WO2016165265A1 - 阵列基板及其制造方法、显示面板和显示装置 - Google Patents

阵列基板及其制造方法、显示面板和显示装置 Download PDF

Info

Publication number
WO2016165265A1
WO2016165265A1 PCT/CN2015/088824 CN2015088824W WO2016165265A1 WO 2016165265 A1 WO2016165265 A1 WO 2016165265A1 CN 2015088824 W CN2015088824 W CN 2015088824W WO 2016165265 A1 WO2016165265 A1 WO 2016165265A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
electrode
layer
insulating region
region
Prior art date
Application number
PCT/CN2015/088824
Other languages
English (en)
French (fr)
Inventor
孟令娟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,903 priority Critical patent/US10185181B2/en
Publication of WO2016165265A1 publication Critical patent/WO2016165265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/42Materials having a particular dielectric constant

Definitions

  • the present invention relates to the field of display devices, and in particular to an array substrate, a display panel including the array substrate, a display device including the display panel, and a method of manufacturing the array substrate.
  • liquid crystal display device In order to make the liquid crystal display device have a wide viewing angle, it is generally possible to set the liquid crystal display device to a two-domain liquid crystal display, that is, liquid crystal molecules in one pixel unit are deflected in two different directions when performing display.
  • An object of the present invention is to provide an array substrate, a display panel including the array substrate, a display device including the display panel, and a method of manufacturing the array substrate.
  • the display device can achieve multi-domain display by simply changing the structure of the insulating layer in the array substrate.
  • an array substrate including a first electrode layer, an insulating layer covering the first electrode layer, and an insulating layer formed thereon a second electrode layer on the layer, the first electrode layer including a first electrode disposed in each of the pixel units, the insulating layer including an insulating layer unit covering each of the first electrode surfaces,
  • the second electrode layer includes a second electrode disposed above the insulating layer unit, wherein, in each of the pixel units, the insulating layer unit includes a plurality of insulating regions, and dielectric of at least one of the insulating regions The constant is different from the dielectric constant of the other insulating regions.
  • the insulating layer unit in each of the pixel units, includes a first insulating region, a second insulating region, and a third insulating region, and the first insulating region and the third insulating region
  • the dielectric constant is the same, the dielectric constant of the second insulating region is different from the first a dielectric constant of the insulating region, the second insulating region being located between the first insulating region and the third insulating region.
  • the area of the second insulating region is half of the area of the pixel unit, and the first insulating region and the third insulating region are equal in area.
  • the first insulating region includes a first bottom insulating layer and a first top insulating layer
  • the third insulating region includes a third bottom insulating layer and a third a top insulating layer
  • the first insulating layer, the second insulating region and the third insulating layer are integrally formed, and a dielectric constant of the first top insulating layer and a third top insulating layer
  • the dielectric constant is the same, and the top surface of the first top insulating layer, the top surface of the third top insulating layer, and the top surface of the second insulating region are flush.
  • the first bottom insulating layer, the second insulating region, and the third bottom insulating layer are made of silicon nitride, the first top insulating layer and the third top insulating layer
  • the layer is made of a transparent resin.
  • the material of the first insulating region is the same as the material of the third insulating region, and the material of the first insulating region is different from the material of the second insulating region.
  • the first insulating region is made of an oxide of silicon and the second insulating region is made of a nitride of silicon.
  • the second electrode in each of the pixel units, includes a second left electrode and a second right electrode, and the second left electrode includes a plurality of second left electrode strips that are parallel to each other.
  • the second right electrode includes a plurality of second right electrode strips that are parallel to each other, and the second left electrode strip and the second right electrode strip have different tilt directions.
  • the array substrate may further include a gate insulating layer disposed between the first electrode layer and the insulating layer.
  • the second left electrode and the second right electrode are mirror-symmetrical with respect to a center line of the pixel unit, and the center line divides the pixel unit into two parts along a length direction, the second left
  • the angle between the electrode strip and the center line is 7° to 11°.
  • the first electrode is a bulk electrode.
  • a display panel comprising an array substrate, wherein the array substrate is the array substrate provided by any of the embodiments of the present invention.
  • a display device including a display panel, wherein the display panel is provided by the above embodiment of the present invention The display panel.
  • first electrode layer Forming a first electrode layer, the first electrode layer including a first electrode disposed in each of the pixel units;
  • Forming an insulating layer covering the first electrode layer, and the insulating layer includes an insulating layer unit covering each of the first electrode surfaces, in each of the pixel units, the insulating layer
  • the unit includes a plurality of insulating regions, and a dielectric constant of at least one of the insulating regions is different from a dielectric constant of the other insulating regions;
  • a second electrode layer is formed, the second electrode layer including a second electrode disposed on the insulating layer unit.
  • the insulating layer unit in each of the pixel units, includes a first insulating region, a second insulating region, and a third insulating region, and the first insulating region and the third insulating region
  • the dielectric constant is the same
  • the dielectric constant of the second insulating region is different from the dielectric constant of the first insulating region
  • the second insulating region is located between the first insulating region and the third insulating region .
  • the area of the second insulating region is half of the area of the pixel unit, and the first insulating region and the third insulating region are equal in area.
  • the step of forming an insulating layer comprises:
  • the bottom insulating material layer comprises a first bottom insulating layer, a second insulating region and a third bottom insulating layer;
  • top insulating material layer including a top insulating material unit disposed in each of the pixel units, the top insulating material unit including a first top insulating layer disposed on the first bottom insulating layer a material layer and a third top insulating material layer disposed on the third bottom insulating layer, the dielectric constant of the first top insulating material layer being the same as the dielectric constant of the third top insulating material layer, The top surface of the first top insulating material layer, the top surface of the third top insulating material layer, and the top surface of the second insulating region are flush.
  • the bottom insulating material layer is made of a nitride of silicon
  • the top insulating material layer is made of a transparent resin
  • the step of forming the insulating layer includes:
  • the first insulating region is made of an oxide of silicon and the second insulating region is made of a nitride of silicon.
  • the second electrode in each of the pixel units, includes a second left electrode and a second right electrode, and the second left electrode includes a plurality of second left electrode strips that are parallel to each other.
  • the second right electrode includes a plurality of second right electrode strips that are parallel to each other, and the second left electrode strip and the second right electrode strip have different tilt directions.
  • the manufacturing method may further include forming a gate insulating layer between the first electrode layer and the insulating layer.
  • the second left electrode and the second right electrode are mirror-symmetrical with respect to a center line of the pixel unit, and the center line divides the pixel unit into two parts along a length direction, the second left
