TWI791951B - 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法 - Google Patents

基於雲端設備之軟體可調整式射頻測試裝置及其測試方法 Download PDF

Info

Publication number
TWI791951B
TWI791951B TW109105064A TW109105064A TWI791951B TW I791951 B TWI791951 B TW I791951B TW 109105064 A TW109105064 A TW 109105064A TW 109105064 A TW109105064 A TW 109105064A TW I791951 B TWI791951 B TW I791951B
Authority
TW
Taiwan
Prior art keywords
test
radio frequency
signal
wireless communication
frequency signal
Prior art date
Application number
TW109105064A
Other languages
English (en)
Other versions
TW202133578A (zh
Inventor
謝宗瑩
李奇軒
Original Assignee
廣達電腦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣達電腦股份有限公司 filed Critical 廣達電腦股份有限公司
Priority to TW109105064A priority Critical patent/TWI791951B/zh
Priority to CN202010137976.9A priority patent/CN113347656A/zh
Priority to US16/943,395 priority patent/US11431424B2/en
Publication of TW202133578A publication Critical patent/TW202133578A/zh
Application granted granted Critical
Publication of TWI791951B publication Critical patent/TWI791951B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一種適用於一既定無線通訊規格的測試裝置,包括:一遠程射頻測試盒及一雲端伺服器。該遠程射頻測試盒用以控制一待測物執行發射或接收一射頻訊號的動作,包括:一射頻處理部件及一低階處理器。該射頻處理部件用以接收該待測物所發射的該射頻訊號,並且將該待測物所發射的該射頻訊號降頻為該基頻訊號。該低階處理器用以將該基頻訊號轉換為一數位訊號。該雲端伺服器儲存對應於該既定無線通訊規格的演算法,透過一通訊界面與該遠程射頻測試盒相溝通,接收並解碼該數位訊號,透過該既定無線通訊規格的演算法判斷該待測物是否符合該既定無線通訊規格。

