WO2016161898A1 - 无线终端的测试系统 - Google Patents

无线终端的测试系统 Download PDF

Info

Publication number
WO2016161898A1
WO2016161898A1 PCT/CN2016/077237 CN2016077237W WO2016161898A1 WO 2016161898 A1 WO2016161898 A1 WO 2016161898A1 CN 2016077237 W CN2016077237 W CN 2016077237W WO 2016161898 A1 WO2016161898 A1 WO 2016161898A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
device under
tested
under test
test antenna
Prior art date
Application number
PCT/CN2016/077237
Other languages
English (en)
French (fr)
Inventor
漆一宏
于伟
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Priority to EP16776073.5A priority Critical patent/EP3282267A4/en
Priority to US15/565,305 priority patent/US9964577B2/en
Publication of WO2016161898A1 publication Critical patent/WO2016161898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the present invention relates to the field of testing technologies, and in particular, to a testing system for a wireless terminal.
  • the antenna of the mobile wireless communication terminal is usually not a directional antenna, but radiates in all directions of the space, when testing the wireless performance of the mobile terminal, the basic idea is to place the device to be tested in a center of the ball for testing.
  • the antenna tests the strength of the signal at a plurality of positions on the spherical surface, and obtains the test values at all positions to calculate the total radiation intensity.
  • the main test method is the big circle method: the mobile terminal to be tested is placed in the center of a three-dimensional turntable, and the device to be tested can be rotated around two axes with the turntable, and a test antenna is used to be tested.
  • the test piece and the test antenna are all disposed in the microwave darkroom, and the direct signal of the test object toward the test antenna is received by the test antenna, and the radiation signal of the test object to other directions is absorbed by the absorbing material disposed in the microwave dark room, and the test is according to the test requirement.
  • the test object is rotated at a preset angular interval, and each time it is rotated to a position, the signal strength is stopped; the test time can be reduced by adjusting the rotation angle interval.
  • the data is processed by integration and other data processing to generate test results.
  • test speed of such a system is slow, and the distance between the test antenna and the device under test is required to be larger than the far field distance, resulting in a large test system, high manufacturing cost, and small application range.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a test system for a wireless terminal, which can improve test efficiency and reduce cost.
  • a test system for a wireless terminal includes: a device under test, the device under test is a wireless terminal; a test antenna; a reflective surface, and a wireless signal sent to the device under test Performing total reflection; absorbing screen for absorbing radio waves; positional relationship of the device under test, the test antenna and the reflecting surface corresponding to the same ellipsoid, wherein the device under test and the test antenna are respectively And disposed on two ellipsoids of the same ellipsoid, the reflective surface is disposed on the ellipsoid surface; and the absorption screen is disposed on a straight line between the device under test and the test antenna.
  • the test system of the wireless terminal aggregates radiation signals of multiple directions emitted by the device to be tested to the test antenna through the reflective surface, so that the radiation signals in multiple directions reach the in-phase phase superposition and power at the test antenna. Synthetic, so that the power of the radiation signals in multiple directions emitted by the device under test can be measured at one time, the operation is simple, the test efficiency is high, and the repeatability test error can be reduced, and the test result is more stable.
  • the test system does not require a traditional base station simulator, which reduces manufacturing costs and reduces the distance between the device under test and the test antenna, making the entire test system smaller, lower cost, and wider in application.
  • FIG. 1 is a schematic structural diagram of a test system of a wireless terminal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a signal reflection principle of a test system of a wireless terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a spatial coordinate system in a test system of a wireless terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a test system of a conventional wireless terminal
  • FIG. 5 is a schematic structural diagram of a test system of a wireless terminal according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a test system of a wireless terminal according to an embodiment of the present invention when the reflection surface is three;
  • FIG. 7 is a schematic diagram of a test system of a wireless terminal according to an embodiment of the present invention when the reflection surface is six;
  • FIG. 8 is a schematic diagram showing a reflective surface of a test system of a wireless terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a reflective surface of a test system of a wireless terminal according to an embodiment of the present invention.
