅度旋转磁场并减小非线性误差的目的。
本发明提出的一种单封装的高强度磁场磁电阻角度传感器,包括:
至少一个推挽式磁电阻电桥和一衬底,
所述推挽式磁电阻电桥包含2个或者4个磁电阻桥臂,每个所述磁电阻桥臂包含多个磁电阻传感单元,且内连成一个两端口结构,所述磁电阻传感单元为MTJ或者GMR类型,所述磁电阻传感单元沉积在所述衬底上,所有所述磁电阻桥臂通过电连接成电桥;所述磁电阻传感单元包含至少一个钉扎层、一个铁磁参考层、一个非磁性间隔层以及一个铁磁自由层,位于任一所述推挽式磁电阻电桥的至少一个所述磁电阻桥臂的所述磁电阻传感单元的所述铁磁参考层的磁化强度反向于剩余所述磁电阻桥臂的所述铁磁参考层的磁化强度;所述磁电阻传感单元的所述铁磁自由层为低纵横比的椭圆形或者圆形,以使得所述铁磁自由层磁化强度能够沿任意方向外磁场对齐排列;
以及一个或多个软磁通量衰减器,
所述软磁通量衰减器覆盖在所有所述磁电阻传感单元表面,以衰减外磁场,在所述角度传感器中,电子元件之间通过连接焊点或者硅穿孔连接。
作为本发明的一种优选方式,所述磁电阻角度传感器的所述推挽式磁电阻电桥数量为至少1个;且所述磁电阻角度传感器包含至少2个位于同一平面内的磁电阻传感单元切片,且其中至少1个所述磁电阻传感单元切片相对于剩余所述磁电阻传感单元切片在切片所在平面内翻转180度相位,位于同一所述磁电阻传感单元切片上的所有所述磁电阻传感单元具有相同的铁磁参考层磁化 方向,所述磁电阻传感单元切片之间通过引线邦定电连接成推挽式磁电阻电桥。
作为本发明的一种优选方式,所述磁电阻角度传感器的所述推挽式磁电阻电桥数量为至少2个,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于剩余所述推挽式磁电阻电桥的铁磁参考层磁化方向;所述磁电阻角度传感器共包括至少4个位于同一平面内的磁电阻传感单元切片,且其中至少3个所述磁电阻传感单元切片为剩余的所述磁电阻传感单元切片在所述切片所在平面范围内分别翻转90度、180度和270度而得到;所述位于同一磁电阻传感单元切片上的所有所述磁电阻传感单元具有相同的铁磁参考层磁化方向,所述具有相同或相反铁磁参考层磁化方向的磁电阻传感单元切片通过引线邦定电连接成至少1个所述推挽式磁电阻电桥。
作为本发明的一种优选方式,所述推挽式磁电阻电桥数量为至少2个,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于剩余所述推挽式磁电阻电桥的铁磁参考层磁化方向;且包含至少2个磁电阻传感单元切片,且其中至少1个所述磁电阻传感单元切片相对于剩余所述磁电阻传感单元切片在切片所在平面内翻转180度相位,位于同一所述磁电阻传感单元切片上的所述磁电阻传感单元具有正交的铁磁参考层磁化方向,所述切片之间通过引线邦定电连接成推挽式磁电阻电桥。
作为本发明的一种优选方式,所述推挽式磁电阻电桥数量为至少1个,且位于同一个磁电阻传感单元切片上,位于同一磁电阻桥臂上的所述磁电阻传感单元具有相同的铁磁参考层磁化方向,且其中至少1个所述磁电阻桥臂的铁磁参考层相对于剩余所述磁电阻桥臂的铁磁参考层具有相反磁化方向,所述磁电阻桥臂之间内连成推挽式磁电阻电桥。
作为本发明的另一种优选方式,所述推挽式磁电阻电桥数量为至少2个,且位于同一个磁电阻传感单元切片上,位于同一磁电阻桥臂上的所述磁电阻传感单元具有相同的铁磁参考层磁化方向,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于其余推挽式磁电阻电桥的铁磁参考层磁化方向,且任一所述推挽式磁电阻电桥内,至少1个所述磁电阻桥臂的铁磁参考层相对于剩 余所述磁电阻桥臂的铁磁参考层具有相反磁化方向,所述磁电阻桥臂内连成所述推挽式磁电阻电桥。
进一步地,所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元均为单堆叠层结构,包括反铁磁层和铁磁参考层,所述推磁电阻传感单元和挽磁电阻传感单元的铁磁参考层磁化方向相反;采用激光加热所述磁电阻传感单元的所述反铁磁层到其阻挡温度以上,而后分别施加相反方向的磁场,冷却到室温,从而形成具有相反铁磁参考层磁化方向的推磁电阻传感单元和挽磁电阻传感单元。
进一步地,所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元分别采用两个不同的多层薄膜沉积结构,即自下而上包括反铁磁层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而上包括反铁磁层、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;而后在达到所述反铁磁层的阻挡温度时退火,在冷却过程中施加同一个方向的外磁场,从而得到具有相反参考层磁化方向的所述推磁电阻传感单元和挽磁电阻传感单元。
进一步地,所述磁电阻传感单元均为单堆叠层结构,包括反铁磁层和铁磁参考层;采用激光加热所述磁电阻传感单元的所述反铁磁层到其阻挡温度以上,而后分别施加沿正交方向分别取向的2个或4个外磁场,冷却到室温,从而分别形成正交的推挽式磁电阻电桥的推臂和挽臂。
进一步地,正交的所述推挽式磁电阻电桥,
其中一个方向的推挽式磁电阻电桥所对应的其中一个或两个具有相反取向的参考层磁化方向的桥臂的多层薄膜结构为:自下而上包括反铁磁层1、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而上包括反铁磁层1、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;
另一个与此正交的推挽式磁电阻电桥所对应的其中一个或两个具有相反取向的参考层磁化方向的桥臂的多层薄膜结构为:自下而上包括反铁磁层2、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而 上包括反铁磁层2、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;
分别在达到所述反铁磁层1和反铁磁层2的阻挡温度时退火,并在冷却过程中分别施加正交方向两个外磁场,从而得到具有正交推挽式磁电阻电桥的具有正交且相反方向铁磁参考层磁化方向的所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元。
具体地,所述每个磁电阻传感单元切片对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻传感单元切片上所有磁电阻传感单元表面。
