WO2016165343A1 - 一种疲劳状态的检测方法及终端 - Google Patents

一种疲劳状态的检测方法及终端 Download PDF

Info

Publication number
WO2016165343A1
WO2016165343A1 PCT/CN2015/095882 CN2015095882W WO2016165343A1 WO 2016165343 A1 WO2016165343 A1 WO 2016165343A1 CN 2015095882 W CN2015095882 W CN 2015095882W WO 2016165343 A1 WO2016165343 A1 WO 2016165343A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
fatigue state
test subject
pulse signal
determining
Prior art date
Application number
PCT/CN2015/095882
Other languages
English (en)
French (fr)
Inventor
刘均
张伟
龙知才
Original Assignee
深圳市元征科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征科技股份有限公司 filed Critical 深圳市元征科技股份有限公司
Publication of WO2016165343A1 publication Critical patent/WO2016165343A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to the field of biomedicine, and in particular, to a method and a terminal for detecting a fatigue state.
  • the present invention provides a method and a terminal for detecting a fatigue state, which can accurately determine the degree of fatigue of a person to be tested.
  • the present invention discloses a method for detecting a fatigue state, including:
  • the present invention also discloses a terminal, including:
  • a first acquiring unit configured to acquire a pulse signal of the test subject
  • a second acquiring unit configured to acquire an acceleration signal of the test subject
  • a determining unit configured to be configured according to the pulse signal acquired by the first acquiring unit, and the second acquiring list
  • the acceleration signal obtained by the element determines whether the test subject is in a fatigue state
  • a first determining unit configured to determine, if the determining unit determines that the test subject is in the fatigue state, determine the fatigue of the test subject according to a mapping relationship between a pre-stored pulse signal, an acceleration signal, and a fatigue state level Status level.
  • the terminal may first acquire the pulse signal of the test subject; then acquire the acceleration signal of the test subject; and determine whether the test subject is in a fatigue state according to the pulse signal and the acceleration signal; if the test subject is in a fatigue state ⁇ , determining the fatigue state level of the test subject according to the mapping relationship of the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the terminal determines whether the test subject is in a fatigue state according to the combination of the pulse signal and the acceleration signal, and determines the fatigue state level of the test subject according to the mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level. . It can be seen that the degree of fatigue of the person to be tested can be accurately determined.
  • FIG. 1 is a schematic flow chart of a method for detecting a fatigue state of the present invention
  • FIG. 2 is a schematic flow chart of another method for detecting a fatigue state of the present invention.
  • FIG. 3 is a schematic structural view of a terminal of the present invention.
  • FIG. 4 is a schematic structural view of another terminal of the present invention.
  • FIG. 5 is a schematic structural view of still another terminal of the present invention.
  • the embodiment of the present invention discloses a method and a terminal for detecting a fatigue state, which can determine whether a person to be tested is in a fatigue state according to a combination of a pulse signal and an acceleration signal, and can be pre-stored according to The mapping relationship between the pulse signal, the acceleration signal and the fatigue state level determines the fatigue state level of the subject to be tested, and the degree of fatigue of the person to be tested is accurately determined.
  • FIG. 1 is a schematic flow chart of a method for detecting a fatigue state according to an embodiment of the present invention.
  • the method shown in FIG. 1 can be applied to a wearable smart terminal, and the terminal can include, without limitation, an arithmetic device, a storage device, a communication device, a power component, a photoelectric reflective pulse sensor, an acceleration sensor, and an intelligent computing software. Wait.
  • the method for detecting the fatigue state may include:
  • Step S101 Acquire a pulse signal of the subject to be tested.
  • the pulse signal is a signal that the body surface can touch the beat of the artery.
  • the human circulatory system consists of the heart, blood vessels, and blood, and is responsible for the delivery of oxygen, carbon dioxide, nutrients, and waste. Blood is squeezed into the aorta by contraction of the left ventricle of the heart and is then transmitted to the systemic artery.
  • the artery is a conduit formed by elastic connective tissue and muscle. When a large amount of blood enters the artery, the arterial pressure is increased and the diameter of the tube is expanded. This expansion can be felt in the shallower surface of the body, the so-called pulse.
  • the heart rate data and the heart rate variability data can be obtained from the pulse signal, wherein the heart rate refers to the number of times the heart beats per minute; the heart rate variability data is generally used to analyze heart rate variability (HRV).
  • HRV heart rate variability
  • Heart rate variability HRV reflects autonomic nervous system activity and quantitative assessment of cardiac sympathetic and vagal tone tension and its balance, thus judging its condition and prevention of cardiovascular disease, may be a predictor of sudden cardiac death and arrhythmia An indicator of value. Fatal arrhythmias are associated with increased excitability of the sympathetic nerves and decreased excitability of the vagus nerve. The quantification of autonomic nervous system activity can be manifested by the degree of heart rate change. Heart rate variability HRV represents such a quantitative mapping.
  • Heart rate variability HRV drop ⁇ is the increase of sympathetic tone, which can reduce the threshold of ventricular fibrillation, which is unfavorable factor; heart rate variability HRV is increased as parasympathetic tone and ventricular fibrillation threshold is a protective factor.
  • the current pulse signal of the test subject when it is required to detect the current fatigue state of the test subject, can be obtained; when it is required to detect the fatigue state of the test subject for a short period of time, the method can be acquired.
  • the pulse signal of the tester in the pre-set interval.
  • Step S102 Acquire an acceleration signal of the test subject.
  • acquiring the acceleration signal of the test subject mainly includes acquiring an acceleration signal of the test subject in a motion state. Acceleration is the ratio between the amount of change in velocity and the time it takes to change this. It is the physical quantity that describes how fast the velocity of an object changes. It is usually expressed in a, and the unit is m/s2. Acceleration is a vector whose direction is the direction of the object's velocity change (quantity), which is the same as the direction of the external force. Wherein, the acceleration signal is used to signal the motion state of the subject.
  • the motion information such as the motion type, the motion length, and the exercise intensity of the test subject is analyzed by the acquired acceleration signal of the test subject.
  • Step S103 Determine, according to the pulse signal and the acceleration signal, whether the test subject is in a fatigue state.
  • the fatigue state may include a fatigue state of exercise fatigue and a fatigue state of mental fatigue.
  • mental fatigue refers to inattention, decreased reaction, and decreased alertness caused by various non-physical causes.
  • Typical mental fatigue such as cars (trains, airplanes, ships).
  • Exercise fatigue is caused by changes in energy consumption, decreased muscle strength, and loss of excitability in the three-dimensional relationship during exercise. Under the influence of comprehensive factors, there is a sharply decreasing mutation peak in the process of intracellular energy consumption and muscle excitability loss, and the excitability suddenly collapses to save the catastrophic changes caused by the further decline of energy reserves. Sudden decline in muscle strength and output power, manifested as fatigue.
  • the test subject when the pulse signal of the test subject and the acceleration signal of the test subject are obtained, the test subject may be fatigued according to the pulse signal of the test subject and the acceleration signal of the test subject. .
  • Step S104 If the person to be tested is in a fatigue state, determining a fatigue state level of the test subject according to a mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level may be pre-stored in the terminal.
  • the mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level may be obtained according to a large number of experimental tests, and may have different mapping relationships in different years, different genders have different mapping relationships; The mapping relationship between the physical health status and physiological characteristics of the person.
  • the mapping relationship of the pulse signal, the acceleration signal, and the fatigue state level stored in the terminal is also based on the relationship with the year. And the mapping relationship obtained by detecting the pulse signals of men under different acceleration signals.
  • the above-mentioned annual period may be 16 to 25 years old, or may be 16 to 20, and the range of the annual period may be set as needed, and the present invention is not limited.
  • the pulse signal under different acceleration signals between the long testers of the test subject should be recorded in the terminal.
  • Corresponding fatigue status level in the recording of the fatigue state level corresponding to the pulse signal at different accelerations between the lengths of the test subject, it should be closely related to the physical condition of the person to be tested.
  • the terminal may first acquire a pulse signal of the test subject; then acquire an acceleration signal of the test subject; and determine whether the test subject is in a fatigue state according to the pulse signal and the acceleration signal; if the test subject is fatigued
  • the state ⁇ determines the fatigue state level of the test subject according to the mapping relationship of the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the terminal determines whether the test subject is in a fatigue state according to the combination of the pulse signal and the acceleration signal, and determines the fatigue of the test subject according to the mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level. Status level. It can be seen that the degree of fatigue of the person to be tested can be accurately determined.
  • FIG. 2 is a schematic flow chart showing another method for detecting a fatigue state according to an embodiment of the present invention.
  • the method for detecting the fatigue state may include the following steps:
  • Step S201 Acquire a pulse signal of the subject to be tested.
  • Step S202 Acquire an acceleration signal of the person to be tested.
  • Step S203 Determine, according to the pulse signal and the acceleration signal, whether the test subject is in a fatigue state.
  • the specific implementation manner of determining whether the test subject is in a fatigue state according to the pulse signal and the acceleration signal includes: analyzing and acquiring heart rate data and heart rate variability data from the pulse signal; determining according to the heart rate data and the heart rate variability data.
  • the stress level of the test subject includes determining the load level of the test subject according to the acceleration signal; determining whether the test subject is in a fatigue state according to the stress level and the load level.
