WO2016163449A1 - 排ガス処理装置 - Google Patents

排ガス処理装置 Download PDF

Info

Publication number
WO2016163449A1
WO2016163449A1 PCT/JP2016/061375 JP2016061375W WO2016163449A1 WO 2016163449 A1 WO2016163449 A1 WO 2016163449A1 JP 2016061375 W JP2016061375 W JP 2016061375W WO 2016163449 A1 WO2016163449 A1 WO 2016163449A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
hopper
horizontal duct
duct
side wall
Prior art date
Application number
PCT/JP2016/061375
Other languages
English (en)
French (fr)
Inventor
今田 典幸
石岡 正明
山田 晃広
佐々木 郷紀
勝美 矢野
圭吾 内山
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020177026796A priority Critical patent/KR102126663B1/ko
Priority to US15/562,271 priority patent/US20180085694A1/en
Priority to CN201680018631.3A priority patent/CN107427773A/zh
Priority to ES201790035A priority patent/ES2644888B9/es
Publication of WO2016163449A1 publication Critical patent/WO2016163449A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/04Traps

Definitions

  • the present invention relates to an exhaust gas treating apparatus, and more particularly to an exhaust gas treating apparatus provided with a NOx removal apparatus for reducing and removing nitrogen oxides contained in the exhaust gas of a boiler (for example, for power generation) using coal as fuel.
  • this denitrification apparatus has horizontal ducts and vertical ducts for exhaust gas discharged from heat exchangers such as superheaters and economizers of coal-fired boilers, as described in Patent Document 1 Through the top of the denitrification equipment.
  • the NOx removal system is equipped with a NOx removal catalyst that reduces nitrogen oxides, and a reducing agent is injected into the exhaust gas from a vertical duct upstream of the NOx removal catalyst or a nozzle provided on the inlet side of the NOx removal system. ing.
  • the NOx removal catalyst is generally formed by layering a plurality of catalysts formed in a plate shape or a honeycomb shape, and the opening of the catalyst layer is usually about 5 to 6 mm.
  • coal is pulverized into pulverized coal with an average particle diameter of 100 ⁇ m or less by a mill, and is supplied to a furnace for combustion.
  • the size of dust or ash (hereinafter collectively referred to as ash particles) produced by the combustion is usually several tens of ⁇ m or less.
  • ash particles dust or ash
  • slag or clinker attached to the heat transfer tube or side wall of the boiler is blown away with a soot blower or the like, lumps of ash of about 5 to 10 mm are generated and fly to the NOx removal system with the exhaust gas to cause deposition on the catalyst layer. If such ash lumps deposit on the catalyst surface, there is a problem that the exhaust gas flow is blocked and the denitrification reaction is inhibited.
  • a hopper is provided below the connection between the horizontal duct and the vertical duct, and the ash lumps are placed in the hopper. It is proposed to collect.
  • the flow speed of the exhaust gas in the duct leading from the boiler to the desulfurization apparatus be reduced, and a wire mesh screen be installed in the horizontal duct or the vertical duct to collect the ash lumps.
  • an ash block be collected and dropped into the hopper below the vertical duct by installing a louver consisting of a plurality of plate-like members on the inner wall of the vertical duct or installing a baffle plate. It is done.
  • a plate member for deflecting the exhaust gas flow downward is installed on the upstream side in the horizontal duct so that the ash particles are diverted to the bottom wall side of the horizontal duct and collected by the hopper. It has been proposed to do. Further, in the document, the collecting plate is extended from the bottom wall of the horizontal duct to the upper part in the hopper, and the exhaust gas flow is collected in the hopper using the vortex flow taken in to the collecting plate. It has been proposed to do. Further, in the document, a horizontal deflection plate is provided at the upper portion of the hopper at a connection portion between the hopper and the vertical duct where the exhaust gas flow in the horizontal duct collides, and the gas flowing into the hopper is provided by this deflection plate. It has been proposed that the flow be led to the lower surface of the above-mentioned collecting plate to enhance the collection effect of ash particles.
  • the particle size distribution of the ash content is about 50% of particles of 100 ⁇ m or less in the case of the carbon A, while 99% of particles of the carbon B are 100 ⁇ m or less in diameter. That is, in the case of A coal, half of the ash is composed of particles of 100 ⁇ m or more.
  • the wire mesh screen proposed in the patent document can remove ashes of about 5 to 10 mm larger than the openings of the catalyst layer, but can not remove 100 ⁇ m to 5 mm of ash particles smaller than that. .
  • the mesh size of the wire mesh screen is, for example, 100 ⁇ m, not only the pressure loss in the duct increases, but also the frequency of occurrence of screen clogging increases.
  • ash particles with a diameter of 100 to 300 ⁇ m are entrained in the exhaust gas flow having a flow velocity of several m / s, they collide with the louver even if a louver consisting of a plurality of plate members is installed on the inner wall of the duct. Since the ash is again entrained in the air flow and blown off downstream, the problem that the NOx removal catalyst is worn out can not be solved.
  • the problem to be solved by the present invention is to provide an exhaust gas processing apparatus capable of suppressing the abrasion of a NOx removal catalyst by ash particles having a diameter of 100 ⁇ m or more.
  • the diameter is It was found that 30 ⁇ m ash particles were dispersed almost uniformly inside the duct and reached the denitrification device, while ash particles 200 ⁇ m in diameter were unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas.
  • the present invention comprises a denitration device comprising a denitration catalyst for reducing nitrogen oxides in exhaust gas discharged from a coal-fired boiler, and a duct for guiding the exhaust gas from the coal-fired boiler to the denitration device.
  • the duct includes a horizontal duct connected to an exhaust gas outlet of the coal-fired boiler, a vertical duct connected to the horizontal duct, and a hopper provided at a lower part of a connection portion between the horizontal duct and the vertical duct.
  • a first feature of the exhaust gas processing apparatus according to the present invention is that a collision plate is provided at the upper end opening of the hopper for causing ash particles in the exhaust gas to collide and fall into the hopper.
  • the present invention having the first feature, by providing an impact plate at the upper end opening of the hopper, that is, the extended surface of the bottom wall of the horizontal duct, for colliding ash particles in the exhaust gas and dropping it into the hopper Ash particles of 100 ⁇ m or more unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas can be made to collide with the collision plate and selectively collected in the hopper. As a result, since ash particles of 100 ⁇ m or more can be collected in the hopper with high efficiency, it is possible to suppress the abrasion of the NOx removal catalyst by the ash particles having a large particle diameter.
  • the collision plate is formed in a rectangular shape, and the long side on the lower side is positioned at the upper end opening surface of the hopper corresponding to the extension surface of the bottom wall of the horizontal duct, and in the width direction of the horizontal duct. It is preferable to extend and install. According to this, it is possible to cause the ash particles of 100 ⁇ m or more, which are unevenly distributed on the bottom wall side which is the lower portion of the horizontal duct and entrained in the exhaust gas, to effectively collide with the collision plate and drop into the hopper.
  • the collision plate may be a rectangle having a short side corresponding to a region where ash particles of 100 ⁇ m or more are unevenly distributed on the bottom wall side of the horizontal duct and scattered, the pressure loss of the exhaust gas flow can be suppressed low. .
  • the installation position of the collision plate may be provided within a range equivalent to 1/4 to 3/4 of the length of the upper end opening from the end on the back side of the upper end opening of the hopper viewed from the horizontal duct.
  • the collision plate is preferably provided at a set angle a (where 0 ° ⁇ a ⁇ 90 °) at the horizontal duct side with respect to the upper end opening surface of the hopper.
  • a partition plate is provided inside the hopper and perpendicular to the extension of the horizontal duct and suspended in the vertical direction.
  • the exhaust gas flowing through the horizontal duct collides with the wall surface of the hopper and travels from the side wall to the bottom of the hopper and reverses and rises at the accumulation surface of the ash particles collected at the bottom. It can be suppressed (reduced).