具体地,所述每个所述磁电阻传感单元所在的所述磁电阻桥臂对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻桥臂上的所有所述磁电阻传感单元的表面。
具体地,所述每个磁电阻传感单元对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻传感单元的表面。
具体地,所述推挽式磁电阻电桥的输入和输出端通过引线连接到位于同一引线框架上的引脚上。
具体地,所述引线框架和所述推挽式磁电阻电桥被密封在塑料中以形成标准的半导体封装。
具体地,每个所述的磁电阻传感单元切片在装配前进行测试并分级,使所述磁电阻传感单元切片之间的传输曲线更加匹配。
具体地,所述磁电阻传感单元位于磁电阻传感单元切片上,所述磁电阻传感单元切片的数量为四个并设置在ASIC专用集成电路的周围,以使得所述推挽式磁电阻电桥具有共同的几何中心,所述磁电阻传感单元切片的引脚之间紧相邻。
具体地,所述磁电阻传感单元切片位于ASIC专用集成电路的正上方,位于四个旋转相位的所述磁电阻传感单元切片之间呈旋转90度排列,任一所述磁电阻传感单元切片的短边与相邻的磁电阻传感单元切片的长边相邻排列。
进一步地,所述ASIC专用集成电路包括ESD防静电保护电路。
进一步地,所述ASIC专用集成电路包括ESD防静电保护电路和用于对两 个正交轴向的推挽式磁电阻电桥的输出进行计算的处理电路,该处理电路使得以数字形式输出角度值。
附图说明
图1为TMR或GMR磁电阻传感单元结构;
图2为磁电阻角度传感器对旋转磁场角度的测量示意图;
图3为双轴磁电阻角度传感器信号输出图;
图4为单轴TMR或者GMR磁电阻角度传感器对不同幅度旋转磁场信号图及测量误差;
图5为高磁场强度磁电阻角度传感器基本结构图;
图6为高磁场强度磁电阻角度传感器对高强度外磁场测量原理图;
图7为高磁场强度磁电阻角度传感器对外磁场衰减率率随通量衰减器尺寸变化;
图8为高磁场强度磁电阻角度传感器的翻转切片结构示意图;
图9为高磁场强度磁电阻角度传感器的切片结构图;
图10为高磁场强度磁电阻角度传感器的单轴翻转切片结构图;
图11为单轴翻转切片高磁场强度磁电阻角度传感器推挽式全桥结构图;
图12为高磁场强度磁电阻角度传感器的双轴翻转切片结构图;
图13为双轴翻转切片高磁场强度磁电阻角度传感器推挽式全桥结构图;
图14为高磁场强度磁电阻角度传感器的双轴翻转切片结构图一;
图15为高磁场强度磁电阻角度传感器的双轴翻转切片结构图二;
图16为高磁场强度磁电阻角度传感器的单轴单芯片结构图;
图17为高磁场强度磁电阻角度传感器的双轴单芯片结构图;
图18高强度强度磁电阻角度传感器的双轴单翻转切片结构图;
图19为单轴单芯片结构高磁场强度磁电阻角度传感器推臂和挽臂磁多层薄膜结构图;
图20为双轴单芯片结构高磁场强度磁电阻角度传感器X轴和Y轴所对应的推臂和挽臂的磁多层薄膜结构图;
图21双轴单翻转切片结构高磁场强度磁电阻角度传感器X和Y轴的推臂和挽臂的磁电阻传感单元在晶圆上的分布图;
图22为双轴单芯片结构高磁场强度磁电阻角度传感器X和Y轴的推臂和挽臂的磁电阻传感单元在晶圆上的分布图;
图23为单芯片结构高磁场强度磁电阻角度传感器推臂和挽臂的磁多层薄膜激光辅助热退火装置;
图24为高磁场强度磁电阻角度传感器和磁电阻角度传感器角度误差随旋转磁场幅度变化图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图5为表面覆盖有软磁通量衰减器17的磁电阻传感单元16对磁场的衰减示意图,其中15为衬底,位于衬底15之上的GMR或者TMR磁电阻传感单元16和软磁通量衰减器17均为圆形形状,以保证在旋转外磁场作用下能够在在各个角度方向产生转动的一致性,其中软磁通量衰减器17位于GMR或者TMR磁电阻传感单元表面,且具有相同的中心,在排列上,磁电阻传感单元16和软磁通量衰减器17排列成阵列结构,其中,相邻磁电阻传感单元的中心之间间距均为d,软磁通量衰减器17的直径为D。
图6为磁电阻传感单元阵列沿X方向的磁场分布图,可以看出,m1,m2,m3和m4四个磁电阻传感单元处的磁场幅度相对于两端处的外磁场大大减小,且在四个磁电阻传感单元处外磁场分布基本一致,表明具有较好的均匀性。
图7为软磁通量衰减器对外磁场的衰减磁场比率随软磁通量衰减器尺寸D的变化,衰减磁场比率定义为图6所示的磁电阻传感单元处的磁场幅度和外磁场的比值,从图7中可以看出,随着软磁通量衰减器的尺寸D的增加,磁场衰减幅度逐渐增加。此外,由图6还可以看出,衰减磁场比率还与磁电阻传感单元尺寸相关,磁电阻传感单元尺寸增加,其在磁场分布曲线底部的分布加宽,因此平均磁场幅度也相对增加。
可以看出,图7中磁场衰减率在0.06~0.23之间,即当磁电阻传感单元表面磁场幅度为300G时,所测量的外磁场范围在1500~5000G,因此通过磁场衰减器,大大提高了旋转磁场的幅度范围。
实施例二
图8为高场强磁电阻角度传感器的反转切片结构示意图,所述高强度磁电阻角度传感器包括两个切片18和19,且两个切片具有相同的结构,其中一个相对于另一个相对旋转180度,其中每个切片包括两个软磁通量衰减器及其所覆盖的磁电阻传感单元20和21,22和23,以及位于周边的引脚25和24,由于两个切片相对旋转180度,因此其磁电阻传感单元的铁磁参考层具有相反的磁化方向,从而可以形成推挽桥式结构,且两个切片之间采用引线连接。
图9为单个切片26的结构图,包括由两个阵列式磁电阻传感单元28以及覆盖在磁电阻传感单元28表面的软磁通量衰减器29组成的传感区间27和27’,任一所述传感区间内的磁电阻传感单元之间串联连接成两端口结构,并通过导线30连接到引脚上,其中一个传感区间两端的引脚为31和32,另一个传感区间两端的引脚为33和34,为了方便引线连接,每个端口又包括上下两个引脚,即32和32’,31和31’,33和33’,34和34’,且其中31’和33’相互缠绕,以方便引线之间的交叉连接。
图10为高强度磁电阻角度传感器的单轴反转切片35结构示意图,两个切片36和37采用反转180度方式排列,并通过引线38进行连接,并最终输出到四个端口39上,四个端口包括电源Vbias、地端口以及两个信号输出端,连接方式为推挽式全桥结构如图11所示,实际上,还可以有半桥和准桥结构。
图12为高强度磁电阻角度传感器的双轴反转切片40结构示意图,包括两个正交的X轴单轴反转切片41以及Y轴单轴反转切片42,且所述Y轴单轴反转切片42为将X轴单轴反转90度得到,且在摆放位置上,将X轴单轴反转切片41和Y轴单轴各自分开放置,此外,还包括X轴单轴反转切片41和Y轴单轴反转切片42所各自对应的电源端口44和44’,地端口43和43′,正向信号输出端46和46’,负向信号输出端45和45’,图12所对应的两个X轴和Y轴推挽式全桥结构如图13所示。
