WO2016161897A1 - 无线终端的测试系统及用于其的控制方法 - Google Patents

无线终端的测试系统及用于其的控制方法 Download PDF

Info

Publication number
WO2016161897A1
WO2016161897A1 PCT/CN2016/077236 CN2016077236W WO2016161897A1 WO 2016161897 A1 WO2016161897 A1 WO 2016161897A1 CN 2016077236 W CN2016077236 W CN 2016077236W WO 2016161897 A1 WO2016161897 A1 WO 2016161897A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
wireless terminal
antenna
wireless
device under
Prior art date
Application number
PCT/CN2016/077236
Other languages
English (en)
French (fr)
Inventor
漆一宏
于伟
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Priority to EP16776072.7A priority Critical patent/EP3282266A4/en
Priority to US15/565,282 priority patent/US10416214B2/en
Publication of WO2016161897A1 publication Critical patent/WO2016161897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor

Definitions

  • the present invention relates to the field of wireless terminal technologies, and in particular, to a test system for a wireless terminal and a control method therefor.
  • the antenna of the mobile wireless communication terminal is usually not a directional antenna, but radiates in all directions of the space, when testing the wireless performance of the mobile terminal, the basic idea is to place the device to be tested in a center of the ball for testing.
  • the antenna measures the intensity of the signal at multiple locations on the sphere, and obtains measurements at all locations to calculate the total radiation intensity.
  • the main measurement method is the big circle method: the mobile terminal to be tested is placed in the center of a three-dimensional turntable, and the tested component can be rotated around two axes with the turntable, and a test antenna is used to be tested.
  • the test piece and the test antenna are all disposed in the microwave darkroom, and the direct signal of the test object toward the test antenna is received by the test antenna, and the radiation signal of the test object to other directions is absorbed by the absorbing material disposed in the microwave dark room, and the test is according to the test requirement.
  • the test object is rotated at a preset angular interval, and each time it is rotated to a position, the signal strength is tested; the measurement time can be reduced by adjusting the rotation angle interval.
  • the data is processed by integration and other data to generate test results.
  • the measurement speed of such a system is slow, and since the distance between the test antenna and the device under test is required to be greater than the far-field distance, so that the device to be tested is irradiated by the plane wave of the test antenna, the measurement system is bulky and manufactured. High cost and small scope of application.
  • an object of the present invention is to provide a test system for a wireless terminal, which can measure the sum of powers of wireless signals in multiple directions at one time, and has small repeatability error, stable test result, high test efficiency, and low cost.
  • a test system for a wireless terminal comprising: a device under test, the device under test is a wireless terminal; and a reflective surface for transmitting to the wireless terminal a wireless signal for total reflection; a test antenna for receiving a wireless signal; an absorption screen for absorbing radio waves; a positional relationship of the device under test, the test antenna and the reflective surface corresponding to an ellipsoid, wherein The device under test and the test antenna are divided into Do not be disposed on two focal points of the same ellipsoid, the reflective surface is disposed on the ellipsoid surface; and the absorption screen is disposed on a straight line between the device under test and the test antenna.
  • the reflective surface can be set according to the test requirement of the device under test, and the wireless signals in multiple directions of the device under test can be aggregated to the test antenna through the reflective surface, and the multiple directions are
  • the wireless signal can achieve the in-phase phase superposition and power synthesis at the measuring antenna, so that the sum of the powers of the wireless signals in multiple directions can be measured at one time.
  • the plane wave illumination in the test antenna is no longer needed, so the distance between the two can be smaller than the far-field distance required in the traditional test system, which simplifies the test system structure, reduces the system size, and has small repeatability error of test results.
  • the test results are stable, the test efficiency is high, and the cost is low. It is especially suitable for wireless terminal development and production of wireless terminals.
  • test system of the wireless terminal according to the above embodiment of the present invention may further have the following additional technical features:
  • the reflecting surface is an annular reflecting surface, and the plane of the annular reflecting surface is perpendicular to a straight line between the device under test and the test antenna.
  • the reflecting surface is at least one, wherein the positions of the at least one reflecting surface respectively correspond to at least one radiation direction of a main radiation direction of the device under test.
  • the number of the reflective surfaces is three or six.
  • the system further includes: a microwave darkroom, the test piece, the test antenna, the reflective surface and the absorption screen are disposed in the microwave darkroom, wherein the microwave darkroom comprises: a shielding box, and the shielding box is laid Absorbing material inside the body.
  • the system also includes a test instrument and the test antenna for testing the device under test based on a wireless signal received by the test antenna.