Description

基於雲端設備之軟體可調整式射頻測試裝置及其測試方法
本發明係有關於一種射頻測試裝置,特別是有關於一種基於雲端設備之軟體可調式的射頻測試裝置。
隨著科技的發展和射頻技術的演進,現今的無線產品中已經包含了愈來愈多的射頻規範與頻段。在此情況下,傳統的射頻測試方法已經無法滿足產品設計人員與工廠端產線測試人員的測試需求。傳統的射頻測試方法有以下三項明顯的缺點:一、價格:傳統的射頻測試設備價格高昂,而且容易因為新射頻技術的演進而被淘汰;二、靈活度:傳統的射頻測試設備是在其自身設備中進行測試形樣的產生、判斷及運算,這樣的架構使得測試時間拉長,測試設備無法有效快速的更新測試項目與規範;三、資源效率:傳統的射頻測試架構由於欠缺靈活度,因此在測試設備中必須盡可能包含各種可能有測試需求的測試項目,其中有許多測試項目被使用到的機率極低,當測試項目所需要的運算資源與能力需求不高時,測試設備的運算資源與能力就沒有做到最大化的運用。
依據本發明一實施例之適用於一既定無線通訊規格的測試裝置,包括一遠程射頻測試盒及一雲端伺服器。該遠程射頻測試盒用以控制一待測物執行發射或接收一射頻訊號的動作,包括:一射頻處理部件及一低階處理器。該射頻處理部件用以接收該待測物所發射的該射頻訊號,並且將該待測物所發射的該射頻訊號降頻為一基頻訊號;或將該基頻訊號升頻成該射頻訊號,並且發射該射頻訊號予該待測物。該低階處理器用以將該基頻訊號轉換為一數位訊號,或接收該該數位訊號並且將該數位訊號轉換為該基頻訊號。該雲端伺服器儲存對應於該既定無線通訊規格的演算法,透過一通訊界面與該遠程射頻測試盒相溝通,接收並解碼該數位訊號,並且透過該既定無線通訊規格的演算法判斷該待測物是否符合該既定無線通訊規格。
如上述之測試裝置,其中,該射頻處理部件包括一射頻前端及一射頻收發器晶片。該射頻前端用以接收該待測物所發射的該射頻訊號,或發射該射頻訊號予該待測物。該射頻收發器晶片用以將該待測物所發射的該射頻訊號降頻為該基頻訊號,或將該基頻訊號升頻成該射頻訊號。
如上述之測試裝置,其中,當該待測物執行發射時,該射頻前端接收該待測物所發射的該射頻訊號;該射頻收發晶片將該射頻訊號降頻為該基頻訊號,並且將該基頻訊號轉換為該數位訊號輸出至該雲端伺服器。當該待測物執行接收時,該射頻前端發射該射頻訊號予該待測物,以及該低階處理器透過一控制訊號線接收經過該待測物解調該射頻訊號後所得到的一訊號錯誤率(bit-error rate:BER),並且將該訊號錯誤率輸出予該雲端伺服器。
如上述之測試裝置,其中,該雲端伺服器包括一儲存裝置及一高階處理器。該儲存裝置儲存對應於該既定無線通訊規格的演算法;其中,該既定無線通訊規格的演算法包括該既定無線通訊規格的測試規格形樣(pattern)。該高階處理器解碼該數位訊號,並且透過該既定無線通訊規格的測試規格形樣判斷該待測物是否符合所判斷該無線通訊規格。該雲端伺服器更包括一網路單元,可透過該網路單元將該既定無線通訊規格之外的其他無線通訊規格的測試規格形樣輸入於該雲端伺服器的儲存裝置中;可即時更改、更新測試規格和項目;以及可透過該網路單元將該待測物的一測試結果輸出,或將該既定無線通訊規格的測試規格形樣輸出。
如上述之測試裝置,更包括複數遠程射頻測試盒,透過複數控制訊號線同時與複數待測物相耦接,用以分別控制該等複數待測物執行發射或接收該射頻訊號的動作,並且該等複數遠程射頻測試盒共同透過該通訊界面而與該雲端伺服器相溝通。測試人員可透過網際網路,讀取儲存於該雲端伺服器的相關於該等複數待測物的測試資料,並且寫入新的無線通訊規格的演算法,使得該雲端伺服器得以計算並判斷該等複數待測物是否符合該新的無線通訊規格。
依據本發明一實施例之適用於一既定無線通訊規格的測試方法,透過一遠程射頻測試盒及一雲端伺服器來執行,該測試方法包括執行一發射(TX)測試,包括:控制一待測物執行發射一射頻訊號的動作;當該待測物執行發射時,接收該待測物所發射的該射頻訊號,將該射頻訊號降頻為一基頻訊號,並且將該基頻訊號轉換為一數位訊號輸出;接收並且解碼該數位訊號;透過該既定無線通訊規格的演算法判斷該待測物是否符合該既定無線通訊規格。該測試方法更包括執行一接收(RX)測試,包括:該遠程射頻測試盒產生測試訊號之數位訊號;接收該數位訊號,並且將該數位訊號轉換為該基頻訊號;將該基頻訊號升頻為該射頻訊號;控制該待測物執行接收該射頻訊號的動作,並且由該待測物解調該射頻訊號。
