WO2021062816A1 - 一种基站设备的检测装置及检测方法 - Google Patents

一种基站设备的检测装置及检测方法 Download PDF

Info

Publication number
WO2021062816A1
WO2021062816A1 PCT/CN2019/109742 CN2019109742W WO2021062816A1 WO 2021062816 A1 WO2021062816 A1 WO 2021062816A1 CN 2019109742 W CN2019109742 W CN 2019109742W WO 2021062816 A1 WO2021062816 A1 WO 2021062816A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
detection
station equipment
unit
incubator
Prior art date
Application number
PCT/CN2019/109742
Other languages
English (en)
French (fr)
Inventor
童剑钊
席磊
陈博文
邓白兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109742 priority Critical patent/WO2021062816A1/zh
Publication of WO2021062816A1 publication Critical patent/WO2021062816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • This application relates to the field of detection, and in particular to a detection device and detection method for base station equipment.
  • Radio frequency indicators are usually conducted through the radio frequency wire pulled out of the incubator for conduction testing.
  • the base station equipment 101 is placed in the incubator 100, the base station equipment 101 is provided with a radio frequency port, and the detection meter 102 uses the radio frequency line 103 to connect with the radio frequency port of the base station equipment 101 to detect the radio frequency index of the base station equipment 101.
  • the fifth generation (5 Generation, 5G) array antenna has been widely used.
  • the antenna and the transceiver (Transport Receive X, TRX) in the 5G base station equipment adopt an integrated design, which leads to the use of radio frequency lines. It is not feasible to measure the radio frequency index by the transmission method.
  • FIG. 1B is a schematic diagram of the structure of detecting base station equipment by using darkroom 110 in the prior art.
  • An absorbing material 111 is arranged on the inner wall of the darkroom 110.
  • the absorbing material 111 can absorb environmental electromagnetic wave reflection interference.
  • This structure can simulate the free space transmission of electromagnetic waves.
  • the base station equipment as the equipment under test 112 is set on the turntable 113, and the measuring instrument 114 Based on the rotation of the turntable 113, the detection of radio frequency indicators in different beam directions can be realized.
  • OTA detection includes two types, one is directional detection, and the other is detection that does not pay attention to direction.
  • directional detection is a radio frequency index for detecting the maximum direction of the main beam, that is, equivalent isotropically radiated power (EIRP) detection.
  • EIRP equivalent isotropically radiated power
  • the direction-insensitive detection means that all signals do not focus in the direction, and the total spherical average value is counted, that is, the total radiated power (TRP) detection.
  • the current detection device used in OTA radio frequency index detection is shown in Figure 1C, including: a thermostat 121, a base station device 122 set in the thermostat 121, a shielding box 123, In the detection device 124 in the shielding box 123, a wave-transmitting window 125 is provided between the incubator 121 and the shielding box 123.
  • the temperature box 121 is used to simulate the outside temperature of the base station equipment 122 when it is working, and the detection device 124 is used to receive the signal radiated by the base station equipment 122 to the shielding box 123 through the wave-transmitting window 125 to perform full temperature OTA radio frequency index detection.
  • the embodiments of the present application provide a detection device and method for base station equipment, which can perform EIRP detection and TRP measurement on base station equipment.
  • an embodiment of the present application provides a detection device for base station equipment.
  • the detection device includes a shield, a wave absorbing material, a temperature control device, an air duct, an incubator, an airtight rotating unit, a transceiver unit, and a detection unit;
  • the absorbing material is arranged on the inner wall of the shielding body;
  • the temperature control device is located outside the shielding body, and the temperature control device is communicated with the incubator located inside the shielding body through the air duct.
  • the base station equipment is arranged in the incubator;
  • the surface of the incubator corresponding to the transmission and reception path of the base station equipment is a wave-transmitting shell;
  • the box is connected to the airtight rotating unit.
  • the detection unit can detect the total radiated power TRP, equivalent omnidirectional radiated power EIRP, and OTA based on the base station equipment.
  • the transceiving unit is located in the shielding body, and is used to receive downlink radiated energy sent by the base station device during downlink detection, and is used to radiate energy outward during uplink detection; the detection unit is used to The radiated energy sent by the base station device received by the transceiver unit determines whether the performance of the base station device is qualified.
  • the absorbing materials are used to absorb or greatly weaken the electromagnetic wave energy projected on the surface, thereby reducing the interference of electromagnetic waves.
  • the absorbing materials include, but are not limited to, carbon-based absorbing materials, iron-based absorbing materials, ceramic-based absorbing materials, and Other types of materials, such as conductive polymers, chiral materials, and plasma materials.
  • the shape of the absorbing material includes but is not limited to wedge shape, single-layer flat shape, double or multilayer flat shape, coating shape, and structural shape. Arranging the absorbing material on the inner wall of the shielding body increases the shielding effect of the dark box, which not only shields the external electromagnetic interference but also reduces the electromagnetic interference caused by the internal reflection.
  • the temperature control device is located outside the shield, reducing detection noise; in addition, since the airtight rotating unit can drive the base station equipment to rotate, TRP detection and EIRP detection can be implemented for the base station equipment.
  • the material of the surface of the incubator facing the transceiver unit is a material with a low dielectric constant.
  • the low dielectric constant material is a material with a dielectric constant close to that of air.
  • the low dielectric constant material may be polymethacrylimide foam or the like.
  • the wave-transmitting shell is a spherical surface.
  • the base station device is set at the position of the center of the sphere of the spherical surface.