  • the partition plate is preferably provided at a position corresponding to a half of the length of the upper end opening, that is, at the center position, from the rear end of the upper end opening of the hopper viewed from the horizontal duct.
  • the exhaust gas outlet to which the horizontal duct is connected is formed on a side wall of a downward exhaust gas flow passage provided with a heat recovery heat transfer pipe of the coal fired boiler, and the horizontal of the exhaust gas flow passage of the exhaust gas outlet A projecting portion is provided in the exhaust gas flow path from the side wall above the duct.
  • the present invention it is possible to suppress abrasion of the NOx removal catalyst by ash particles having a diameter of 100 ⁇ m or more.
  • FIG. 1st Embodiment of the exhaust gas processing apparatus of this invention It is an expansion perspective view and sectional drawing of a hopper part which are the characteristics of a 1st embodiment. It is a perspective view of an example of the NOx removal catalyst of a 1st embodiment. It is a figure which shows an example of the particle size distribution of the ash particle by the difference in a carbon type. It is a figure which shows the result of the industrial analysis value of coal, and an ash composition analysis. It is the figure which carried out numerical analysis of the scattering locus by the difference of the particle size of the ash particle from a boiler exit to a horizontal duct, a vertical duct, and a desulfurization device.
  • the coal-fired boiler 1 is configured to include a burner 4 that burns the coal 2 pulverized by a pulverizer such as a mill (not shown) with the combustion gas 3. Further, a plurality of heat recovery heat transfer pipes 5 through which water is circulated are provided in the furnace and the exhaust gas flow path of the coal-fired boiler 1, and the heat recovery heat transfer pipes are further provided in the exhaust gas flow path downstream of the coal-fired boiler 1.
  • One economizer (carbon saving device) 6 is provided.
  • the coal-fired boiler 1 generates steam for driving a power generation turbine (not shown).
  • An exhaust gas outlet 7 of the coal fired boiler 1 is provided on a boiler side wall below the economizer 6, and a horizontal duct 8 is connected to the exhaust gas outlet 7.
  • the other end of the horizontal duct 8 is connected to the side wall of the vertical duct 9, and the upper end of the vertical duct 9 is connected to the inlet duct 10 a of the NOx removal system 10.
  • the NOx removal catalyst 10 b is internally filled with a NOx removal catalyst 10 b as shown in FIG.
  • the NOx removal device 10 is configured to reduce and discharge nitrogen oxides (NOx) contained in the exhaust gas.
  • the exhaust gas from which the NOx discharged from the denitration device 10 is removed is discharged from the chimney 14 to the atmosphere through the air heater 11 for heating the combustion gas, the dust collector 12 and the desulfurization device 13.
  • a plurality of hoppers 15 are installed at the lower part of the vertical duct 9 connected to the end of the horizontal duct 8 along the width direction of the horizontal duct 8.
  • the upper end opening surface of the hopper 15 is installed in alignment with the position of the bottom wall surface of the horizontal duct 8.
  • a collision plate 16 is provided which is positioned at the upper end opening surface of the hopper 15 to cause the ash particles in the exhaust gas to collide and drop into the hopper 15.
  • the collision plate 16 of the present embodiment is formed in a rectangular shape, and the long side of the lower side is positioned at the upper end opening surface of the hopper corresponding to the extension surface of the bottom wall of the horizontal duct 8. , And extends in the width direction of the horizontal duct.
  • the width of the short side of the collision plate 16 is determined according to the thickness of the flow of the large particle size ash particles scattered along the bottom wall of the horizontal duct 8 as described later.
  • the width of the short side of the collision plate 16 can be selected from the range of 2 to 7% of the vertical width H of the horizontal duct 8, and the relationship between the pressure loss of the exhaust gas flow and the ash particle collection rate Determine in consideration of Further, as shown in FIG.
  • the collision plate 16 is provided to be inclined toward the horizontal duct 8 with respect to the upper end opening surface of the hopper 15.
  • the setting angle a can be employed within the range of 0 ° ⁇ a ⁇ 90 ° in order to cause the ash particles to collide with the collision plate 16 and to be effectively dropped into the hopper 15.
  • a partition plate 17 for preventing re-scattering is installed inside each hopper 15. That is, inside the hopper 15 is provided a partition plate 17 which is perpendicular to the extension line of the horizontal duct 8 and hangs down in the vertical direction. According to this, the exhaust gas flowing through the horizontal duct 8 collides with the wall surfaces of the vertical duct 9 and the hopper 15 and travels from the side wall to the bottom of the hopper 15 and reverses at the accumulation surface of ash particles collected at the bottom. The rising flow can be suppressed (reduced) to suppress re-entrainment of the collected ash particles.
  • the exhaust gas produced by the combustion of coal A in the coal-fired boiler 1 is discharged from the exhaust gas outlet 7 which is the outlet side of the economizer 6.
  • the coal A is low quality coal
  • a large amount of ash having a diameter of 100 to 300 ⁇ m is contained in the exhaust gas.
  • the large diameter (eg, 100 to 300 ⁇ m diameter) ash particles in the exhaust gas are collected on the bottom wall of the horizontal duct 8 while flowing through the horizontal duct 8.
  • the large diameter ash particles collected on the bottom wall of the horizontal duct 8 collide with the collision plate 16 installed below the vertical duct 9 and dropped into the hopper 15. Further, since the partition plate 17 is installed inside the hopper 15, the collected large diameter ash particles are held in the hopper 15 without re-scattering.
  • ammonia is supplied from the ammonia supply nozzle 10c installed in the vertical duct 9 to the exhaust gas from which the large diameter ash particles are almost removed, and is led to the NOx removal catalyst 10b. And while passing through the NOx removal catalyst 10b, NOx in the exhaust gas is reduced and decomposed into nitrogen and water.
  • the NOx removal catalyst 10 b hardly wears. Thereafter, the exhaust gas exchanges heat with the combustion air by the air heater 11 and becomes low temperature, and ash particles are removed by the dust collector 12 and further sulfur oxides are removed by the desulfurizer 13 and released into the atmosphere from the chimney 14 Be done.
  • FIG. 6 (a) shows an example in which the diameter of the ash particle is 30 ⁇ m
  • FIG. 6 (b) shows a locus in the case of 200 ⁇ m. From these figures, it can be seen that ash particles having a diameter of 30 ⁇ m are dispersed almost uniformly in the duct and reach the NOx removal catalyst 10b. On the other hand, it can be seen that the ash particles having a diameter of 200 ⁇ m are unevenly distributed in the lower part of the horizontal duct 8 at the inlet of the vertical duct 9. Based on this result, in the first embodiment, the hopper 15 is installed in the lower part of the vertical duct 9 and the collision plate 16 is installed in the upper part of the hopper 15 so that the ash is scattered in the lower part of the horizontal duct 8 and scattered. The particles are selectively led to the hopper 15 for collection.
  • FIG. 7 A numerical analysis result in the case where the collision plate 16 is installed on the upper part of the hopper 15 is shown in FIG. It can be seen that the ash particles unevenly distributed in the lower part of the horizontal duct 8 collide with the collision plate 16 as shown by the trajectory 20 and collected in the hopper 15. In addition, although the calculation result of the velocity distribution in this case is also shown in FIG. 7, since the exhaust gas velocity in the hopper 15 is low to several m / s or less, the ash particles in the hopper 15 are scattered again Rate can be reduced.
  • FIG. 9 shows the result of numerical analysis when the partition plate 17 is installed inside the hopper 15. As shown in FIG. By installing the partition plate 17 inside the hopper 15, the flow of exhaust gas inside the hopper 15 is suppressed, and the re-scattering amount of the ash collected inside the hopper 15 can be significantly reduced.
  • FIG. 10B the result of having examined the optimal installation position of the collision board 16 is shown in FIG.
  • the result of having evaluated the dust collection rate by changing the position of the collision board 16 as shown to the figure (a) is shown to the figure (b).
  • the position of the collision plate 16 corresponds to 1/4 to 3/4 of the base point 0 and the length L of the hopper upper end opening with the rear end of the upper end opening of the hopper 15 viewed from the horizontal duct 8 side as the base point 0