  • the absorption screen is made of a absorbing material.
  • the absorbing material is a sponge after being immersed in carbon powder.
  • the device under test, the test antenna, the reflecting surface and the absorption screen are disposed at corresponding positions by using a non-metallic support member.
  • a second aspect of the present invention provides a method for controlling a test system for a wireless terminal, wherein the test system of the wireless terminal includes: a wireless terminal, a test antenna for receiving a wireless signal, a reflective surface of the wireless signal transmitted by the wireless terminal for total reflection, an absorption screen for absorbing radio waves, wherein the wireless terminal and the test antenna are respectively disposed at two focal points of the same ellipsoid, a reflective surface disposed on the ellipsoidal surface, the absorption screen being disposed on a line between the wireless terminal and the test antenna, the method comprising the steps of: the wireless terminal transmitting a plurality of wireless signals and passing The reflective surface reflects the plurality of wireless signals to the test antenna; and a plurality of reflected signals reflected to the test antenna are superimposed in phase at the test antenna; The wireless terminal is tested according to the in-phase superposition result.
  • the control method for the test system of the wireless terminal may set a reflective surface according to the test requirement of the device under test, and converge the wireless signals of the plurality of directions of the device to be tested to the test antenna through the reflective surface, and
  • the wireless signals in multiple directions can achieve the in-phase phase superposition and power synthesis at the measurement antenna, so that the sum of the powers of the wireless signals in multiple directions can be measured at one time.
  • the plane wave illumination in the test antenna is no longer needed, so the distance between the two can be smaller than the far-field distance required in the traditional test system, which simplifies the test system structure, reduces the system size, and has small repeatability error of test results.
  • the test results are stable, the test efficiency is high, and the cost is low. It is especially suitable for wireless terminal development and production of wireless terminals.
  • FIG. 1 is a schematic structural diagram of a test system of a wireless terminal according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a test system of a wireless terminal according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a reference coordinate system in accordance with an embodiment of the present invention.
  • 4a-d are schematic views showing the position of a reflecting surface according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method of controlling a test system for a wireless terminal in accordance with one embodiment of the present invention.
  • test system of a wireless terminal and a control method of a test system for the wireless terminal according to an embodiment of the present invention are described below with reference to the accompanying drawings.
  • FIG. 1 is a schematic structural diagram of a test system of a wireless terminal according to an embodiment of the present invention.
  • a test system for a wireless terminal includes: a device under test 1, a reflective surface 2, a test antenna 3, and an absorption screen 4.
  • the device under test 1 is a wireless terminal that can transmit a wireless signal to the reflecting surface 2.
  • the reflecting surface 2 is used for total reflection of the wireless signal transmitted by the wireless terminal.
  • the test antenna 3 is for receiving a wireless signal.
  • the positional relationship between the device under test 1, the test antenna 3 and the reflective surface 2 corresponds to the same ellipsoid, wherein the device under test 1 and the test antenna 3 are respectively disposed on two focal points a and b of the same ellipsoid, and the reflection Face 2 is placed on the ellipsoid.
  • the fact that the reflecting surface 2 is disposed on the ellipsoid surface means that the reflecting surface 2 coincides with the ellipsoidal surface at the set position.
  • the wireless signal transmitted by the wireless terminal may be an electromagnetic wave signal.
  • the electromagnetic wave signal sent from one focus will be incident on the other focus after being reflected by the ellipsoid, and the distance between any point on the ellipsoid surface and the two focal points of the ellipsoid is a fixed value. Therefore, the electromagnetic wave signal emitted by the wireless terminal is reflected to the test antenna 3 via the reflective surface 2, and the length of the propagation path through which the plurality of electromagnetic wave signals transmitted from the wireless terminal are reflected by the reflective surface 2 and incident on the test antenna 3 is the same. of. For example, as shown in FIG.
  • an ellipsoid is not set in the system in the actual test.
  • the above ellipsoidal surface is a virtual ellipsoidal surface, and is only used to describe the positional relationship between the device under test 1, the test antenna 3, and the reflective surface 2, to clarify the positional relationship of the three.
  • the wireless signal transmitted by the device under test 1 in the direction of the test antenna 3 can be directly transmitted to the test antenna 3 without being reflected, and the portion of the signal that is not reflected can be referred to as a direct signal. Since the direct signal and the reflected signal pass through different propagation paths, the phase difference caused by the propagation path may also be different. Therefore, the direct signal and the reflected signal may be offset or partially due to different phases when reaching the test antenna 3.