  • the angle between the electrode strip and the center line is 7° to 11°.
  • the first electrode is a bulk electrode.
  • the electric field intensity between the first electrode and the second electrode is related to the dielectric constant of the insulating unit layer between the first electrode and the second electrode, since at least one of the insulating layer units is present The electric constant is different from the insulating region of the other insulating regions. Therefore, in one pixel unit, there are at least two different electric field strengths, so that at least two different liquid crystal molecules deflecting directions exist in one pixel unit, and thus it is known that
  • the array substrate provided by each embodiment of the present invention can realize multi-domain display of the liquid crystal display panel.
  • the dimensional accuracy of the insulating layer unit is required to be low, and the insulating layer unit has a larger size than the electrode strip, and therefore, the multi-domain liquid crystal display device can be realized by simply changing the structure of the insulating layer unit, thereby The process cost of manufacturing the array substrate can be reduced.
  • FIG. 1 is a cross-sectional view of an array substrate according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an array substrate according to another embodiment of the present invention.
  • FIG. 3 is a schematic plan view of an array substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a state of liquid crystal molecules in a closed state (off state) of a display panel according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing states of liquid crystal molecules in an open state (on state) of a display panel according to an embodiment of the present invention.
  • first electrode 200 insulating layer unit
  • first insulating region 210a first bottom insulating layer
  • first top insulating layer 220 second insulating region
  • third insulating region 240 gate insulating layer
  • an array substrate is provided, the array substrate is divided into a plurality of pixel units, the array substrate includes a first electrode layer, an insulating layer covering the first electrode layer, and formed in the a second electrode layer on the insulating layer, the first electrode layer including a first electrode 100 disposed in each of the pixel units, the insulating layer including an insulating layer unit 200 covering a surface of each of the first electrodes 100
  • the second electrode layer includes a second electrode 300 disposed above the insulating layer unit 200, wherein, in each of the pixel units, the insulating layer unit 200 includes a plurality of insulating regions, and at least one of the insulating regions is interposed
  • the electrical constant is different from the dielectric constant of the other insulating regions.
  • the deflection of the liquid crystal molecules is driven according to the torsional force generated by the electric field between the first electrode and the second electrode.
  • the ratio of the electric field in the medium to the original applied electric field (in vacuum) is the relative dielectric constant.
  • the dielectric constant is the product of the relative dielectric constant and the absolute dielectric constant in vacuum. If a material with a high dielectric constant is placed in an electric field, the strength of the electric field will drop appreciably within the dielectric.
  • the insulating layer unit 200 is a medium between the first electrode and the second electrode. Since the dielectric constant of at least one of the insulating regions in the insulating layer unit 200 is different from the dielectric constant of the other insulating regions, the first electrode and the second electrode are at the insulating region where the dielectric constant is different from that of the other insulating regions. The electric field strength between them is different from the intensity of the electric field in other regions.
  • the array substrate provided by the embodiment of the present invention can be Realizing multi-domain display of the liquid crystal display panel.
  • the multi-domain liquid crystal display device can be realized by simply changing the structure of the insulating layer unit. Thus, the process cost of manufacturing the array substrate can be reduced.
  • the insulating layer unit includes a first insulating region 210, a second insulating region 220, and a third insulating region 230,
  • the dielectric constant of an insulating region 210 and the third insulating region 230 are the same, the dielectric constant of the second insulating region 220 is different from the dielectric constant of the first insulating region 210, and the second insulating region 220 is located at the first insulating region 210 and Between the three insulating regions 230.
  • the dielectric constant of the third insulating region 220 is different from the dielectric constant of the first insulating region 210, the dielectric constant of the second insulating region 220 is also different from the dielectric constant of the third insulating region 230. .
  • At least three-domain liquid crystal display can be realized.
  • the larger the number of domains the more effectively the color shift in the liquid crystal display device can be improved.
  • the area of the second insulating region 220 is half of the area of the pixel unit, and the first insulating region 210 and the third insulating region 230 are equal in area.
  • a plurality of insulating regions having different dielectric constants can be realized in one pixel unit by various embodiments.
  • the first insulating region 210 includes a first bottom insulating layer 210a and a first top insulating layer 210b, and the third insulating region includes a third bottom insulating layer and a third top insulating layer (not shown in FIG. 1), A bottom insulating layer 210a, a second insulating region 220, and the third bottom insulating layer may be formed integrally.
  • the dielectric constant of the first top insulating layer 210b may be the same as the dielectric constant of the third top insulating layer.
  • the top surface of a top insulating layer 210b, the top surface of the third top insulating layer, and the top surface of the second insulating region 220 are flush.
  • the first bottom insulating layer 210a, the second insulating region 220, and the third bottom insulating layer may be made of silicon nitride (SiNx), the first top insulating layer 210b and the third top insulating layer
  • the layer can be made of a transparent resin.
  • the silicon nitride can be formed by a chemical vapor deposition method, and the transparent resin can be formed by a coating method. It can be seen that the insulating layer unit of this embodiment can reduce the process cost.
  • the material of the first insulating region 210 is the same as the material of the third insulating region (not shown in FIG. 2), and the material of the first insulating region 210 Different from the material of the second insulating region 220.
  • the first insulating region 210 is made of the same material
  • the third insulating region is made of the same material
  • the second insulating region 220 is made of the same material.
  • the first insulating region may be made of silicon oxide (SiOx), and the second insulating region may be made of silicon nitride (SiNx).
  • the second electrode in each of the pixel units, includes a second left electrode and a second right electrode, the first The two left electrodes include a plurality of second left electrode strips 310 that are parallel to each other, and the second right electrode includes a plurality of second right electrode strips 320 that are parallel to each other, and the inclination of the second left electrode strips 310 and the second right electrode strips 320 The direction is different.
  • the tilt directions of the second left electrode strip 310 and the second right electrode strip 320 are different, an electric field generated between the second left electrode and the first electrode and an electric field generated between the second right electrode and the first electrode are different.
  • the dielectric constant of the insulating region is different, so that display of more domains can be realized.
  • the second left electrode and the second right electrode are mirror-symmetrical with respect to the center line M of the pixel unit.
  • the center line M divides the length direction of the pixel unit For two parts.
  • the angle between the second left electrode strip 310 and the center line M is ⁇ , and the angle between the second right electrode strip 320 and the center line M is also ⁇ . In the embodiment, 7 ° ⁇ ⁇ ⁇ 11 °.
  • a portion of the second left electrode is located in the first insulating region 210, another portion of the second left electrode is located in the second insulating region 220, and a portion of the second right electrode is located in the second insulating region 220.