  • the test system of the wireless terminal includes a device under test 10, a test antenna 20, a reflecting surface 30, an absorption screen 40, a controller 50, and a power detecting device 60.
  • the device under test 10 may be a wireless terminal; the reflective surface 30 is used to input a wireless signal sent by the device under test. Total reflection; the positional relationship of the device under test 10, the test antenna 20 and the reflecting surface 30 corresponds to the same ellipsoid, wherein the device under test 10 and the test antenna 20 are respectively disposed in the same At two focal points of the ellipsoidal surface, the reflecting surface 30 is disposed on the ellipsoidal surface; the absorption screen 40 is disposed on a straight line between the device under test 10 and the test antenna 20.
  • the ellipsoidal surface may be virtual, or may be a solid ellipsoidal surface made of a non-metallic material, such as a thin plastic wall.
  • the reflecting surface 30 is made of a metal material such as copper, aluminum or the like.
  • the reflecting surface 30 is disposed at a certain position of the ellipsoid, and the reflecting surface coincides with the ellipsoid of the position, that is, the reflecting surface becomes a part of the virtual ellipsoid.
  • metallization can be performed at a predetermined position on the inner wall of the plastic ellipsoid to obtain a reflecting surface 30.
  • the reflective surface 30 may be one, two or more, and the shape may be various, such as a ring shape, a strip shape, etc., which are not enumerated here.
  • the absorption screen 40 is made of an absorbing material that absorbs radio waves, such as electromagnetic waves or the like, for absorbing the direct radiation signal between the device under test 10 and the test antenna 20.
  • the controller 50 is connected to the device under test 10 for controlling the device under test to transmit the wireless signal.
  • the power detecting device 60 is configured to detect the power of the wireless signal received by the test antenna 20.
  • the electromagnetic wave signal emitted from one focus passes through the reflection surface 30 and is incident on the other focus, and according to the physical principle of the ellipsoid reflection surface, the emission from a focus is large.
  • the propagation paths L1, L2, and L3 of the signals of the electromagnetic wave signals reflected by the respective reflection surfaces 30 and incident on the other focus are the same, so that the phase difference caused by the propagation paths is the same, and therefore, the emission from one focus is large.
  • the signals are reflected and concentrated to another focus to achieve in-phase superposition.
  • the absorption screen 40 is specially disposed between the device under test and the test antenna, and absorbs the direct radiation signal of the test object to the test antenna without reflection, because the propagation path of the direct signal and the reflected signal is different, causing The phase difference may also be different. If the direct signal between the device under test and the test antenna is not absorbed or blocked, the direct signal and the reflected signal may not achieve the purpose of in-phase superposition and power synthesis at the test antenna. Since the absorption screen 40 is provided to absorb the direct signal, the direct signal is no longer considered in the following description.
  • the number of the reflecting surfaces 30 and the position at which the reflecting surface 30 is placed may be selected according to the testing requirements of the device under test 10.
  • the three-dimensional coordinate system shown in Figure 3 taking the device under test as a mobile phone.
  • the length direction of the mobile phone is along the Z axis
  • the top of the mobile phone is pointing to the positive Z axis
  • the X axis is perpendicular to the screen of the mobile phone.
  • the positive direction of the X-axis is incident on the front of the screen.
  • the signal emitted in three directions is reflected by the corresponding reflecting surface 30 to reach the other focus of the ellipse, and is received by the test antenna 20 placed at the focus, since the arrival The signals at the focus are superimposed in phase, so the output of the test antenna 20 is the sum of the powers of the signals in the above three directions.
  • the radiation signals in multiple directions emitted by the device under test are converge to the test antenna through the reflective surface, so that the radiation signals in multiple directions reach the in-phase phase superposition and power synthesis at the test antenna, so that the measured can be measured at one time.
  • the sum of the powers of the radiated signals in multiple directions transmitted by the device is simple in operation, high in test efficiency, and can reduce the repeatability test error, so that the test result is more stable.
  • the test system does not require a traditional base station simulator, which reduces manufacturing costs and reduces the distance between the device under test and the test antenna, making the entire test system smaller, lower cost, and wider in application.