本發明係參照所附圖式進行描述,其中遍及圖式上的相同參考數字標示了相似或相同的元件。上述圖式並沒有依照實際比例大小描繪,其僅僅提供對本發明的說明。一些發明的型態描述於下方作為圖解示範應用的參考。這意味著許多特殊的細節,關係及方法被闡述來對這個發明提供完整的了解。無論如何,擁有相關領域通常知識的人將認識到若沒有一個或更多的特殊細節或用其他方法,此發明仍然可以被實現。以其他例子來說,眾所皆知的結構或操作並沒有詳細列出以避免對這發明的混淆。本發明並沒有被闡述的行為或事件順序所侷限,如有些行為可能發生在不同的順序亦或同時發生在其他行為或事件之下。此外,並非所有闡述的行為或事件都需要被執行在與現有發明相同的方法之中。
第1圖為本發明實施例之測試裝置100的方塊圖。如第1圖所示,測試裝置100為適用於一既定無線通訊規格的測試裝置。測試裝置100包括一遠程射頻測試盒102及一雲端伺服器104。遠程射頻測試盒102係透過一通訊界面122與雲端伺服器104相溝通。遠程射頻測試盒102係透過一控制訊號線124用以控制一待測物106執行發射(TX)或接收(RX)一射頻訊號132的動作。遠程射頻測試盒102包括一射頻處理部件108及一低階處理器110。詳細來說,當待測物106受控制而執行發射時,射頻處理部件108用以接收待測物106所發射的射頻訊號132,並且將待測物106所發射的射頻訊號132降頻為一基頻訊號136。接著,低階處理器110將基頻訊號136轉換為一數位訊號並且將該數位訊號透過通訊界面122傳輸至雲端伺服器104。其中,該數位訊號可包括待測物106對於該既定無線通訊規格的測試形樣(pattern)等資料。
在一些實施例中,通訊界面122可包括一乙太網路(Ethernet)、一光纖(Fiber)、一通用序列匯流排、一外圍組件快速互聯(Peripheral Component Interconnect Express:PCI-E)、一通用公共無線接口(Common Public Radio Interface:CPRI)、一進階通用公共無線接口(Enhance Common Public Radio Interface:eCPRI)。在一些實施例中,控制訊號線124可為一通用序列匯流排(Universal Serial Bus:USB)。
當待測物106受控制而執行接收時,低階處理器110透過通訊界面122從雲端伺服器104接收該數位訊號,其中該數位訊號包括所欲傳輸給待測物106的資料。接著,低階處理器110將該數位訊號轉換為基頻訊號136。射頻處理部件108將基頻訊號136升頻成射頻訊號132,並且發射射頻訊號132予待測物106。一般來說,射頻處理部件108包括一射頻前端112及一射頻收發器晶片114。射頻前端112用以接收待測物106所發射的射頻訊號132,或發射射頻訊號132予待測物106。在一些實施例中,射頻前端112通常包括一收發切換器、一低噪音放大器(low noise amplifier:LNA)、一濾波器(例如一表面聲波濾波器(SAW filter))、一鎖相迴路(phase-locked loops:PLL)、一混頻器(mixer)、 一功率放大器、一線性穩壓器(LDO)等部件。在一些實施例中,低階處理器110係包括一類比數位轉換器(analog to digital convertor:ADC),用以將基頻訊號136轉換為該數位訊號(例如digital I/Q)。低階處理器110更包括一數位類比轉換器(digital to analog converter:DAC),用以將來自雲端伺服器104的該數位訊號轉換為基頻訊號136。
舉例來說,該收發切換器用以控制射頻前端112執行接收或發射射頻訊號的功能。該低噪音放大器用以放大從待測物106所接收的射頻訊號132,並且同時盡可能產生低的雜訊以及失真。該濾波器用以濾除於傳輸過程中耦合在射頻訊號132中的雜訊。該混頻器搭配該鎖相迴路及一本地震盪器(local oscillator:LO)用以將所接收的射頻訊號132進行降頻,而成為一射頻訊號134。在一些實施例中,該混頻器可直接將所接收的射頻訊號132降頻至一中頻(intermediate frequency)訊號。該線性穩壓器用以將一電壓調整至該功率放大器的操作電壓,以利該功率放大器執行發射的動作。該功率放大器用以將欲傳輸予待測物106的訊號放大,而成為射頻訊號132,並且經由天線或射頻測試傳輸線(有線或無線測試都可以)傳送至待測物106。上述射頻前端112所包括的各部件僅為例示,不作為本發明的限制。射頻收發器晶片114用以將經射頻前端112處理過後(例如濾波或降頻)的射頻訊號134降頻為基頻訊號136,或將基頻訊號136升頻成射頻訊號134,再經射頻前端112升頻為射頻訊號132。低階處理器110可透過控制訊號線126、128用以控制射頻收發晶片114及射頻前端112要執行接收或發射的動作。