  • the position was shifted to the horizontal duct 8 side and set.
  • FIG. 10B it can be seen that the collection rate decreases when the position of the collision plate 16 is placed at the base point 0. From the results of FIG.
  • FIG. 11 shows the result of having examined the shape of the partition plate 17 for re-scattering prevention.
  • FIGS. 11A to 11D the partition plate 17 is provided so as to hang from the above-described base point 0 of the hopper 15 at a position substantially half the length L of the hopper upper end opening.
  • FIG. 11 (a) shows the case where the partition plate 17 is installed over the entire height direction of the hopper 15.
  • FIG. 11 (b) shows the upper part 1 when the lower part is shortened by 1 ⁇ 4.
  • the figure (d) shows the case where the upper portion and the lower portion are respectively shortened by 1 ⁇ 4.
  • FIG. 12 it was found that the difference in the re-scattering prevention effect is small regardless of the shape, and the influence of the vertical length of the partition plate 17 on the re-scattering prevention is small.
  • ash particles having a diameter of at least 100 ⁇ m or more can be almost collected in the hopper 15 before reaching the denitration catalyst 10b.
  • the amount of those large-diameter ash particles reaching the NOx removal catalyst 10 b can be significantly reduced, so that wear of the NOx removal catalyst 10 b can be suppressed.
  • a coal is, for example, coal produced in the Inner Mongolia area of China, and B coal is coal from Australia.
  • the A coal has a large ash content of 47% in coal.
  • the particle size distribution of the ash particles shown in FIG. 4 while 99% of the particles in B coal have a diameter of 100 ⁇ m or less, particles of 100 ⁇ m or less in the case of A carbon have about 50% And half of the ash particles are composed of ash particles of 100 ⁇ m or more.
  • the problem of the NOx removal catalyst being worn in a short time Will occur.
  • the wire mesh screen provided for removing ashes of about 5 to 10 mm proposed in Patent Document 1 ashes of ash larger than the opening of the NOx removal catalyst 10b can be removed, but smaller than that. It is not possible to remove 100 ⁇ m to 5 mm ash particles.
  • the mesh size of the wire mesh screen is, for example, 100 ⁇ m, not only the pressure loss in the duct increases, but also the frequency of occurrence of screen clogging increases.
  • the overhanging portion 23 can be provided in the exhaust gas flow path. That is, the exhaust gas outlet 7 to which the horizontal duct 8 is connected is formed on the side wall of the downward exhaust gas flow path in which the economizer 6 which is one of the heat recovery heat transfer tubes of the coal fired boiler 1 is installed.
  • the overhang portion 23 is provided in the exhaust gas passage from the side wall of the exhaust gas passage above the horizontal duct of the exhaust gas outlet 7.
  • the figure (b) is corresponded to 1st Embodiment which has not provided the overhang part 23. As shown in FIG.
  • the provision of the overhanging portion 23 significantly reduces the ash particle collection rate A compared to the ash particle collection rate B in which the overhanging portion 23 is not provided. It turns out that it improves. It is considered that the provision of the overhang portion 23 increases the effect of collecting the ash particles on the lower side of the horizontal duct, and improves the ash particle collection rate in the hopper 15. The larger the amount of overhang of the overhang portion 23, the more the separation effect of the ash particles can be expected, but considering that the fan power increases as the pressure loss increases, it is at most about 1/4 of the flow path. It is desirable to do.
  • FIG. 16 the block diagram of the principal part of 2nd Embodiment of the waste gas processing apparatus of this invention is shown.
  • the second embodiment is different from the first embodiment in that a side wall collision plate is provided in the horizontal duct 8, and the other points are the same as those of the first embodiment, and thus the same components are provided. Are given the same reference numerals and the description thereof is omitted.
  • FIG. 16 (a) is a side view showing the inside of the horizontal duct 8 and the hopper 15 in a transparent manner
  • FIG. 16 (b) is a plan view showing the inside of the horizontal duct 8 and the hopper 15 in a transparent manner
  • a pair of side wall collision plates 31 a and 31 b are provided symmetrically on the opposing side walls of the horizontal duct 8.
  • the pair of side wall collision plates 31a and 31b are provided at an angle ⁇ with respect to the upstream side wall of the horizontal duct 8, as shown in FIG. 16 (b).
  • the side wall collision plates 31a and 31b are provided at an angle ⁇ with respect to the bottom wall on the upstream side of the horizontal duct 8.
  • the position of the lower end of the side wall collision plates 31a, 31b is provided at a distance L1 on the upstream side of the horizontal duct 8 from the connection position of the horizontal duct 8 and the hopper 15, and the distance L2 from the bottom wall of the horizontal duct 8 It is provided floating. Further, the plate width d of the side wall collision plates 31a, 31b is set to a selected width of 2 to 7% of the width D of the horizontal duct 18.
  • FIG. 17 shows the relationship between the angle ⁇ and the collection rate of ash particles.
  • the angle ⁇ is increased, the pressure loss of the exhaust gas flow due to the pair of side wall collision plates 31a and 31b is reduced. This is considered to be the fact that the exfoliation area of the exhaust gas flow decreases with the increase of the angle ⁇ .
  • the angle ⁇ can be employed in the range of 30 ° to 60 °, but is preferably selected from the range of 30 ° to 45 °.
  • the angle ⁇ is smaller than 45 °, the length in the horizontal direction becomes long, which is not desirable.
  • the angle ⁇ is selected from the range of 45 ° to 70 °, preferably 60 to 70 °.
  • the pair of side wall collision plates 31a, 31b As a result, the ash particle collection rate can be further improved as compared with the first embodiment.
  • the side wall collision plates 31a and 31b can collect large diameter ash particles without significantly increasing the pressure loss, the large diameter particles can be effectively obtained by combining them with the first embodiment and the like. The collection rate of ash particles can be improved.
  • FIG. 21 the block diagram of the principal part of 3rd Embodiment of the waste gas processing apparatus of this invention is shown.
  • the third embodiment is different from the first and second embodiments in that the ceiling wall of the horizontal duct 8 is suspended to provide a ceiling collision plate.
  • the other points are the same as in the first and second embodiments, and therefore the same components are denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 21 (a) is a side view seen through the interior of the horizontal duct 8 and the hopper 15, and FIG. 21 (b) is a plan view seen through the interior of the horizontal duct 8 and the hopper 15.
  • a ceiling collision plate 32 is provided to hang from the ceiling wall of the horizontal duct 8.
  • the ceiling collision plate 32 is provided on the upstream side of the pair of side wall collision plates 31a and 31b.
  • the ceiling collision plate 32 is formed of a pair of plate pieces 32a and 32b extending from the central portion of the width of the ceiling wall to both side walls, and the angle ⁇ between the pair of plate pieces is 45 to 70 °, Preferably, the angle is set to 60 to 70 °.
  • the plate surface of the pair of plate pieces 32a and 32b is provided on the upstream side of the horizontal duct 8 with an angle ⁇ of 30 ° to 60 °, preferably 45 ° to 60 °, with respect to the ceiling wall. Further, the pair of plate pieces 32a and 32b of the ceiling collision plate 32 are provided such that the end portions on both side walls are separated from the corresponding side walls by at least the plate width (height) of the side wall collision plate.
  • the third embodiment is suitable when the coal-fired boiler 1 of the swirl type combustion furnace is used. That is, in the case of the swirl type combustion furnace, since the ash particles of large particle size may also scatter on the ceiling wall side of the horizontal duct 8, these ash particles are made to collide with the ceiling collision plate 32 and collected. As a result, it is possible to suppress the arrival of ash particles of 100 ⁇ m or more to the NOx removal catalyst 10b, and to significantly reduce the wear of the catalyst.
  • the coal-fired boiler 1 of the swirl type combustion furnace even when the coal-fired boiler 1 of the swirl type combustion furnace is used, by using it in combination with the first embodiment or the second embodiment, it is possible to effectively capture ash particles of large particle diameter.
  • the collection rate can be improved.
  • coal-fired boiler 7 exhaust gas outlet 8 horizontal duct 9 vertical duct 10 NOx removal equipment 10b NOx removal catalyst 10c ammonia supply nozzle 15 hopper 16 collision plate 17 partition plate