  • the device under test 10 enables the radiation signal in the direction to be reflected by the reflection surface 30 of the corresponding position to the test antenna 20, and then the radiation power in the direction can be obtained by changing the number of the reflection surface or data processing. The sum of the radiated power of the pieces in one direction.
  • the test system of the wireless terminal further includes: a microwave darkroom 70, wherein the microwave darkroom 70 includes a shielding case 71 and a absorbing material 72.
  • the microwave darkroom 70, the device under test 10, the test antenna 20, the reflecting surface 30 and the absorption screen 40 are disposed in the microwave darkroom 70, wherein the microwave darkroom includes a shielding box 71, and is laid in the chamber
  • the absorbing material 72 inside the shielding case is described.
  • the shielding box 71 can be made of a metal material for shielding electromagnetic interference from the outside, and the shielding box 71 is provided with a absorbing material 72 for absorbing electromagnetic waves incident on the inner wall of the shielding box 71, thereby reducing the inside of the shielding box.
  • the reflection, the shielding case 71 and the internal absorbing material 72 together constitute the microwave darkroom 70.
  • the controller 50 and the power detecting device 60 may be disposed in the same housing, and the housing is located outside the microwave darkroom 70.
  • the test system of the wireless terminal may further include: a clamp 80 (not shown).
  • a clamp 80 is configured to fix the device under test and adjust an angle of the device under test according to test requirements.
  • the absorption screen 40 is made of an absorbing material, and preferably, the absorbing material may be a sponge after immersing the magnetic toner.
  • the device under test 10, the test antenna 20, the reflective surface 30 and the absorption screen 40 are disposed on a non-metallic support member. Corresponding position. More specifically, the device under test 10 and the test antenna 20 can be respectively supported and fixed on the two focal points of the ellipsoid by a non-metal, low dielectric constant material such as a rigid foam or the like as a support member, and the reflective surface 30 can be respectively supported.
  • the absorption screen 40 is disposed at a corresponding position. There are a plurality of specific implementation schemes, which are not enumerated here.