  • the detection device further includes: a standard gain horn antenna.
  • the gain of the standard gain antenna is known and used for field attenuation calibration. During the calibration, the standard gain horn antenna is set at The location of the base station equipment in the incubator.
  • the airtight rotating unit is a dual-axis motion mechanism, combined with a temperature control device, the embodiment of the present application can realize rotation at any angle at full temperature, and the airtight rotating unit includes: a first rotating part And a second rotating part, the base station equipment is driven by the first rotating part to rotate around the first rotating shaft, and the base station equipment is driven by the second rotating part in parallel or passing through the first rotating shaft. In-plane rotation.
  • the first rotating part is a horizontal rotating part for driving the base station equipment to rotate in a horizontal plane
  • the second rotating part is a vertical rotating part provided on the horizontal rotating part
  • the incubator is hemispherical and includes a hemispherical wave-transmitting shell and a bottom surface, the bottom surface is vertically placed in the shielding body, and the incubator is capable of rotating around a horizontal axis under the drive of the vertical rotating part .
  • the first rotating part is a horizontal rotating part
  • the second rotating part is a vertical rotating part provided on the horizontal rotating part
  • the heat preservation box has a hemispherical shape, the bottom surface of the heat preservation box is horizontally placed in the shielding body, and the heat preservation box can rotate around a horizontal axis under the drive of the vertical rotation part.
  • the rotating unit includes a third rotating part and a fourth rotating part
  • the incubator has a hemispherical shape, and the third rotating part can drive the incubator to rotate in a direction perpendicular to the bottom surface of the hemispherical; using the fourth rotating part, the transceiver unit can rotate around the incubator Run on a spherical arc trajectory.
  • the embodiments of the present application provide a detection method for base station equipment.
  • the detection method uses the detection apparatus described in the first aspect or any possible implementation of the first aspect to detect the base station equipment.
  • the method includes the following steps:
  • the temperature control device makes the temperature in the incubator reach the preset temperature through the air duct;
  • the airtight rotating unit drives the base station equipment to move to a preset angle position
  • the base station equipment sends radiated energy, and the detection unit determines whether the performance of the base station equipment is qualified according to the radiated energy sent by the base station equipment received by the transceiver unit;
  • the base station equipment performs TRP detection of total radiated power, EIRP detection of equivalent omnidirectional radiated power, and detection based on air interface OTA preset indicators.
  • the base station device when performing downlink detection, transmits the energy of downlink radiation, and the detection unit determines whether the downlink performance of the base station device is qualified according to the energy of the downlink radiation sent by the base station device received by the transceiver unit;
  • the first detection unit can detect the total radiated power TRP and the equivalent omnidirectional radiated power EIRP of the base station equipment;
  • the transceiver unit when performing the uplink detection, sends the energy of the uplink radiation, and the second detection unit is based on the base station
  • the energy of the uplink radiation sent by the transceiver unit received by the device determines whether the uplink performance of the base station device is qualified; the second detection unit can perform TRP detection of the base station device's total radiation power and equivalent omnidirectional radiation Power EIRP detection.
  • the method further includes:
  • the standard gain horn antenna is used to determine the corresponding field insertion loss
  • the first detection unit When the temperature in the incubator is the first temperature and the base station equipment moves to the first angle driven by the airtight rotating unit, the first detection unit combines the field insertion loss pair
  • the base station equipment performs total radiated power TRP detection, equivalent omnidirectional radiated power EIRP detection, and preset indicators based on air interface OTA; and, the second detection unit performs a total of the base station equipment in combination with the field insertion loss.
  • an embodiment of the present application provides an electronic device, including: one or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the second aspect or any possible base station device detection method of the second aspect.
  • an embodiment of the present application provides a computer-readable medium on which a computer program is stored, wherein the program is characterized in that, when the program is executed by a processor, the second aspect or any possible aspect of the second aspect is implemented. Detection method of base station equipment.
  • Fig. 1A is a schematic structural diagram of a detection device for detecting base station equipment in the prior art.
  • Fig. 1B is a schematic structural diagram of a detection device for detecting base station equipment in the prior art.
  • FIG. 1C is a schematic structural diagram of a detection device for detecting base station equipment in the prior art.
  • FIG. 2 is a schematic structural diagram of a detection device for base station equipment provided by an embodiment of the application.
  • FIG. 3A is a schematic structural diagram of a detection device for base station equipment according to an embodiment of the application.
  • FIG. 3B is a schematic diagram of a calibration operation flow in a detection method of base station equipment provided by an embodiment of this application.
  • FIG. 3C is a schematic diagram of a full temperature EIRP radio frequency index test process provided by an embodiment of the application.
  • FIG. 3D is a schematic diagram of a test process of a full-temperature TRP radio frequency index provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a detection device for base station equipment according to another embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a detection device for base station equipment according to another embodiment of the application.
  • the embodiments of the present application provide a detection device and a detection method for base station equipment, which can perform EIRP detection and TRP detection on base station equipment.
  • the technical solution provided in the embodiments of this application can be used to simulate the external temperature during research and development or after the product leaves the factory to detect the base station equipment, and then evaluate whether the performance of the base station equipment is qualified.
  • FIG. 2 is a schematic structural diagram of a detection apparatus for base station equipment according to an embodiment of the present application.
  • the base station equipment in this embodiment is an active antenna radio unit 204 (Active Antenna Unit, AAU).