  • the stress is a systemic non-specific adaptive reaction that occurs in the body after various internal and external environmental factors and social and psychological factors, and is also called a stress response.
  • These stimuli are called stressors, and stress is a high-speed, highly stressful state of mind caused by unexpectedly urgent and dangerous conditions.
  • the most direct manifestation of stress is mental stress, which refers to a variety of excessively strong stimuli and the sum of their physiological and psychological responses.
  • Stress response refers to all non-specific physiological and psychological causes of loss to biological systems. The sum of the reactions. Stress or stress response refers to a non-specific systemic response that occurs when the body is stimulated by various strong factors (stressors).
  • the specific implementation manner of acquiring the heart rate data and the heart rate variability data of the test subject may include: filtering the pulse signal; obtaining a peak-to-valley value of the pulse signal after the filtering process; A histogram corresponding to the filtered pulse signal is drawn; the heart rate data of the subject and the heart rate variability data are obtained from the histogram.
  • the acquired pulse signal of the test subject may be filtered according to a preset filter rule.
  • a threshold value may be preset in the terminal, and the value of the acquired pulse signal is saved only when the value of the acquired pulse signal is higher than the preset threshold value, and is higher than the preset threshold value. The part is filtered.
  • the peak-to-valley value of the pulse signal after the filtering process can be obtained.
  • the peak-to-valley value of the pulse signal refers to the difference between the peak value and the valley value of the pulse signal within a predetermined range.
  • the histogram corresponding to the pulse signal after the filtering process may be drawn according to the peak-to-valley value.
  • the histogram also known as the mass distribution map, can be a tool for indicating changes in the pulse signal.
  • the histogram can be used to analyze the regularity of the pulse signal, and the distribution state of the pulse signal characteristics can be visually seen. The distribution of the pulse signal is clear and easy to judge the overall distribution.
  • the concept of statistics is involved, and the pulse signals are first grouped, so a reasonable grouping is one of the key issues.
  • the two key digits that follow the principle of equal group spacing are the number of groups and the group spacing. It is a kind of 1 shapeable chart, which is drawn according to the distribution of pulse signals, and is drawn as a series of connected rectangular rectangles with the base distance as the base and the frequency as the height. The purpose of the histogram is to determine whether the pulse signal is stable by observing the shape of the graph.
  • heart rate data and heart rate variability data are extracted from the histogram.
  • Step S204 If the person to be tested is in a fatigue state, determining a fatigue state level of the test subject according to a mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the specific implementation manner of determining the fatigue state level of the test subject according to the mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level stored in advance may include: pre-storing the stress level and the load.
  • the mapping relationship between level and fatigue state level is determined to match the stress level The target load level; detects whether the acquired load level matches the target load level; if it matches, determines the fatigue state level corresponding to the target load level.
  • Step S205 When it is determined that the fatigue state level of the test subject is lower than a preset level threshold, the prompt information for prompting the test subject to be in a mild fatigue state is output.
  • a threshold value of a fatigue state may be preset in the terminal, and the threshold may be set by acquiring a certain amount of fatigue rate obtained by heart rate data, heart rate variability data, and acceleration signals of the test subject. It may also be the heart rate data, the heart rate variability data recorded by the above-mentioned test subject in the embodiment of the present invention, and the fatigue state level obtained.
  • the terminal may output prompt information for prompting the test subject to be in a state of mild fatigue, so as to prompt the user to pay attention to reasonably arrange the recent life and work.
  • the terminal when it is determined that the fatigue state level of the test subject is higher than a preset level threshold ⁇ , it indicates that the test subject is already in a highly fatigue state. And the terminal can output a notification message for notifying the way to resolve the fatigue.
  • the manner of outputting the notification message may be voice output, text output, or the same output text of the voice output.
  • the terminal processes the heart rate data and the heart rate variability data and the acceleration signal of the test subject, and processes the information, and details the heart rate data and the heart rate of the terminal according to the test subject.
  • the mutated data and the acceleration signal determine whether the test subject is in a fatigue state, and describe in detail the relationship between the fatigue state level of the test subject and the preset level threshold after determining the fatigue state level of the test subject. , to output the corresponding prompt message.
  • the fatigue state of the test subject can be accurately determined, and the prompt information can be output according to the fatigue state level of the test subject.
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present invention, for performing the method for detecting the fatigue state.
  • the terminal involved in FIG. 3 may include, and is not limited to, a wearable smart terminal.
  • the terminal may include: a first obtaining unit 301, a second obtaining unit 302, a determining unit 303, and a first determining unit 304, where
  • the first obtaining unit 301 is configured to acquire a pulse signal of the test subject.
  • the pulse signal is a signal of an arterial beat that can be touched by the body surface.
  • the human circulatory system consists of the heart, blood vessels, and blood, and is responsible for the delivery of oxygen, carbon dioxide, nutrients, and waste. Blood is squeezed into the aorta by contraction of the left ventricle of the heart and is then transmitted to the systemic artery.
  • the artery is a conduit formed by elastic connective tissue and muscle. When a large amount of blood enters the artery, the arterial pressure is increased and the diameter of the tube is expanded. This expansion can be felt in the shallower surface of the body, the so-called pulse.
  • the heart rate data and the heart rate variability data can be obtained from the pulse signal, wherein the heart rate refers to the number of times the heart beats per minute; the heart rate variability data is generally used to analyze heart rate variability (HRV).
  • HRV heart rate variability
  • Heart rate variability HRV reflects autonomic nervous system activity and quantitative assessment of cardiac sympathetic and vagal tone tension and its balance, thus judging its condition and prevention of cardiovascular disease, may be a predictor of sudden cardiac death and arrhythmia An indicator of value. Fatal arrhythmias are associated with increased excitability of the sympathetic nerves and decreased excitability of the vagus nerve. The quantification of autonomic nervous system activity can be manifested by the degree of heart rate change. Heart rate variability HRV represents such a quantitative mapping.
  • Heart rate variability HRV drop ⁇ is the increase of sympathetic tone, which can reduce the threshold of ventricular fibrillation, which is unfavorable factor; heart rate variability HRV is increased as parasympathetic tone and ventricular fibrillation threshold is a protective factor.
  • the first acquiring unit 301 may acquire the current pulse signal of the test subject; when it is required to detect the fatigue state of the test subject for a short period of time Then, the first obtaining unit 301 can acquire a pulse signal of the test subject in the preset set interval.
  • the second obtaining unit 302 is configured to acquire an acceleration signal of the test subject.
  • the second acquisition unit 302 acquiring the acceleration signal of the test subject mainly includes acquiring an acceleration signal of the test subject in a motion state. Acceleration is the ratio between the amount of change in velocity and the time it takes to make this change. It is the physical quantity that describes how fast the velocity of an object changes. It is usually expressed by a, and the unit is m/s2. Acceleration is a vector whose direction is the direction of the object's velocity change (quantity), which is the same as the direction of the external force. Wherein, the acceleration signal is used to signal the motion state of the subject.
  • the motion information such as the motion type, the motion length, and the exercise intensity of the test subject is analyzed by the acceleration signal of the test subject acquired by the second acquisition unit 302.
  • the determining unit 303 is configured to determine, according to the pulse signal acquired by the first acquiring unit and the acceleration signal obtained by the second acquiring unit, whether the test subject is in a fatigue state.
  • the fatigue state may include a fatigue state of exercise fatigue and a fatigue state of mental fatigue.
  • mental fatigue refers to inattention, decreased reaction, and decreased alertness caused by various non-physical causes.
  • Typical mental fatigue such as cars (trains, airplanes, ships).
  • Exercise fatigue is caused by changes in energy consumption, decreased muscle strength, and loss of excitability in the three-dimensional relationship during exercise. Under the influence of comprehensive factors, there is a sharply decreasing mutation peak in the process of intracellular energy consumption and muscle excitability loss, and the excitability suddenly collapses to save the catastrophic changes caused by the further decline of energy reserves. Sudden decline in muscle strength and output power, manifested as fatigue.
  • the first acquisition unit 301 when the first acquisition unit 301 acquires the pulse signal of the test subject and the acceleration signal of the test subject acquired by the second acquisition unit 302, the first acquisition unit 301 may be based on the pulse signal of the test subject and the patient The acceleration signal of the tester determines whether the test subject is in a fatigue state.
  • the first determining unit 304 is configured to determine a fatigue state level of the test subject according to a mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level, if the determining unit determines that the test subject is in a fatigue state.
  • the mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level may be pre-stored in the terminal.
  • the mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level may be obtained according to a large number of experimental tests, and may have different mapping relationships in different years, different genders have different mapping relationships; The mapping relationship between the physical health status and physiological characteristics of the person.
  • the mapping relationship between the pulse signal, the acceleration signal, and the fatigue state level stored in the terminal is also consistent with the year. They are all mapped by detecting the pulse signals of men under different acceleration signals.
  • the above-mentioned annual period may be 16 to 25 years old, or may be 16 to 20, and the range of the annual period may be set as needed, and the present invention is not limited.
  • the pulse signal under different acceleration signals of the test subject should be recorded in the terminal.
  • the fatigue state level corresponding to the pulse signal at different accelerations between the long ones of the test subject should be closely related to the physical condition of the person to be tested.