  • the reflecting surface may be a ring shape as shown in Fig. 8, or a partial spherical surface as shown in Fig. 9.
  • the radiation signals in multiple directions emitted by the device under test are converge to the test antenna through the reflective surface, so that the radiation signals in multiple directions reach the in-phase phase superposition and power synthesis at the test antenna, so that the measured can be measured at one time.
  • the sum of the powers of the radiated signals in multiple directions transmitted by the device is simple in operation, high in test efficiency, and can reduce the repeatability test error, so that the test result is more stable, and the position, number and shape of the reflective surface can be set.
  • the angle of the device under test is changed by the fixture to meet the radiation power test at different angles, and the application range is wide.
  • the test system does not require a traditional base station simulator, which reduces manufacturing costs and reduces the distance between the device under test and the test antenna, making the entire test system smaller, lower cost, and more suitable for production.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuit, ASIC with suitable combinational logic gate, Programmable Gate Array (PGA), now Field programmable gate array (FPGA), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明提出一种无线终端的测试系统,该无线终端的测试系统包括:被测件,所述被测件是无线终端;测试天线;反射面,用于对所述被测件发送的无线信号进行全反射;吸收屏,用于吸收无线电波;控制器,与所述被测件连接,用于控制所述被测件发送所述无线信号;功率检测设备,用于检测所述测试天线接收的无线信号的功率;所述被测件,所述测试天线以及所述反射面的位置关系对应同一个椭球面,其中,所述被测件和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上;所述吸收屏设置在所述被测件与所述测试天线之间的直线上。该无线终端的测试系统能够提高测试效率,降低成本。

Description

无线终端的测试系统 技术领域
本发明涉及测试技术领域,尤其涉及一种无线终端的测试系统。
背景技术
在无线终端的辐射性能测试中,需要测试多个方向的辐射信号大小、多个辐射方向的接收灵敏度大小,并且通过数学计算得到总辐射功率、总辐射灵敏度。由于移动无线通信终端的天线通常不是定向天线,而是向空间各个方向都有辐射,因此,在对移动终端的无线性能进行测试时,基本思想就是将被测件置于一个球心,用测试天线在球面上的多个位置测试信号的强度,得到所有位置的测试值后进行运算得到总的辐射强度。
目前,根据CTIA的测试标准,主要的测试方法是大圆法:将被测的移动终端置于一个三维转台的中心,被测件随着转台可以绕2个轴转动,采用一个测试天线,被测件和测试天线都设置在微波暗室中,被测件朝向测试天线的直射信号被测试天线接收,被测件向其他方向的辐射信号被微波暗室内设置的吸波材料吸收,测试时根据测试需求,以预设的角度间隔转动被测件,每转动到一个位置就停下来进行信号强度的测试;可以通过调整转动角度间隔来减少测试时间。将各个方向的辐射信号测试后,经过积分等数据处理,生成测试结果。
但是这种系统的测试速度较慢,又由于要求测试天线和被测件之间的距离大于远场距离,导致测试系统的体积庞大,制造成本高,适用范围小。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种无线终端的测试系统,该方法可以提高测试效率,降低成本。
为达到上述目的,本发明实施例提出的无线终端的测试系统,包括:被测件,所述被测件是无线终端;测试天线;反射面,用于对所述被测件发送的无线信号进行全反射;吸收屏,用于吸收无线电波;所述被测件,所述测试天线以及所述反射面的位置关系对应同一个椭球面,其中,所述被测件和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上;所述吸收屏设置在所述被测件与所述测试天线之间的直线上。