  • AAU Active Antenna Unit
  • the detection device of the base station equipment includes: a temperature control device 201, a shield 202, and an The wave material 203, the air duct 208, the incubator 205, the airtight rotating unit (not marked in Figure 2), the transceiver unit 206, the detection instrument 207 as the detection unit; the wave absorbing material 203 is arranged on the inner wall of the shield 202
  • the temperature control device 201 is located outside the shield 202, the temperature control device 201 is connected to the incubator 205 located inside the shield 202 through the air pipe 208, and is used to make the temperature in the incubator 205 reach a preset temperature; base station equipment 204 Set in the incubator 205; the surface of the incubator 205 corresponding to the transmission and reception path of the base station equipment 204 is a wave-transmitting shell; the incubator 205 is connected to an airtight rotating unit, and the airtight rotating unit is connected to the incubator 205 when it is not moving or rotating Good airtightness is maintained between them, so that the incubator 205
  • the detection instrument 207 can perform TRP detection of the base station equipment 204, the equivalent isotropic radiation power EIRP detection, and the detection of preset indicators based on the air interface OTA.
  • the transceiver unit 206 is located in the shield 202, and is used for receiving downlink radiated energy sent by the base station device during downlink detection, and used for radiating energy outward during uplink detection.
  • the detection meter 207 is used for downlink detection to determine whether the downlink performance of the base station device is qualified according to the energy of the downlink radiation sent by the base station device 204 received by the transceiver unit 206.
  • the material of the surface of the incubator facing the transceiver unit is a material with a low dielectric constant.
  • the low dielectric constant material is a material with a dielectric constant close to that of air.
  • the low dielectric constant material may be polymethacrylimide (PMI) foam or the like.
  • FIG. 3A is a schematic structural diagram of a detection apparatus for base station equipment according to another embodiment of the present application.
  • the base station equipment in this embodiment is AAU 304.
  • the detection device for base station equipment provided in this embodiment of the application includes: a temperature control device 301, a shielding body 302, and a wave-absorbing material (installed inside the shielding body, where (Not marked in the figure), air duct 305, incubator 303, airtight rotating unit (3071, 3072), transceiver unit 308, detection instrument 310; the surface of the incubator corresponding to the transceiver path of AAU 304 is a wave-transmitting shell; The material of the wave shell is a low dielectric constant material.
  • the AAU 304 is set at the position of the star on the spherical surface.
  • the angle of incidence is basically perpendicular to all directions of the spherical shell, and the insertion loss fluctuation is small, so the performance is better.
  • This embodiment can implement a full-temperature OTA test temperature-controlled darkroom device for testing any beam angle. Its design logic is to split the traditional thermostat design and connect it through a duct. The temperature control device is outside the dark room. The split thermostat is integrated with the darkroom turntable mechanical system in the dark room. The front of the split thermostat is designed as a wave-transmitting shell. Then the receiving end antenna can collect the base station beam radiation energy, relying on the turntable mechanical system to achieve two-dimensional axis spherical angle rotation, that is, it can realize the EIRP+TRP measurement of any beam angle of the base station at full temperature.
  • this embodiment also provides a labeled gain horn antenna 307.
  • the characteristic of the wave-transmitting housing solution is that the insertion loss characteristics of different beam angles in space fluctuate, and there is also certain fluctuation under different temperature states, so To achieve accurate measurement of RF indicators, the entire measurement environment must be calibrated first, using relative calibration.
  • the calibration scheme is to use an antenna with a known gain instead of a module to perform measurements at different beam angles and different temperatures to obtain the corresponding field insertion loss. , As shown in Figure 3B, the calibration steps are as follows.
  • test steps for the full-temperature EIRP radio frequency index of the temperature-controlled darkroom device are as follows.
  • Beam alignment use the mechanical axis of the turntable to scan the level curve of amplitude and spatial angle, and find the point of maximum level is the beam alignment point.
  • the signal source is used for uplink indicator measurement, the signal level value corresponding to the signal error rate is read, and the sensitivity value is obtained after the insertion loss is compensated.
  • the test of the TRP radio frequency index of the temperature-controlled darkroom device includes the following steps.
  • FIG. 4 is a schematic structural diagram of a detection apparatus for base station equipment according to another embodiment of the present application.
  • a turntable structure is designed based on the design concept of rotation and airtight air ducts.
  • the U-frame temperature control turntable structure with azimuth and pitch is shown in FIG. 4. It includes an incubator 401, a base station AAU402, a pitch airtight rotating structure 403, a wind pipe 404, and an azimuth airtight rotating structure 405.
  • FIG. 5 is a schematic structural diagram of a detection apparatus for base station equipment according to another embodiment of the present application. It includes a transceiver unit 501, a spherical arc-shaped rotating structure 502, an incubator 503, a base station AAU 504, an air duct 505, and an azimuth airtight rotating structure 506.
  • This embodiment adopts the ⁇ - ⁇ spherical coordinate system structure of the combination of azimuth and polarization axis. As shown in Fig.
  • the probe runs on a spherical arc trajectory (the structure can be designed with a spherical arc frame or a rocker arm), which is equivalent to the ⁇ angle .
  • the azimuth axis rotates the equivalent ⁇ angle, and the combination of the two forms the ⁇ - ⁇ spherical coordinate system.
  • the present application can also design detection devices with other structures based on the design idea of the rotating airtight duct.
  • the embodiment of the present application also provides a detection method for base station equipment, which can be detected by any of the foregoing detection device embodiments.