在一些實施例中,當待測物106執行接收時,遠程射頻測試盒102的低階處理器110透過通訊界面122接收來自於雲端伺服器104的指令,低階處理器110透過控制訊號線126、128分別將射頻收發器晶片114與射頻前端112設定為一發射模式,並且將所欲傳輸給待測物106的資料加載為基頻訊號136。基頻訊號136經過射頻收發器的升頻、射頻前端的升頻並放大,而成為射頻訊號132,經由遠端射頻測試盒102的天線或射頻測試傳輸線傳送給待測物106。待測物106接收到遠端射頻測試盒102所發射的射頻訊號132後,待測物106的接收部件將射頻訊號132降頻、解調並解碼,而得到一數位訊號。低階處理器110透過控制訊號線124接收經過該待測物解調該射頻訊號後所得到的該數位訊號,並且將該數位訊號輸出予雲端伺服器104。在一些實施例中,待測物106接收到遠端射頻測試盒102所發射的射頻訊號132後,待測物106的接收部件可計算接收到射頻訊號132的接收感度(sensitivity),並且透過控制訊號線124傳輸給遠端射頻測試盒102的低階處理器110,低階處理器110將該接收感度資訊透過通訊界面122傳輸給雲端伺服器104。雲端伺服器104可依據儲存在其內的無線通訊規格的一感度標準,用來判斷待測物106是否符合該無線通訊規格所規定的標準。
在一些實施例中,當待測物106要執行發射時,遠程射頻測試盒102的低階處理器110是透過控制訊號線124指示待測物106進行發射。當遠程射頻測試盒102的射頻前端112接收到待測物106所發射出的射頻訊號132時,射頻前端112將所接收的射頻訊號132進行濾波並且放大(例如透過低雜訊放大器),並且對射頻訊號132進行降頻(例如透過混頻器),成為射頻訊號134。接著,射頻收發器晶片114將射頻訊號134再次降頻為基頻訊號136(例如Analogue IQ訊號)。低階處理器110接著將基頻訊號136轉換為一數位訊號,並且透過通訊界面122傳輸給雲端伺服器104。在一些實施例中,射頻處理部件108中的射頻收發晶片114可計算所接收到的射頻訊號132的發射功率,並且將該發射功率資訊加載在基頻訊號136中。雲端伺服器104將經解碼後的該數位訊號內的發射功率資訊與無線通訊規格所規定的發射功率標準做比較,用以確認待測物106是否符合該無線通訊規格。
如第1圖所示,在一些實施例中,雲端伺服器104包括一儲存裝置116、一高階處理器118,以及一網路單元120。其中,儲存裝置116儲存對應於一既定無線通訊規格的演算法,並且該既定無線通訊規格的演算法包括該既定無線通訊規格的測試規格形樣(pattern),例如該既定無訊通訊規格的發射功率標準、接收感度標準、傳送頻寬標準等。高階處理器118解碼該數位訊號,並且透過儲存於儲存裝置116中的該既定無線通訊規格的測試規格形樣判斷該待測物是否符合所判斷該無線通訊規格。測試人員或研發人員可透過雲端伺服器104的網路單元120,透過網際網路130,將該既定無線通訊規格之外的其他無線通訊規格的測試規格形樣輸入於雲端伺服器104的儲存裝置116中,並且亦可透過網路單元120將待測物106的一測試結果輸出,或將該既定無線通訊規格的測試規格形樣輸出。舉例來說,當待測物106的該測試結果不符合該既定無線通訊規格時,例如待測物106的發射功率並未達到該既定無線通訊規格的標準,研發人員可依據該測試結果對待測物106進行發射功率的調整。
在一些實施例中,該既定無線通訊規格可包括:藍芽(Bluetooth)、無線區域網路(WiFi)、全球定位系統(GPS)、FM(調頻)、ZigBee、無線通訊2G、3G、4G、5G、以及物聯網傳輸技術SigFox、Ingenu、LoRa。由於每一無線通訊規格的使用頻率與頻寬不盡相同,因此在實際應用上,射頻處理部件108中的射頻前端112與射頻收發器114需依據待測物106所欲測試的該既定無線通訊規格做不同設定。舉例來說,當使用測試裝置100測試待測物106的GPS及WiFi功能時,由於GPS的頻率為1575.42 MHz,WiFi則為2.4 GHz/5 GHz,因此需在射頻前端112中設計兩路電路,一路電路包括一第一本地震盪器、一鎖相迴路,及一混頻器,透過該混頻器將GPS訊號與該第一本地震盪器做相減,而將GPS訊號降頻。另一路電路包括一第二本地震盪器、該鎖相迴路及該混頻器,透過該混頻器將WiFi訊號與該第二本地震盪器做相減,而將WiFi訊號降頻。換句話說,射頻前端112可依據當下正在測試的該既定無線通訊規格,切換不同的本地震盪器,例如當測試GPS時,則切換至該第一本地震盪器,當測試WiFi時,則切換至該第二本地震盪器,用以實現將不同射頻訊號進行降頻的目的。