本发明实施例提出的无线终端的测试系统,通过反射面将被测件发射的多个方向的辐射信号汇聚到测试天线,使多个方向的辐射信号在测试天线处达到同相相位的叠加、功率合成,从而可以一次测得被测件发射的多个方向辐射信号的功率,操作简便,测试效率高,并能减小重复性测试误差,使测试结果更加稳定。另外,本测试系统不需要传统的基站模拟器,降低了制造成本,并可以降低被测件与测试天线之间的距离,使整个测试系统的体积更小,成本更低,适用范围更广。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例提出的无线终端的测试系统的结构示意图;
图2是本发明实施例提出的无线终端的测试系统的信号反射原理示意图;
图3是本发明实施例提出的无线终端的测试系统中的空间坐标系示意图;
图4是传统的无线终端的测试系统的结构示意图;
图5是本发明另一实施例提出的无线终端的测试系统的结构示意图;
图6是本发明实施例提出的无线终端的测试系统的反射面是三个时的示意图;
图7是本发明实施例提出的无线终端的测试系统的反射面是六个时的示意图;
图8是本发明实施例提出的无线终端的测试系统的反射面是环形的示意图;
图9是本发明实施例提出的无线终端的测试系统的反射面是球面的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
下面参考附图描述根据本发明实施例的无线终端的测试系统。
图1是本发明另一实施例的无线终端的测试系统的结构示意图。如图1所示,该无线终端的测试系统包括:被测件10、测试天线20、反射面30、吸收屏40、控制器50和功率检测设备60。
具体地,被测件10可以是无线终端;反射面30用于对所述被测件发送的无线信号进 行全反射;所述被测件10,所述测试天线20以及所述反射面30的位置关系对应同一个椭球面,其中,所述被测件10和所述测试天线20分别设置在同一个椭球面的两个焦点上,所述反射面30设置在所述椭球面上;所述吸收屏40设置在所述被测件10与所述测试天线20之间的直线上。
其中,所述椭球面可以是虚拟的,也可以是由非金属材料制成的实体椭球面,例如塑胶薄壁。反射面30由金属材料制成,金属材料例如铜、铝等。反射面30设置在椭球面的某个位置上,并且该反射面与所在位置的椭球面吻合,即该反射面成为虚拟椭球面的一个局部。在具体实施例中,可以在塑胶椭球面的内壁上的预设位置进行金属化,得到反射面30。
进一步的,根据测试需要,反射面30可以是一个、两个或者多个,形状可以有多种,例如环形、条形等,在此不再一一列举。
所述吸收屏40由吸波材料制成,该吸波材料可吸收无线电波,例如电磁波等,所述吸收屏40用于吸收被测件10到测试天线20之间的直接辐射信号。
控制器50与所述被测件10连接,用于控制所述被测件10发送所述无线信号;功率检测设备60,用于检测所述测试天线20接收的无线信号的功率。
下面进一步说明本发明的测试系统的原理。
如图2所示,根据椭球的定义和性质,从一个焦点发射的电磁波信号经过反射面30的反射会入射到另一个焦点,且根据椭球反射面的物理原理,从一个焦点发射的多个电磁波信号经过所述各个反射面30反射后入射到另一个焦点的信号的传播路径L1、L2、L3的长度相同,从而传播路径引起的相位差是相同的,因此,从一个焦点发出的多个信号经过反射、汇聚到另一个焦点处,可以实现同相叠加。需要指出的是,在被测件与测试天线之间专门设置了吸收屏40,吸收被测件到测试天线的没有经过反射的直接辐射信号,因为直射信号与反射信号经过的传播路径不同、引起的相位差也可能不同,如果不吸收或阻挡被测件与测试天线之间的直射信号,直射信号与反射信号在测试天线处就不一定达到同相叠加、功率合成的目的。由于设置了吸收屏40来吸收直射信号,所以下面的描述中都不再考虑直射信号。
在本发明的具体实施例中,可以根据对被测件10的测试需求,选择反射面30的个数、以及放置反射面30的位置。为了说明方便起见,我们采用图3所示的三维坐标系,以被测件是手机为例,手机的长度方向沿Z轴,手机的顶部指向Z轴正向,X轴垂直于手机的屏幕,且X轴的正方向射入屏幕的正面。如果根据测试要求,需要测试(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向的辐射信号的功率之和,那么就可以在(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)这三个方向对应的 椭球面上设置相应的所述反射面30,在这种设置下,手机在控制器的控制下发射信号,向(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向发射出的信号经过相应的反射面30反射到达椭圆的另一个焦点,由放置在该焦点处的测试天线20接收,由于到达该焦点处的信号进行了同相叠加,因此测试天线20的输出就是上述三个方向信号的功率之和。
如果采用图4所示的传统的测试系统,则必须测试被测件在所述三维坐标系内向每个方向的辐射信号,然后通过数据处理、功率相加等方法才能得到多个方向辐射信号的功率之和。
本实施例通过反射面将被测件发射的多个方向的辐射信号汇聚到测试天线,使多个方向的辐射信号在测试天线处达到同相相位的叠加、功率合成,从而可以一次测得被测件发射的多个方向辐射信号的功率之和,操作简便,测试效率高,并能减小重复性测试误差,使测试结果更加稳定。另外,本测试系统不需要传统的基站模拟器,降低了制造成本,并可以降低被测件与测试天线之间的距离,使整个测试系统的体积更小,成本更低,适用范围更广。
需要理解的是,被测件朝向测试天线的方向,由于被测件10朝向测试天线20的方向的直射信号被吸收屏40吸收而无法测量,因此在需要测量该方向的辐射信号时,需要转动被测件10,使得该方向的辐射信号能够被相应位置的反射面30反射到测试天线20,然后即可通过改变反射面的个数或者数据处理等方法得到该方向上的辐射功率以及被测件向个方向的辐射功率总和。
在本发明的一个实施例中,如图5所示,该无线终端的测试系统还包括:微波暗室70,其中,微波暗室70包括屏蔽箱体71和吸波材料72。