Abstract

直径が100μm以上の灰粒子による脱硝触媒の摩耗を抑制することにある。 石炭焚ボイラ1から排出される排ガス中の窒素酸化物を還元する脱硝触媒10bを有してなる脱硝装置10と、脱硝装置に石炭焚ボイラから排ガスを導くダクトとを備え、ダクトは、石炭焚ボイラの排ガス出口7に接続された水平ダクト8と、水平ダクトに接続された垂直ダクト9と、水平ダクトと垂直ダクトの接続部の下部に設けられたホッパ15とを有し、ホッパ15の上端開口部に、排ガス中の灰粒子を衝突させてホッパ内に落下させる衝突板16を設けたことを特徴とする。

Description

排ガス処理装置
 本発明は、排ガス処理装置に係り、特に、石炭を燃料とするボイラ(例えば、発電用)の排ガス中に含まれる窒素酸化物を還元して除去する脱硝装置を備えた排ガス処理装置に関する。
 例えば、石炭焚火力発電用ボイラの燃焼排ガス中の窒素酸化物(NOx)を除去するために、排ガス中に還元剤(例えば、アンモニア)を注入し、脱硝触媒でNOxをNに還元する脱硝装置が一般に採用されている。この脱硝装置は、例えば、特許文献1に記載されているように、石炭を燃料とするボイラのスーパヒータやエコノマイザ(節炭器)などの熱交換器から排出される排ガスを、水平ダクトと垂直ダクトを介して脱硝装置の頂部に導くようになっている。脱硝装置には窒素酸化物を還元する脱硝触媒が備えられ、脱硝触媒の上流側の垂直ダクト又は脱硝装置の入口側のダクトに設けられたノズルから、排ガス中に還元剤を注入するようになっている。脱硝触媒は、一般に、板状又はハニカム状に形成された複数の触媒を層状に積層して形成されており、触媒層の目開きは通常5~6mm程度である。
 一方、石炭焚ボイラは、石炭をミルで平均粒径が100μm以下の微粉炭に粉砕し、火炉に供給して燃焼するようにしている。その燃焼によって生成される粉塵又は灰分(以下、灰粒子と総称する。)の大きさは、通常数10μm以下である。しかし、ボイラの伝熱管や側壁に付着したスラグやクリンカを、スートブロアなどで吹き飛ばすと、5~10mm程度の灰の塊が生じ、排ガスとともに脱硝装置まで飛来し、触媒層に堆積する原因となる。このような灰の塊が触媒表面に堆積すると、排ガス流を妨げ脱硝反応を阻害するという問題がある。
 そのような灰の塊による不都合に対応するため、特許文献1又は特許文献2に記載されているように、水平ダクトと垂直ダクトの接続部の下部にホッパを設けてホッパ内に灰の塊を捕集することが提案されている。また、ボイラから脱硫装置に導くダクト内の排ガス流速を遅くして、水平ダクト内又は垂直ダクト内に金網状のスクリーンを設置して灰の塊を捕集することが提案されている。あるいは、垂直ダクトの内壁部に複数枚の板状部材からなるルーバを設置したり、邪魔板を設置することにより、灰の塊を捕集して垂直ダクトの下部のホッパに落下させることが提案されている。
 また、特許文献3によれば、水平ダクト内の上流側に排ガス流を下向きに偏流させる板部材を設置して、灰粒子を水平ダクトの底壁側に偏流させてホッパに捕集させるようにすることが提案されている。また、同文献には、水平ダクトの底壁から捕集板をホッパ内の上部に延長して設け、排ガス流が捕集板に巻き込まれる渦流を利用して、灰粒子をホッパ内に捕集することが提案されている。さらに、同文献には、水平ダクト内の排ガス流れが衝突するホッパと垂直ダクトとの接続部に、水平な偏向板をホッパ内の上部に張り出して設け、この偏向板によりホッパ内に流入したガス流れを上述した捕集板の下面に導き、灰粒子の捕集効果を高めることが提案されている。
特開平2-95415号公報 特開平8-117559号公報 米国特許US7,556,674B2
 しかしながら、上記の特許文献では、直径が100~300μmの灰粒子が含まれている場合については考慮されていない。すなわち、中国やインドなどでは、オーストラリア産の高品質な石炭だけではなく、灰分が多く、微粉砕することが困難な品質の石炭を使用する石炭焚ボイラが計画されている。例えば、中国の内モンゴル地区で産出される石炭(A炭)の工業分析値及び排ガス中に含まれる灰粒子の粒径分布を測定した結果、オーストラリア産の石炭(B炭)の灰分が約13%であるのに対し、A炭の灰分は47%と多い。また、灰分の粒度分布は、B炭の場合は99%の粒子が直径100μm以下であるのに対し、A炭の場合は100μm以下の粒子は50%程度である。つまり、A炭の場合は、灰の半分が100μm以上の粒子で構成されている。
 このように、排ガス中に30~40%以上の灰分が含まれる場合、あるいは100μm以上の大きな粒径の灰粒子が含まれると、脱硝触媒が短時間で摩耗されるという問題が新たに生じることが判明した。例えば、特許文献に提案されている金網状スクリーンでは、触媒層の目開きよりも大きな5~10mm程度の灰の塊は除去できるが、それより小さい100μm~5mmの灰粒子を除去することはできない。
 これに対して、金網状のスクリーンの目開きを例えば100μmにすると、ダクトにおける圧力損失が大きくなるだけでなく、スクリーンの目詰まりの発生頻度が高くなる問題がある。また、直径が100~300μmの灰粒子は、流速が数m/sの排ガス流に同伴されるため、ダクトの内壁に複数枚の板状部材からなるルーバを設置しても、ルーバに衝突した灰は、再び気流に同伴されて、後流側に吹き飛ばされるから、脱硝触媒が摩耗されるという問題を解決することができない。
 本発明が解決しようとする課題は、直径が100μm以上の灰粒子による脱硝触媒の摩耗を抑制することができる排ガス処理装置を提供することにある。
 本発明の発明者らが、ボイラ出口から水平ダクトと垂直ダクトを介して脱硝装置まで導かれる排ガスに同伴される灰粒子の軌跡を数値解析手法により鋭意研究した結果、後述するように、直径が30μmの灰粒子はダクト内部にほぼ均一に分散して脱硝装置まで到達するのに対し、直径が200μmの灰粒子は、水平ダクトの下部に偏在して排ガスに同伴されることを知見した。
 そこで、本発明は、石炭焚ボイラから排出される排ガス中の窒素酸化物を還元する脱硝触媒を有してなる脱硝装置と、該脱硝装置に前記石炭焚ボイラから前記排ガスを導くダクトとを備え、前記ダクトは、前記石炭焚ボイラの排ガス出口に接続された水平ダクトと、該水平ダクトに接続された垂直ダクトと、前記水平ダクトと前記垂直ダクトの接続部の下部に設けられたホッパとを有してなる排ガス処理装置において、前記ホッパの上端開口部に、前記排ガス中の灰粒子を衝突させて前記ホッパ内に落下させる衝突板を設けることを第1の特徴とする。
 第1の特徴を有する本発明によれば、ホッパの上端開口部、つまり水平ダクトの底壁の延長面に、排ガス中の灰粒子を衝突させてホッパ内に落下させる衝突板を設けることにより、水平ダクトの下部に偏在して排ガスに同伴される100μm以上の灰粒子を衝突板に衝突させて、選択的にホッパに捕集することができる。その結果、100μm以上の灰粒子を高効率でホッパに捕集できるから、粒径の大きな灰粒子により脱硝触媒が摩耗するのを抑制することができる。
 この場合において、前記衝突板は、長方形に形成され、下辺側の長辺が前記水平ダクトの底壁の延長面に対応する前記ホッパの上端開口面に位置され、かつ前記水平ダクトの幅方向に延在させて設置することが好ましい。これによれば、水平ダクトの下部である底壁側に偏在して排ガスに同伴される100μm以上の灰粒子を衝突板に効果的に衝突させてホッパ内に落下させることができる。また、衝突板は、100μm以上の灰粒子が水平ダクトの底壁側に偏在して飛散する領域に対応する短辺を有する長方形であればよいから、排ガス流れの圧力損失を低く抑えることができる。
 また、衝突板の設置位置は、水平ダクトから見たホッパの上端開口の奥側の端から、上端開口の長さの1/4~3/4に相当する範囲内に設けられていればよい。また、衝突板は、ホッパの上端開口面に対して水平ダクト側に設定角度a(但し、0°<a≦90°)傾けて設けられていることが好ましい。
 本発明は、さらに、前記ホッパの内部に前記水平ダクトの延長線に直交し、かつ鉛直方向に垂下された仕切板を設けることを第2の特徴とする。
 第2の特徴によれば、水平ダクトを流通する排ガスが、ホッパの壁面に衝突してホッパの側壁から底部に向かい、底部に捕集された灰粒子の堆積面で反転して上昇する流れを抑制(小さく)することができる。その結果、ホッパ内に捕集された灰粒子の再飛散を抑えることができるから、脱硝触媒に達する100μm以上の灰粒子の量を抑制することができる。この場合、仕切板は、水平ダクトから見たホッパの上端開口の奥側の端から、上端開口の長さの1/2に相当する位置、つまり中心位置に設けられていることが好ましい。
 本発明は、前記水平ダクトが接続される前記排ガス出口は、前記石炭焚ボイラの熱回収伝熱管が設置された下向き排ガス流路の側壁に形成され、前記排ガス出口の前記排ガス流路の前記水平ダクトよりも上部の側壁から排ガス流路内に張出部が設けられていることを特徴とする。
 本発明によれば、直径が100μm以上の灰粒子による脱硝触媒の摩耗を抑制することができる。