  • the first obtaining unit 301 may first acquire a pulse signal of the test subject; the second acquiring unit 302 acquires an acceleration signal of the test subject; the determining unit 303 determines the test to be tested according to the pulse signal and the acceleration signal. Whether the person is in a fatigue state; if the person to be tested is in a fatigue state, the first determining unit 304 determines the fatigue state level of the person to be tested according to the mapping relationship of the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the terminal determines whether the test subject is in a fatigue state according to the combination of the pulse signal and the acceleration signal, and determines the fatigue of the test subject according to the mapping relationship between the pre-stored pulse signal, the acceleration signal, and the fatigue state level. Status level. It can be seen that the breeding accurately determines the degree of fatigue of the person to be tested.
  • FIG. 4 is a schematic structural diagram of another terminal according to an embodiment of the present invention, for performing the method for detecting the fatigue state. 4 is further refined on the basis of FIG. 3, and may include: a first output unit 305 and a second output unit 306, in addition to all the units shown in FIG.
  • the first output unit 305 is configured to: when the determining unit determines that the fatigue state level of the test subject is greater than a preset level threshold, outputting prompt information for prompting the test subject to be in a mild fatigue state.
  • the second output unit 306 is configured to: when the determining unit determines that the fatigue state level of the test subject is higher than a preset level threshold, notify the fatigue state level of the test subject, and output a notification message.
  • the notification message is used to notify the manner of solving the fatigue.
  • a threshold value of a fatigue state may be preset in the terminal, and the threshold may be set by acquiring a certain amount of fatigue rate of heart rate data, heart rate variability data, and acceleration signals of the test subject. It may also be a fatigue state level obtained according to the heart rate data recorded by the above-mentioned test subject and the heart rate variability data and the acceleration signal according to the embodiment of the present invention.
  • the terminal may output prompt information for prompting the test subject to be in a mild fatigue state, to prompt the user to pay attention to the reasonable Arrange for a recent life routine.
  • the terminal when it is determined that the fatigue state level of the test subject is higher than a preset level threshold ⁇ , it indicates that the test subject is already in a highly fatigue state. And the terminal can output a notification message for notifying the way to resolve the fatigue.
  • the manner of outputting the notification message may be voice output, text output, or the same output text of the voice output.
  • the first obtaining unit 301 may include: a filtering unit 3010, a peak-to-valley value acquiring unit 3011, a drawing unit 3012, and a heart rate parameter value acquiring unit 3013, where
  • the filtering unit 3010 is configured to perform filtering processing on the pulse signal acquired by the signal acquiring unit.
  • the peak-to-valley value obtaining unit 3011 is configured to acquire a peak-to-valley value of the pulse signal after the filtering unit filtering process.
  • the drawing unit 3012 is configured to draw a histogram corresponding to the pulse signal after the filtering process according to the peak-to-valley value acquired by the peak-to-valley value acquiring unit.
  • the heart rate parameter value obtaining unit 3013 is configured to obtain heart rate data and heart rate variability data of the subject to be tested from the histogram drawn by the drawing unit.
  • the filtering unit 3010 may perform filtering processing on the acquired pulse signal of the test subject according to the preset filter rule.
  • a threshold value may be preset in the terminal, and the value of the acquired pulse signal is saved only when the value of the acquired pulse signal is higher than the preset threshold value, and is higher than the preset threshold value. The part is filtered.
  • the peak-to-valley obtaining unit 3011 can obtain the peak-to-valley value of the pulse signal after the filtering process.
  • the peak-to-valley value of the pulse signal is the difference between the peak value and the valley value of the pulse signal within a predetermined range.
  • the rendering unit 3012 may draw a histogram corresponding to the pulse signal after the filtering process according to the peak-to-valley value.
  • the histogram also known as the mass distribution map, can be a tool for indicating changes in the pulse signal.
  • the histogram can be used to analyze the regularity of the pulse signal, and the distribution state of the pulse signal characteristics can be visually seen. The distribution of the pulse signal is clear at a glance, and it is easy to judge the overall distribution. In the production of histograms, the concept of statistics is involved.
  • the pulse signals are first grouped, so a reasonable grouping such as 1 is a key issue.
  • the two key digits that follow the principle of equal group spacing are the number of groups and the group spacing.
  • the heart rate parameter value obtaining unit 3013 extracts heart rate data and heart rate variability data from the histogram.
  • the first determining unit 304 may further include: an information determining unit 3040, a detecting unit 3041, and a level determining unit 3042, where
  • the information determining unit 3040 is configured to determine a target load level that matches the stress level determined by the first determination 304 according to a mapping relationship that pre-stores the stress level, the load level, and the fatigue state level.
  • the detecting unit 3041 is configured to detect whether the load level acquired by the second acquiring unit matches the target load level determined by the information determining unit.
  • the level determining unit 3042 is configured to determine a fatigue state level corresponding to the target load level if the detecting unit detects that the load level acquired by the second acquiring unit matches the target load level determined by the information determining unit.
  • the output is output.
  • Corresponding prompt message the level of the fatigue state of the test subject can be accurately determined, and the prompt information can be output according to the fatigue state level of the test subject.
  • FIG. 5 is a schematic structural diagram of another terminal according to an embodiment of the present invention, for performing the method for detecting the fatigue state.
  • the terminal 500 can include: at least one processor 501, at least one input device 502, at least one output device 503, a memory 505, and the like. Among them, these components are communicatively connected by one or more buses 504.
  • the structure of the terminal shown in FIG. 5 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of parts, or different parts. among them:
  • the processor 501 is a control center of the terminal, and connects various parts of the entire terminal by using various interfaces and lines.
  • the various functions and processing data of the terminal are executed by running or executing programs and/or modules stored in the memory 505, and calling data stored in the memory 505.
  • the processor 501 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of It is composed of a plurality of package ICs with the same function or different functions.
  • the processor 501 may include only a central processing unit (CPU), or may be a CPU, a digital signal processor (DSP), or a graphics processing unit (GPU). ) and a combination of various control chips.
  • the CPU may be a single computing core, and may also include multiple computing cores.
  • Input device 502 can include a standard touch screen or the like.
  • the output device 503 can include a display screen, a speaker, and the like.
  • the memory 505 can be used to store software programs and modules, and the processor 501, the input device 502, and the output device 503 execute various functional applications of the terminal and implement data processing by calling software programs and modules stored in the memory 505.
  • the memory 505 mainly includes a program storage area and a data storage area, wherein the program storage area can store an operating system, an application required for at least one function, and the like; the data storage area can store data created according to the use of the terminal and the like.
  • the operating system may be an Android system, an iOS system, a Windows operating system, or the like.
  • the processor 501 calls an application stored in the memory 505 for performing the following operations.
  • the processor 501 controls the input device 502 to acquire a pulse signal of the subject to be tested;
  • the processor 501 controls the input device 502 to acquire an acceleration signal of the test subject
  • the processor 501 determines, according to the pulse signal and the acceleration signal, whether the test subject is in a fatigue state
  • the fatigue state level of the subject is determined according to a mapping relationship of the pulse signal, the acceleration signal, and the fatigue state level stored in advance.
  • the processor 501 invokes an application stored in the memory 505, and is configured to perform, according to the pulse signal and the acceleration signal, whether the subject is in a fatigue state, and the specific implementation includes:
  • the processor 501 calls an application stored in the memory 505 for executing from
  • the specific implementation manner of analyzing the heart rate data and the heart rate variability data in the pulse signal may include: [0115]
  • the processor 501 controls the input device 502 to perform filtering processing on the pulse signal;
  • the processor 501 controls the input device 502 to acquire the peak-to-valley value of the pulse signal after the filtering process;
  • the processor 501 controls the input device 502 to draw a histogram corresponding to the filtered pulse signal according to the peak-to-valley value;
  • the processor 501 controls the input device 502 to acquire the heart rate data of the subject and the heart rate variability data from the histogram.
  • the processor 501 calls an application stored in the memory 505, and is configured to perform determining a fatigue state level of the test subject according to a mapping relationship between a pulse signal, an acceleration signal, and a fatigue state level stored in advance.
  • Specific implementations can include:
  • the fatigue state level corresponding to the target load level is determined.
  • the processor 501 calls an application stored in the memory 505, and is also configured to perform the following steps:
  • the processor 501 controls the output device 503 to output prompt information for prompting the test subject to be in a mild fatigue state when determining that the fatigue state level of the test subject is lower than a preset level threshold ⁇ ;
  • the processor 501 controls the output device 503 to notify the fatigue state level of the test subject when the fatigue state level of the test subject is higher than a preset level threshold ,, and output a notification message, wherein the notification message is used for notification The way to solve the fatigue.
  • the terminal introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the method for detecting fatigue state introduced by the present invention in conjunction with FIG. 1 and FIG.
  • modules or sub-modules in all embodiments of the present invention may be through a general-purpose integrated circuit, such as a CPU (Central Processing Unit), or an ASIC (Application Specific).
  • a CPU Central Processing Unit
  • ASIC Application Specific
  • ASIC Integrated Circuit
  • the units in the terminal in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • Those skilled in the art can understand that all or part of the process of implementing the foregoing embodiments may be completed by a computer program to instruct related hardware, and the program may be stored in a computer readable storage medium.