在一些實施例中,射頻收發器晶片114亦需依據待測物106所需測試的該既定無線通訊規格的種類,選擇具有支援該既定無線通訊規格的晶片。舉例來說,當使用測試裝置100測試待測物106的GPS及WiFi功能時,在遠程射頻測試盒102中,則需挑選具有GPS及WiFi收發功能的射頻收發器晶片114,用以將待測物106所發射的不同射頻訊號轉為對應的基頻訊號。在一些實施例中,當使用測試裝置100測試待測物106的GPS及WiFi功能時,則雲端伺服器104的儲存裝置116需同時預先儲存對應於GPS及WiFi的演算法,並且包括GPS及WiFi的測試規格形樣,使得高階處理器118可依據該測試規格形樣以判斷待測物106的測試數據是否符合GPS及WiFi所規定的測試規格。
舉例來說,假設待測物106在無線通訊的測試中需測試總共10項的測項,其中第1~5項為測試其GPS功能,第6~10項為測試其WiFi功能。在測試過程中,當待測物106正要測試第1~5項時,雲端伺服器104會被設定而讀取其儲存裝置116中對應於GPS的演算法,用以判斷待測物106是否符合GPS的測試規範。當待測物106正要測試第6~10項時,雲端伺服器會被設定而讀取其儲存裝置116中對應於WiFi的演算法,用以判斷待測物106是否符合WiFi的測試規範。
第2圖為本發明另一實施例之測試裝置200的方塊圖。測試裝置200包括複數遠程射頻測試盒(例如遠程射頻測試盒202、204、206、208…)及雲端伺服器210。該等複數遠程射頻測試盒係透過通訊界面226與雲端伺服器210將溝通。詳細來說,遠程射頻測試盒202透過控制訊號線Ctrl與待測物218相溝通、遠程射頻測試盒204透過控制訊號線Ctrl與待測物220相溝通、遠程射頻測試盒206透過控制訊號線Ctrl與待測物222相溝通、以及遠程射頻測試盒208透過控制訊號線Ctrl與待測物224相溝通。遠程射頻測試盒202以有線或無線的方式接收或發射射頻訊號RF予待測物218。同理,遠程射頻測試盒204以有線或無線的方式接收或發射射頻訊號RF予待測物220、遠程射頻測試盒206以無線的方式接收或發射射頻訊號RF予待測物222,以及遠程射頻測試盒208以無線的方式接收或發射射頻訊號RF予待測物224。上述無線的傳輸方式可例如透過藍芽(Bluetooth)、無線區域網路(WiFi)、全球定位系統(GPS)、FM(調頻)、ZigBee、無線通訊2G、3G、4G、5G、以及物聯網傳輸技術SigFox、Ingenu、LoRa等無線通訊協定。該等複數遠程射頻測試盒的每一者與其對應的待測物的操作與測試方式係與第1圖的遠程射頻測試盒102及待測物106之間的操作與測試方式相同,故不再贅述。
值得注意的是,該等複數遠程射頻測試盒(例如遠程射頻測試盒202、204、206、208)可分別對應地控制複數待測物(例如待測物218、220、222、224)同時執行發射或接收該射頻訊號的動作,並且該等複數遠程射頻測試盒共同透過通訊界面226而與雲端伺服器210相溝通,用以滿足實際產線測試上的需求。換句話說,可將遠程射頻測試盒202設置在第一產線、遠程射頻測試盒204設置在第二產線、遠程射頻測試盒206設置在第三產線等,用以同時對該等複數待測物(例如待測物218、220、222)執行該既定無線通訊規格的測試,而增加整體產線的測試效率,縮短整體測試時程。在另一實施例中,亦可透過遠端伺服器連接同一條產線的不同測試站,用以同時測試不同的測試項。
此外,測試人員或研發人員可透過網際網路228,讀取儲存於雲端伺服器210的相關於該等複數待測物的測試資料,並且寫入新的無線通訊規格的演算法,使得雲端伺服器210得以計算並判斷該等複數待測物是否符合該新的無線通訊規格。第2圖雲端伺服器210的配置係與第1圖的雲端伺服器相同,包括儲存裝置212、高階處理器214,及網路單元216。其中,儲存裝置212可對應於第1圖的儲存裝置116、高階處理器214可對應於第1圖的高階處理器118,並且網路單元216可對應於第1圖的網路單元120。