  • the method includes the following steps: the temperature control device makes the temperature in the incubator reach The preset temperature; the airtight rotating unit drives the base station equipment to move to a preset angular position; during detection, the base station equipment sends radiated energy, and the detection unit receives the radiation from the base station equipment received by the transceiver unit The energy of the base station equipment determines whether the performance of the base station equipment is qualified; the detection unit can perform the total radiation power TRP detection, the equivalent omnidirectional radiation power EIRP detection on the base station equipment, and the detection based on the preset index of the air interface OTA.
  • the method may further include: using a standard gain horn antenna to determine the corresponding field insertion loss when the base station device is driven to move to the first angle at the first temperature and the airtight rotating unit .
  • the detection unit When the temperature in the incubator is the first temperature, and the base station equipment moves to the first angle driven by the airtight rotating unit, the detection unit combines the field insertion loss on the The base station equipment performs TRP detection of total radiated power, EIRP detection of equivalent omnidirectional radiated power, and detection based on air interface OTA preset indicators.
  • the embodiment of the present application also provides an electronic device, including: one or more processors; a storage device for storing one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the detection method described in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, the detection method described in any of the foregoing method embodiments is implemented.
  • the present application also provides a computer program product containing instructions.
  • the instructions When the instructions are run on a computer, the computer executes the detection method described in any of the foregoing method embodiments.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the above-mentioned circuit division is only a logical function division, and there may be other division methods in actual implementation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本申请实施例公开了一种基站设备的检测装置,包括:屏蔽体、吸波材料、温控装置、风管、保温箱、气密旋转单元、收发单元和检测单元。吸波材料设置在屏蔽体的内壁上;温控装置位于屏蔽体的外部;被测单元设置在保温箱内;基站设备的收发路径对应的保温箱的面为透波壳体;收发单元位于屏蔽体内,用于接收基站设备辐射的能量,以及向外辐射能量,在气密旋转单元的带动下检测单元能够对基站设备进行TRP检测、EIRP检测以及OTA预设指标的检测;检测单元通过检测确定基站设备的性能是否合格。本申请温控装置位于屏蔽体的外部,减少了检测噪音,气密旋转单元可以带基站设备旋转,检测单元对基站设备实现TRP检测、EIRP检测。

Description

一种基站设备的检测装置及检测方法 技术领域
本申请涉及检测领域,尤其涉及一种基站设备的检测装置及检测方法。
背景技术
为了检测基站设备的工作性能,在研发时或者产品出厂后通常需要模拟外界的温度,对基站设备进行检测,进而评估基站设备的性能是否合格。
传统的第二代(2 Generation,2G)、第三代(3 Generation,3G)或者第四代(4 Generation,4G)基站设备的远端射频模块(Remote Radio Unit,RRU)在不同温度下的射频指标通常通过射频线拉出温箱进行传导检测。如图1A所示,基站设备101放置在温箱100中,基站设备101上设置有射频口,检测仪表102利用射频线103与基站设备101的射频口相连检测基站设备101的射频指标。