  • the program after execution, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

一种疲劳状态的检测方法及终端。该方法包括:获取待测者的脉搏信号(S101);获取待测者的加速度信号(S102);根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态(S103);若待测者处于疲劳状态时,则根据预先存储的脉搏信号、加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状态级别(S104)。终端会根据脉搏信号以及加速度信号相结合判断待测者是否处于疲劳状态,且会根据预先存储的脉搏信号、加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状态级别。由此可见,该方法及终端能够精确确定出待测者的疲劳程度。

Description

一种疲劳状态的检测方法及终端
[0001] 本申请要求于 2015年 4月 17日提交中国专利局、 申请号为 201510184314.6、 发 明名称为"一种疲劳状态的检测方法及终端"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。
[0002] 技术领域
[0003] 本发明涉及生物医学领域, 尤其涉及一种疲劳状态的检测方法及终端。
[0004] 背景技术
[0005] 随着现代社会工作压力、 生活压力的不断增加, 大多数人都存在不同程度的精 神疲劳或运动疲劳。 可表现为心情烦躁、 注意力涣散或全身乏力等状态。 然而 , 对于疲劳状态的检测仍然是一个大问题。 目前, 检测疲劳状态的方法主要是 根据待测者近期注意力是否集中, 是否感觉全身乏力来判断。 然而, 采用这种 方式对待测者进行疲劳状态检测吋, 检测结果依赖于待测者的主观判断, 以至 于检测结果不精准, 从而导致无法准确确定出待测者的疲劳程度。
[0006] 发明内容
[0007] 本发明提供了一种疲劳状态的检测方法及终端, 能够精确确定出待测者的疲劳 程度。
[0008] 本发明公幵了一种疲劳状态的检测方法, 包括:
[0009] 获取待测者的脉搏信号;
[0010] 获取所述待测者的加速度信号;
[0011] 根据所述脉搏信号以及所述加速度信号判断所述待测者是否处于疲劳状态; [0012] 若所述待测者处于所述疲劳状态吋, 根据预先存储的脉搏信号、 加速度信号以 及疲劳状态级别的映射关系确定所述待测者的疲劳状态级别。
[0013] 相应地, 本发明还公幵了一种终端, 包括:
[0014] 第一获取单元, 用于获取待测者的脉搏信号;
[0015] 第二获取单元, 用于获取所述待测者的加速度信号;
[0016] 判断单元, 用于根据所述第一获取单元获取到的脉搏信号以及所述第二获取单 元获取到的加速度信号判断所述待测者是否处于疲劳状态;
[0017] 第一确定单元, 用于若所述判断单元判断待测者处于所述疲劳状态吋, 根据预 先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定所述待测者 的疲劳状态级别。
[0018] 本发明中, 终端可以先获取待测者的脉搏信号; 再获取待测者的加速度信号; 并根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态; 若待测者处于 疲劳状态吋, 则根据预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映 射关系确定待测者的疲劳状态级别。 实施本发明, 终端会根据脉搏信号以及加 速度信号相结合进行判断待测者是否处于疲劳状态, 且会根据预先存储的脉搏 信号、 加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状态级别。 由此可见, 能够精确确定出待测者的疲劳程度。
[0019] 附图说明
[0020] 为了更清楚地说明本发明的技术方案, 下面将对本发明所需要使用的附图作简 单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领 域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获 得其他的附图。
[0021] 图 1是本发明公幵的一种疲劳状态的检测方法的流程示意图;
[0022] 图 2是本发明公幵的另一种疲劳状态的检测方法的流程示意图;
[0023] 图 3是本发明公幵的一种终端的结构示意图;
[0024] 图 4是本发明公幵的另一种终端的结构示意图;
[0025] 图 5是本发明公幵的又一种终端的结构示意图。
[0026] 具体实施方式
[0027] 下面将结合本发明的附图和实施例, 对本发明的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
[0028] 本发明实施例公幵了一种疲劳状态的检测方法及终端, 能够根据脉搏信号以及 加速度信号相结合进行判断待测者是否处于疲劳状态, 且可以根据预先存储的 脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状态级 另 |J; 以精确确定出待测者的疲劳程度。
[0029] 请参阅图 1 , 图 1是本发明实施例公幵的一种疲劳状态的检测方法的流程示意图 。 其中, 图 1所示的方法可以应用于穿戴式智能终端中, 且该终端中可以包括伹 不限于运算器件、 存储器件、 通信器件、 电源组件、 光电反射式脉搏传感器、 加速度传感器以及智能运算软件等。 如图 1所示, 该疲劳状态的检测方法可以包 括:
[0030] 步骤 S101、 获取待测者的脉搏信号。
[0031] 本发明实施例中, 脉搏信号为体表可触摸到的动脉搏动的信号。 人体循环系统 由心脏、 血管、 血液所组成, 负责人体氧气、 二氧化碳、 养分及废物的运送。 血液经由心脏的左心室收缩而挤压流入主动脉, 随即传递到全身动脉。 动脉为 富有弹性的结缔组织与肌肉所形成管路。 当大量血液进入动脉将使动脉压力变 大而使管径扩张, 在体表较浅处动脉即可感受到此扩张, 即所谓的脉搏。 本发 明实施例中, 可以从脉搏信号中分析获取得到心率数据以及心率变异数据, 其 中, 心率是指心脏每分钟跳动的次数; 心率变异数据一般用于分析心率变异性 (heart rate variability , HRV) 。 心率变异性 HRV是反映自主神经系统活性和 定量评估心脏交感神经与迷走神经张力及其平衡性, 从而判断其对心血管疾病 的病情及预防, 可能是预测心脏性猝死和心律失常性事件的一个有价值的指标 。 致命性的心律失常与交感神经的兴奋性增加、 迷走神经的兴奋性减少有关, 自主神经系统活动的量化可以通过心率变化的程度表现出来, 心率变异性 HRV 代表了这样一种量化标测。 即通过测量连续正常最大值与最小值的间期变化的 变异性来反映心率变化程度、 规律, 从而用以判断其对心血管活动的影响。 心 率变异性 HRV降 ί氐为交感神经张力增高, 可降 ί氐室颤阈, 属不利因素; 心率变 异性 HRV升高为副交感神经张力增高, 提高室颤阈, 属保护因素。
[0032] 本发明实施例中, 当需要检测待测者当前的疲劳状态吋, 可以获取待测者当前 的脉搏信号; 当需要检测待测者近一段吋间内的疲劳状态, 则可以获取待测者 在预先的设定的吋间段内的脉搏信号。
[0033] 步骤 S102、 获取待测者的加速度信号。 [0034] 本发明实施例中, 获取待测者的加速度信号主要包括获取待测者在运动状态下 的加速度信号。 其中, 加速度 (Acceleration) 是速度变化量与发生这一变化所 用吋间的比值, 是描述物体速度变化快慢的物理量, 通常用 a表示, 单位是 m/s2 。 加速度是矢量, 它的方向是物体速度变化 (量) 的方向, 与合外力的方向相 同。 其中, 加速度信号用于表征待测者的运动状态的信号。
[0035] 本发明实施例中, 通过对获取到的待测者的加速度信号分析待测者的运动类型 、 运动吋长以及运动强度等运动信息。
[0036] 步骤 S103、 根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态。
[0037] 本发明实施例中, 疲劳状态可以包括运动疲劳的疲劳状态以及精神疲劳的疲劳 状态。 其中, 精神疲劳是指由各种非体力不支原因引起的注意力不集中、 反应 力下降、 警觉性降 ί氐。 典型的精神疲劳如汽车 (火车、 飞机、 轮船 ...... ) 驾驶 员长吋间驾驶过程中的疲劳状态。 运动疲劳是由于运动过程中的能量消耗、 肌 肉力量下降及兴奋性丧失三维空间关系改变所致。 在综合性因素作用下,细胞内 能量消耗和肌肉兴奋性丧失的过程中,存在一个急剧下降的突变峰,兴奋性突然崩 溃,以拯救能量储备的进一步下降而产生的灾难性变化,同吋伴随着肌肉力量和输 出功率的突然衰退,表现为疲劳。
[0038] 本发明实施例中, 当获取到待测者的脉搏信号以及待测者的加速度信号吋, 可 以根据待测者的脉搏信号以及待测者的加速度信号判断待测者是否处于疲劳状 态。
[0039] 步骤 S104、 若待测者处于疲劳状态吋, 根据预先存储的脉搏信号、 加速度信号 以及疲劳状态级别的映射关系确定待测者的疲劳状态级别。
[0040] 本发明实施例中, 可以在终端预先存储脉搏信号、 加速度信号以及疲劳状态级 别的映射关系。 该预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射 关系可以是根据大量实验检测得到, 且应对不同年齢段有不同的映射关系, 不 同的性别有不同的映射关系; 也可以是根据待测者本身的身体健康状态以及生 理特征信息所得到的映射关系。
[0041] 举例来说, 当上述待测者是一个年齢为 18岁的男性, 则在终端预先存储脉搏信 号、 加速度信号以及疲劳状态级别的映射关系也都是根据属于与这个年齢段相 符的, 且都是通过检测男性在不同的加速度信号下的脉搏信号得到的映射关系 。 其中, 上述年齢段可以是 16~25岁, 也可以是 16~20, 可以根据需要设定年齢 段的取值范围, 本发明不作限定。