  • Another portion of the second right electrode is located within the third insulating region 230, and thus, the display device shown in FIG. 3 can realize four-domain liquid crystal display.
  • FIGS. 1 and 2 may represent a cross-sectional view of the pixel unit shown in FIG. 3 along line A-A.
  • the array substrate can also include other insulating layer structures.
  • a gate insulating layer for a switching device (TFT) in an array substrate may further include a gate insulating layer 240 disposed between the first electrode layer 100 and the insulating layer 200.
  • FIG. 1 or FIG. 2 only schematically illustrates gate insulating layer 240, and other layer structures associated with switching devices are known to those skilled in the art and are not shown here for clarity.
  • a substrate such as a glass substrate may be disposed under the first electrode, which is known to those skilled in the art and will not be described in detail herein.
  • the electric field generated between the portion of the second left electrode located in the first insulating region and the first electrode is E1
  • the electric field generated between the portion of the second left electrode located in the second insulating region and the first electrode is E2
  • second The electric field generated between the portion of the right electrode located in the second insulating region and the first electrode is E3
  • the electric field generated between the portion of the second right electrode located in the third insulating region and the first electrode is E4.
  • the deflection direction of a group of liquid crystal molecules 410 corresponding to the electric field E1 the deflection direction of a group of liquid crystal molecules 420 corresponding to the electric field E2
  • a group of liquid crystal molecules corresponding to the electric field E4 The deflection reversals are different from each other, that is, when the display panel is in an on state, liquid crystal molecules in one pixel unit can have four deflection directions, that is, four-domain display can be realized.
  • the first electrode 100 may be a bulk electrode.
  • the first electrode may be a common electrode and the second electrode may be a pixel electrode.
  • a display panel is provided, the display panel package
  • the array substrate may be an array substrate provided by any of the above embodiments of the present invention.
  • a display panel of a multi-domain display can be obtained by a simple manufacturing process.
  • a display device including a display panel, wherein the display panel is the display panel provided by the embodiment of the present invention.
  • the display device may be a display device such as a mobile phone, a computer, or a television.
  • first electrode layer Forming a first electrode layer, the first electrode layer including a first electrode disposed in each of the pixel units;
  • Forming an insulating layer covering the first electrode layer, and the insulating layer includes an insulating layer unit covering each of the first electrode surfaces, in each of the pixel units, the insulating layer
  • the unit includes a plurality of insulating regions, and a dielectric constant of at least one of the insulating regions is different from a dielectric constant of the other insulating regions;
  • a second electrode layer is formed, the second electrode layer including a second electrode disposed on the insulating layer unit.
  • the process of forming an insulating layer unit having a plurality of insulating regions is simpler than the method of forming electrode strips having a plurality of different oblique directions.
  • the insulating layer unit may include a first insulating region, a second insulating region, and a third insulating region, the first insulating region and the third insulating region
  • the dielectric constant is the same
  • the dielectric constant of the second insulating region is different from the dielectric constant of the first insulating region
  • the second insulating region is located between the first insulating region and the third insulating region .
  • an area of the second insulating region is half of an area of the pixel unit, and an area of the first insulating region and the third insulating region are equal.
  • the step of forming an insulating layer may include:
  • the bottom insulating material layer comprises a first bottom insulating layer, a second insulating region and a third bottom insulating layer;
  • top insulating material layer Forming a top insulating material layer, the top insulating material layer including each of the pixels disposed a top insulating material unit in the unit, the top insulating material unit including a first top insulating material layer disposed on the first bottom insulating layer and a third top insulating material layer disposed on the third bottom insulating layer
  • the dielectric constant of the first top insulating material layer is the same as the dielectric constant of the third top insulating material layer, and the top surface of the first top insulating material layer and the top of the third top insulating material layer The surface and the top surface of the second insulating region are flush.
  • the bottom insulating material layer may be formed by a dry etching process. Specifically, a bottom insulating material is first formed; a mask layer is formed on the bottom insulating material, and a through hole is formed on the mask layer corresponding to the positions of the first bottom insulating layer and the third bottom insulating layer; The gas may form a first bottom insulating layer, a second insulating region, and a third bottom insulating layer by controlling the duration of the introduction of the process gas.
  • the bottom insulating material layer is made of a nitride of silicon
  • the top insulating material layer is made of a transparent resin
  • the steps of forming the insulating layer include:
  • first via hole Forming a first via hole corresponding to a position of the first insulating region on the first insulating material layer, and forming a third via hole at a position corresponding to the third insulating region on the first insulating material layer, thereby utilizing the
  • the first insulating material layer forms a second insulating region; the first insulating region is formed in the first via hole, and the third insulating region is formed in the third via hole.
  • the first through hole and the third through hole may be separately filled with different insulating materials to form the first insulating region and the third insulating region.
  • the first via hole and the third via hole may also be formed by a dry etching process, and the specific process is similar to the process of forming the first bottom insulating layer, the second insulating region, and the third bottom insulating layer, and details are not described herein again.
  • the first insulating region is made of an oxide of silicon and the second insulating region is made of a nitride of silicon.
  • the second electrode in each of the pixel units, includes a second left electrode and a second right electrode, and the second left electrode includes a plurality of second left parallel to each other An electrode strip, the second right electrode includes a plurality of second right electrode strips that are parallel to each other, and the second left electrode strip and the second right electrode strip have different tilt directions.
  • the manufacturing method further includes forming a gate insulating layer between the first electrode layer and the insulating layer.
  • the second left electrode and the second right electrode are mirror-symmetrical with respect to a center line of the pixel unit, and the center line is along the length of the pixel unit The direction is divided into two parts, and the angle between the second left electrode strip and the center line is 7° to 11°. It is easy to understand that since the second left electrode and the second right electrode are mirror-symmetrical with respect to the center line of the pixel unit, an angle between the second left electrode strip and the center line and the second right electrode The angle between the strip and the center line is equal.
  • the first electrode is a bulk electrode.
  • the first electrode and the second electrode may be formed using the same patterning process as the conventional patterning process.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供了一种阵列基板,被划分为多个像素单元。阵列基板包括第一电极层、覆盖第一电极层的绝缘层和形成在绝缘层上的第二电极层,第一电极层包括设置在每个像素单元内的第一电极(100),绝缘层包括覆盖在每个第一电极(100)表面的绝缘层单元(200),第二电极层包括设置在绝缘层单元(200)上方的第二电极(300),其中,在每个像素单元内,绝缘层单元(200)包括多个绝缘区(210,220,230),至少一个绝缘区(220)的介电常数不同于其他绝缘区(210,230)的介电常数。还提供了一种显示面板、一种显示装置和一种阵列基板的制造方法。通过简单地改变绝缘层单元(200)的结构即可实现多畴液晶显示装置,从而可以降低制造阵列基板的工艺成本。