第3圖為本發明一實施例之測試方法的流程圖。如第3圖所示,本發明亦揭露一種適用於一既定無線通訊規格的測試方法,透過一遠程射頻測試盒及一雲端伺服器來執行,該測試方法包括執行一發射(TX)測試:控制一待測物執行發射一射頻訊號的動作(步驟300);當該待測物執行發射時,接收該待測物所發射的該射頻訊號,將該射頻訊號降頻為一基頻訊號,並且將該基頻訊號轉換為一數位訊號輸出(步驟302);接收並且解碼該數位訊號(步驟304);透過該既定無線通訊規格的演算法判斷該待測物是否符合該既定無線通訊規格(步驟306)。在一些實施例中,第1圖的遠程射頻測試盒102中的低階處理器110係依據來自雲端伺服器104的指令而執行步驟S300。第1圖的射頻處理部件108及低階處理器110係合作執行步驟302,其中,射頻處理部件108係執行步驟S302中的「接收該待測物所發射的該射頻訊號,將該射頻訊號降頻為一基頻訊號」;並且低階處理器110係執行步驟S302中的「將該基頻訊號轉換為一數位訊號輸出」。第1圖的雲端伺服器104的高階處理器118係執行步驟S304及步驟S306。
本發明揭露的該測試方法更包括執行一接收(RX)測試,包括該雲端伺服器產生測試訊號的數位訊號(步驟S308);該遠程射頻測試盒接收該數位訊號,並將該數位訊號轉換為該基頻訊號(步驟S310);該遠程射頻測試盒將該基頻訊號升頻為該射頻訊號(步驟S312);該遠程射頻測試盒控制該待測物執行接收該射頻訊號的動作,並且由該待測物解調該射頻訊號(步驟S314)。在一些實施例中,第1圖的射頻處理部件108係執行步驟S312,以及第1圖的低階處理器110係執行步驟S310。值得注意的是,第3圖的步驟S300及步驟S314彼此之間為互相獨立的態樣,用以分別測試該待測物在該既定無線通訊規格下的發射能力及接收能力是否符合該既定無線通訊規格的規定。
本發明提出了一個新的測試裝置及其測試方法,在雲端、軟體可程式化調整的架構下,該新的測試裝置及其測試方法有以下特別的優勢:一、成本極低;二、可動態調整測試項目(即調整不同的無線通訊規格,無論是現今或是未來的射頻測試規範);三、產線測試效率高;四、能滿足快速佈署量產產線測試需求;以及五、不需要經常添購傳統的射頻測試設備。因此,本發明顯地改善了傳統射頻測試設備不足之處。
雖然本發明的實施例如上述所描述,我們應該明白上述所呈現的只是範例,而不是限制。依據本實施例上述示範實施例的許多改變是可以在沒有違反發明精神及範圍下被執行。因此,本發明的廣度及範圍不該被上述所描述的實施例所限制。更確切地說,本發明的範圍應該要以以下的申請專利範圍及其相等物來定義。
儘管上述發明已被一或多個相關的執行來圖例說明及描繪,等效的變更及修改將被依據上述規格及附圖且熟悉這領域的其他人所想到。此外,儘管本發明的一特別特徵已被相關的多個執行之一所示範,上述特徵可能由一或多個其他特徵所結合,以致於可能有需求及有助於任何已知或特別的應用。
本說明書所使用的專業術語只是為了描述特別實施例的目的,並不打算用來作為本發明的限制。除非上下文有明確指出不同,如本處所使用的單數型,一、該及上述的意思係也包含複數型。再者,用詞「包括」,「包含」,「(具、備)有」,「設有」,或其變化型不是被用來作為詳細敘述,就是作為申請專利範圍。而上述用詞意思是包含,且在某種程度上意思是等同於用詞「包括」。
除非有不同的定義,所有本文所使用的用詞(包含技術或科學用詞)是可以被屬於上述發明的技術中擁有一般技術的人士做一般地了解。我們應該更加了解到上述用詞,如被定義在眾所使用的字典內的用詞,在相關技術的上下文中應該被解釋為相同的意思。除非有明確地在本文中定義,上述用詞並不會被解釋成理想化或過度正式的意思。
100:測試裝置 102:遠程射頻測試盒 104:雲端伺服器 106:待測物 108:射頻處理部件 110:低階處理器 112:射頻前端 114:射頻收發器晶片 116:儲存裝置 118:高階處理器 120:網路單元 122:通訊界面 124:控制訊號線 126:控制訊號線 128:控制訊號線 130:網際網路 200:測試裝置 202:遠程射頻測試盒 204:遠程射頻測試盒 206:遠程射頻測試盒 208:遠程射頻測試盒 210:雲端伺服器 212:儲存裝置 214:高階處理器 216:網路單元 218:待測物 220:待測物 222:待測物 224:待測物 226:通訊界面 228:網際網路
第1圖為本發明一實施例之測試裝置100的方塊圖。 第2圖為本發明另一實施例之測試裝置200的方塊圖。 第3圖為本發明一實施例之測試方法的流程圖。
100:測試裝置
102:遠程射頻測試盒
104:雲端伺服器
106:待測物
108:射頻處理部件
110:低階處理器
112:射頻前端
114:射頻收發器晶片
116:儲存裝置
118:高階處理器
120:網路單元
122:通訊界面
124:控制訊號線
126:控制訊號線
128:控制訊號線
130:網際網路