[0042] 本发明实施例中, 根据待测者本身的身体健康状态以及生理特征信息所得到的 映射关系, 则终端中应记录该待测者长吋间的在不同的加速度信号下的脉搏信 号对应的疲劳状态级别。 且在记录该待测者长吋间的在不同的加速度下的脉搏 信号对应的疲劳状态级别吋, 应与待测者的身体状况紧密联系。
[0043] 在图 1中, 终端可以先获取待测者的脉搏信号; 再获取待测者的加速度信号; 并根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态; 若待测者处于 疲劳状态吋, 则根据预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映 射关系确定待测者的疲劳状态级别。 实施本发明实施例, 终端会根据脉搏信号 以及加速度信号相结合进行判断待测者是否处于疲劳状态, 且会根据预先存储 的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状态 级别。 由此可见, 能够精确确定出待测者的疲劳程度。
[0044] 请参阅图 2, 图 2是本发明实施例公幵的另一种疲劳状态的检测方法的流程示意 图。 其中, 该疲劳状态的检测方法可以包括以下步骤:
[0045] 步骤 S201、 获取待测者的脉搏信号。
[0046] 步骤 S202、 获取待测者的加速度信号。
[0047] 步骤 S203、 根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态。
[0048] 本发明实施例中, 根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态 的具体实现方式包括: 从脉搏信号中分析获取心率数据以及心率变异数据; 根 据心率数据以及心率变异数据确定待测者的应激水平; 根据加速度信号确定待 测者的负荷水平; 根据应激水平以及负荷水平判断待测者是否处于疲劳状态。
[0049] 本发明实施例中, 应激是机体在各种内外环境因素及社会、 心理因素刺激吋所 出现的全身性非特异性适应反应, 又称为应激反应。 这些刺激因素称为应激源 , 应激是在出乎意料的紧迫与危险情况下引起的高速而高度紧张的情绪状态。 应激的最直接表现即精神紧张, 指各种过强的不良刺激, 以及对它们的生理、 心理反应的总和。 应激反应指所有对生物系统导致损耗的非特异性生理、 心理 反应的总和。 应激或应激反应是指机体在受到各种强烈因素 (应激源) 刺激吋 所出现的非特异性全身反应。
[0050] 本发明实施例中, 获取待测者的心率数据以及心率变异数据的具体实现方式可 以包括: 对脉搏信号进行滤波处理; 获取滤波处理后的脉搏信号的峰谷值; 根 据峰谷值绘制与滤波处理后的脉搏信号对应的直方图; 从直方图中获取待测者 的心率数据以及心率变异数据。
[0051] 本发明实施例中, 当获取待测者的脉搏信号后, 可以根据预先设置的滤波规则 对获取到的待测者的脉搏信号进行滤波处理。 举例来说, 可以在终端中预先设 定一个门限值, 只有当获取到的脉搏信号的值 ί氐于预先设定的门限值才保存, 而对于高于该预先设定的门限值的部分则过滤处理。
[0052] 本发明实施例中, 对获取到的脉搏信号过滤处理后, 可以获取滤波处理后的脉 搏信号的峰谷值。 其中, 脉搏信号的峰谷值是指在规定的吋间范围内, 脉搏信 号的峰值与谷值之差。
[0053] 本发明实施例中, 在获取滤波处理后的脉搏信号的峰谷值后, 可以根据峰谷值 绘制与滤波处理后的脉搏信号对应的直方图。 其中, 直方图又称质量分布图, 它可以是表示脉搏信号变化情况的一种工具。 用直方图可以解析出脉搏信号的 规则性, 比较直观地看出脉搏信号特性的分布状态, 对于脉搏信号分布状况一 目了然, 便于判断其总体分布情况。 在制作直方图吋, 牵涉统计学的概念, 首 先要对脉搏信号进行分组, 因此如 1可合理分组是其中的关键问题。 按组距相等 的原则进行的两个关键数位是分组数和组距。 是一种几 1可形图表, 它是根据脉 搏信号分布情况, 画成以组距为底边、 以频数为高度的一系列连接起来的直方 型矩形图。 作直方图的目的就是通过观察图的形状, 判断脉搏信号是否稳定。
[0054] 本发明实施例中, 通过从上述直方图中提取心率数据以及心率变异数据。
[0055] 步骤 S204、 若待测者处于疲劳状态吋, 根据预先存储的脉搏信号、 加速度信号 以及疲劳状态级别的映射关系确定待测者的疲劳状态级别。
[0056] 本发明实施例中, 根据预先存储的脉搏信号、 加速度信号以及疲劳状态级别的 映射关系确定所述待测者的疲劳状态级别的具体实现方式可以包括: 根据预先 存储应激水平、 负荷水平以及疲劳状态级别的映射关系确定与应激水平相匹配 的目标负荷水平; 检测获取到的负荷水平是否与目标负荷水平相匹配; 若匹配 , 则确定与目标负荷水平相对应的疲劳状态级别。
[0057] 步骤 S205、 当判断待测者的疲劳状态级别低于预先设定的级别阈值吋, 输出用 于提示待测者处于轻度疲劳状态的提示信息。
[0058] 本发明实施例中, 可以在终端预先设定以及疲劳状态的级别阈值, 该阈值的设 定可以通过获取一定数额的待测者的心率数据、 心率变异数据以及加速度信号 得到的疲劳级别, 也可以是根据本发明实施例中上述待测者长吋间记录的心率 数据、 心率变异数据以及而得到的疲劳状态级别。
[0059] 本发明实施例中, 当判断待测者的疲劳状态级别 ί氐于预先设定的级别阈值吋, 说明该待测者已经处于疲劳状态, 伹是疲劳状态的级别并不是很高, 则终端可 以输出用于提示待测者处于轻度疲劳状态的提示信息, 以提示用户要注意合理 安排近期的生活作息。
[0060] 作为一种可选的实施方式, 当判断待测者的疲劳状态级别高于预先设定的级别 阈值吋, 通知待测者的疲劳状态级别, 并输出通知消息, 所述通知消息用于通 知解决所述疲劳的方式。
[0061] 本发明实施例中, 当判断待测者的疲劳状态级别高于预先设定的级别阈值吋, 则说明该待测者已经处于高度疲劳状态。 且终端可以输出通知消息, 该通知消 息用于通知解决疲劳的方式。 其中, 输出通知消息的方式可以是语音输出、 也 可以是文字输出, 也可以是语音输出的同吋输出文字。
[0062] 在图 2中, 详细描述了终端在获取到待测者的心率数据以及心率变异数据以及 加速度信号后, 对这些信息的处理, 以及详细描述了终端根据待测者的心率数 据、 心率变异数据以及加速度信号判断待测者是否处于疲劳状态, 以及详细描 述了终端在确定待测者的疲劳状态级别后, 通过检测该待测者的疲劳状态级别 与预先设定的级别阈值的大小关系, 以输出相对应的提示消息。 实施本发明实 施例, 可以精准确定待测者的疲劳状态, 以及根据待测者的疲劳状态级别输出 提示信息。
[0063] 请参阅图 3 , 图 3是本发明实施例公幵的一种终端的结构示意图, 用于执行该疲 劳状态的检测方法。 其中, 图 3中涉及的终端可以包括伹不限于穿戴式智能终端 。 如图 3所示, 该终端可以包括: 第一获取单元 301、 第二获取单元 302、 判断单 元 303以及第一确定单元 304, 其中,
[0064] 第一获取单元 301 , 用于获取待测者的脉搏信号。
[0065] 本发明实施例中, 脉搏信号为体表可触摸到的动脉搏动的信号。 人体循环系统 由心脏、 血管、 血液所组成, 负责人体氧气、 二氧化碳、 养分及废物的运送。 血液经由心脏的左心室收缩而挤压流入主动脉, 随即传递到全身动脉。 动脉为 富有弹性的结缔组织与肌肉所形成管路。 当大量血液进入动脉将使动脉压力变 大而使管径扩张, 在体表较浅处动脉即可感受到此扩张, 即所谓的脉搏。 本发 明实施例中, 可以从脉搏信号中分析获取得到心率数据以及心率变异数据, 其 中, 心率是指心脏每分钟跳动的次数; 心率变异数据一般用于分析心率变异性 (heart rate variability , HRV) 。 心率变异性 HRV是反映自主神经系统活性和 定量评估心脏交感神经与迷走神经张力及其平衡性, 从而判断其对心血管疾病 的病情及预防, 可能是预测心脏性猝死和心律失常性事件的一个有价值的指标 。 致命性的心律失常与交感神经的兴奋性增加、 迷走神经的兴奋性减少有关, 自主神经系统活动的量化可以通过心率变化的程度表现出来, 心率变异性 HRV 代表了这样一种量化标测。 即通过测量连续正常最大值与最小值的间期变化的 变异性来反映心率变化程度、 规律, 从而用以判断其对心血管活动的影响。 心 率变异性 HRV降 ί氐为交感神经张力增高, 可降 ί氐室颤阈, 属不利因素; 心率变 异性 HRV升高为副交感神经张力增高, 提高室颤阈, 属保护因素。
[0066] 本发明实施例中, 当需要检测待测者当前的疲劳状态吋, 第一获取单元 301可 以获取待测者当前的脉搏信号; 当需要检测待测者近一段吋间内的疲劳状态, 则第一获取单元 301可以获取待测者在预先的设定的吋间段内的脉搏信号。
[0067] 第二获取单元 302, 用于获取待测者的加速度信号。
[0068] 本发明实施例中, 第二获取单元 302获取待测者的加速度信号主要包括获取待 测者在运动状态下的加速度信号。 其中, 加速度 (Acceleration) 是速度变化量 与发生这一变化所用吋间的比值, 是描述物体速度变化快慢的物理量, 通常用 a 表示, 单位是 m/s2。 加速度是矢量, 它的方向是物体速度变化 (量) 的方向, 与合外力的方向相同。 其中, 加速度信号用于表征待测者的运动状态的信号。 [0069] 本发明实施例中, 通过对第二获取单元 302获取到的待测者的加速度信号分析 待测者的运动类型、 运动吋长以及运动强度等运动信息。
[0070] 判断单元 303 , 用于根据第一获取单元获取到的脉搏信号以及第二获取单元获 取到的加速度信号判断待测者是否处于疲劳状态。