随着通信技术的发展,第五代(5 Generation,5G)阵列天线得到广泛的应用,5G基站设备中的天线与收发信机(Transport Receive X,TRX)采用一体化设计,导致原来通过射频线的传导方式测量射频指标不可行。
对5G的基站设备进行测量时,采用基于空口(Over the air,OTA)的方式在暗室中进行,请参见图1B,图1B是现有技术中采用暗室110对基站设备进行检测的结构示意图,在暗室110的内壁上设置有吸波材料111,吸波材料111可以吸收环境电磁波反射干扰,通过这种结构可以模拟电磁波自由空间传输,基站设备作为待测设备112设置在转台113上,测量仪表114基于转台113的旋转可以实现不同波束方向射频指标的检测。
根据第三代合作伙伴计划(3rd generation partnership project,3GPP)协议定义的基站射频指标OTA检测包括两种,一种是定向检测,一种是不关注方向的检测。其中,定向检测是检测主波束最大方向的射频指标,即等效全向辐射功率(equivalent isotropically radiated power,EIRP)检测。不关注方向的检测是所有信号不关注方向,统计总的球面平均值,即总辐射发射功率(total radiated power,TRP)检测。
为了得到不同温度下的射频指标,目前在进行OTA射频指标检测时,采用的检测装置如图1C所示,包括:温箱121、设置在温箱121内的基站设备122、屏蔽箱123、设置在屏蔽箱123内的检测装置124,温箱121和屏蔽箱123之间设置有透波窗125。温箱121用于模拟基站设备122工作时的外界温度,检测装置124用于接收基站设备122通过透波窗125辐射到屏蔽箱123的信号进行全温OTA射频指标检测。
由图1C可知,由于被测的基站设备122设置在温箱121内只能水平方向移动,所以现有技术方案只能进行固定波束(法线波束)的全温指标测量,由于没有转台设备所以无法寻找波束方向最大值以进行准确的EIRP检测,可以理解的,由于无法以一定的角度旋转,所以同样无法进行TRP检测。
发明内容
本申请实施例提供了一种基站设备的检测装置及方法,能够对基站设备进行EIRP检测 和TRP测量。
第一方面,本申请实施例提供了一种基站设备的检测装置,检测装置包括:屏蔽体、吸波材料、温控装置、风管、保温箱、气密旋转单元、收发单元和检测单元;吸波材料设置在所述屏蔽体的内壁上;温控装置位于所述屏蔽体的外部,所述温控装置通过所述风管与位于所述屏蔽体内部的所述保温箱相连通,用于使所述保温箱内的温度达到预设温度;所述基站设备设置在所述保温箱内;所述基站设备的收发路径对应的所述保温箱的面为透波壳体;所述保温箱与所述气密旋转单元相连,在所述气密旋转单元的带动下所述检测单元能够对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标;所述收发单元位于所述屏蔽体内,用于下行检测时接收所述基站设备发送的下行辐射的能量,用于上行检测时向外辐射能量;所述检测单元,用于根据所述收发单元接收到的所述基站设备发送的辐射的能量确定所述基站设备的性能是否合格。
其中,吸波材料用于吸收或者大幅减弱投射到其表面的电磁波能量,从而减少电磁波的干扰,吸波材料包含但不限于碳系吸波材料、铁系吸波材料、陶瓷系吸波材料以及其他类型的材料,例如导电聚合物、手性材料、等离子材料,吸波材料的形状包含但不限于尖劈形、单层平板形、双层或多层平板形、涂层形以及结构形。在所述屏蔽体的内壁上设置吸波材料增加了暗箱的屏蔽效果,既屏蔽了外部电磁干扰又减少了内部反射造成的电磁干扰。
本申请实施例中,温控装置位于屏蔽体的外部,减少了检测噪音;另外,由于气密旋转单元可以带动基站设备旋转,可以对基站设备实现TRP检测和EIRP检测。
在本申请一些可能的实施方式中,保温箱朝向收发单元的面的材料为低介电常数材料。低介电常数材料是介电常数接近空气的介电常数的材料。举例来说,低介电常数材料可以是聚甲基丙烯酰亚胺泡沫等。
在本申请一些可能的实施方式中,透波壳体为球形面。
在本申请一些可能的实施方式中,基站设备设置在所述球形面的球心的位置。
在本申请一些可能的实施方式中,所述检测装置还包括:标准增益喇叭天线,所述标准增益天线的增益已知,用于场衰减校准,在校准时,所述标准增益喇叭天线设置在保温箱所述基站设备的位置。
在本申请一些可能的实施方式中,所述气密旋转单元为双轴运动机构,结合温控装置,本申请实施例可以实现全温下任意角度旋转,气密旋转单元包括:第一旋转部和第二旋转部,所述基站设备在所述第一旋转部的带动下绕第一转轴转动,所述基站设备在所述第二旋转部的带动下在平行或者通过所述第一转轴的面内转动。
在本申请一些可能的实施方式中,所述第一旋转部为水平旋转部用于带动所述基站设 备在水平面内转动,所述第二旋转部为设置于水平旋转部上的垂直旋转部。
所述保温箱为半球状,包括:半球形的透波壳体和底面,所述底面垂直放置在所述屏蔽体内,并且所述保温箱在所述垂直旋转部的带动下能够绕水平轴旋转。
在本申请一些可能的实施方式中,所述第一旋转部为水平旋转部,所述第二旋转部为设置于水平旋转部上的垂直旋转部;
所述保温箱为半球状,所述保温箱的底面水平放置在所述屏蔽体内,并且所述保温箱在所述垂直旋转部的带动下能够绕水平轴旋转。
在本申请一些可能的实施方式中,所述旋转单元包括第三旋转部和第四旋转部;
所述保温箱为半球状,所述第三旋转部能够带动所述保温箱沿垂直所述半球状底面的方向旋转;利用所述第四旋转部所述收发单元在所述保温箱的周围能够在球面弧形轨迹上运行。
第二方面,本申请实施例提供了一种基站设备的检测方法,该检测方法使用第一方面或者第一方面任一可能的实现方式所述的检测装置对所述基站设备进行检测,所述方法包括如下步骤:
温控装置通过风管使保温箱内的温度达到预设温度;
气密旋转单元带动所述基站设备移动到预设角度位置;
在进行检测时,所述基站设备发送辐射的能量,检测单元根据收发单元接收的所述基站设备发送的所述辐射的能量确定所述基站设备的性能是否合格;所述检测单元能够对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标进行检测。
举例来说,在进行下行检测时,基站设备发送下行辐射的能量,检测单元根据收发单元接收的所述基站设备发送的所述下行辐射的能量确定所述基站设备的下行性能是否合格;所述第一检测单元能够对所述基站设备进行总辐射功率TRP检测和等效全向辐射功率EIRP检测;在进行上行检测时,所述收发单元发送上行辐射的能量,第二检测单元根据所述基站设备接收的所述收发单元发送的所述上行辐射的能量确定所述基站设备的上行性能是否合格;所述第二检测单元能够对所述基站设备进行总辐射功率TRP检测和等效全向辐射功率EIRP检测。
在本申请一些可能的实施方式中,所述方法还包括:
在第一温度、以及所述气密旋转单元带动所述基站设备移动到第一角度时,利用标准增益喇叭天线确定对应的场插损;