本発明の排ガス処理装置の第1実施形態の全体構成図である。 第1実施形態の特徴であるホッパ部の拡大斜視図及び断面図である。 第1実施形態の脱硝触媒の一例の斜視図である。 炭種の違いによる灰粒子の粒径分布の一例を示す図である。 石炭の工業分析値及び灰組成分析の結果を示す図である。 ボイラ出口から水平ダクト、垂直ダクト及び脱硫装置に至る灰粒子の粒径の違いによる飛散軌跡を数値解析した図である。 第1実施形態の衝突板を設置した場合のガス流速分布の解析結果を示す図である。 第1実施形態の衝突板を設置した場合の大粒径の灰粒子の軌跡を解析した結果を示す図である。 第1実施形態の再飛散防止板を設置した場合のガス流速分布を解析した結果を示す図である。 第1実施形態の衝突板の位置について検討した結果を示す図である。 第1実施形態の再飛散防止板の形状について検討した結果を示す図である。 図11の再飛散防止板の形状ごとの灰粒子捕集率の違いを示す図である。 第1実施形態による粒子径100、200、360μmの飛散割合を従来と比較して示す図である。 第1実施形態において、水平ダクトが接続されるボイラ出口に張出部を設けた変形例を説明する図である。 図13の張出部の有無による灰粒子捕集率の違いを示す図である。 本発明の排ガス処理装置の第2実施形態の主要部構成図である。 第2実施形態の側壁衝突板の角度αと灰粒子の捕集率との計算結果を示す図である。 第2実施形態の側壁衝突板の角度βと灰粒子の捕集率との計算結果を示す図である。 第2実施形態の側壁衝突板の板幅dと灰粒子の捕集率との計算結果を示す図である。 第2実施形態の側壁衝突板の下端とホッパ上部との離間距離L1と灰粒子の捕集率との計算結果を示す図である。 第3実施形態の天井衝突板の詳細を示す図である。
 以下、本発明の排ガス処理装置を実施形態に基づいて説明する。
 (第1実施形態)
 図1を参照して、本発明の排ガス処理装置の第1実施形態の全体構成を説明する。石炭焚ボイラ1は、図示していないミルなどの粉砕機により粉砕された石炭2を、燃焼用ガス3により燃焼するバーナ4を備えて構成される。また、石炭焚ボイラ1の火炉内及び排ガス流路内に水が流通される複数の熱回収伝熱管5が設けられ、さらに石炭焚ボイラ1の下流側の排ガス流路内に熱回収伝熱管の1つであるエコノマイザ(節炭器)6が設けられている。これにより、石炭焚ボイラ1は図示していない発電タービンを駆動する蒸気を発生するようになっている。
 エコノマイザ6の下方のボイラ側壁に石炭焚ボイラ1の排ガス出口7が設けられ、排ガス出口7に水平ダクト8が接続されている。水平ダクト8の他端は垂直ダクト9の側壁に接続され、垂直ダクト9の上端は脱硝装置10の入口ダクト10aに接続されている。これにより、石炭焚ボイラ1で石炭を燃焼して発生した排ガスは、排ガス出口7から水平ダクト8と垂直ダクト9を介して、脱硝装置10の頂部に導かれるようになっている。脱硝装置10は、内部に図3に示すような脱硝触媒10bが充填され、垂直ダクト9の途中に設けられたアンモニア供給ノズル10cから還元剤としてアンモニアが注入されるようになっている。これにより、脱硝装置10は、排ガス中に含まれる窒素酸化物(NOx)を還元して排出するようになっている。脱硝装置10から排出されるNOxが除去された排ガスは、燃焼用ガスを加熱するエアヒータ11、集塵器12、脱硫装置13を経て、煙突14から大気中に放出されるようになっている。
 次に、本発明の特徴部の構成について説明する。図1及び図2に示すように、水平ダクト8の終端に接続された垂直ダクト9の下部に、水平ダクト8の幅方向に沿って、複数のホッパ15が設置されている。ホッパ15の上端開口面は、水平ダクト8の底壁面の位置に合わせて設置されている。ホッパ15の上端開口面に位置させて排ガス中の灰粒子を衝突させて、ホッパ15内に落下させる衝突板16が設けられている。本実施形態の衝突板16は、図2(a)に示すように、長方形に形成され、下辺の長辺を水平ダクト8の底壁の延長面に対応するホッパの上端開口面に位置させて、かつ水平ダクトの幅方向に延在させて設置されている。衝突板16の短辺の幅は、後述するように、水平ダクト8の底壁に沿って飛散される大粒径の灰粒子の流れの厚みに応じて定められる。例えば、衝突板16の短辺の幅は、水平ダクト8の縦幅Hの2~7%の幅の範囲から選択することができ、排ガス流の圧力損失と灰粒子の捕集率との関係を考慮して定める。また、衝突板16は、図2(b)に示すように、ホッパ15の上端開口面に対して水平ダクト8側に傾けて設けられている。この設定角度aは、灰粒子を衝突板16に衝突させて、ホッパ15内に効果的に落下させるために、0°<a≦90°の範囲内で採用することができる。
 また、各ホッパ15の内部に再飛散防止用の仕切板17が設置されている。つまり、ホッパ15の内部に水平ダクト8の延長線に直交し、かつ鉛直方向に垂下された仕切板17が設けられている。これによれば、水平ダクト8を流通する排ガスが、垂直ダクト9とホッパ15の壁面に衝突してホッパ15の側壁から底部に向かい、底部に捕集された灰粒子の堆積面で反転して上昇する流れを抑制(小さく)して、捕集された灰粒子の再飛散を抑制することができる。
 このように構成される本発明の第1実施形態を用いて、図5に示した低質炭であるA炭を使用して運転する場合を例に動作を説明する。石炭焚ボイラ1に石炭2と燃焼用ガス3として空気をバーナ4に供給してA炭を燃焼する。A炭の燃焼反応によって発生した熱により、図示していない水冷壁、伝熱管、過熱器5及びエコノマイザ6等の熱回収伝熱管により水を加熱して蒸気を発生させ、図示しないタービン発電機により発電する。
 石炭焚ボイラ1でA炭の燃焼により生じた排ガスは、エコノマイザ6の出口側である排ガス出口7から排出される。このとき、A炭は低質炭であるため、排ガス中に直径が100~300μmの灰が多量に含まれている。この排ガス中の大径(例えば、直径100~300μm)の灰粒子は、水平ダクト8を流通する間に水平ダクト8の底壁部に集められる。そして、水平ダクト8の底壁部に集められた大径の灰粒子は、垂直ダクト9下部に設置した衝突板16に衝突してホッパ15内に落下される。また、ホッパ15内部には、仕切板17が設置されているため、捕集された大径の灰粒子は再飛散することなく、ホッパ15内に保持される。
 このようにして、大径の灰粒子がほとんど除去された排ガスに、垂直ダクト9に設置したアンモニア供給ノズル10cからアンモニアが供給され、脱硝触媒10bに導かれる。そして、脱硝触媒10bを通過する間に排ガス中のNOxは還元されて、窒素と水に分解される。ここで、脱硝触媒10bを通過する排ガス中の灰粒子には、100μm以上の粒子がほとんど除去されているので、脱硝触媒10bが摩耗することはほとんどない。その後、排ガスはエアヒータ11で燃焼用空気と熱交換して低温となり、集塵器12で灰粒子が除去され、さらに脱硫装置13で硫黄酸化物が除去された後、煙突14から大気中に放出される。
 ここで、第1実施形態による大径の灰粒子の除去作用について、図6~図9を参照して詳細に説明する。まず、本発明に至る過程で、数値解析により得た知見について説明する。排ガス出口7から脱硝触媒10bまでの灰粒子の軌跡を解析した結果を図6に示す。数値解析は、第1実施形態の衝突板16及び仕切板17を設けない条件で、かつ石炭焚ボイラ1のエコノマイザ6の出口面で灰粒子が均一に分散していると仮定して、排ガスの流れと灰粒子の軌跡を求めた。図6(a)は、灰粒子の直径が30μmの例であり、図6(b)は200μmの場合の軌跡を表示している。そられの図から、直径が30μmの灰粒子はダクト内部をほぼ均一に分散して脱硝触媒10bまで到達することが分かる。これに対し、直径が200μmの灰粒子は、垂直ダクト9の入口部分で水平ダクト8の下部に偏在していることが分かる。この結果を踏まえて、第1実施形態では、垂直ダクト9の下部にホッパ15を設置し、ホッパ15の上部に衝突板16を設置することで、水平ダクト8の下部に偏在して飛散する灰粒子を選択的にホッパ15に導いて捕集するようにしている。
 ホッパ15の上部に衝突板16を設置した場合の数値解析結果を図8に示す。水平ダクト8の下部に偏在している灰粒子が軌跡20に示すように衝突板16に衝突し、ホッパ15に捕集されていることが分かる。また、この場合の速度分布の計算結果を図7に併せて示すが、ホッパ15の内部の排ガス流速は、数m/s以下まで遅くなっているため、ホッパ15の内部の灰粒子が再飛散する割合を低減することができる。
 さらに、ホッパ15の内部に仕切板17を設置した場合の数値解析結果を図9に示す。ホッパ15の内部に仕切板17を設置することで、ホッパ15内部の排ガス流れが抑制され、ホッパ15の内部に捕集された灰の再飛散量を大幅に低減することができる。
 次に、衝突板16の最適な設置位置について検討した結果を図10に示す。同図(a)に示すように衝突板16の位置を変えて、煤塵捕集率を評価した結果を同図(b)に示す。衝突板16の位置は、水平ダクト8側から見たホッパ15の上端開口の奥側の端を基点0として、基点0及びホッパ上端開口の長さLの1/4~3/4に対応する位置に水平ダクト8側にずらして設定した。この結果、図10(b)に示すように、衝突板16の位置を基点0に設置した場合は、捕集率が低下することが分かる。図10(b)の結果から、衝突板16の位置は、図10(a)の長さLに対し、基点0から1/4~3/4の位置が効果的であることが分かる。また、排ガス流れの影響を考慮すると、図7に示すように、排ガス流れを妨害しない基点0から1/4の位置に設置することが最適と考えられる。
 次に、再飛散防止用の仕切板17の形状について検討した結果を図11、図12に示す。仕切板17は、図11(a)~(d)に示すように、ホッパ15の上述した基点0から、ホッパ上端開口の長さLに対して、ほぼ1/2の位置に垂下して設ける点は同じである。図11(a)は、ホッパ15の高さ方向の全体にわたって仕切板17を設置した場合であり、同図(b)は下部を1/4短くした場合、同図(c)は上部を1/4短くした場合、同図(d)は上部、下部をそれぞれ1/4短くした場合である。その結果、図12に示すように、いずれの形状であっても再飛散防止効果の差異は小さく、仕切板17の鉛直方向の長さの再飛散防止に及ぼす影響は小さいことがわかった。