[0071] 本发明实施例中, 疲劳状态可以包括运动疲劳的疲劳状态以及精神疲劳的疲劳 状态。 其中, 精神疲劳是指由各种非体力不支原因引起的注意力不集中、 反应 力下降、 警觉性降 ί氐。 典型的精神疲劳如汽车 (火车、 飞机、 轮船 ...... ) 驾驶 员长吋间驾驶过程中的疲劳状态。 运动疲劳是由于运动过程中的能量消耗、 肌 肉力量下降及兴奋性丧失三维空间关系改变所致。 在综合性因素作用下,细胞内 能量消耗和肌肉兴奋性丧失的过程中,存在一个急剧下降的突变峰,兴奋性突然崩 溃,以拯救能量储备的进一步下降而产生的灾难性变化,同吋伴随着肌肉力量和输 出功率的突然衰退,表现为疲劳。
[0072] 本发明实施例中, 当第一获取单元 301获取到待测者的脉搏信号以及第二获取 单元 302获取到的待测者的加速度信号吋, 可以根据待测者的脉搏信号以及待测 者的加速度信号判断待测者是否处于疲劳状态。
[0073] 第一确定单元 304, 用于若判断单元判断待测者处于疲劳状态吋, 根据预先存 储的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定待测者的疲劳状 态级别。
[0074] 本发明实施例中, 可以在终端预先存储脉搏信号、 加速度信号以及疲劳状态级 别的映射关系。 该预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射 关系可以是根据大量实验检测得到, 且应对不同年齢段有不同的映射关系, 不 同的性别有不同的映射关系; 也可以是根据待测者本身的身体健康状态以及生 理特征信息所得到的映射关系。
[0075] 举例来说, 当上述待测者是一个年齢为 18岁的男性, 则在终端预先存储脉搏信 号、 加速度信号以及疲劳状态级别的映射关系也都是根据属于与这个年齢段相 符的, 且都是通过检测男性在不同的加速度信号下的脉搏信号得到的映射关系 。 其中, 上述年齢段可以是 16~25岁, 也可以是 16~20, 可以根据需要设定年齢 段的取值范围, 本发明不作限定。 [0076] 本发明实施例中, 根据待测者本身的身体健康状态以及生理特征信息所得到的 映射关系, 则终端中应记录该待测者长吋间的在不同的加速度信号下的脉搏信 号对应的疲劳状态级别。 且在记录该待测者长吋间的在不同的加速度下的脉搏 信号对应的疲劳状态级别吋, 应与待测者的身体状况紧密联系。
[0077] 在图 3中, 第一获取单元 301可以先获取待测者的脉搏信号; 第二获取单元 302 再获取待测者的加速度信号; 判断单元 303并根据脉搏信号以及加速度信号判断 待测者是否处于疲劳状态; 若待测者处于疲劳状态吋, 则第一确定单元 304根据 预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定待测者的 疲劳状态级别。 实施本发明实施例, 终端会根据脉搏信号以及加速度信号相结 合进行判断待测者是否处于疲劳状态, 且会根据预先存储的脉搏信号、 加速度 信号以及疲劳状态级别的映射关系确定待测者的疲劳状态级别。 由此可见, 育 够精确确定出待测者的疲劳程度。
[0078] 请参阅图 4, 图 4是本发明实施例公幵的另一种终端的结构示意图, 用于执行该 疲劳状态的检测方法。 其中, 图 4是在图 3的基础上进一步细化得到, 除包括图 3 中所示的所有单元外, 还可以包括: 第一输出单元 305以及第二输出单元 306, 其中,
[0079] 第一输出单元 305 , 用于当判断单元判断待测者的疲劳状态级别 ί氐于预先设定 的级别阈值吋, 输出用于提示待测者处于轻度疲劳状态的提示信息。
[0080] 第二输出单元 306, 用于当判断单元判断待测者的疲劳状态级别高于预先设定 的级别阈值吋, 通知待测者的疲劳状态级别, 并输出通知消息。
[0081] 本发明实施例中, 通知消息用于通知解决所述疲劳的方式。
[0082] 本发明实施例中, 可以在终端预先设定以及疲劳状态的级别阈值, 该阈值的设 定可以通过获取一定数额的待测者的心率数据、 心率变异数据以及加速度信号 得到的疲劳级别, 也可以是根据本发明实施例中上述待测者长吋间记录的心率 数据以及心率变异数据以及加速度信号而得到的疲劳状态级别。
[0083] 本发明实施例中, 当判断待测者的疲劳状态级别 ί氐于预先设定的级别阈值吋, 说明该待测者已经处于疲劳状态, 伹是疲劳状态的级别并不是很高, 则终端可 以输出用于提示待测者处于轻度疲劳状态的提示信息, 以提示用户要注意合理 安排近期的生活作息。
[0084] 本发明实施例中, 当判断待测者的疲劳状态级别高于预先设定的级别阈值吋, 则说明该待测者已经处于高度疲劳状态。 且终端可以输出通知消息, 该通知消 息用于通知解决疲劳的方式。 其中, 输出通知消息的方式可以是语音输出、 也 可以是文字输出, 也可以是语音输出的同吋输出文字。
[0085] 作为一种可选的实施方式, 第一获取单元 301可以包括: 滤波单元 3010、 峰谷 值获取单元 3011、 绘制单元 3012以及心率参数值获取单元 3013 , 其中,
[0086] 滤波单元 3010, 用于对信号获取单元获取到的脉搏信号进行滤波处理。
[0087] 峰谷值获取单元 3011 , 用于获取滤波单元滤波处理后的脉搏信号的峰谷值。
[0088] 绘制单元 3012, 用于根据峰谷值获取单元获取到的峰谷值绘制与滤波处理后的 脉搏信号对应的直方图。
[0089] 心率参数值获取单元 3013 , 用于从所述绘制单元绘制的直方图中获取待测者的 心率数据以及心率变异数据。
[0090] 本发明实施例中, 当获取待测者的脉搏信号后, 滤波单元 3010可以根据预先设 置的滤波规则对获取到的待测者的脉搏信号进行滤波处理。 举例来说, 可以在 终端中预先设定一个门限值, 只有当获取到的脉搏信号的值 ί氐于预先设定的门 限值才保存, 而对于高于该预先设定的门限值的部分则过滤处理。
[0091] 本发明实施例中, 滤波单元 3010对获取到的脉搏信号过滤处理后, 峰谷值获取 单元 3011可以获取滤波处理后的脉搏信号的峰谷值。 其中, 脉搏信号的峰谷值 是指在规定的吋间范围内, 脉搏信号的峰值与谷值之差。
[0092] 本发明实施例中, 在峰谷值获取单元 3011获取滤波处理后的脉搏信号的峰谷值 后, 绘制单元 3012可以根据峰谷值绘制与滤波处理后的脉搏信号对应的直方图 。 其中, 直方图又称质量分布图, 它可以是表示脉搏信号变化情况的一种工具 。 用直方图可以解析出脉搏信号的规则性, 比较直观地看出脉搏信号特性的分 布状态, 对于脉搏信号分布状况一目了然, 便于判断其总体分布情况。 在制作 直方图吋, 牵涉统计学的概念, 首先要对脉搏信号进行分组, 因此如 1可合理分 组是其中的关键问题。 按组距相等的原则进行的两个关键数位是分组数和组距 。 是一种几 1可形图表, 它是根据脉搏信号分布情况, 画成以组距为底边、 以频 数为高度的一系列连接起来的直方型矩形图。 作直方图的目的就是通过观察图 的形状, 判断脉搏信号是否稳定。
[0093] 本发明实施例中, 心率参数值获取单元 3013通过从上述直方图中提取心率数据 以及心率变异数据。
[0094] 作为另一种可选的实施方式, 第一确定单元 304可以进一步包括: 信息确定单 元 3040、 检测单元 3041以及级别确定单元 3042, 其中,
[0095] 信息确定单元 3040, 用于根据预先存储应激水平、 负荷水平以及疲劳状态级别 的映射关系确定与第一确定 304确定的的应激水平相匹配的目标负荷水平。
[0096] 检测单元 3041 , 用于检测第二获取单元获取到的负荷水平是否与信息确定单元 确定的目标负荷水平相匹配。
[0097] 级别确定单元 3042, 用于若检测单元检测到第二获取单元获取到的负荷水平与 信息确定单元确定的目标负荷水平相匹配, 则确定与目标负荷水平相对应的疲 劳状态级别。
[0098] 在图 4中, 详细描述了在第一确定单元 304确定待测者的疲劳状态级别后, 通过 检测该待测者的疲劳状态级别与预先设定的级别阈值的大小关系, 以输出相对 应的提示消息。 实施本发明实施例, 可以精准确定待测者的疲劳状态的级别, 以及根据待测者的疲劳状态级别输出提示信息。
[0099] 请参阅图 5, 图 5是本发明实施例公幵的又一种终端的结构示意图, 用于执行该 疲劳状态的检测方法。 如图 5所示, 该终端 500可以包括: 至少一个处理器 501 , 至少一个输入装置 502, 至少一个输出装置 503, 存储器 505等组件。 其中, 这些 组件通过一条或多条总线 504进行通信连接。 本领域技术人员可以理解, 图 5中 示出的终端的结构并不构成对本发明实施例的限定, 它既可以是总线形结构, 也可以是星型结构, 还可以包括比图示更多或更少的部件, 或者组合某些部件 , 或者不同的部件布置。 其中:
[0100] 处理器 501为终端的控制中心, 利用各种接口和线路连接整个终端的各个部分
, 通过运行或执行存储在存储器 505内的程序和 /或模块, 以及调用存储在存储器 505内的数据, 以执行终端的各种功能和处理数据。 处理器 501可以由集成电路 (I ntegrated Circuit, 简称 IC)组成, 例如可以由单颗封装的 IC所组成, 也可以由 连接多颗相同功能或不同功能的封装 IC而组成。 举例来说, 处理器 501可以仅包 括中央处理器 (Central Processing Unit, 简称 CPU) , 也可以是 CPU、 数字信号 处理器 (digital signal processor, 简称 DSP)、 图形处理器 (Graphic Processing Unit, 简称 GPU) 及各种控制芯片的组合。 在本发明实施方式中, CPU可以是 单运算核心, 也可以包括多运算核心。
[0101] 输入装置 502可以包括标准的触摸屏等。
[0102] 输出装置 503可以包括显示屏、 扬声器等。