图14为另外一种高强度磁电阻角度传感器的双轴反转切片47结构示意图,包括ASIC单元52,对应X轴的2个单轴反转切片48、49和对应Y轴的2个单轴反转切片50、51,其中X轴的2个单轴反转切片48和49沿X方向对称位于ASIC单元的相对的两个边缘外,Y轴的2个单轴反转切片50和51沿Y轴方向对称位于ASIC单元的另外两个相对的边缘附近,且各个切片分别通过引线53连接到ASIC单元切片52上,而后ASIC单元切片52通过引线54和端口引脚55相连,由于切片之间具有几何中心对称的分布,可以消除图13中存在的磁场分布不均所产生的输出信号偏差的问题。
图15为类型二高强度磁电阻角度传感器的双轴反转切片56结构示意图,对应X轴的2个单轴反转切片59和60和对应Y轴的2个单轴反转切片57和58分别位于ASIC单元切片61的正上方,所述四个旋转相位的磁电阻传感单元切片之间旋转90度的排列,任一所述磁电阻传感单元切片的短边与相邻的磁电阻传感单元切片的长边相邻排列。其中,磁电阻传感单元切片通过引线63与ASIC单元切片61上的引脚62相连,ASIC单元切片61上存在着引线64,最后通过ASIC单元切片61的电源、地以及信号输出端口65连接。
实施例三
图16为高场强磁电阻角度传感器的单轴单芯片66结构示意图,其中67对应推挽式磁电阻传感器的两个推臂的磁电阻传感单元,68对应推挽式磁电阻传感器的两个推臂的软磁通量衰减器,69对应两个挽臂的磁电阻传感单元,70对应软磁通量衰减器,其中推臂和挽臂具有相反的铁磁参考层磁化方向,并且位于同一个切片上,71为端口。
图17为高场强磁电阻角度传感器的双轴单芯片72结构示意图,其中的X轴磁电阻角度传感器73和Y轴磁电阻角度传感器74位于同一切片上。其中X轴磁电阻角度传感器73的铁磁参考层磁化方向为X和-X方向,Y轴磁电阻角度传感器74的铁磁参考层磁化方向为Y和-Y方向。
图18为高场强磁电阻角度传感器的双轴单翻转切片720结构示意图,其中,切片731包括两组具有正交铁磁参考层磁化方向的磁电阻传感单元7310和7311,而切片721可以为将切片731在切片所在平面内翻转180度相位得到, 其中的7311’以及7310’分别与7310和7311切片具有相反的铁磁参考层磁化方向,且7310和7310’构成其中一个方向的推挽式磁电阻传感单元电桥,7311和7311’构成与之正交的方向的推挽式磁电阻传感单元电桥,两个切片731和721之间通过引线邦定连接。
图19为对应高场强磁电阻角度传感器的单轴单芯片66结构的推臂和挽臂所对应的具有相反参考层磁化方向的磁多层薄膜结构在同一芯片上的实现方式。其中75对应推臂的磁多层薄膜结构,82对应挽臂的磁多层薄膜结构,两种结构均包括反铁磁层76和83,铁磁层77和84、86,金属层78和85、87,非磁隔离层80和89,铁磁参考层79和88,以及自由层81和90,其差别在于多层薄膜结构的75推臂所对应的磁多层薄膜和76挽臂所对应的磁多层薄膜的沉积顺序的不同,其中反铁磁层76和83具有相同的磁化状态,与其相邻的铁磁层77和84具有相同的磁化方向,铁磁参考层79和铁磁层77之间通过金属层77交换耦合的作用,具有相反的磁化方向,因此,75中的铁磁参考层反平行于铁磁层77,82中的铁磁层86也具有反平行于铁磁层83的方向,同样,在82所对应的铁磁参考层88和铁磁层86之间再次引入一个金属层87,从而导致铁磁参考层88具有相同于铁磁层84的磁化方向,最终,推臂的磁性多层薄膜结构75和挽臂的磁性多层薄膜结构82具有相反的铁磁参考层磁化方向。实际沉积时,除了推臂和挽臂的磁性多层薄具有不同沉积顺序之外,由于反铁磁层相同并具有相同磁化状态,因此只有一次磁退火。
图20为对应高场强磁电阻角度传感器的双轴单芯片72结构的X轴磁电阻角度传感器73的推臂和挽臂,和Y轴磁电阻角度传感器74的推臂和挽臂位于同一芯片上的四种不同磁多层薄膜结构,其中91对应X轴磁电阻角度传感器的推臂的磁多层薄膜结构,92对应X轴磁电阻角度传感器的挽臂的磁多层薄膜结构,其反铁磁层AF1的95和96磁化方向和参考铁磁层磁化方向为沿X或-X方向,93的磁多层薄膜结构对应Y轴磁电阻角度传感器的推臂,94对应Y轴磁电阻角度传感器的挽臂的磁多层薄膜结构,其反铁磁层AF2的97和98磁化方向和参考铁磁层磁化方向为沿Y或-Y方向,其推臂和挽臂的多层薄膜顺序与图18中的相似。这样在同一芯片上需要沉底2种不同的反铁磁层AF1 和AF2,并且每种有两种不同的多层薄膜沉积顺序,并且对于AF1和AF2需要有两种不同的磁场退火温度和退火磁场方向,假设AF1和AF2中其中一种阻挡温度为Tb1和Tb2,其中Tb1>Tb2,则磁场退火时,先对Tb1进行磁场退火,获得其X磁场方向,而后对Tb2进行磁场退火,获得Y磁场退火。
图21为对应高场强磁电阻角度传感器的双轴单翻转切片720结构的两种不同取向X和Y轴的磁电阻传感单元在晶圆200上的分布图,为了保证在晶圆上分布差别的均匀性,需要使得各种不同铁磁参考层方向的多层薄膜单元分布在不同的区域,图中201分别表示为Y轴取向的反铁磁层,202为X轴取向的反铁磁层,分布于晶圆200上的不同区域,通过在反铁磁层上沉积不同的铁磁层和金属层的不同的序列,从而决定正交的X轴、Y轴取向,同样也在不同的区域中,隧道结单元的图形化需要在所有的沉积多层薄膜序列和取向完成之后同一进行。
图22为对应高场强磁电阻角度传感器的双轴单芯片72结构两种不同取向X和Y轴的磁电阻传感单元在晶圆200上的分布图,为了保证在晶圆上分布差别的均匀性,需要使得各种不同参考铁磁层方向的多层薄膜单元分布在不同的区域,图中203和205分别表示为Y轴取向的反铁磁层,204和206为X轴取向的反铁磁层,分布于晶圆200上的不同区域,随后在反铁磁层上沉积不同的铁磁层和金属层的不同的序列,从而决定正X轴、负X轴取向和正Y轴、负Y轴取向,同样也在不同的区域中,隧道结单元的图形化需要在所有的沉积多层薄膜序列和取向完成之后同一进行。
图23为对应高场强磁电阻角度传感器的单轴单芯片结构66以及双轴单芯片72结构的磁电阻角度传感器的推臂和挽臂不同铁磁参考层取向的磁性多层薄膜结构的激光加热辅助退火装置,包括,激光源100,用于发射对准磁性薄膜103的激光束105,光衰减器107,设置在经由激光源100发出的激光束105的后端,反光镜106,用于改变经由光衰减器107衰减后的激光束105的传播方向,聚焦物镜101,用于将经由反光镜106改变方向的激光束105进行聚焦成光斑,可移动平台102,其上包括有用于夹持磁性薄膜103的夹具,以及两个正交方向的电磁铁108和109。此外,还包括CCD相机99,反光镜106上 具有一条缝,CCD相机99通过反光镜106的缝隙以调节反光镜106将光斑对准磁性薄膜103,其中104为进入CCD相机99的光线。