Claims (9)

  1. 一種適用於一既定無線通訊規格的測試裝置,包括:一遠程射頻測試盒,用以控制一待測物執行發射(TX)或接收(RX)一射頻訊號的動作,包括:一射頻處理部件,用以接收該待測物所發射的該射頻訊號,並且將該待測物所發射的該射頻訊號降頻為一基頻訊號;或將該基頻訊號升頻成該射頻訊號,並且發射該射頻訊號予該待測物;以及一低階處理器,用以將該基頻訊號轉換為一數位訊號;或接收該該數位訊號並且將該數位訊號轉換為該基頻訊號;以及一雲端伺服器,儲存對應於該既定無線通訊規格的演算法及測試標準,透過一通訊界面與該遠程射頻測試盒相溝通,接收並解碼該數位訊號;該既定無線通訊規格的演算法依據對應於該既定無線通訊規格的測試標準,判斷該待測物是否符合該既定無線通訊規格的測試標準;其中,該雲端伺服器包括:一儲存裝置,儲存對應於該既定無線通訊規格的演算法,其中,該既定無線通訊規格的演算法包括該既定無線通訊規格的測試規格形樣(pattern);以及一高階處理器,解碼該數位訊號,並且透過該既定無線通訊規格的測試規格形樣判斷該待測物是否符合所判斷該無線通訊 規格。
  2. 如申請專利範圍第1項所述之測試裝置,其中,該射頻處理部件,包括:一射頻前端(RF front-end),用以接收該待測物所發射的該射頻訊號,或發射該射頻訊號予該待測物;以及一射頻收發器晶片,用以將該待測物所發射的該射頻訊號降頻為該基頻訊號,或將該基頻訊號升頻成該射頻訊號。
  3. 如申請專利範圍第2項所述之測試裝置,其中,當該待測物執行發射時,該射頻前端接收該待測物所發射的該射頻訊號;該射頻收發晶片將該射頻訊號降頻為該基頻訊號,並且將該基頻訊號轉換為該數位訊號輸出至該雲端伺服器。
  4. 如申請專利範圍第2項所述之測試裝置,其中,當該待測物執行接收時,該射頻前端發射該射頻訊號予該待測物,以及該低階處理器透過一控制訊號線接收經過該待測物解調該射頻訊號後所得到的該數位訊號,並且將該數位訊號輸出予該雲端伺服器。
  5. 如申請專利範圍第1項所述之測試裝置,其中,該雲端伺服器更包括一網路單元,可透過該網路單元將該既定無線通訊規格之外的其他無線通訊規格的測試規格形樣輸入於該雲端伺服器的儲存裝置中;以及可透過該網路單元將該待測物的一測試結果輸出,或將該既定無線通訊規格的測試規格形樣輸出。
  6. 如申請專利範圍第1項所述之測試裝置,更包括:複數遠程射頻測試盒,透過複數控制訊號線同時與複數待測 物相耦接,用以分別控制該等複數待測物執行發射或接收該射頻訊號的動作,並且該等複數遠程射頻測試盒共同透過該通訊界面而與該雲端伺服器相溝通。
  7. 如申請專利範圍第6項所述之測試裝置,其中,測試人員可透過網際網路,讀取儲存於該雲端伺服器的相關於該等複數待測物的測試資料,並且寫入新的無線通訊規格的演算法,使得該雲端伺服器得以計算並判斷該等複數待測物是否符合該新的無線通訊規格。
  8. 一種適用於一既定無線通訊規格的測試方法,透過一遠程射頻測試盒及一雲端伺服器來執行,其中,該雲端伺服器包括一儲存裝置及一高階處理器;該測試方法包括執行一發射(TX)測試:控制一待測物執行發射一射頻訊號的動作;當該待測物執行發射時,接收該待測物所發射的該射頻訊號,將該射頻訊號降頻為一基頻訊號,並且將該基頻訊號轉換為一數位訊號輸出;接收並且解碼該數位訊號;透過該既定無線通訊規格的演算法,依據對應於該既定無線通訊規格的測試標準,判斷該待測物是否符合該既定無線通訊規格的測試標準;透過該儲存裝置,儲存對應於該既定無線通訊規格的演算法,其中,該既定無線通訊規格的演算法包括該既定無線通訊規格的測試規格形樣(pattern);以及 透過該高階處理器,解碼該數位訊號,並且透過該既定無線通訊規格的測試規格形樣判斷該待測物是否符合所判斷該無線通訊規格。
  9. 如申請專利範圍第8項所述之測試方法,更包括執行一接收(RX)測試,包括:該雲端伺服器產生測試訊號之該數位訊號;接收該數位訊號,並且將該數位訊號轉換為該基頻訊號;將該基頻訊號升頻為該射頻訊號;控制該待測物執行接收該射頻訊號的動作,並且由該待測物解調該射頻訊號。
TW109105064A 2020-02-18 2020-02-18 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法 TWI791951B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109105064A TWI791951B (zh) 2020-02-18 2020-02-18 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法
CN202010137976.9A CN113347656A (zh) 2020-02-18 2020-03-03 基于云端设备的软件可调整式射频测试装置及其测试方法
US16/943,395 US11431424B2 (en) 2020-02-18 2020-07-30 Software-defined configurable cloud-based RF test device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109105064A TWI791951B (zh) 2020-02-18 2020-02-18 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法