当所述保温箱内的温度为所述第一温度,所述基站设备在所述气密旋转单元带动下移动到所述第一角度时,所述第一检测单元结合所述场插损对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标;以及,所述第二检测单元结合所述场插损对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率 EIRP检测、以及基于OTA的预设指标的检测。
第三方面,本申请实施例提供了一种电子设备,包括:一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第二方面或者第二方面的任一可能的基站设备的检测方法。
第四方面,本申请实施例提供了一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如第二方面或者第二方面的任一可能的基站设备的检测方法。
附图说明
图1A为现有技术中一种对基站设备进行检测的检测装置的结构示意图。
图1B为现有技术中一种对基站设备进行检测的检测装置的结构示意图。
图1C为现有技术中一种对基站设备进行检测的检测装置的结构示意图。
图2为本申请一个实施例提供的一种基站设备的检测装置的结构示意图。
图3A为本申请一个实施例提供的一种基站设备的检测装置的结构示意图。
图3B为本申请一个实施例提供的一种基站设备的检测方法中校准操作流程示意图。
图3C为本申请一个实施例提供的全温EIRP射频指标测试流程示意图。
图3D为本申请一个实施例提供的全温TRP射频指标的测试流程示意图。
图4为本申请另一个实施例提供的一种基站设备的检测装置的结构示意图。
图5为本申请另一个实施例提供的一种基站设备的检测装置的结构示意图。
具体实施方式
本申请实施例提供了一种基站设备的检测装置及检测方法,能够对基站设备进行EIRP检测和TRP检测。
为了检测基站设备的工作性能,在研发时或者产品出厂后可以用本申请实施例提供的技术方案模拟外界的温度,对基站设备进行检测,进而评估基站设备的性能是否合格。
请参见图2,图2是本申请的一个实施例提供的一种基站设备的检测装置的结构示意图。如图2所示,本实施例中基站设备是有源天线射频单元204(Active Antenna Unit,AAU),本申请实施例提供的基站设备的检测装置包括:温控装置201、屏蔽体202、吸波材料203、风管208、保温箱205、气密旋转单元(未在图2中标注出来)、收发单元206、作为检测单元的检测仪表207;吸波材料203设置在屏蔽体202的内壁上;温控装置201位于屏蔽体202的外部,温控装置201通过风管208与位于屏蔽体202内部的保温箱205相连通,用于使保温箱205内的温度达到预设温度;基站设备204设置在保温箱205内;基站设备204的收发路径对应的保温箱205的面为透波壳体;保温箱205与气密旋转单元相连,气密旋转单元在不动和转动时与保温箱205之间保持良好的气密性,使得保温箱205不会发 生漏气等故障。在气密旋转单元的带动下检测仪表207能够对基站设备204进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标进行检测。收发单元206位于屏蔽体202内,用于下行检测时接收所述基站设备发送的下行辐射的能量,用于上行检测时向外辐射能量。检测仪表207,用于下行检测时,根据收发单元206接收到的基站设备204发送的下行辐射的能量确定所述基站设备的下行性能是否合格。
其中,保温箱朝向收发单元的面的材料为低介电常数材料。低介电常数材料是介电常数接近空气的介电常数的材料。举例来说,低介电常数材料可以是聚甲基丙烯酰亚胺(polymethacrylimide,PMI)泡沫等。
请参见图3A,图3A是本申请的另一个实施例提供的一种基站设备的检测装置的结构示意图。如图3A所示,本实施例中基站设备是AAU 304,本申请实施例提供的基站设备的检测装置包括:温控装置301、屏蔽体302、吸波材料(设置在屏蔽体内部,在该图中未标注)、风管305、保温箱303、气密旋转单元(3071、3072)、收发单元308、检测仪表310;AAU 304的收发路径对应的保温箱的面为透波壳体;透波壳体的材料为低介电常数材料。为了减少插损,AAU 304设置在球形面的球星位置,对于球面壳体各个方向基本为垂直入射角,插损波动小,所以性能更优。
本实施例可以实现测试任意波束角的全温OTA测试温控暗室装置。它的设计逻辑是将传统温箱分体设计,通过风管连接,温控装置在暗室外,分体温箱在暗室内与暗室转台机械系统融合,分体温箱的正面设计成透波壳体,那么接收端天线可以采集基站波束辐射能量,依托于转台机械系统实现二维轴球面角度旋转,即可以实现全温下基站任意波束角的EIRP+TRP测量。
为了提高检测精度,该实施例还提供了标注增益喇叭天线307,透波壳体的方案呈现的特性为空间不同波束角的插损特性有波动,并且不同温度状态下也存在一定波动性,所以要实现射频指标的精准测量,要先对整个测量环境进行校准,使用相对法校准,校准方案为使用已知增益的天线代替模块进行不同波束角度和不同温度下的测量,得到对应的场插损,如图3B所示,校准的步骤如下。
311、安装已知增益的标准喇叭天线代替基站模块。
312、使用频谱仪标定喇叭入口功率。
313、控制温箱温度稳定在预期值。
314、测量不同波束角的功率。
315、计算对应温度和波束角的场插损。
如图3C所示,温控暗室装置的全温EIRP射频指标的测试步骤如下。
321、使用标准喇叭天线进行场校准(不同波束角+不同温度)。
322、安装基站模块,配置功率、波束等参数发功。
323、控制温箱温度,实现基站不同温度稳定状态。
324、波束对准,使用转台机械轴扫描幅度与空间角的电平曲线,寻找电平最大点即为波束对准点。
325、读取频谱仪的功率或其他的测量结果。
326、补偿测量状态下的场插损,计算得到EIRP值。
327、更改基站配置参数,重复324~326。
328、改变温箱温度,重复324~327。
需要说明的是,上行指标测量使用信号源,读取信误码率对应的信号电平值,补偿插损后即为灵敏度值。
如图3D所示,温控暗室装置的全温TRP射频指标的测试包括如下步骤。
331、使用标准喇叭天线进行场校准(不同波束角+不同温度)。
332、安装基站模块,配置功率、波束等参数发功。
333、控制温箱温度,实现基站不同温度稳定状态。
334、配置转台水平+极化两轴组合旋转,采集3D球面不同空间点的功率。
335、补偿测量状态下的场插损,计算3D球面的EIRP/场强值。
336、运用球面TRP积分公式计算得到TRP值。
337、更改基站配置参数,重复334~335。
338、改变温箱温度,重复334~337。
请参见图4,本申请另一个实施例提供的一种基站设备的检测装置的结构示意图。该实施例基于旋转和气密风道的设计思想设计的一个转台结构,方位加俯仰的U型架温控转台结构如图4所示。包括保温箱401、基站AAU402、俯仰气密旋转结构403、风管404、和方位气密旋转结构405。