[0103] 存储器 505可用于存储软件程序以及模块, 处理器 501、 输入装置 502以及输出 装置 503通过调用存储在存储器 505中的软件程序以及模块, 从而执行终端的各 项功能应用以及实现数据处理。 存储器 505主要包括程序存储区和数据存储区, 其中, 程序存储区可存储操作系统、 至少一个功能所需的应用程序等; 数据存 储区可存储根据终端的使用所创建的数据等。 在本发明实施例中, 操作系统可 以是 Android系统、 iOS系统或 Windows操作系统等等。
[0104] 具体的, 处理器 501调用存储在存储器 505中的应用程序, 用于执行以下操作
[0105] 处理器 501控制输入装置 502获取待测者的脉搏信号;
[0106] 处理器 501控制输入装置 502获取待测者的加速度信号;
[0107] 处理器 501根据脉搏信号以及加速度信号判断待测者是否处于疲劳状态;
[0108] 若待测者处于疲劳状态吋, 根据预先存储的脉搏信号、 加速度信号以及疲劳状 态级别的映射关系确定待测者的疲劳状态级别。
[0109] 本发明实施例中, 处理器 501调用存储在存储器 505中的应用程序, 用于执行根 据脉搏信号以及加速度信号判断待测者是否处于疲劳状态的具体实施方式包括
[0110] 从脉搏信号中分析获取心率数据以及心率变异数据;
[0111] 根据心率数据以及心率变异数据确定待测者的应激水平;
[0112] 从加速度信号确定待测者的负荷水平;
[0113] 根据应激水平以及负荷水平判断待测者是否处于疲劳状态。
[0114] 本发明实施例中, 处理器 501调用存储在存储器 505中的应用程序, 用于执行从 脉搏信号中分析获取心率数据以及心率变异数据的具体实现方式可以包括: [0115] 处理器 501控制输入装置 502对脉搏信号进行滤波处理;
[0116] 处理器 501控制输入装置 502获取滤波处理后的脉搏信号的峰谷值;
[0117] 处理器 501控制输入装置 502根据峰谷值绘制与滤波处理后的脉搏信号对应的直 方图;
[0118] 处理器 501控制输入装置 502从直方图中获取待测者的心率数据以及心率变异数 据。
[0119] 本发明实施例中, 处理器 501调用存储在存储器 505中的应用程序, 用于执行根 据预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定待测者 的疲劳状态级别的具体实现方式可以包括:
[0120] 根据预先存储应激水平、 负荷水平以及疲劳状态级别的映射关系确定与应激水 平相匹配的目标负荷水平;
[0121] 检测获取到的负荷水平是否与目标负荷水平相匹配;
[0122] 若匹配, 则确定与目标负荷水平相对应的疲劳状态级别。
[0123] 本发明实施例中, 处理器 501调用存储在存储器 505中的应用程序, 还用于执行 以下步骤:
[0124] 处理器 501控制输出装置 503当判断待测者的疲劳状态级别低于预先设定的级别 阈值吋, 输出用于提示待测者处于轻度疲劳状态的提示信息;
[0125] 处理器 501控制输出装置 503当判断待测者的疲劳状态级别高于预先设定的级别 阈值吋, 通知待测者的疲劳状态级别, 并输出通知消息, 其中, 通知消息用于 通知解决所述疲劳的方式。
[0126] 具体的, 本发明实施例中介绍的终端可以实施本发明结合图 1、 图 2介绍的疲劳 状态的检测方法实施例中的部分或全部流程。
[0127] 本发明所有实施例中的模块或子模块, 可以通过通用集成电路, 例如 CPU (C entral Processing Unit, 中央处理器) , 或通过 ASIC (Application Specific
Integrated Circuit, 专用集成电路) 来实现。
[0128] 本发明实施例方法中的步骤可以根据实际需要进行顺序调整、 合并和刪减。
[0129] 本发明实施例终端中的单元可以根据实际需要进行合并、 划分和刪减。 [0130] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可 以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可 读取存储介质中, 该程序在执行吋, 可包括如上述各方法的实施例的流程。 其 中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only Memory, ROM) 或随机存取存储器 (Random Access Memory, 简称 RAM) 等。
[0131] 以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之权 利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种疲劳状态的检测方法, 其特征在于, 包括:
获取待测者的脉搏信号;
获取所述待测者的加速度信号;
根据所述脉搏信号以及所述加速度信号判断所述待测者是否处于疲劳 状态;
若所述待测者处于所述疲劳状态吋, 根据预先存储的脉搏信号、 加速 度信号以及疲劳状态级别的映射关系确定所述待测者的疲劳状态级别
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 所述根据所述脉搏信号以 及所述加速度信号判断所述待测者是否处于疲劳状态, 包括: 从所述脉搏信号中分析获取心率数据以及心率变异数据;
根据所述心率数据以及所述心率变异数据确定所述待测者的应激水平 根据所述加速度信号确定所述待测者的负荷水平; 根据所述应激水平以及所述负荷水平判断所述待测者是否处于疲劳状 态。
[权利要求 3] 根据权利要求 2所述的方法, 其特征在于, 所述从所述脉搏信号中分 析获取心率数据以及心率变异数据, 包括:
对所述脉搏信号进行滤波处理;
获取滤波处理后的脉搏信号的峰谷值;
根据所述峰谷值绘制与滤波处理后的脉搏信号对应的直方图; 从所述直方图中获取所述待测者的心率数据以及心率变异数据。
[权利要求 4] 根据权利要求 3所述的方法, 其特征在于, 所述根据预先存储的脉搏 信号、 加速度信号以及疲劳状态级别的映射关系确定所述待测者的疲 劳状态级别, 包括:
根据预先存储应激水平、 负荷水平以及疲劳状态级别的映射关系确定 与所述应激水平相匹配的目标负荷水平; 检测获取到的负荷水平是否与所述目标负荷水平相匹配; 若匹配, 则确定与所述目标负荷水平相对应的疲劳状态级别。
[权利要求 5] 根据权利要求 1~4中任意一项所述的方法, 其特征在于, 所述根据预 先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射关系确定所 述待测者的疲劳状态级别之后, 所述方法还包括: 当判断所述待测者的疲劳状态级别低于预先设定的级别阈值吋, 输出 用于提示所述待测者处于轻度疲劳状态的提示信息;
当判断所述待测者的疲劳状态级别高于所述预先设定的级别阈值吋, 通知所述待测者的疲劳状态级别, 并输出通知消息, 所述通知消息用 于通知解决所述疲劳的方式。
[权利要求 6] —种终端, 其特征在于, 包括:
第一获取单元, 用于获取待测者的脉搏信号;
第二获取单元, 用于获取所述待测者的加速度信号;
判断单元, 用于根据所述第一获取单元获取到的脉搏信号以及所述第 二获取单元获取到的加速度信号判断所述待测者是否处于疲劳状态; 第一确定单元, 用于若所述判断单元判断待测者处于所述疲劳状态吋
, 根据预先存储的脉搏信号、 加速度信号以及疲劳状态级别的映射关 系确定所述待测者的疲劳状态级别。
[权利要求 7] 根据权利要求 6所述的终端, 其特征在于, 所述判断单元根据所述第 一获取单元获取到的脉搏信号以及所述第二获取单元获取到的加速度 信号判断所述待测者是否处于疲劳状态的具体方式包括:
从所述脉搏信号中分析获取心率数据以及心率变异数据; 根据所述心 率数据以及所述心率变异数据确定所述待测者的应激水平; 根据所述 加速度信号确定所述待测者的负荷水平; 根据所述应激水平以及所述 负荷水平判断所述待测者是否处于疲劳状态。
[权利要求 8] 根据权利要求 7所述的终端, 其特征在于, 所述第一获取单元包括: 滤波单元, 用于对所述判断单元获取到的脉搏信号进行滤波处理; 峰谷值获取单元, 用于获取所述滤波单元滤波处理后的脉搏信号的峰 谷值;
绘制单元, 用于根据所述峰谷值获取单元获取到的峰谷值绘制与滤波 处理后的脉搏信号对应的直方图;
心率参数值获取单元, 用于从所述绘制单元绘制的直方图中获取所述 待测者的心率数据以及心率变异数据。
[权利要求 9] 根据权利要求 8所述的终端, 其特征在于, 所述第一确定单元包括: 信息确定单元、 检测单元以及级别确定单元, 其中,
所述信息确定单元, 用于根据预先存储应激水平、 负荷水平以及疲劳 状态级别的映射关系确定与所述应激水平确定单元确定的应激水平相 匹配的目标负荷水平;
所述检测单元, 用于检测所述第二获取单元获取到的负荷水平是否与 所述信息确定单元确定的目标负荷水平相匹配; 所述级别确定单元, 用于若所述检测单元检测到所述第二获取单元获 取到的负荷水平与所述信息确定单元确定的目标负荷水平相匹配, 则 确定与所述目标负荷水平相对应的疲劳状态级别。
[权利要求 10] 根据权利要求 6~9中任意一项所述的终端, 其特征在于, 所述终端还 包括:
第一输出单元, 用于当所述判断单元判断所述待测者的疲劳状态级别 低于预先设定的级别阈值吋, 输出用于提示所述待测者处于轻度疲劳 状态的提示信息;
第二输出单元, 用于当所述判断单元判断所述待测者的疲劳状态级别 高于所述预先设定的级别阈值吋, 通知所述待测者的疲劳状态级别, 并输出通知消息, 所述通知消息用于通知解决所述疲劳的方式。
PCT/CN2015/095882 2015-04-17 2015-11-28 一种疲劳状态的检测方法及终端 WO2016165343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510184314.6A CN104825174B (zh) 2015-04-17 2015-04-17 一种疲劳状态的检测方法及终端