Description

阵列基板及其制造方法、显示面板和显示装置 技术领域
本发明涉及显示装置领域,具体地,涉及一种阵列基板、一种包括该阵列基板的显示面板、一种包括该显示面板的显示装置和所述阵列基板的制造方法。
背景技术
为了使得液晶显示装置具有较宽的视角,通常可以将液晶显示装置设置成双畴液晶显示,即,在进行显示时,一个像素单元内的液晶分子朝向两种不同的方向偏转。
目前,通常通过改变像素单元中像素电极的电极条方向来实现双畴显示,但是这种工艺较为复杂。
如何以简单的工艺实现能够进行双畴显示的显示装置成为本领域亟待解决的技术问题。
发明内容
本发明的目的在于提供一种阵列基板、一种包括该阵列基板的显示面板、一种包括该显示面板的显示装置和所述阵列基板的制造方法。通过简单改变阵列基板中绝缘层的结构可使得所述显示装置实现多畴显示。
作为本发明的一个方面,提供一种阵列基板,所述阵列基板被划分为多个像素单元,所述阵列基板包括第一电极层、覆盖该第一电极层的绝缘层和形成在所述绝缘层上的第二电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极,所述绝缘层包括覆盖在每个所述第一电极表面的绝缘层单元,所述第二电极层包括设置在所述绝缘层单元上方的第二电极,其中,在每个所述像素单元内,所述绝缘层单元包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数。
在一个实施例中,在每个所述像素单元内,所述绝缘层单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区和所述第三绝缘区的介电常数相同,所述第二绝缘区的介电常数不同于所述第一 绝缘区的介电常数,所述第二绝缘区位于所述第一绝缘区和所述第三绝缘区之间。
在另一实施例中,所述第二绝缘区的面积为所述像素单元面积的一半,所述第一绝缘区和所述第三绝缘区面积相等。
在另一实施例中,在每个所述像素单元内,所述第一绝缘区包括第一底绝缘层和第一顶绝缘层,所述第三绝缘区包括第三底绝缘层和第三顶绝缘层,所述第一底绝缘层、所述第二绝缘区和所述第三底绝缘层形成为一体,所述第一顶绝缘层的介电常数与所述第三顶绝缘层的介电常数相同,所述第一顶绝缘层的顶表面、所述第三顶绝缘层的顶表面以及所述第二绝缘区的顶表面平齐。
在一个实施例中,所述第一底绝缘层、所述第二绝缘区和所述第三底绝缘层由硅的氮化物制成,所述第一顶绝缘层和所述第三顶绝缘层由透明的树脂制成。
在一个实施例中,所述第一绝缘区的材料与所述第三绝缘区的材料相同,且所述第一绝缘区的材料不同于所述第二绝缘区的材料。
在一个实施例中,所述第一绝缘区由硅的氧化物制成,所述第二绝缘区由硅的氮化物制成。
在一个实施例中,在每个所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条,所述第二右电极包括多个互相平行的第二右电极条,所述第二左电极条和所述第二右电极条的倾斜方向不同。
在一个实施例中,阵列基板还可包括布置在所述第一电极层和所述绝缘层之间的栅绝缘层。
在一个实施例中,所述第二左电极和所述第二右电极关于所述像素单元的中线镜像对称,所述中线将所述像素单元沿长度方向划分为两部分,所述第二左电极条与所述中线之间的夹角为7°至11°。
在一个实施例中,所述第一电极为块状电极。
作为本发明的另一方面,提供一种显示面板,所述显示面板包括阵列基板,其中,所述阵列基板为本发明的各实施例中的任一实施例所提供的上述阵列基板。
作为本发明的再一个方面,提供一种显示装置,所述显示装置包括显示面板,其中,所述显示面板为本发明的上述实施例所提供的上 述显示面板。
作为本发明的还一个方面,提供一种阵列基板的制造方法,所述阵列基板被划分为多个像素单元,其中,所述制造方法包括:
形成第一电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极;
形成绝缘层,所述绝缘层覆盖所述第一电极层,且所述绝缘层包括覆盖在每个所述第一电极表面的绝缘层单元,在每个所述像素单元内,所述绝缘层单元包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数;
形成第二电极层,所述第二电极层包括设置在所述绝缘层单元上的第二电极。
在一个实施例中,在每个所述像素单元内,所述绝缘层单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区和所述第三绝缘区的介电常数相同,所述第二绝缘区的介电常数不同于所述第一绝缘区的介电常数,所述第二绝缘区位于所述第一绝缘区和所述第三绝缘区之间。
在一个实施例中,所述第二绝缘区的面积为所述像素单元面积的一半,所述第一绝缘区和所述第三绝缘区面积相等。
在一个实施例中,形成绝缘层的步骤包括:
形成底绝缘材料层,在每个所述像素单元内,所述底绝缘材料层包括第一底绝缘层、第二绝缘区和第三底绝缘层;
形成顶绝缘材料层,所述顶绝缘材料层包括设置在每个所述像素单元内的顶绝缘材料单元,所述顶绝缘材料单元包括设置在所述第一底绝缘层上的第一顶绝缘材料层和设置在所述第三底绝缘层上的第三顶绝缘材料层,所述第一顶绝缘材料层的介电常数与所述第三顶绝缘材料层的介电常数相同,所述第一顶绝缘材料层的顶表面、所述第三顶绝缘材料层的顶表面以及所述第二绝缘区的顶表面平齐。
在一个实施例中,所述底绝缘材料层由硅的氮化物制成,所述顶绝缘材料层由透明的树脂制成。
替代性地,形成绝缘层的步骤包括:
形成第一绝缘材料层;
在第一绝缘材料层上对应于第一绝缘区位置形成第一通孔,并在 所述第一绝缘材料层上对应于所述第三绝缘区的位置形成第三通孔,从而利用所述第一绝缘材料层形成第二绝缘区;
在所述第一通孔中形成所述第一绝缘区,并在所述第三通孔中形成所述第三绝缘区。
在一个实施例中,所述第一绝缘区由硅的氧化物制成,所述第二绝缘区由硅的氮化物制成。
在一个实施例中,在每个所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条,所述第二右电极包括多个互相平行的第二右电极条,所述第二左电极条和所述第二右电极条的倾斜方向不同。
在一个实施例中,所述制造方法还可包括:形成位于所述第一电极层和所述绝缘层之间的栅绝缘层。
在一个实施例中,所述第二左电极和所述第二右电极关于所述像素单元的中线镜像对称,所述中线将所述像素单元沿长度方向划分为两部分,所述第二左电极条与所述中线之间的夹角为7°至11°。
在一个实施例中,所述第一电极为块状电极。