 以上述べたように、第1実施形態によれば、直径が少なくとも100μm以上の灰粒子を、脱硝触媒10bに達する前にホッパ15にほとんど捕集することができる。その結果、それらの大粒径の灰粒子が脱硝触媒10bに達する量を大幅に低減できるので、脱硝触媒10bの摩耗を抑制することができる。
 すなわち、図4、図5に示したとおり、A炭は例えば中国の内モンゴル地区で産出される石炭であり、B炭はオーストラリア産の石炭である。図5の工業分析値及び排ガス中に含まれる灰粒子の粒径分布の測定結果を見ると、A炭は、石炭中の灰分が47%と多いことが分かる。また、図4に示す灰粒子の粒度分布を見ると、B炭の場合は99%の粒子が直径100μm以下であるのに対し、A炭の場合は、100μm以下の粒子は50%程度であり、灰粒子の半分が100μm以上の灰粒子で構成されていることが分かる。
 また、A炭の燃料のように、排ガス中に30~40%以上の灰分が含まれる場合、あるいは100μm以上の大きな粒径の灰分が含まれると、脱硝触媒が短時間で摩耗されるという問題が生じる。例えば、特許文献1に提案されている5~10mm程度の灰の塊を除去するために設けた金網状スクリーンでは、脱硝触媒10bの目開きよりも大きな灰の塊は除去できるが、それより小さい100μm~5mmの灰粒子を除去することはできない。逆に、金網状のスクリーンの目開きを、例えば、100μmにすると、ダクトにおける圧力損失が大きくなるだけでなく、スクリーンの目詰まりの発生頻度が大きくなる。また、直径が100~300μmの灰粒子は、流速が数m/sの排ガス流に同伴されるため、ダクトの内壁に複数枚の板状部材からなるルーバ状板を設置しても、ルーバに衝突した灰は、再び気流に同伴されて、後流側に吹き飛ばされ、脱硝触媒が摩耗されることになる。本発明の第1実施形態によれば、従来技術の問題を解決して、100μm以上の灰粒子を含む石炭を用いても、簡単な構成で100μm以上の灰粒子を含む排ガスによる脱硝触媒の摩耗損傷を防ぐことができる。
 (第1実施形態の変形例)
 第1実施形態に加えて、図14(a)に示すように、水平ダクト8が接続される排ガス出口7がエコノマイザ6の側壁の下方に形成されている場合、排ガス出口7の開口上部の側壁から排ガス流路内に張出部23を設けることができる。すなわち、水平ダクト8が接続される排ガス出口7は、石炭焚ボイラ1の熱回収伝熱管の1つであるエコノマイザ6が設置された下向き排ガス流路の側壁に形成されている。特に、排ガス出口7の水平ダクトよりも上部の排ガス流路の側壁から排ガス流路内に張出部23が設けられている。同図(b)は、張出部23を設けていない第1実施形態に相当する。
 本変形例によれば、図15に示すように、張出部23を設けることにより灰粒子捕集率Aが、張出部23を設けていない灰粒子捕集率Bに比べて、大幅に向上することがわかる。これは、張出部23を設けることで、灰粒子を水平ダクトの下側に集める効果が増大し、ホッパ15での灰粒子捕集率が向上したと考えられる。なお、張出部23の張出量は、大きいほど灰粒子の分離効果が期待できるが、圧力損失が増加に伴うファン動力が増加することを考慮し、最大でも流路の1/4程度とするのが望ましい。
 (第2実施形態)
 図16に、本発明の排ガス処理装置の第2実施形態の主要部の構成図を示す。第2実施形態が第1実施形態と相違する点は、水平ダクト8内に側壁衝突板を設けたことにあり、その他の点は、第1実施形態と同一であることから、同一の構成部品には同一の符号を付して説明を省略する。
 図16(a)は、水平ダクト8とホッパ15の内部を透視して示す側面図であり、同図(b)は水平ダクト8とホッパ15の内部を透視して示す平面図である。図16(b)に示すように、水平ダクト8の対向する側壁に一対の側壁衝突板31a,31bが対称に設けられている。この一対の側壁衝突板31a,31bは、図16(b)に示すように、水平ダクト8の上流側の側壁に対して角度α傾けて設けられている。また、側壁衝突板31a,31bは、図16(a)に示すように、水平ダクト8の上流側の底壁に対して角度β傾けて設けられている。さらに、側壁衝突板31a,31bの下端の位置は、水平ダクト8とホッパ15との接続位置から水平ダクト8の上流側に距離L1空けて設けられ、かつ、水平ダクト8の底壁から距離L2浮かして設けられている。また、側壁衝突板31a,31bの板幅dは、水平ダクト18の横幅Dの2~7%の選択された幅に設定される。
 ここで、側壁衝突板31a,31bの傾き角度α、β、幅d、距離L1については、図17~図20に示した灰粒子の捕集率計算値に基づいて決定される。すなわち、図17は、角度αと灰粒子の捕集率との関係を示している。同図に示すように、角度αを大きくすると、一対の側壁衝突板31a,31bによる排ガス流の圧力損失が低下した。これは、排ガス流の剥離領域が角度αの増加とともに低下するものと考えられる。ただし、灰粒子の捕集率はαが30°~60°の間で45°をピークに上に凸の関係にあるから、α=45°が最も好ましいと考えられる。また、45°を超えると灰粒子の捕集率が低下する。これらを考慮すると、角度αは、30°~60°の範囲で採用できるが、好ましくは30°~45°の範囲から選択する。
 一方、角度βは、45°より小さくすると、水平方向の長さが長くなるから望ましくない。逆に、45°よりも大きくすると、図18に示すように、灰粒子の捕集率はわずかに上昇するが、その上昇率は小さい。ただし、80°にすると圧力損失が急激に低下し、これに合わせて灰粒子の捕集率も低下する傾向にある。これらを考慮すると、角度βは、45°~70°、好ましくは60~70°の範囲から選択する。
 また、側壁衝突板31a,31bの幅dは、図19に示すように、d/D=7~20%の間は、灰粒子の捕集率の大きな向上が見られないばかりでなく、圧力損失が増加する。これらのことを考慮して、幅dは、水平ダクト幅Dの2~7%の範囲で選択するのが好ましい。
 さらに、側壁衝突板31a,31bの下端と、水平ダクト8とホッパ15との接続位置との距離L1は、図20に示すように、距離L1を増加しても灰粒子の捕集率には影響しない。また、圧力損失も若干低下する程度である。したがって、側壁衝突板31a,31bの下端は、ホッパ15の上端開口の位置、つまりL1=0に設置してもよい。
 また、側壁衝突板31a,31bの下端を、水平ダクト8の底壁から浮かす距離L2は、側壁衝突板31a,31bにより捕集された灰粒子が水平ダクト8の底壁に落下することを考慮したものである。しかし、距離L2=0としても、落下する灰粒子の大部分は最終的にホッパ15に回収されるので問題はない。
 このように構成される第2実施形態によれば、大粒径の灰粒子は水平ダクト8の底壁だけでなく、側壁に沿って排ガス流に同伴する場合、一対の側壁衝突板31a,31bによって、第1実施形態に比べて灰粒子の捕集率を一層向上させることができる。特に、側壁衝突板31a,31bは、圧力損失を大きく上昇させることなく、大粒径の灰粒子を捕集することができるので、第1実施形態等と組み合わせることにより、効果的に大粒径の灰粒子の捕集率を向上することができる。
 (第3実施形態)
 図21に、本発明の排ガス処理装置の第3実施形態の主要部の構成図を示す。第3実施形態が第1、2実施形態と相違する点は、水平ダクト8の天井壁が垂下させて天井衝突板を設けたことにある。その他の点は、第1、2実施形態と同一であることから、同一の構成部品には同一の符号を付して説明を省略する。
 図21(a)は、水平ダクト8とホッパ15の内部を透視して示す側面図であり、同図(b)は水平ダクト8とホッパ15の内部を透視して示す平面図である。それらの図に示すように、水平ダクト8の天井壁から垂下させて天井衝突板32が設けられている。天井衝突板32は、一対の側壁衝突板31a、31bの上流側に位置させて設けられている。また、天井衝突板32は、天井壁の幅の中央部から両側壁に向けて延在された一対の板片32a、32bで形成され、一対の板片のなす角度γが45~70°、好ましくは60~70°に設定されている。また、一対の板片32a、32bの板面を水平ダクト8の上流側に天井壁に対して角度δが30°~60°、好ましくは45°~60°傾けて設けられている。さらに、天井衝突板32の一対の板片32a、32bは、両側壁側の端部を対応する側壁と少なくとも側壁衝突板の板幅(高さ)だけ離して設けられている。
 第3実施形態は、旋回型燃焼炉の石炭焚ボイラ1を用いた場合に好適である。つまり、旋回型燃焼炉の場合は、大粒径の灰粒子が水平ダクト8の天井壁側にも飛散することがあるので、これらの灰粒子を天井衝突板32に衝突させて捕集する。これにより、脱硝触媒10bに100μm以上の灰粒子が到達するのを抑制して、触媒の摩耗を大幅に低減することができる。
 なお、天井衝突板32の一対の板片32a、32bの端部を対応する側壁から離す距離L3は、少なくとも側壁衝突板31a、31bの板幅d、あるいはL3=dtanαよりも小さな距離を離して設ける。つまり、側壁衝突板31a、31bの吐き出す幅(=dtanα)よりも小さいことが好ましい。
 第3実施形態によれば、旋回型燃焼炉の石炭焚ボイラ1を用いた場合でも、第1実施形態ないし第2実施形態と組み合わせて用いることにより、効果的に大粒径の灰粒子の捕集率を向上することができる。
 以上、本発明を実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属することは当然のことである。
 1 石炭焚ボイラ
 7 排ガス出口
 8 水平ダクト
 9 垂直ダクト
 10 脱硝装置
 10b 脱硝触媒
 10c アンモニア供給ノズル
 15 ホッパ
 16 衝突板
 17 仕切板