具体地,微波暗室70,所述被测件10,测试天线20,反射面30和吸收屏40设置在所述微波暗室70内,其中,所述微波暗室包括屏蔽箱体71,以及铺设在所述屏蔽箱体内部的吸波材料72。屏蔽箱体71可以由金属材料制成,用于屏蔽外界的电磁波干扰,屏蔽箱体71内置吸波材料72,吸波材料72用于吸收入射到屏蔽箱体71内壁的电磁波,减少屏蔽箱内部的反射,屏蔽箱体71以及内部吸波材料72共同构成微波暗室70。
进一步地,在本发明的具体实施例中,控制器50和所述功率检测设备60可以设置在同一个壳体内,且,所述壳体位于所述微波暗室70的外部。
在本发明的一个实施例中,该无线终端的测试系统还可以包括:夹具80(图中未示出)。
夹具80,用于固定所述被测件,并根据测试需求调整所述被测件的角度。
吸收屏40由吸波材料制成,优选地,吸波材料可以是浸磁性碳粉后的海绵。
所述被测件10,测试天线20,反射面30和吸收屏40采用非金属材质的支撑件设置在 对应的位置上。更具体地,可以通过非金属、低介电常数的材料例如硬质泡沫等作为支撑件,将被测件10和测试天线20分别支撑固定在椭球面的2个焦点上,以及将反射面30和吸收屏40设置在对应的位置上。具体的实现方案还可以有多种,在此不再一一列举。
需要理解的是,在实际测量中,常会选择能够反映被测件最大辐射强度的几个角度进行测量,以节省时间,也会根据测试需求来设置反射面的个数和位置,以及反射面的形状等参数。
下面列举本测试系统中适用的一些典型的反射面。
以反射面是3个为例,如图6所示,三个反射面位于一个焦点的周围,垂直于椭球面的长轴,并且,所述三个反射面与一个焦点所在的平面相交,三个反射面不相对。以反射面是6个为例,如图7所示,其中三个反射面与图7中的位置相同,另外三个反射面与该三个反射面也位于同一个平面上,该平面垂直于椭球的长轴,且更靠近另外一个焦点。另外,反射面还可以是图8所示的环形,或图9所示的部分球面等。
本实施例通过反射面将被测件发射的多个方向的辐射信号汇聚到测试天线,使多个方向的辐射信号在测试天线处达到同相相位的叠加、功率合成,从而可以一次测得被测件发射的多个方向辐射信号的功率之和,操作简便,测试效率高,并能减小重复性测试误差,使测试结果更加稳定,并且,可以通过设置反射面的位置、个数和形状,以及通过夹具改变被测件的角度来满足不同角度的辐射功率测试,适用范围广泛。另外,本测试系统不需要传统的基站模拟器,降低了制造成本,并可以降低被测件与测试天线之间的距离,使整个测试系统的体积更小,成本更低,更适于生产。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现 场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种无线终端的测试系统,其特征在于,包括:
    被测件,所述被测件是无线终端;
    测试天线;
    反射面,用于对所述被测件发送的无线信号进行全反射;
    吸收屏,用于吸收无线电波;
    控制器,与所述被测件连接,用于控制所述被测件发送所述无线信号;
    功率检测设备,用于检测所述测试天线接收的无线信号的功率;
    所述被测件,所述测试天线以及所述反射面的位置关系对应同一个椭球面,其中,所述被测件和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上;
    所述吸收屏设置在所述被测件与所述测试天线之间的直线上。
  2. 根据权利要求1所述的系统,其特征在于,所述反射面的个数至少为两个。
  3. 根据权利要求2所述的系统,其特征在于,所述反射面的个数是3个或者6个。
  4. 根据权利要求1所述的系统,其特征在于,还包括:
    微波暗室,所述被测件,测试天线,反射面和吸收屏设置在所述微波暗室内。
  5. 根据权利要求4所述的系统,其特征在于,所述微波暗室包括:
    屏蔽箱体,以及铺设在所述屏蔽箱体内部的吸波材料。
  6. 根据权利要求5所述的系统,其特征在于,所述控制器和所述功率检测设备设置在同一个壳体内,且,所述壳体位于所述微波暗室外部。
  7. 根据权利要求1所述的系统,其特征在于,还包括:
    夹具,用于固定所述被测件,并根据测试需求调整所述被测件的角度。
  8. 根据权利要求1所述的系统,其特征在于,所述吸收屏由吸波材料制成。
  9. 根据权利要求8所述的系统,其特征在于,所述吸波材料是浸磁性碳粉后的海绵。
  10. 根据权利要求1所述的系统,其特征在于,所述被测件,测试天线,反射面和吸收屏采用非金属材质的支撑件设置在对应的位置上。
PCT/CN2016/077237 2015-04-10 2016-03-24 无线终端的测试系统 WO2016161898A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16776073.5A EP3282267A4 (en) 2015-04-10 2016-03-24 Wireless terminal testing system
US15/565,305 US9964577B2 (en) 2015-04-10 2016-03-24 Wireless terminal testing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510169661.1 2015-04-10
CN201510169661.1A CN106161704B (zh) 2015-04-10 2015-04-10 无线终端的测试系统

Publications (1)

Publication Number Publication Date
WO2016161898A1 true WO2016161898A1 (zh) 2016-10-13

Family

ID=57072351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077237 WO2016161898A1 (zh) 2015-04-10 2016-03-24 无线终端的测试系统