由于在每个像素单元中,第一电极和第二电极之间的电场强度与第一电极和第二电极之间的绝缘单元层的介电常数有关,由于绝缘层单元中至少存在一个其介电常数不同于其他绝缘区的绝缘区,因此,在一个像素单元中,至少存在两种不同的电场强度,从而可以使得一个像素单元中至少存在两种不同的液晶分子偏转方向,由此可知,本发明的各实施例所提供的阵列基板可以实现液晶显示面板的多畴显示。
在显示装置中,对绝缘层单元尺寸精度要求较低,并且绝缘层单元与电极条相比具有较大的尺寸,因此,通过简单地改变绝缘层单元的结构可实现多畴液晶显示装置,从而可以降低制造阵列基板的工艺成本。
附图说明
附图是用来提供对本发明的实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的一个实施例所提供的阵列基板的剖视示意图;
图2是本发明的另一实施例所提供的阵列基板的剖视示意图;
图3是本发明的实施例所提供的阵列基板的俯视示意图;
图4是本发明的实施例所提供的显示面板在关闭态(off态)时液晶分子的状态示意图;
图5是本发明的实施例所提供的显示面板在开启态(on态)时液晶分子的状态示意图。
附图标记说明
100:第一电极                 200:绝缘层单元
210:第一绝缘区               210a:第一底绝缘层
210b:第一顶绝缘层            220:第二绝缘区
230:第三绝缘区               240:栅绝缘层
300:第二电极
310:第二左电极条             320:第二右电极条
410、420、430、440:液晶分子
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
作为本发明的一个实施例,提供一种阵列基板,所述阵列基板被划分为多个像素单元,所述阵列基板包括第一电极层、覆盖该第一电极层的绝缘层和形成在所述绝缘层上的第二电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极100,所述绝缘层包括覆盖在每个第一电极100表面的绝缘层单元200,所述第二电极层包括设置在绝缘层单元200上方的第二电极300,其中,在每个所述像素单元内,绝缘层单元200包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数。
在液晶显示装置中,根据第一电极和第二电极之间的电场产生的扭转力来驱动液晶分子的偏转。
众所周知的是,介质在外加电场时会产生感应电荷而削弱电场, 介质中电场与原外加电场(真空中)的比值即为相对介电常数。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降。
向第一电极和第二电极通电时,第一电极和第二电极之间会产生电场,而绝缘层单元200是位于第一电极和第二电极之间的介质。由于绝缘层单元200中至少有一个绝缘区的介电常数不同于其他绝缘区的介电常数,因此,在该介电常数不同于其他绝缘区的绝缘区处,第一电极和第二电极之间的电场强度是不同于其他区域的电场的强度的。
换言之,在一个像素单元中,至少存在两种不同的电场强度,从而可以使得一个像素单元中至少存在两种不同的液晶分子偏转方向,由此可知,本发明的实施例所提供的阵列基板可以实现液晶显示面板的多畴显示。
由于在显示装置中,对绝缘层单元尺寸精度要求较低,并且绝缘层单元与电极条相比具有较大的尺寸,因此,通过简单地改变绝缘层单元的结构即可实现多畴液晶显示装置,从而可以降低制造阵列基板的工艺成本。
作为本发明的一种具体实施方式,如图3所示,在每个所述像素单元内,所述绝缘层单元包括第一绝缘区210、第二绝缘区220和第三绝缘区230,第一绝缘区210和第三绝缘区230的介电常数相同,第二绝缘区220的介电常数不同于第一绝缘区210的介电常数,第二绝缘区220位于第一绝缘区210和第三绝缘区230之间。容易理解的是,由于第三绝缘区220的介电常数不同于第一绝缘区210的介电常数,因此,第二绝缘区220的介电常数也不同于第三绝缘区230的介电常数。
在图3中所示的实施方式中,至少可以实现三畴液晶显示。液晶显示装置中,畴数越多,越能够有效地改善液晶显示装置中的色偏。
作为本发明的一种实施例,第二绝缘区220的面积为所述像素单元面积的一半,第一绝缘区210和第三绝缘区230面积相等。
在本发明中,可以通过多种实施方式在一个像素单元内实现具有不同的介电常数的多个绝缘区。
作为本发明的一种实施方式,如图1所示,在每个所述像素单元 内,第一绝缘区210包括第一底绝缘层210a和第一顶绝缘层210b,所述第三绝缘区包括第三底绝缘层和第三顶绝缘层(图1中未示出),第一底绝缘层210a、第二绝缘区220和所述第三底绝缘层可以形成为一体,第一顶绝缘层210b的介电常数与所述第三顶绝缘层的介电常数可以相同,第一顶绝缘层210b的顶表面、所述第三顶绝缘层的顶表面以及第二绝缘区220的顶表面平齐。
下文中将详细介绍这种实施方式的形成方法,这里不再赘述。
在实施例中,第一底绝缘层210a、第二绝缘区220和所述第三底绝缘层可以由硅的氮化物(SiNx)制成,第一顶绝缘层210b和所述第三顶绝缘层可以由透明的树脂制成。可以利用化学气相沉积法形成硅的氮化物,利用涂布的方法形成所述透明的树脂。由此可知,这种实施方式的绝缘层单元可以降低工艺成本。
作为本发明的另一种实施方式,如图2所示,第一绝缘区210的材料与所述第三绝缘区(图2中未示出)的材料相同,且第一绝缘区210的材料不同于第二绝缘区220的材料。
需要指出的是,在这种实施方式中,第一绝缘区210由同一种材料制成,并且第三绝缘区由同一种材料制成,第二绝缘区220由同一种材料制成。
在实施例中,所述第一绝缘区可以由硅的氧化物(SiOx)制成,所述第二绝缘区可以由硅的氮化物(SiNx)制成。
为了实现更多畴的液晶显示,在另一实施例中,如图3所示,在每个所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条310,所述第二右电极包括多个互相平行的第二右电极条320,第二左电极条310和第二右电极条320的倾斜方向不同。
由于第二左电极条310和第二右电极条320的倾斜方向不同,第二左电极与第一电极之间产生的电场以及第二右电极与第一电极之间产生的电场不同。再加上绝缘区的介电常数不同,因此,可以实现更多畴的显示。