请参见图5,本申请另一个实施例提供的一种基站设备的检测装置的结构示意图。包括收发单元501、球面弧形旋转结构502、保温箱503、基站AAU 504、风管505以及方位气密旋转结构506。该实施例采用方位加极化轴组合的θ-ψ球面坐标系结构,如图5所示,探头在球面弧形轨迹上运行(结构可以设计球面弧形架或者摇臂),等效θ角,方位轴旋转等效ψ角,两者组合形成θ-ψ球面坐标系,需要说明的是,本申请基于旋转加气密风道的设计思想还可以设计出其他结构的检测装置。
本申请实施例还提供了一种基站设备的检测方法,可以使用前面任一检测装置实施例对基站设备进行检测,所述方法包括如下步骤:温控装置通过风管使保温箱内的温度达到预设温度;气密旋转单元带动所述基站设备移动到预设角度位置;在进行检测时,所述基站设备发送辐射的能量,检测单元根据收发单元接收的所述基站设备发送的所述辐射的能量确定所述基站设备的性能是否合格;所述检测单元能够对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标进行检测。
在一些可能的实施例中,所述方法还可以包括:在第一温度、以及所述气密旋转单元带动所述基站设备移动到第一角度时,利用标准增益喇叭天线确定对应的场插损。
当所述保温箱内的温度为所述第一温度,所述基站设备在所述气密旋转单元带动下移动到所述第一角度时,所述检测单元结合所述场插损对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标进行检测。
本申请实施例还提供了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现前面任一方法实施例中所述的检测方法。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现前面任一方法实施例中所述的检测方法。
本申请还提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,所述计算机执行前面任一方法实施例所述的检测方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述电路的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种基站设备的检测装置,其特征在于,所述检测装置包括:屏蔽体、吸波材料、温控装置、风管、保温箱、气密旋转单元、收发单元和检测单元;
    所述吸波材料设置在所述屏蔽体的内壁上;
    所述温控装置位于所述屏蔽体的外部,所述温控装置通过所述风管与位于所述屏蔽体内部的所述保温箱相连通,用于使所述保温箱内的温度达到预设温度;
    所述基站设备设置在所述保温箱内;所述基站设备的收发路径对应的所述保温箱的面为透波壳体;
    所述保温箱与所述气密旋转单元相连,在所述气密旋转单元的带动下所述检测单元能够对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标;
    所述收发单元位于所述屏蔽体内,用于下行检测时接收所述基站设备发送的下行辐射的能量,用于上行检测时向外辐射能量;
    所述检测单元,用于根据所述收发单元接收到的所述基站设备发送的辐射的能量确定所述基站设备的性能是否合格。
  2. 根据权利要求1所述的检测装置,其特征在于,所述透波壳体的材料为低介电常数材料。
  3. 根据权利要求1或2所述的检测装置,其特征在于,所述透波壳体为球形面。
  4. 根据权利要求3所述的检测装置,其特征在于,所述基站设备设置在所述球形面的球心的位置。
  5. 根据权利要求1至4任一项所述的检测装置,其特征在于,所述检测装置还包括:标准增益喇叭天线,
    所述标准增益天线的增益已知,用于场衰减校准,在校准时,所述标准增益喇叭天线设置在保温箱所述基站设备的位置。
  6. 根据权利要求1至5任一项所述的检测装置,其特征在于,所述气密旋转单元为双轴运动机构,包括:第一旋转部和第二旋转部,所述基站设备在所述第一旋转部的带动下绕第一转轴转动,所述基站设备在所述第二旋转部的带动下在平行或者通过所述第一转轴的面内转动。
  7. 根据权利要求6所述的检测装置,其特征在于,所述第一旋转部为水平旋转部用于带动所述基站设备在水平面内转动,所述第二旋转部为设置于水平旋转部上的垂直旋转部;
    所述保温箱为半球状,包括:半球形的透波壳体和底面,所述底面垂直放置在所述屏 蔽体内,并且所述保温箱在所述垂直旋转部的带动下能够绕水平轴旋转。
  8. 根据权利要求6所述的检测装置,其特征在于,所述第一旋转部为水平旋转部,所述第二旋转部为设置于水平旋转部上的垂直旋转部;
    所述保温箱为半球状,所述保温箱的底面水平放置在所述屏蔽体内,并且所述保温箱在所述垂直旋转部的带动下能够绕水平轴旋转。
  9. 根据权利要求1至5任一项所述的检测装置,其特征在于,所述旋转单元包括第三旋转部和第四旋转部;
    所述保温箱为半球状,所述第三旋转部能够带动所述保温箱沿垂直所述半球状底面的方向旋转;利用所述第四旋转部所述收发单元在所述保温箱的周围能够在球面弧形轨迹上运行。
  10. 一种基站设备的检测方法,其特征在于,使用如权利要求1至9任一项所述的检测装置对所述基站设备进行检测,所述方法包括如下步骤:
    温控装置通过风管使保温箱内的温度达到预设温度;
    气密旋转单元带动所述基站设备移动到预设角度位置;
    在进行检测时,所述基站设备发送辐射的能量,检测单元根据收发单元接收的所述基站设备发送的所述辐射的能量确定所述基站设备的性能是否合格;所述检测单元能够对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标进行检测。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在第一温度、以及所述气密旋转单元带动所述基站设备移动到第一角度时,利用标准增益喇叭天线确定对应的场插损;
    当所述保温箱内的温度为所述第一温度,所述基站设备在所述气密旋转单元带动下移动到所述第一角度位置时,所述检测单元结合所述场插损对所述基站设备进行总辐射功率TRP检测、等效全向辐射功率EIRP检测、以及基于空口OTA的预设指标。
  12. 一种电子设备,其特征在于,包括:一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求10或11中任一所述的方法。
  13. 一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求10或11所述的方法。