通过图23所示的激光辅助热退火装置,通过移动平台102的移动,激光光斑直接对磁性多层薄膜上的推臂和挽臂对应的磁电阻传感单元进行选择,并进行快速加热到反铁磁层的阻挡温度以上,然后再冷却过程中,启动双向电磁铁108和109,从而直接确定每个磁电阻传感单元的磁化方向,这样,可以直接得到对应单轴磁电阻角度传感器的推磁电阻传感单元以及挽磁电阻传感单元,以及双轴磁电阻角度传感器的X和Y向的推磁电阻传感单元以及挽磁电阻传感单元。因此,借助于激光辅助热退火装置,沉积在单芯片上的磁性多层薄膜具有相同的沉积顺序。
图24为本发明所提出的高场强磁电阻角度传感器和未加磁通量衰减器的磁电阻角度传感器的角度误差比较图,其中300为未加磁通量衰减器磁电阻角度传感器的误差图,可以看出,其角度误差范围在超过400Oe时可以达到10-12度,而本发明的高强度磁电阻角度传感器则在1400Oe时只有不到2度的误差,性能得到了很大的提高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,本发明中的实施也可以进行不同组合变化,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种单封装的高强度磁场磁电阻角度传感器,其特征在于,包括:
    至少一个推挽式磁电阻电桥和一衬底,
    所述推挽式磁电阻电桥包含2个或者4个磁电阻桥臂,每个所述磁电阻桥臂包含多个磁电阻传感单元,且内连成一个两端口结构,所述磁电阻传感单元为MTJ或者GMR类型,所述磁电阻传感单元沉积在所述衬底上,所有所述磁电阻桥臂通过电连接成电桥;所述磁电阻传感单元包含至少一个钉扎层、一个铁磁参考层、一个非磁性间隔层以及一个铁磁自由层,位于任一所述推挽式磁电阻电桥的至少一个所述磁电阻桥臂的所述磁电阻传感单元的所述铁磁参考层的磁化强度反向于剩余所述磁电阻桥臂的所述铁磁参考层的磁化强度;所述磁电阻传感单元的所述铁磁自由层为低纵横比的椭圆形或者圆形,以使得所述铁磁自由层磁化强度能够沿任意方向外磁场对齐排列;
    以及一个或多个软磁通量衰减器,
    所述软磁通量衰减器覆盖在所有所述磁电阻传感单元表面,以衰减外磁场,在所述角度传感器中,电子元件之间通过连接焊点或者硅穿孔连接。
  2. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述磁电阻角度传感器的所述推挽式磁电阻电桥数量为至少1个;且包含至少2个位于同一平面内的磁电阻传感单元切片,且其中至少1个所述磁电阻传感单元切片相对于剩余所述磁电阻传感单元切片在切片所在平面内翻转180度相位,位于同一所述磁电阻传感单元切片上的所有所述磁电阻传感单元具有相同的铁磁参考层磁化方向,所述磁电阻传感单元切片之间通过引线邦定电连接成推挽式磁电阻电桥。
  3. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述磁电阻角度传感器的所述推挽式磁电阻电桥数量为至少2个,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于剩余所述推挽式磁电阻电桥的铁磁参考层磁化方向;所述磁电阻角度传感器共包括至少4个位于同一平面内的磁电阻传感单元切片,且其中至少3个所述磁电阻传感单元切片为剩余的所述磁电阻传感单元切片在所述切片所在平面范围内分别翻转90 度、180度和270度而得到;所述位于同一磁电阻传感单元切片上的所有所述磁电阻传感单元具有相同的铁磁参考层磁化方向,所述具有相同或相反铁磁参考层磁化方向的磁电阻传感单元切片通过引线邦定电连接成至少1个所述推挽式磁电阻电桥。
  4. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥数量为至少2个,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于剩余所述推挽式磁电阻电桥的铁磁参考层磁化方向;且包含至少2个磁电阻传感单元切片,且其中至少1个所述磁电阻传感单元切片相对于剩余所述磁电阻传感单元切片在切片所在平面内翻转180度相位,位于同一所述磁电阻传感单元切片上的所述磁电阻传感单元具有正交的铁磁参考层磁化方向,所述切片之间通过引线邦定电连接成推挽式磁电阻电桥。
  5. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥数量为至少1个,且位于同一个磁电阻传感单元切片上,位于同一磁电阻桥臂上的所述磁电阻传感单元具有相同的铁磁参考层磁化方向,且其中至少1个所述磁电阻桥臂的铁磁参考层相对于剩余所述磁电阻桥臂的铁磁参考层具有相反磁化方向,所述磁电阻桥臂之间内连成推挽式磁电阻电桥。
  6. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥数量为至少2个,且位于同一个磁电阻传感单元切片上,位于同一磁电阻桥臂上的所述磁电阻传感单元具有相同的铁磁参考层磁化方向,至少1个所述推挽式磁电阻电桥的铁磁参考层磁化方向正交于其余推挽式磁电阻电桥的铁磁参考层磁化方向,且任一所述推挽式磁电阻电桥内,至少1个所述磁电阻桥臂的铁磁参考层相对于剩余所述磁电阻桥臂的铁磁参考层具有相反磁化方向,所述磁电阻桥臂内连成所述推挽式磁电阻电桥。
  7. 根据权利要求5所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元均 为单堆叠层结构,包括反铁磁层和铁磁参考层,所述推磁电阻传感单元和挽磁电阻传感单元的铁磁参考层磁化方向相反;采用激光加热所述磁电阻传感单元的所述反铁磁层到其阻挡温度以上,而后分别施加相反方向的磁场,冷却到室温,从而形成具有相反铁磁参考层磁化方向的推磁电阻传感单元和挽磁电阻传感单元。
  8. 根据权利要求5所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元分别采用两个不同的多层薄膜沉积结构,即自下而上包括反铁磁层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而上包括反铁磁层、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;而后在达到所述反铁磁层的阻挡温度时退火,在冷却过程中施加同一个方向的外磁场,从而得到具有相反参考层磁化方向的所述推磁电阻传感单元和挽磁电阻传感单元。