为了便于制造以及便于设计并使得像素单元中产生的电场更加均匀,在实施例中,所述第二左电极和所述第二右电极关于所述像素单元的中线M镜像对称。如图3所示,中线M将像素单元的长度方向分 为两部分。第二左电极条310与中线M之间的夹角大小为α,第二右电极条320与中线M之间的夹角大小也为α。在实施例中,7°≤α≤11°。
如图3中所示,第二左电极的一部分位于第一绝缘区210内,第二左电极的另一部分位于第二绝缘区220内,第二右电极的一部分位于第二绝缘区220内,第二右电极的另一部分位于第三绝缘区230内,因此,图3中所示的显示装置可以实现四畴液晶显示。
图1和图2中所示的剖视图可以表示图3中所示的像素单元的沿着线A-A的剖视图。
本领域技术人员能够理解的是,阵列基板还可以包括其它的绝缘层结构。例如,用于阵列基板中的开关器件(TFT)的栅绝缘层。在实施例中,如图1或图2所示,阵列基板还可包括布置在第一电极层100和绝缘层200之间的栅绝缘层240。注意,图1或图2只是示意性地示出了栅绝缘层240,与开关器件相关联的其它层结构对本领域技术人员而言是已知的,为了清楚起见,在此并未示出。另外,第一电极的下方可以设置诸如玻璃基板的衬底基板,这对本领域技术人员而言是已知的,在此不再详述。
如图4所示,当显示面板处于关闭态时,液晶分子均不发生偏转。
如图5所示,当显示面板处于开启态时,一个像素单元中可形成四种不同强度的电场。第二左电极位于第一绝缘区内的部分与第一电极之间产生的电场为E1,第二左电极位于第二绝缘区内的部分与第一电极之间产生的电场为E2,第二右电极位于第二绝缘区内的部分与第一电极之间产生的电场为E3,第二右电极位于第三绝缘区内的部分与第一电极之间产生的电场为E4。因此,电场E1对应的一组液晶分子410的偏转方向、电场E2对应的一组液晶分子420的偏转方向、电场E3对应的一组液晶分子430的偏转反向以及电场E4对应的一组液晶分子的偏转反向互不相同,即,当所述显示面板处于开启态时,一个像素单元中液晶分子可以具有四种偏转方向,即,可以实现四畴显示。
在实施例中,第一电极100可以为块状电极。
在本发明的实施例中,第一电极可以为公共电极,第二电极可以为像素电极。
作为本发明的另一个方面,提供一种显示面板,所述显示面板包 括阵列基板,其中,所述阵列基板可以为本发明的上述实施例中的任一实施例所提供的阵列基板。
由于所述阵列基板的制造工艺简单,且成本低,因此,可以利用简单的制造工艺获得多畴显示的显示面板。
作为本发明的再一个方面,提供一种显示装置,所述显示装置包括显示面板,其中,所述显示面板为本发明的实施例所提供的上述显示面板。
所述显示装置可以是手机、电脑、电视等显示装置。
作为本发明的还一个方面,提供一种阵列基板的制造方法,所述阵列基板被划分为多个像素单元,其中,所述制造方法包括:
形成第一电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极;
形成绝缘层,所述绝缘层覆盖所述第一电极层,且所述绝缘层包括覆盖在每个所述第一电极表面的绝缘层单元,在每个所述像素单元内,所述绝缘层单元包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数;
形成第二电极层,所述第二电极层包括设置在所述绝缘层单元上的第二电极。
与形成具有多种不同倾斜方向的电极条的方案相比,形成具有多个绝缘区的绝缘层单元工艺更为简单。
如上文中所述,在每个所述像素单元内,所述绝缘层单元可包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区和所述第三绝缘区的介电常数相同,所述第二绝缘区的介电常数不同于所述第一绝缘区的介电常数,所述第二绝缘区位于所述第一绝缘区和所述第三绝缘区之间。
如上文中所述,作为本发明的一种实施方式,所述第二绝缘区的面积为所述像素单元面积的一半,所述第一绝缘区和所述第三绝缘区面积相等。
对于图1中所示的实施方式,形成绝缘层的步骤可包括:
形成底绝缘材料层,在每个所述像素单元内,所述底绝缘材料层包括第一底绝缘层、第二绝缘区和第三底绝缘层;
形成顶绝缘材料层,所述顶绝缘材料层包括设置在每个所述像素 单元内的顶绝缘材料单元,所述顶绝缘材料单元包括设置在所述第一底绝缘层上的第一顶绝缘材料层和设置在所述第三底绝缘层上的第三顶绝缘材料层,所述第一顶绝缘材料层的介电常数与所述第三顶绝缘材料层的介电常数相同,所述第一顶绝缘材料层的顶表面、所述第三顶绝缘材料层的顶表面以及所述第二绝缘区的顶表面平齐。
在本发明的实施例中,可以通过干刻工艺形成底绝缘材料层。具体地,首先形成一层底绝缘材料;在底绝缘材料上形成掩膜层,该掩膜层上对应于第一底绝缘层和第三底绝缘层的位置分别形成有通孔;通入工艺气体,通过控制通入工艺气体的持续时间可以形成第一底绝缘层、第二绝缘区和第三底绝缘层。
在实施例中,所述底绝缘材料层由硅的氮化物制成,所述顶绝缘材料层由透明的树脂制成。
对于图2中所示的实施方式,形成绝缘层的步骤包括:
形成第一绝缘材料层;
在第一绝缘材料层上对应于第一绝缘区位置形成第一通孔,并在所述第一绝缘材料层上对应于所述第三绝缘区的位置形成第三通孔,从而利用所述第一绝缘材料层形成第二绝缘区;在所述第一通孔中形成所述第一绝缘区,并在所述第三通孔中形成所述第三绝缘区。例如,可以用不同的绝缘材料分别填充第一通孔和第三通孔来形成第一绝缘区和第三绝缘区。也可以通过干刻工艺形成第一通孔和第三通孔,具体工艺与上文中形成第一底绝缘层、第二绝缘区和第三底绝缘层的工艺类似,这里不再赘述。
在实施例中,所述第一绝缘区由硅的氧化物制成,所述第二绝缘区由硅的氮化物制成。
如上文中所述,在实施例中,在每个所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条,所述第二右电极包括多个互相平行的第二右电极条,所述第二左电极条和所述第二右电极条的倾斜方向不同。
如前面所述的,制造方法还包括:形成位于所述第一电极层和所述绝缘层之间的栅绝缘层。
如上文中所述,在实施例中,所述第二左电极和所述第二右电极关于所述像素单元的中线镜像对称,所述中线将所述像素单元沿长度 方向划分为两部分,所述第二左电极条与所述中线之间的夹角为7°至11°。容易理解的是,由于第二左电极和第二右电极关于所述像素单元的中线镜像对称,那么,所述第二左电极条与所述中线之间的夹角与所述第二右电极条与所述中线之间的夹角大小是相等的。
如上文中所述,在实施例中,所述第一电极为块状电极。
在本发明的实施例中,可以利用与传统构图工艺相同的构图工艺形成第一电极和第二电极。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (24)