Country Status (4)

Country Link
US (1) US9964577B2 (zh)
EP (1) EP3282267A4 (zh)
CN (1) CN106161704B (zh)
WO (1) WO2016161898A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160893B (zh) * 2015-04-10 2019-06-14 深圳市通用测试系统有限公司 无线终端的测试系统及用于其的控制方法
SE540655C2 (en) * 2017-03-06 2018-10-09 Bluetest Ab Arrangement and method for measuring the performance of devices with wireless capability
US10333632B2 (en) * 2017-04-03 2019-06-25 Ets-Lindgren, Inc. Method and system for testing beam forming capabilities of wireless devices
US10177863B1 (en) * 2017-10-02 2019-01-08 Rohde & Schwarz Gmbh & Co. Kg Test system and method for over the air (OTA) measurements with a dynamic adjustable grid
US10393786B2 (en) 2017-12-15 2019-08-27 Rohde & Schwarz Gmbh & Co. Kg Test system and method for over the air (OTA) measurements based on randomly adjusted measurement points
JP6824204B2 (ja) * 2018-02-05 2021-02-03 アンリツ株式会社 無線端末測定装置
US10720965B2 (en) * 2018-03-14 2020-07-21 Rohde & Schwarz Gmbh & Co. Kg Measurement system and method for operating a measurement system
CN109342834B (zh) * 2018-09-29 2020-10-16 北京小米移动软件有限公司 一种终端天线的测试装置
CN111212177B (zh) * 2018-11-22 2021-06-25 深圳市通用测试系统有限公司 无线终端的测试系统
CN111211846B (zh) * 2018-11-22 2022-05-17 深圳市通用测试系统有限公司 无线终端的测试系统
CN111864361B (zh) * 2019-04-29 2023-03-28 深圳市通用测试系统有限公司 天线单元及具有其的双极化天线
US10903916B1 (en) * 2019-07-01 2021-01-26 Rohde & Schwarz Gmbh & Co. Kg Measurement system and corresponding method for investigating the receive behavior of a device under test
CN110557212A (zh) * 2019-07-15 2019-12-10 上海无线通信研究中心 基于扩展紧缩场测试的毫米波终端测试系统及其方法
CN111239165B (zh) * 2020-01-22 2023-07-21 西北核技术研究院 一种天线面材料高功率脉冲冲击响应测试装置
TWI791951B (zh) * 2020-02-18 2023-02-11 廣達電腦股份有限公司 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法
JP7221243B2 (ja) * 2020-06-18 2023-02-13 アンリツ株式会社 移動端末試験装置、及び移動端末試験方法
CN113125863B (zh) * 2021-04-22 2022-05-13 中国人民解放军国防科技大学 限幅天线测试系统和方法
CN115825592B (zh) * 2023-02-23 2023-04-21 广东省计量科学研究院(华南国家计量测试中心) 基于量子传感的电场精密测量新型分布式系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019031A (ja) * 2009-07-08 2011-01-27 Nec Saitama Ltd 全放射感度測定方法およびシステム
CN102546056A (zh) * 2011-12-30 2012-07-04 国家无线电监测中心检测中心 手机的全向辐射功率的同步测量方法
CN102571235A (zh) * 2011-12-30 2012-07-11 国家无线电监测中心检测中心 手机的全向辐射功率的异步测量方法
CN102571234A (zh) * 2011-12-30 2012-07-11 北京众谱达科技有限公司 手机的全向辐射功率的异步测量设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217515Y2 (zh) * 1987-06-03 1990-05-16
JP3288646B2 (ja) * 1999-03-31 2002-06-04 松下電器産業株式会社 移動端末動作試験方法