  9. 根据权利要求4或6所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述磁电阻传感单元均为单堆叠层结构,包括反铁磁层和铁磁参考层;采用激光加热所述磁电阻传感单元的所述反铁磁层到其阻挡温度以上,而后分别施加沿正交方向分别取向的2个或4个外磁场,冷却到室温,从而分别形成正交的推挽式磁电阻电桥的推臂和挽臂。
  10. 根据权利要求4或6所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,正交的所述推挽式磁电阻电桥,
    其中一个方向的推挽式磁电阻电桥所对应的其中一个或两个具有相反取向的参考层磁化方向的桥臂的多层薄膜结构为:自下而上包括反铁磁层1、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而上包括反铁磁层1、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;
    另一个与此正交的推挽式磁电阻电桥所对应的其中一个或两个具有相反取向的参考层磁化方向的桥臂的多层薄膜结构为:自下而上包括反铁磁层2、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层,或者自下而 上包括反铁磁层2、铁磁层、金属间隔层、铁磁层、金属间隔层、铁磁参考层、非金属间隔层和铁磁自由层;
    而后分别在达到所述反铁磁层1和反铁磁层2的阻挡温度时退火,并在冷却过程中分别施加正交方向两个外磁场,从而得到具有正交推挽式磁电阻电桥的具有正交且相反方向铁磁参考层磁化方向的所述推挽式磁电阻电桥的推磁电阻传感单元和挽磁电阻传感单元。
  11. 根据权利要求2-6中任意一项所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述每个磁电阻传感单元切片对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻传感单元切片上所有磁电阻传感单元表面。
  12. 根据权利要求2-6中任意一项所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述每个所述磁电阻传感单元所在的所述磁电阻桥臂对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻桥臂上的所有所述磁电阻传感单元的表面。
  13. 根据权利要求2-6中任意一项所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述每个磁电阻传感单元对应一个软磁通量衰减器,且所述软磁通量衰减器位于所述磁电阻传感单元的表面。
  14. 根据权利要求2-6中任意一项所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述推挽式磁电阻电桥的输入和输出端通过引线连接到位于同一引线框架上的引脚上。
  15. 根据权利要求14所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述引线框架和所述推挽式磁电阻电桥被密封在塑料中以形成标准的半导体封装。
  16. 根据权利要求2、3或4所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,每个所述的磁电阻传感单元切片在装配前进行测试并分级, 使所述磁电阻传感单元切片之间的传输曲线更加匹配。
  17. 根据权利要求1所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述磁电阻传感单元位于磁电阻传感单元切片上,所述磁电阻传感单元切片的数量为四个并设置在ASIC专用集成电路的周围,以使得所述推挽式磁电阻电桥具有共同的几何中心,所述磁电阻传感单元切片的引脚之间紧相邻。
  18. 根据权利要求3所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述磁电阻传感单元切片位于ASIC专用集成电路的正上方,位于四个旋转相位的所述磁电阻传感单元切片之间呈旋转90度排列,任一所述磁电阻传感单元切片的短边与相邻的磁电阻传感单元切片的长边相邻排列。
  19. 根据权利要求17或18所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述ASIC专用集成电路包括ESD防静电保护电路。
  20. 根据权利要求17或18所述的一种单封装的高强度磁场磁电阻角度传感器,其特征在于,所述ASIC专用集成电路包括ESD防静电保护电路和用于对两个正交轴向的推挽式磁电阻电桥的输出进行计算的处理电路,该处理电路使得以数字形式输出角度值。
PCT/CN2016/078639 2015-04-16 2016-04-07 一种单封装的高强度磁场磁电阻角度传感器 WO2016165578A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/566,019 US10401440B2 (en) 2015-04-16 2016-04-07 Single-package high-field magnetoresistive angle sensor
EP16779553.3A EP3285041B1 (en) 2015-04-16 2016-04-07 A single-package high-field magnetoresistive angle sensor
JP2017554295A JP6778696B2 (ja) 2015-04-16 2016-04-07 単一パッケージ高磁場磁気抵抗角度センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510181008.7 2015-04-16
CN201510181008.7A CN104776794B (zh) 2015-04-16 2015-04-16 一种单封装的高强度磁场磁电阻角度传感器

Publications (1)

Publication Number Publication Date