  1. 一种阵列基板,所述阵列基板被划分为多个像素单元,所述阵列基板包括第一电极层、覆盖该第一电极层的绝缘层和形成在所述绝缘层上的第二电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极,所述绝缘层包括覆盖在每个所述第一电极表面的绝缘层单元,所述第二电极层包括设置在所述绝缘层单元上方的第二电极,其中在每个所述像素单元内,所述绝缘层单元包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数。
  2. 根据权利要求1所述的阵列基板,其中在每个所述像素单元内,所述绝缘层单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区和所述第三绝缘区的介电常数相同,所述第二绝缘区的介电常数不同于所述第一绝缘区的介电常数,所述第二绝缘区位于所述第一绝缘区和所述第三绝缘区之间。
  3. 根据权利要求2所述的阵列基板,其中所述第二绝缘区的面积为所述像素单元面积的一半,所述第一绝缘区和所述第三绝缘区面积相等。
  4. 根据权利要求2所述的阵列基板,其中在每个所述像素单元内,所述第一绝缘区包括第一底绝缘层和第一顶绝缘层,所述第三绝缘区包括第三底绝缘层和第三顶绝缘层,所述第一底绝缘层、所述第二绝缘区和所述第三底绝缘层形成为一体,所述第一顶绝缘层的介电常数与所述第三顶绝缘层的介电常数相同,所述第一顶绝缘层的顶表面、所述第三顶绝缘层的顶表面以及所述第二绝缘区的顶表面平齐。
  5. 根据权利要求4所述的阵列基板,其中所述第一底绝缘层、所述第二绝缘区和所述第三底绝缘层由硅的氮化物制成,所述第一顶绝缘层和所述第三顶绝缘层由透明的树脂制成。
  6. 根据权利要求2所述的阵列基板,其中所述第一绝缘区的材料与所述第三绝缘区的材料相同,且所述第一绝缘区的材料不同于所述第二绝缘区的材料。
  7. 根据权利要求6所述的阵列基板,其中所述第一绝缘区由硅的氧化物制成,所述第二绝缘区由硅的氮化物制成。
  8. 根据权利要求2至7中任意一项所述的阵列基板,其中在每个 所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条,所述第二右电极包括多个互相平行的第二右电极条,所述第二左电极条和所述第二右电极条的倾斜方向不同。
  9. 根据权利要求1-7中任意一项所述的阵列基板,其中所述阵列基板还包括布置在所述第一电极层和所述绝缘层之间的栅绝缘层。
  10. 根据权利要求8所述的阵列基板,其中所述第二左电极和所述第二右电极关于所述像素单元的中线镜像对称,所述中线将所述像素单元沿长度方向划分为两部分,所述第二左电极条与所述中线之间的夹角为7°至11°。
  11. 根据权利要求8所述的阵列基板,其中所述第一电极为块状电极。
  12. 一种显示面板,所述显示面板包括阵列基板,其中所述阵列基板为权利要求1至11中任意一项所述的阵列基板。
  13. 一种显示装置,所述显示装置包括显示面板,其中所述显示面板为权利要求12所述的显示面板。
  14. 一种阵列基板的制造方法,所述阵列基板被划分为多个像素单元,其中所述制造方法包括:
    形成第一电极层,所述第一电极层包括设置在每个所述像素单元内的第一电极;
    形成绝缘层,所述绝缘层覆盖所述第一电极层,且所述绝缘层包括覆盖在每个所述第一电极表面的绝缘层单元,在每个所述像素单元内,所述绝缘层单元包括多个绝缘区,至少一个所述绝缘区的介电常数不同于其他所述绝缘区的介电常数;
    形成第二电极层,所述第二电极层包括设置在所述绝缘层单元上的第二电极。
  15. 根据权利要求14所述的制造方法,其中在每个所述像素单元内,所述绝缘层单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区和所述第三绝缘区的介电常数相同,所述第二绝缘区的介电常数不同于所述第一绝缘区的介电常数,所述第二绝缘区位于所述第一绝缘区和所述第三绝缘区之间。
  16. 根据权利要求15所述的制造方法,其中所述第二绝缘区的面 积为所述像素单元面积的一半,所述第一绝缘区和所述第三绝缘区面积相等。
  17. 根据权利要求15所述的制造方法,其中所述的形成绝缘层的步骤包括:
    形成底绝缘材料层,在每个所述像素单元内,所述底绝缘材料层包括第一底绝缘层、所述第二绝缘区和第三底绝缘层;
    形成顶绝缘材料层,所述顶绝缘材料层包括设置在每个所述像素单元内的顶绝缘材料单元,所述顶绝缘材料单元包括设置在所述第一底绝缘层上的第一顶绝缘材料层和设置在所述第三底绝缘层上的第三顶绝缘材料层,所述第一顶绝缘材料层的介电常数与所述第三顶绝缘材料层的介电常数相同,所述第一顶绝缘材料层的顶表面、所述第三顶绝缘材料层的顶表面以及所述第二绝缘区的顶表面平齐。
  18. 根据权利要求17所述的制造方法,其中所述底绝缘材料层由硅的氮化物制成,所述顶绝缘材料层由透明的树脂制成。
  19. 根据权利要求15所述的制造方法,其中形成绝缘层的步骤包括:
    形成第一绝缘材料层;
    在第一绝缘材料层上对应于第一绝缘区位置形成第一通孔,并在所述第一绝缘材料层上对应于所述第三绝缘区的位置形成第三通孔,从而利用所述第一绝缘材料层形成第二绝缘区;
    在所述第一通孔中形成所述第一绝缘区,并在所述第三通孔中形成所述第三绝缘区。
  20. 根据权利要求19所述的制造方法,其中所述第一绝缘区由硅的氧化物制成,所述第二绝缘区由硅的氮化物制成。
  21. 根据权利要求15至20中任意一项所述的制造方法,其中在每个所述像素单元中,所述第二电极包括第二左电极和第二右电极,所述第二左电极包括多个互相平行的第二左电极条,所述第二右电极包括多个互相平行的第二右电极条,所述第二左电极条和所述第二右电极条的倾斜方向不同。
  22. 根据权利要求14-20中任意一项所述的制造方法,其中所述制造方法还包括:形成位于所述第一电极层和所述绝缘层之间的栅绝缘层。
  23. 根据权利要求21所述的制造方法,其中所述第二左电极和所述第二右电极关于所述像素单元的中线镜像对称,所述中线将所述像素单元沿长度方向划分为两部分,所述第二左电极条与所述中线之间的夹角为7°至11°。
  24. 根据权利要求21所述的制造方法,其中所述第一电极为块状电极。
PCT/CN2015/088824 2015-04-14 2015-09-02 阵列基板及其制造方法、显示面板和显示装置 WO2016165265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,903 US10185181B2 (en) 2015-04-14 2015-09-02 Array substrate and manufacturing method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510176720.8A CN104730784B (zh) 2015-04-14 2015-04-14 阵列基板及其制造方法、显示面板和显示装置
CN201510176720.8 2015-04-14