Publications (2)

Publication Number Publication Date
TW202133578A TW202133578A (zh) 2021-09-01
TWI791951B true TWI791951B (zh) 2023-02-11

Family

ID=77273613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105064A TWI791951B (zh) 2020-02-18 2020-02-18 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法

Country Status (3)

Country Link
US (1) US11431424B2 (zh)
CN (1) CN113347656A (zh)
TW (1) TWI791951B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12095519B2 (en) * 2022-09-27 2024-09-17 Viavi Solutions Inc. Automatic attenuation of analog-digital-converter (ADC) input signal based on error vector magnitude (EVM) performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207030A1 (en) * 2011-02-10 2012-08-16 Anh Luong Methods for testing wireless local area network transceivers in wireless electronic devices
US20130266051A1 (en) * 2012-04-10 2013-10-10 Michael Shih Chiang Yang Method and apparatus for improved parallel rf testing of multiple devices
US20180080968A1 (en) * 2015-04-10 2018-03-22 General Test Systems Inc. Wireless terminal testing system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0801413D0 (en) * 2008-01-25 2008-03-05 Nokia Corp Calibration technique
US8074133B2 (en) * 2008-08-06 2011-12-06 Oracle America, Inc. Method and apparatus for testing delay faults
US10320494B2 (en) * 2011-06-13 2019-06-11 Mediatek Inc. RF testing system using integrated circuit
US9178629B2 (en) * 2011-08-25 2015-11-03 Apple Inc. Non-synchronized radio-frequency testing
US8982936B2 (en) * 2012-04-10 2015-03-17 Insight Scientific International (Shanghai) Ltd. Method and apparatus for simultaneous RF testing of multiple devices in specific frequency bands
US10382310B2 (en) 2015-04-01 2019-08-13 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measuring method for efficiently processing measuring results
US10462456B2 (en) * 2016-04-14 2019-10-29 Contec, Llc Automated network-based test system for set top box devices
US9794009B1 (en) * 2016-06-30 2017-10-17 Litepoint Corporation Method for testing a radio frequency (RF) data packet signal transceiver for proper implicit beamforming operation
WO2018017048A1 (en) * 2016-07-18 2018-01-25 Hewlett-Packard Development Company, L.P. Testing for wiping pre-treatment of print media
US10230479B2 (en) * 2016-07-28 2019-03-12 ETS-Lindgren Inc. Distributed system for radio frequency environment simulation
US9941983B1 (en) * 2016-10-07 2018-04-10 Rohde & Schwarz Gmbh & Co. Kg Method and apparatus for testing a wireless device
US10333631B2 (en) * 2017-08-24 2019-06-25 Rohde & Schwarz Gmbh & Co. Kg Test arrangement and test method
CN107566053B (zh) * 2017-08-31 2021-08-20 Tcl通力电子(惠州)有限公司 射频指标的测试方法、系统及计算机可读存储介质
US10097282B1 (en) * 2018-01-26 2018-10-09 Litepoint Corporation System and method for testing a device under test (DUT) capable of determining relative times of arrival or angles of arrival of multiple radio frequency signals
US10660030B2 (en) * 2018-02-08 2020-05-19 Litepoint Corporation System and method for controlling uses of wireless points of access during testing of radio frequency (RF) devices under test (DUTS)
US10484109B2 (en) * 2018-02-22 2019-11-19 Rohde & Schwarz Gmbh & Co. Kg Test arrangement and test method
US10778346B2 (en) * 2018-05-23 2020-09-15 Rohde & Schwarz Gmbh & Co. Kg Test device and test method
US10181915B1 (en) * 2018-06-12 2019-01-15 Globalfoundries Inc. Phase measurement for phased array devices using shared local oscillator and synchronized digitizer
CN110690929B (zh) * 2018-07-04 2024-09-03 中国信息通信研究院 通信设备的测试装置、云端服务器及测试方法
US11248939B2 (en) * 2018-09-12 2022-02-15 Keysight Technologies, Inc. Methods, systems, and computer readable media for calibration testing and traceability using a distributed ledger
US11264906B2 (en) * 2019-12-13 2022-03-01 Analog Devices, Inc. Compound pin driver controller
US10992393B1 (en) * 2019-12-26 2021-04-27 Rohde & Schwarz Gmbh & Co. Kg System, test setup as well as method for performing MIMO tests

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207030A1 (en) * 2011-02-10 2012-08-16 Anh Luong Methods for testing wireless local area network transceivers in wireless electronic devices
US20130266051A1 (en) * 2012-04-10 2013-10-10 Michael Shih Chiang Yang Method and apparatus for improved parallel rf testing of multiple devices
US20180080968A1 (en) * 2015-04-10 2018-03-22 General Test Systems Inc. Wireless terminal testing system

Also Published As

Publication number Publication date
US11431424B2 (en) 2022-08-30
TW202133578A (zh) 2021-09-01
CN113347656A (zh) 2021-09-03
US20210258086A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US9515855B2 (en) Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US10270583B2 (en) Enabling RX signal path synchronization and alignment signals in a highly integrated TX RFIC
US7856245B2 (en) Multimode wireless communication device
CN103684486B (zh) 多模无线接入技术装置内的干扰消除
US20220255569A1 (en) Antenna Switching Circuit and Electronic Device
WO2015149219A1 (zh) 多通道射频装置及方法
TWI791951B (zh) 基於雲端設備之軟體可調整式射頻測試裝置及其測試方法
Rahman et al. A practical approach to spectrum analyzing unit using rtl-sdr
US10063318B2 (en) Combining uplink radio frequency (RF) communications signals in a remote unit in a wireless distribution system (WDS) using a differential mixer
KR100186586B1 (ko) 이동 통신시스템의 주파수 발생장치 및 방법
CN110034771A (zh) 多载波基站接收器
KR100602271B1 (ko) 초광대역 통신 시스템에서 다중신호 발생장치 및 방법
JP2008228038A (ja) 半導体集積回路およびそのテスト方法
CN115941076A (zh) 实现可级联多功能射频矢量收发测试的系统
JP6526780B1 (ja) I/q不均衡較正の装置、方法および、それを用いたトランスミッタシステム
CN105406886A (zh) 一种数字信号无线传输设备
CN107800444B (zh) 一种多频多模gnss射频信号录放系统及方法
KR101877231B1 (ko) 위성 단말 rf 성능 측정 장치
CN221151374U (zh) 实现带宽和功率自适应可变的卫星信道模拟装置
Collins et al. RFSoC Integrates RF Sampling Data Converters for 5G New Radio.
CN220775786U (zh) 二次上变频器
JP2008116230A (ja) 受信装置および電波時計
US20100227548A1 (en) Repeater interface unit and signal converting method thereof
TW202144803A (zh) 測試系統及其測試方法
WO2023048613A1 (en) An electronic device, a method, a computer program product, and a single-chip radio