WO2016165578A1 true WO2016165578A1 (zh) 2016-10-20

Family

ID=53618412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078639 WO2016165578A1 (zh) 2015-04-16 2016-04-07 一种单封装的高强度磁场磁电阻角度传感器

Country Status (5)

Country Link
US (1) US10401440B2 (zh)
EP (1) EP3285041B1 (zh)
JP (1) JP6778696B2 (zh)
CN (1) CN104776794B (zh)
WO (1) WO2016165578A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401440B2 (en) 2015-04-16 2019-09-03 MultiDimension Technology Co., Ltd. Single-package high-field magnetoresistive angle sensor
JP2020511663A (ja) * 2017-03-24 2020-04-16 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. ヒステリシス・コイルを有する磁気センサ・パッケージング構造
JP2020521979A (ja) * 2017-06-02 2020-07-27 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ トンネル磁気抵抗を有する磁気抵抗センサの低周波雑音を抑制するためのシステムおよび方法
EP3588118A4 (en) * 2017-02-23 2020-12-16 Multidimension Technology Co., Ltd. SINGLE-CHIP DUAL-AXIS MAGNETIC ANGLE SENSOR
CN113466759A (zh) * 2021-06-30 2021-10-01 山东大学 单、双轴磁阻磁场传感器和制作方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168184B2 (en) * 2015-08-12 2019-01-01 Infineon Technologies Ag Angle sensing in an off-axis configuration
CN105044631B (zh) * 2015-08-28 2018-08-07 江苏多维科技有限公司 一种半翻转两轴线性磁电阻传感器
CN106324534B (zh) * 2016-09-13 2023-10-31 江苏多维科技有限公司 用于激光写入系统的磁电阻传感器晶元版图及激光扫描方法
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
US10557726B2 (en) * 2018-01-31 2020-02-11 Allegro Microsystems, Llc Systems and methods for reducing angle error for magnetic field angle sensors
EP3667347B1 (en) * 2018-12-13 2021-09-08 Crocus Technology S.A. Magnetoresistive-based sensing circuit for two-dimensional sensing of high magnetic fields
WO2020157293A1 (de) * 2019-02-01 2020-08-06 Sensitec Gmbh Anordnung benachbarter schichtstrukturen für einen magnetoresistiven magnetfeldsensor, magnetoresistiver magnetfeldsensor und verfahren zu deren herstellung
US11131727B2 (en) 2019-03-11 2021-09-28 Tdk Corporation Magnetic sensor device
CN112305469B (zh) * 2019-07-29 2022-04-29 甘肃省科学院传感技术研究所 具有集成式退火结构的巨磁阻传感器
CN110581216B (zh) * 2019-08-02 2021-08-31 潍坊歌尔微电子有限公司 一种磁传感器的制造方法、磁传感器及电子设备
US11169228B2 (en) * 2019-08-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor with serial resistor for asymmetric sensing field range
US11428758B2 (en) * 2019-08-27 2022-08-30 Western Digital Technologies, Inc. High sensitivity TMR magnetic sensor
US11385305B2 (en) * 2019-08-27 2022-07-12 Western Digital Technologies, Inc. Magnetic sensor array with dual TMR film
US11493573B2 (en) * 2019-08-27 2022-11-08 Western Digital Technologies, Inc. Magnetic sensor with dual TMR films and the method of making the same
US11175359B2 (en) 2019-08-28 2021-11-16 Allegro Microsystems, Llc Reducing voltage non-linearity in a bridge having tunneling magnetoresistance (TMR) elements