Claims (13)

  1.  石炭焚ボイラから排出される排ガス中の窒素酸化物を還元する脱硝触媒を有してなる脱硝装置と、該脱硝装置に前記石炭焚ボイラから前記排ガスを導くダクトとを備え、前記ダクトは、前記ボイラの排ガス出口に接続された水平ダクトと、該水平ダクトに接続された垂直ダクトと、前記水平ダクトと前記垂直ダクトの接続部の下部に設けられたホッパとを有してなる排ガス処理装置において、
     前記ホッパの上端開口部に、前記排ガス中の灰粒子を衝突させて前記ホッパ内に落下させる衝突板を設けてなることを特徴とする排ガス処理装置。
  2.  前記衝突板は、長方形に形成され、下辺の長辺が前記水平ダクトの底壁の延長面に対応する前記ホッパの上端開口面に位置され、かつ前記水平ダクトの幅方向に延在させて設置されていることを特徴とする請求項1に記載の排ガス処理装置。
  3.  前記衝突板は、前記水平ダクトから見た前記ホッパの上端開口の奥側の端から、上端開口の長さの1/4~3/4に対応する範囲に設けられていることを特徴とする請求項1に記載の排ガス処理装置。
  4.  前記衝突板は、前記水平ダクトから見た前記ホッパの上端開口の奥側の端から、上端開口の長さの1/4~3/4に対応する範囲に設けられていることを特徴とする請求項2に記載の排ガス処理装置。
  5.  前記衝突板は、前記ホッパの上端開口面に対して前記水平ダクト側に設定角度a(但し、0°<a≦90°)傾けて設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の排ガス処理装置。
  6.  さらに、前記ホッパは、内部に前記水平ダクトの延長線に直交し、かつ鉛直方向に垂下された仕切板が設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の排ガス処理装置。
  7.  前記仕切板は、前記水平ダクトから見た前記ホッパの上端開口の奥側の端から、上端開口の長さの1/2に相当する位置に設けられていることを特徴とする請求項6に記載の排ガス処理装置。
  8.  前記排ガス出口は、前記石炭焚ボイラの熱回収伝熱管が設置された下向き排ガス流路の側壁に形成され、前記排ガス出口の前記排ガス流路の前記水平ダクトよりも上部の側壁から排ガス流路内に張出部が設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の排ガス処理装置。
  9.  さらに、前記水平ダクトは、前記ホッパの上流側の離れた位置の対向する一対の側壁の上端から下端にかけて、一対の側壁衝突板が設けられていることを特徴とする請求項8に記載の排ガス処理装置。
  10.  前記側壁衝突板は、前記水平ダクトの上流側の側壁に対して30°~60°、好ましくは30°~45°傾けて設けられ、前記水平ダクトの上流側の底壁に対して45~70°、好ましくは60~70°傾けて設けられていることを特徴とする請求項9に記載の排ガス処理装置。
  11.  前記側壁衝突板は、前記水平ダクトの横幅の2~7%の幅に設定され、かつ下端が前記水平ダクトの底壁から浮かして設けられていることを特徴とする請求項10に記載の排ガス処理装置。
  12.  さらに、前記水平ダクトは、前記一対の側壁衝突板の上流側の天井壁から垂下させて天井衝突板が設けられ、該天井衝突板は、天井壁の幅の中央部から両側壁に向けて延在された一対の板片で形成され、該一対の板片のなす角度が45~70°、好ましくは60~70°に設定され、かつ板面を前記水平ダクトの上流側に天井壁に対して30°~60°、好ましくは45°~60°傾けて設けられていることを特徴とする請求項9に記載の排ガス処理装置。
  13.  前記天井衝突板は、前記両側壁側の端部が、対応する側壁と少なくとも前記側壁衝突板の高さだけ離して設けられていることを特徴とする請求項12に記載の排ガス処理装置。
PCT/JP2016/061375 2015-04-08 2016-04-07 排ガス処理装置 WO2016163449A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177026796A KR102126663B1 (ko) 2015-04-08 2016-04-07 배기 가스 처리 장치
US15/562,271 US20180085694A1 (en) 2015-04-08 2016-04-07 Flue gas treatment apparatus
CN201680018631.3A CN107427773A (zh) 2015-04-08 2016-04-07 废气处理装置
ES201790035A ES2644888B9 (es) 2015-04-08 2016-04-07 Aparato de tratamiento de gas de chimenea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-079210 2015-04-08
JP2015079210A JP6560007B2 (ja) 2015-04-08 2015-04-08 排ガス処理装置