CN201510184314.6 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016165343A1 true WO2016165343A1 (zh) 2016-10-20

Family

ID=53803662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095882 WO2016165343A1 (zh) 2015-04-17 2015-11-28 一种疲劳状态的检测方法及终端

Country Status (2)

Country Link
CN (1) CN104825174B (zh)
WO (1) WO2016165343A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104825174B (zh) * 2015-04-17 2017-11-07 深圳还是威健康科技有限公司 一种疲劳状态的检测方法及终端
CN107111666A (zh) * 2015-08-26 2017-08-29 深圳还是威健康科技有限公司 人体活动监测与指导方法、装置和系统
CN105764417A (zh) * 2015-09-23 2016-07-13 深圳还是威健康科技有限公司 一种监控人体疲劳的方法及智能手环
CN105996990A (zh) * 2016-04-29 2016-10-12 清华大学 一种融合心率和驾驶动作的疲劳驾驶预警手环及预警方法
CN106691402A (zh) * 2016-12-19 2017-05-24 深圳欧德蒙科技有限公司 一种基于脉搏特征的疲劳程度分析方法和装置
CN109421732B (zh) * 2017-08-16 2021-08-31 深圳如一探索科技有限公司 设备控制方法及装置
CN111772594A (zh) * 2020-07-10 2020-10-16 北京航空航天大学 一种基于多传感器融合的体征状态监测与温度控制app系统
CN115715680A (zh) * 2022-12-01 2023-02-28 杭州市第七人民医院 一种基于结缔组织电势的焦虑判别方法及装置
CN117594242B (zh) * 2024-01-19 2024-04-09 浙江大学 人体疲劳度评估优化方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798521A (zh) * 2003-09-02 2006-07-05 松下电器产业株式会社 生物传感器和利用它的支持系统
JP2007283041A (ja) * 2006-04-20 2007-11-01 Toshiba Corp 集中度計測装置
US20090240305A1 (en) * 2004-06-10 2009-09-24 Samsung Electronics Co., Ltd. Apparatus controlling electrical stimulation and/or health training/monitoring
CN103829929A (zh) * 2014-02-26 2014-06-04 中国人民解放军总后勤部军需装备研究所 一种便携式人体负荷生理和生物力学监测装置
CN104490407A (zh) * 2014-12-08 2015-04-08 清华大学 一种可穿戴式心理压力评测装置及方法
CN104825174A (zh) * 2015-04-17 2015-08-12 深圳市元征科技股份有限公司 一种疲劳状态的检测方法及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000119A1 (ja) * 2003-06-27 2005-01-06 Soiken Inc. 疲労度評価方法、疲労度評価装置、およびデータベース
JP4611206B2 (ja) * 2003-10-23 2011-01-12 株式会社デルタツーリング 疲労度測定装置、疲労検出装置及びコンピュータプログラム
CN101246631A (zh) * 2008-02-29 2008-08-20 深圳市赛格导航科技股份有限公司 一种对驾驶者的疲劳状态进行监控的方法及系统
JP4924489B2 (ja) * 2008-03-10 2012-04-25 株式会社デンソー 状態推定装置
CN101564293A (zh) * 2009-06-01 2009-10-28 金会庆 一种出车前驾驶员疲劳状态检测装置及其检测方法
WO2011052183A1 (ja) * 2009-10-29 2011-05-05 パナソニック株式会社 生体疲労評価装置及び生体疲労評価方法
CN104146722B (zh) * 2014-08-18 2017-02-15 吉林大学 一种基于头部信号的驾驶疲劳检测分级预警方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798521A (zh) * 2003-09-02 2006-07-05 松下电器产业株式会社 生物传感器和利用它的支持系统
US20090240305A1 (en) * 2004-06-10 2009-09-24 Samsung Electronics Co., Ltd. Apparatus controlling electrical stimulation and/or health training/monitoring
JP2007283041A (ja) * 2006-04-20 2007-11-01 Toshiba Corp 集中度計測装置
CN103829929A (zh) * 2014-02-26 2014-06-04 中国人民解放军总后勤部军需装备研究所 一种便携式人体负荷生理和生物力学监测装置
CN104490407A (zh) * 2014-12-08 2015-04-08 清华大学 一种可穿戴式心理压力评测装置及方法
CN104825174A (zh) * 2015-04-17 2015-08-12 深圳市元征科技股份有限公司 一种疲劳状态的检测方法及终端

Also Published As

Publication number Publication date
CN104825174B (zh) 2017-11-07
CN104825174A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016165343A1 (zh) 一种疲劳状态的检测方法及终端
JP6679051B2 (ja) 生体情報分析装置、システム、及び、プログラム
Campos et al. Mathematical biomarkers for the autonomic regulation of cardiovascular system
CN206792400U (zh) 心率变异性检测装置
Baek et al. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state
US20160302680A1 (en) Biological information processing system, biological information processing device, terminal device, method for generating analysis result information, and biological information processing method
CN105193431A (zh) 一种人体精神压力状态分析装置
Javorka et al. Recurrences in heart rate dynamics are changed in patients with diabetes mellitus
JP2012125382A (ja) 自律神経機能診断装置、生体モニタリングシステムおよびプログラム
JP2017121286A (ja) 情動推定システム、情動推定方法および情動推定プログラム
CN109350020A (zh) 身心健康状况分析装置及方法
CN106200943A (zh) 虚拟现实设备控制方法、装置和系统
JP2018064900A (ja) 眠気判定装置および眠気判定方法並びに運転支援装置
Adjei et al. The classA framework: HRV based assessment of SNS and PNS dynamics without LF-HF controversies
Zhang et al. Search for HRV-parameters that detect a sympathetic shift in heart failure patients on β-blocker treatment
Cinaz et al. Monitoring of mental workload levels
JP5480800B2 (ja) 自律神経機能診断装置およびプログラム
JP6547838B2 (ja) 診断支援装置、診断支援方法、診断支援プログラム
CN109464152A (zh) 脑部疲劳状态的检测方法、设备及计算机可读存储介质
CN110313922A (zh) 一种压力调节方法、压力调节系统及终端
KR20200050530A (ko) 혈관 건강도 측정 시스템 및 그 방법
CN113069116A (zh) 一种面向部队官兵的群体心理测评系统、设备及介质
JP2017064364A (ja) 生体状態推定装置、生体状態推定方法及びコンピュータプログラム
TWI670046B (zh) 兼具情緒壓力指數檢測與血壓檢測之量測裝置與方法
JP5592323B2 (ja) 自律神経機能診断装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889039

Country of ref document: EP

Kind code of ref document: A1