  • the effect of superposition does not necessarily achieve the purpose of in-phase superposition and power synthesis. Therefore, in order to avoid such an influence, in the embodiment of the present invention, an absorption screen 4 is provided on a straight line between the device under test 1 and the test antenna 3 for absorbing radio waves, thereby being absorbed by the absorption screen 4. (or blocking) the direct wireless signal from the device under test 1 to the test antenna 3.
  • the absorbent screen 4 can be made of a absorbing material.
  • the absorbing material may be a sponge after being immersed in carbon powder.
  • a microwave darkroom and a test instrument may also be included on the basis of FIG.
  • the microwave darkroom includes a shielding box 5 and an absorbing material 6 laid inside the shielding box 5.
  • the shielding box 5 functions to shield electromagnetic waves from the outside (such as a microwave dark room), and the absorbing material can be laid on the inner wall of the shielding box 5 for absorbing electromagnetic waves incident on the inner wall of the shielding box 5, thereby reducing the inside of the metal shielding box. Reflection.
  • the device under test 1, the test antenna 3, the reflecting surface 2 and the absorbing screen 4 are disposed at corresponding positions using a non-metallic support member. Thereby, it is possible to avoid interference and errors caused by reflection of a wireless signal by using a metal material support member.
  • the test instrument 7 is connected to the test antenna 3 for testing the device under test 1 based on the wireless signal received by the test antenna 3.
  • the test instrument 7 can perform power synthesis on a plurality of wireless signals received by the test antenna 3, and test according to the power synthesis result.
  • test system of the wireless terminal according to the embodiment of the present invention will be described below with reference to FIG. 3 and FIG. 4a-d.
  • the number of the reflecting surfaces 2 and the position to be placed can be selected according to the measurement requirements of the device under test 1.
  • the reflecting surface 2 is at least one, wherein the positions of the at least one reflecting surface 2 respectively correspond to at least one radiation direction of the main radiation direction of the device under test.
  • the main radiation direction is the radiation direction with a large radiation intensity.
  • the measured object is a mobile phone, for example, the length of the mobile phone is the Z axis, the upper part of the mobile phone is the Z axis positive, the X axis is perpendicular to the mobile phone screen, and the Y axis is vertical.
  • the reflecting surface has a partial shape of the virtual ellipsoid at the position, and when placed at the position, it completely coincides with the virtual ellipsoid.
  • the incident signals in three directions are reflected by the set reflecting surface to reach the test antenna 3 located at the focus b, and the test antenna 3 receives, and the output of the test antenna 3 is the sum of the powers of the signals in the three directions.
  • Figures 4a-d are schematic illustrations of the position of a reflective surface in accordance with an embodiment of the present invention.
  • the reflecting surface may be an annular reflecting surface, and the plane of the annular reflecting surface is perpendicular to the device to be tested 1 and tested.
  • a straight line between the antennas 3 (the long axis of the ellipsoid).
  • the position of the annular reflecting surface can be set according to the test requirements, for example, as shown in FIG. 4a, around the focus of the device under test 1, or between the device under test 1 and the test antenna 3 as shown in FIG. 4b.
  • the wireless signals in all directions of the one side of the reflecting surface at one time, and it is not necessary to rotate the device under test 1 to transmit the device under test 1 in various directions with respect to the scheme in which only one or more partial reflecting surfaces are provided.
  • the signal is directed at the reflective surface, which reduces test time and enables fast testing.
  • the reflecting surface can be set at the corresponding position according to ⁇ and ⁇ in each direction. If it is necessary to test the wireless signals in three directions, three reflective surfaces can be set as shown in FIG. 4c, wherein three reflective surfaces are located around the focus of the device under test 1, and perpendicular to the long axis of the ellipsoid, measured The plane of the focus of the piece 1 intersects the three reflecting surfaces and the three reflecting surfaces are not opposite. If it is necessary to test the wireless signals in six directions, six reflective surfaces can be arranged as shown in FIG. 4d, wherein the three reflective surfaces are the same as the other four reflective surfaces and are in the same plane, which is perpendicular to the ellipse. The long axis of the sphere, and the other three reflective surfaces are located around the focus of the device under test.
  • the radiation signals of the plurality of directions of the device under test 1 are concentrated to the test antenna 3 according to the requirements for testing the device under test 1, and the radiation signals of the plurality of directions are in the test antenna 3
  • the superposition and power synthesis of the in-phase phase are achieved, so that the sum of the powers of the radiation signals in multiple directions can be measured at one time. If the traditional method is used, the radiation signal in each direction must be measured, and then the measurement data is processed and the power is added.