Publications (1)

Publication Number Publication Date
WO2016163449A1 true WO2016163449A1 (ja) 2016-10-13

Family

ID=57073128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061375 WO2016163449A1 (ja) 2015-04-08 2016-04-07 排ガス処理装置

Country Status (7)

Country Link
US (1) US20180085694A1 (ja)
JP (1) JP6560007B2 (ja)
KR (1) KR102126663B1 (ja)
CN (1) CN107427773A (ja)
ES (1) ES2644888B9 (ja)
TW (1) TWI626984B (ja)
WO (1) WO2016163449A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180272318A1 (en) 2016-09-12 2018-09-27 The Chugoku Electric Power Co., Inc. Denitration catalyst and method for producing the same
JP2019147142A (ja) * 2018-02-28 2019-09-05 三菱日立パワーシステムズ株式会社 排ガス処理装置
CN108787625B (zh) * 2018-07-18 2023-09-29 郴州市海利微电子科技有限公司 离子风表面处理机
WO2023053218A1 (ja) 2021-09-28 2023-04-06 三菱重工業株式会社 脱硝装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117721A (en) * 1981-01-12 1982-07-22 Mitsubishi Heavy Ind Ltd Duct hopper device
JPS60140618U (ja) * 1984-02-28 1985-09-18 バブコツク日立株式会社 集塵装置
JPH0295415A (ja) * 1988-09-30 1990-04-06 Babcock Hitachi Kk 排ガス脱硝装置
US7556674B2 (en) * 2004-05-21 2009-07-07 Alstom Technology Ltd Method and device for the separation of dust particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117559A (ja) 1994-10-25 1996-05-14 Mitsubishi Heavy Ind Ltd 石炭焚ボイラの脱硝装置
CN101281698A (zh) * 2008-06-03 2008-10-08 浙江融智能源科技有限公司 烟气脱硝装置流场分布结构的模拟平台及其试验方法
JP5523807B2 (ja) * 2009-08-05 2014-06-18 三菱重工業株式会社 排ガス処理装置
CN201719926U (zh) * 2010-07-07 2011-01-26 山东中实易通集团有限公司 煤粉锅炉炉内烟气除尘系统
JP5743054B2 (ja) * 2010-11-29 2015-07-01 三菱日立パワーシステムズ株式会社 排ガス処理装置
JP5854863B2 (ja) * 2012-01-30 2016-02-09 三菱日立パワーシステムズ株式会社 排ガス処理装置
TWI485356B (zh) * 2012-05-29 2015-05-21 Mitsubishi Heavy Ind Plant Construstion Co Ltd 流路內除煤裝置及塵埃回收裝置
JP6513341B2 (ja) * 2014-05-23 2019-05-15 三菱日立パワーシステムズ株式会社 脱硝設備及び触媒の交換方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117721A (en) * 1981-01-12 1982-07-22 Mitsubishi Heavy Ind Ltd Duct hopper device
JPS60140618U (ja) * 1984-02-28 1985-09-18 バブコツク日立株式会社 集塵装置
JPH0295415A (ja) * 1988-09-30 1990-04-06 Babcock Hitachi Kk 排ガス脱硝装置
US7556674B2 (en) * 2004-05-21 2009-07-07 Alstom Technology Ltd Method and device for the separation of dust particles

Also Published As

Publication number Publication date
KR102126663B1 (ko) 2020-06-25
ES2644888A2 (es) 2017-11-30
TW201701942A (zh) 2017-01-16
JP6560007B2 (ja) 2019-08-14
KR20170122221A (ko) 2017-11-03
US20180085694A1 (en) 2018-03-29
ES2644888R1 (es) 2017-12-11
ES2644888B2 (es) 2018-10-11
JP2016198701A (ja) 2016-12-01
TWI626984B (zh) 2018-06-21
ES2644888B9 (es) 2019-02-25
CN107427773A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US9649586B2 (en) Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces
TWI311184B (en) Baffle for increased capture of popcorn ash in economizer hoppers
WO2016163449A1 (ja) 排ガス処理装置
WO2016092930A1 (ja) 排気ダクト及びボイラ
US10190771B2 (en) Exhaust duct and boiler
JP5171184B2 (ja) 石炭火力発電システム及びフライアッシュの平均粒径を拡大させる方法
US8425850B1 (en) Large particle ash mitigation system
JP2010125378A (ja) 石炭焚きボイラの燃焼ガス浄化システム及び石炭焚きボイラの燃焼ガス浄化システムの運転方法
KR100844288B1 (ko) 먼지 입자 분리 방법 및 장치
WO2019168059A1 (ja) 排ガス処理装置
JP2010264400A (ja) 脱硝装置
KR100635764B1 (ko) 가스 중의 분체를 분리하는 기구를 이용한 고체 연료 연소장치의 전열관 마모 방지 장치
JP6845711B2 (ja) ボイラ用ダクト構造、ボイラ及び固気二相流に含まれる固体粒子の低減方法
JP6785046B2 (ja) 排気ダクト及びボイラ並びに固体粒子の除去方法
JP2000304239A (ja) ボイラ装置
JPWO2018207559A1 (ja) 固体燃料バーナおよび燃焼装置
CA2222254A1 (en) Deflector and screen arrangement for ash separation from flue gas
JP6869106B2 (ja) ホッパ構造物、排気ダクト、及びボイラ
CN201159532Y (zh) 一种燃煤锅炉惯性除尘水冷管束
JP2004333034A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026796

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: P201790047

Country of ref document: ES

122 Ep: pct application non-entry in european phase

Ref document number: 16776615

Country of ref document: EP

Kind code of ref document: A1