US11170806B2 (en) * 2019-12-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor array with single TMR film plus laser annealing and characterization
CN111929625B (zh) * 2020-08-13 2023-03-28 中国科学院微电子研究所 磁场传感器及测试方法
CN114812627A (zh) * 2021-01-18 2022-07-29 Tdk株式会社 光检测元件、接收装置和光传感器装置
CN113029208B (zh) * 2021-03-05 2022-10-21 江苏多维科技有限公司 一种用于磁阻器件的激光编程写入装置及方法
CN113063344B (zh) * 2021-03-19 2022-10-11 江苏多维科技有限公司 一种低磁场磁电阻角度传感器
DE102021212072A1 (de) * 2021-10-26 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Einstellung der Magnetisierung in mindestens einem Bereich einer Halbleitervorrichtung
CN115236568B (zh) * 2022-09-23 2023-01-20 南方电网数字电网研究院有限公司 基于磁通调节器的宽量程垂直敏感磁传感器及其制备方法
CN115825826B (zh) * 2022-12-22 2023-09-15 南方电网数字电网研究院有限公司 一种三轴全桥电路变换式线性磁场传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140363A1 (en) * 2003-12-29 2005-06-30 International Business Machines Corporation Sensor for detection of the orientation of a magnetic field
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN202119390U (zh) * 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
US8283184B2 (en) * 2005-09-21 2012-10-09 Siemens Aktiengesellschaft Method for measurement of very small local magnetic fields, in particular for measurement of local magnetic stray fields produced by magnetic beads, and an associated device for carrying out the method
CN104246525A (zh) * 2012-04-23 2014-12-24 日立金属株式会社 磁传感器设备
CN104776794A (zh) * 2015-04-16 2015-07-15 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN204739999U (zh) * 2015-04-16 2015-11-04 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141737B1 (en) * 1999-06-18 2008-01-16 Koninklijke Philips Electronics N.V. Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems
US7005958B2 (en) * 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor
EP1527352A1 (de) * 2002-07-26 2005-05-04 Robert Bosch GmbH Gmr-sensorelement und dessen verwendung
JP2008101954A (ja) * 2006-10-17 2008-05-01 Daido Steel Co Ltd 磁気センサ素子
JP2009162540A (ja) * 2007-12-28 2009-07-23 Alps Electric Co Ltd 磁気センサ及びその製造方法
JP2011064653A (ja) * 2009-09-18 2011-03-31 Tdk Corp 磁気センサおよびその製造方法
JP2013053903A (ja) * 2011-09-02 2013-03-21 Alps Green Devices Co Ltd 電流センサ
CN104104376B (zh) * 2013-04-01 2018-01-02 江苏多维科技有限公司 推挽式芯片翻转半桥磁阻开关
CN203587786U (zh) * 2013-10-21 2014-05-07 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103592608B (zh) * 2013-10-21 2015-12-23 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103645449B (zh) * 2013-12-24 2015-11-25 江苏多维科技有限公司 一种用于高强度磁场的单芯片参考桥式磁传感器
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140363A1 (en) * 2003-12-29 2005-06-30 International Business Machines Corporation Sensor for detection of the orientation of a magnetic field
US8283184B2 (en) * 2005-09-21 2012-10-09 Siemens Aktiengesellschaft Method for measurement of very small local magnetic fields, in particular for measurement of local magnetic stray fields produced by magnetic beads, and an associated device for carrying out the method