Publications (1)

Publication Number Publication Date
WO2016165265A1 true WO2016165265A1 (zh) 2016-10-20

Family

ID=53454831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088824 WO2016165265A1 (zh) 2015-04-14 2015-09-02 阵列基板及其制造方法、显示面板和显示装置

Country Status (3)

Country Link
US (1) US10185181B2 (zh)
CN (1) CN104730784B (zh)
WO (1) WO2016165265A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730784B (zh) * 2015-04-14 2017-12-08 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板和显示装置
US11493822B2 (en) * 2018-05-29 2022-11-08 Seereal Technologies S.A. Diffractive optical element and display device
CN114063319A (zh) * 2021-11-16 2022-02-18 Oppo广东移动通信有限公司 显示膜片、壳体和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305100A (ja) * 1999-02-15 2000-11-02 Fujitsu Ltd 液晶表示装置
US20050264720A1 (en) * 2004-05-25 2005-12-01 Hitachi Displays, Ltd. Liquid crystal display apparatus
CN101140399A (zh) * 2006-09-06 2008-03-12 索尼株式会社 液晶显示装置及电子设备
CN102549489A (zh) * 2009-10-07 2012-07-04 夏普株式会社 液晶面板和液晶显示装置
CN103336396A (zh) * 2013-06-28 2013-10-02 京东方科技集团股份有限公司 阵列基板及其制造方法和显示装置
CN104730784A (zh) * 2015-04-14 2015-06-24 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100878B1 (ko) * 2004-07-07 2012-01-02 삼성전자주식회사 다중 도메인 액정 표시 장치 및 그에 사용되는 표시판
KR20120076970A (ko) * 2010-12-30 2012-07-10 엘지디스플레이 주식회사 광시야각 액정표시장치용 어레이 기판 및 그 제조 방법
CN102866543B (zh) * 2012-09-13 2015-05-06 京东方科技集团股份有限公司 像素单元、阵列基板以及液晶显示装置
CN102998860B (zh) 2012-12-14 2015-09-16 京东方科技集团股份有限公司 像素电极结构、阵列基板、液晶显示面板及驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305100A (ja) * 1999-02-15 2000-11-02 Fujitsu Ltd 液晶表示装置
US20050264720A1 (en) * 2004-05-25 2005-12-01 Hitachi Displays, Ltd. Liquid crystal display apparatus
CN101140399A (zh) * 2006-09-06 2008-03-12 索尼株式会社 液晶显示装置及电子设备
CN102549489A (zh) * 2009-10-07 2012-07-04 夏普株式会社 液晶面板和液晶显示装置
CN103336396A (zh) * 2013-06-28 2013-10-02 京东方科技集团股份有限公司 阵列基板及其制造方法和显示装置
CN104730784A (zh) * 2015-04-14 2015-06-24 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板和显示装置

Also Published As

Publication number Publication date
US20170075170A1 (en) 2017-03-16
CN104730784A (zh) 2015-06-24
US10185181B2 (en) 2019-01-22
CN104730784B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
JP4394114B2 (ja) 液晶表示装置及びその画素電極アレイ
US10488714B2 (en) Array substrate and display device
US8531641B2 (en) Liquid crystal display device and method of manufacturing the same
WO2017118112A1 (zh) 阵列基板和显示装置
US10747064B2 (en) Liquid crystal display device
US8947608B2 (en) Display apparatus including electrostatic preventing pattern
US20140184972A1 (en) Display panel and liquid crystal display including the same
WO2017076158A1 (zh) 像素结构及其制作方法、阵列基板和显示面板
US9570480B2 (en) Liquid crystal display and manufacturing method thereof
JP2005173538A (ja) 横電界型の液晶表示装置
US9804446B2 (en) Liquid crystal display
US9116566B2 (en) Liquid crystal display device having touch sensor
WO2018040560A1 (zh) 阵列基板、显示面板及显示装置
US20060279683A1 (en) Fringe field switching mode LCD having high transmittance
US9841651B2 (en) Array substrate and liquid crystal panels
CN109388265A (zh) 一种阵列基板、触控显示面板及显示装置
WO2016165265A1 (zh) 阵列基板及其制造方法、显示面板和显示装置
US9709858B2 (en) Liquid crystal display
WO2014206005A1 (zh) 透明电极、阵列基板和液晶显示装置
US20170075164A1 (en) Liquid crystal display and manufacturing method thereof
US20170017128A1 (en) Liquid crystal display having improved pixel electrode shapes
KR102117601B1 (ko) 액정 표시 장치
US20160103371A1 (en) Liquid crystal display device
CN103984160B (zh) 阵列基板及其制造方法和液晶显示器件
US9429794B2 (en) Pixel unit, thin film transistor array substrate and liquid crystal display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122903

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888965

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15888965

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888965

Country of ref document: EP

Kind code of ref document: A1