US7965986B2 (en) * 2006-06-07 2011-06-21 Ets-Lindgren, L.P. Systems and methods for over-the-air testing of wireless systems
WO2009041513A1 (ja) * 2007-09-28 2009-04-02 Anritsu Corporation 放射電力測定方法、放射電力測定用結合器及び放射電力測定装置
US9002287B2 (en) * 2009-10-09 2015-04-07 Apple Inc. System for testing multi-antenna devices
US8912963B2 (en) * 2010-10-20 2014-12-16 Apple Inc. System for testing multi-antenna devices using bidirectional faded channels
US9705190B2 (en) * 2011-03-02 2017-07-11 Keysight Technologies Singapore (Holdings) Ptd. Ltd. Over-the-air test
US9322864B2 (en) * 2012-10-01 2016-04-26 Ets-Lindgren, Lp Methods and apparatus for evaluating radiated performance of MIMO wireless devices in three dimensions
US20140327586A1 (en) * 2013-05-03 2014-11-06 The Howland Company Reflective Ellipsoid Chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019031A (ja) * 2009-07-08 2011-01-27 Nec Saitama Ltd 全放射感度測定方法およびシステム
CN102546056A (zh) * 2011-12-30 2012-07-04 国家无线电监测中心检测中心 手机的全向辐射功率的同步测量方法
CN102571235A (zh) * 2011-12-30 2012-07-11 国家无线电监测中心检测中心 手机的全向辐射功率的异步测量方法
CN102571234A (zh) * 2011-12-30 2012-07-11 北京众谱达科技有限公司 手机的全向辐射功率的异步测量设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282267A4 *

Also Published As

Publication number Publication date
EP3282267A1 (en) 2018-02-14
US20180080968A1 (en) 2018-03-22
US9964577B2 (en) 2018-05-08
CN106161704B (zh) 2019-07-12
EP3282267A4 (en) 2019-01-02
CN106161704A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016161898A1 (zh) 无线终端的测试系统
WO2016161897A1 (zh) 无线终端的测试系统及用于其的控制方法
EP3182144B1 (en) Wireless terminal testing system and method for controlling same
TWI635290B (zh) 應用於多重路徑環境下的天線輻射場型量測系統
KR101009630B1 (ko) 안테나 방사 성능 측정 장치 및 그 설계 방법
CN106936524B (zh) 无线终端的测试系统
TWI676035B (zh) 天線輻射場型自動量測系統
WO2009041513A1 (ja) 放射電力測定方法、放射電力測定用結合器及び放射電力測定装置
US10520534B1 (en) Integrated shielding for motor and test antenna de-coupling
US11754609B2 (en) Temperature test apparatus and temperature test method
CN210347782U (zh) 一种反射面位于静区上方的紧缩场天线测量系统
WO2017219464A1 (zh) 定位终端的方法及装置
US10746775B1 (en) Testing system and method with multiple antennas
JP2021536002A (ja) アンテナシステム用の改良された測定装置
CN106291145B (zh) 无线终端的测试系统
CN109239472B (zh) 应用于多重路径环境下的天线辐射场型量测系统
CN111579885A (zh) 用于进行测量的测量系统、测量装置及方法
TW202018310A (zh) 用於量測天線的自動化系統
CN205356355U (zh) 无线终端的测试系统
CN111212177B (zh) 无线终端的测试系统
CN111211846B (zh) 无线终端的测试系统
TWM583134U (zh) 環形縮距天線測試裝置
WO2021062816A1 (zh) 一种基站设备的检测装置及检测方法
CN218298384U (zh) 相控阵天线的测试系统
KR102053914B1 (ko) 무선통신 시스템 성능의 실내 실험장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016776073

Country of ref document: EP