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN202119390U (zh) * 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN104246525A (zh) * 2012-04-23 2014-12-24 日立金属株式会社 磁传感器设备
CN104776794A (zh) * 2015-04-16 2015-07-15 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN204739999U (zh) * 2015-04-16 2015-11-04 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401440B2 (en) 2015-04-16 2019-09-03 MultiDimension Technology Co., Ltd. Single-package high-field magnetoresistive angle sensor
EP3588118A4 (en) * 2017-02-23 2020-12-16 Multidimension Technology Co., Ltd. SINGLE-CHIP DUAL-AXIS MAGNETIC ANGLE SENSOR
US11512939B2 (en) 2017-02-23 2022-11-29 MultiDimension Technology Co., Ltd. Single-chip double-axis magnetoresistive angle sensor
JP2020511663A (ja) * 2017-03-24 2020-04-16 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. ヒステリシス・コイルを有する磁気センサ・パッケージング構造
JP7072265B2 (ja) 2017-03-24 2022-05-20 江▲蘇▼多▲維▼科技有限公司 ヒステリシス・コイルを有する磁気センサ・パッケージング構造
JP2020521979A (ja) * 2017-06-02 2020-07-27 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ トンネル磁気抵抗を有する磁気抵抗センサの低周波雑音を抑制するためのシステムおよび方法
CN113466759A (zh) * 2021-06-30 2021-10-01 山东大学 单、双轴磁阻磁场传感器和制作方法
CN113466759B (zh) * 2021-06-30 2023-06-13 山东大学 单、双轴磁阻磁场传感器和制作方法

Also Published As

Publication number Publication date
US20180113179A1 (en) 2018-04-26
JP6778696B2 (ja) 2020-11-04
CN104776794A (zh) 2015-07-15
EP3285041A4 (en) 2019-01-09
JP2018517128A (ja) 2018-06-28
EP3285041A1 (en) 2018-02-21
EP3285041B1 (en) 2020-06-17
US10401440B2 (en) 2019-09-03
CN104776794B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2016165578A1 (zh) 一种单封装的高强度磁场磁电阻角度传感器
WO2017036352A1 (zh) 一种半翻转两轴磁电阻传感器
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
TWI519805B (zh) 平面三軸計磁儀
CN204739999U (zh) 一种单封装的高强度磁场磁电阻角度传感器
TWI233226B (en) Magnetic sensor and manufacturing method therefor
US10663536B2 (en) Magnetoresistive sensor wafer layout used for a laser writing system, and corresponding laser scanning method
CN1204411C (zh) 具有几个传感元件的磁阻角传感器
US7508196B2 (en) Magnetic sensor for pointing device
JP5544501B2 (ja) 電流センサ
US20170276738A1 (en) Multiple axis magnetic sensor
EP3229035B1 (en) Magnetic field sensor with permanent magnet biasing
WO2012116660A1 (zh) 独立封装的磁电阻角度传感器
US11512939B2 (en) Single-chip double-axis magnetoresistive angle sensor
JP2012247415A (ja) 3軸磁気センサ
JP2010286236A (ja) 原点検出装置
US11506734B2 (en) Arrangement of adjacent layer structures for a magnetoresistive magnetic field sensor, magnetoresistive magnetic field sensor and method for producing
CN205157753U (zh) 一种半翻转两轴磁电阻传感器
KR101965510B1 (ko) 거대자기저항 센서
JP6701047B2 (ja) 磁気センサおよび磁気センサの製造方法
JP7106103B2 (ja) 磁気センサ装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15566019

Country of ref document: US