PCT/CN2019/109742 2019-09-30 2019-09-30 一种基站设备的检测装置及检测方法 WO2021062816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109742 WO2021062816A1 (zh) 2019-09-30 2019-09-30 一种基站设备的检测装置及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109742 WO2021062816A1 (zh) 2019-09-30 2019-09-30 一种基站设备的检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2021062816A1 true WO2021062816A1 (zh) 2021-04-08

Family

ID=75336723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109742 WO2021062816A1 (zh) 2019-09-30 2019-09-30 一种基站设备的检测装置及检测方法

Country Status (1)

Country Link
WO (1) WO2021062816A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202679379U (zh) * 2012-06-14 2013-01-16 上海保隆汽车科技股份有限公司 无线通信设备的测试设备
US20130027256A1 (en) * 2010-02-05 2013-01-31 Zte Corporation Method and system for testing over-the-air (ota) performance in multi-antenna system
CN107819530A (zh) * 2016-09-12 2018-03-20 深圳市新益技术有限公司 用于有源基站天线或基站系统ota性能的测试系统及方法
CN107819527A (zh) * 2016-09-12 2018-03-20 中国移动通信有限公司研究院 一种大规模天线基站设备的测试装置及测试方法
CN109100639A (zh) * 2018-09-13 2018-12-28 苏州永安丰新能源科技有限公司 一种用于通信设备环境适应性测试的ota测试装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027256A1 (en) * 2010-02-05 2013-01-31 Zte Corporation Method and system for testing over-the-air (ota) performance in multi-antenna system
CN202679379U (zh) * 2012-06-14 2013-01-16 上海保隆汽车科技股份有限公司 无线通信设备的测试设备
CN107819530A (zh) * 2016-09-12 2018-03-20 深圳市新益技术有限公司 用于有源基站天线或基站系统ota性能的测试系统及方法
CN107819527A (zh) * 2016-09-12 2018-03-20 中国移动通信有限公司研究院 一种大规模天线基站设备的测试装置及测试方法
CN109100639A (zh) * 2018-09-13 2018-12-28 苏州永安丰新能源科技有限公司 一种用于通信设备环境适应性测试的ota测试装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Further discussion on FR2 OTA TDD transient time", 3GPP DRAFT; R4-181XXXX FURTHER DISCUSSION ON FR2 TRANISENT PERIOD_R1, vol. RAN WG4, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051483192 *

Similar Documents

Publication Publication Date Title
EP3282267B1 (en) Wireless terminal testing system
EP3282266B1 (en) System for testing wireless terminal and method for controlling the same
EP2721424B1 (en) Improved method and apparatus for measuring the performance of antennas, mobile phones and other wireless terminals
WO2019214570A1 (zh) 一种阵列天线总辐射功率的测量方法、装置和系统
WO2020224044A1 (zh) 天线测试方法、设备和存储介质
KR101009630B1 (ko) 안테나 방사 성능 측정 장치 및 그 설계 방법
CN106936524B (zh) 无线终端的测试系统
JP5396601B2 (ja) 放射効率測定装置
WO2016161654A1 (zh) 无线终端的测试系统及用于其的控制方法
KR100574226B1 (ko) 티이엠 도파관을 이용한 복사체의 전자파 복사 패턴 및이득 측정 방법
CN113804985A (zh) 一种基于混合屏蔽室的抗干扰天线方向图测量方法
CN112505435A (zh) 大型圆柱形相控阵天线等效远场测试装置和方法
CN112834830A (zh) 一种天线近场耦合测量装置及方法
JP2020024165A (ja) 放射電力推定方法
CN106291145A (zh) 无线终端的测试系统
TW202018310A (zh) 用於量測天線的自動化系統
US10746774B2 (en) Freespace antenna measurement system
US11901636B2 (en) Compact antenna test range (CATR) alignment verification
WO2021062816A1 (zh) 一种基站设备的检测装置及检测方法
CN116599605A (zh) 一种在有源暗室测量5g终端总辐射功率的方法和系统
WO2023216595A1 (zh) 有源天线的测试系统
JP2010237069A (ja) レーダ反射断面積計測装置
CN113917241B (zh) 一种天线方向图快速测量和预估方法、系统、设备及终端
JP5760927B2 (ja) 電波測定装置および電波測定方法
CN217385657U (zh) 一种天线测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947761

Country of ref document: EP

Kind code of ref document: A1