  • the direction of the device under test 1 facing the test antenna 3 cannot be measured due to the provided absorption screen 4, so that the wireless signal of the device under test 1 in the direction of the test antenna 3 cannot be measured. If it is necessary to measure the wireless signal in the direction, the wireless signal of the device under test 1 toward the test antenna 3 can be rotated to the reflective surface 2 by rotating the device under test 1 so that the wireless signal is reflected to the test antenna 3 through the reflective surface. And test it.
  • the test system of the wireless terminal can set a reflective surface according to the test requirement of the device under test, and converge the wireless signals in multiple directions of the device under test through the reflective surface to the test antenna, and wireless in multiple directions.
  • the signal can achieve the in-phase phase superposition and power synthesis at the measuring antenna, so that the sum of the powers of the wireless signals in multiple directions can be measured at one time.
  • the plane wave illumination in the test antenna is no longer needed, so the distance between the two can be smaller than the far-field distance required in the traditional test system, which simplifies the test system structure, reduces the system size, and has small repeatability error of test results.
  • the test results are stable, the test efficiency is high, and the cost is low. It is especially suitable for wireless terminal development and production of wireless terminals.
  • the present invention also proposes a control method for a test system of a wireless terminal.
  • FIG. 5 is a flow chart of a method of controlling a test system for a wireless terminal in accordance with one embodiment of the present invention.
  • the test system of the wireless terminal comprises a wireless terminal, a test antenna for receiving a wireless signal, a reflective surface for totally reflecting the wireless signal transmitted by the wireless terminal, and an absorption screen for absorbing radio waves, wherein the wireless terminal and the test
  • the antennas are respectively disposed on two focal points of the same ellipsoid, the reflecting surface is disposed on the ellipsoid surface, and the absorption screen is disposed on a straight line between the wireless terminal and the test antenna.
  • FIGS. 1 and 2 refer to the embodiment shown in FIGS. 1 and 2.
  • a control method of a test system for a wireless terminal includes the following steps.
  • the wireless terminal transmits a plurality of wireless signals, and reflects the plurality of wireless signals to the test antenna through the reflective surface.
  • a plurality of reflected signals reflected to the test antenna are superimposed in phase at the test antenna.
  • the wireless terminal can be tested by the test instrument according to the in-phase superposition result of the plurality of reflected signals received by the test antenna.
  • the wireless signal transmitted by the wireless terminal may be an electromagnetic wave signal.
  • the electromagnetic wave signal sent from one focus will be incident on the other focus after being reflected by the ellipsoid, and the distance between any point on the ellipsoid surface and the two focal points of the ellipsoid is a fixed value. Therefore, the electromagnetic wave signal emitted by the wireless terminal is reflected to the test antenna through the reflective surface, and the length of the propagation path through which the plurality of electromagnetic wave signals transmitted from the wireless terminal are reflected by the reflective surface and incident on the test antenna is the same. For example, as shown in FIG.
  • an ellipsoid is not set in the system in the actual test.
  • the above ellipsoid is a virtual ellipsoid, which is only used to describe the positional relationship between the device under test, the test antenna and the reflective surface to clarify the positional relationship between the three.
  • the wireless signal transmitted by the device under test to the direction of the test antenna can be directly transmitted to the test antenna without being reflected.
  • This part of the signal that is not reflected can be referred to as a direct signal. Since the direct signal and the reflected signal pass through different propagation paths, the phase difference caused by the propagation path may also be different. Therefore, the direct signal and the reflected signal may cancel or partially overlap when they reach the test antenna due to different phases. The effect does not necessarily achieve the purpose of in-phase superposition and power synthesis. Therefore, in order to avoid such an influence, in the embodiment of the present invention, an absorption screen for absorbing radio waves is disposed on a straight line between the device under test and the test antenna, thereby being absorbed (or blocked) by the absorption screen. Direct wireless signal from the device under test to the test antenna.
  • the absorbent screen can be made of a absorbing material.
  • the absorbing material may be a sponge after being immersed in carbon powder.
  • the device under test, the test antenna, the reflecting surface and the absorbing screen are disposed at corresponding positions using a non-metallic support. Thereby, it is possible to avoid interference and errors caused by reflection of a wireless signal by using a metal material support member.
  • the implementation principle of the test system of the wireless terminal in the embodiment of the present invention can be as shown in FIG. 3 and FIG. 4a-d. The example is not repeated here.
  • the control method for the test system of the wireless terminal may set a reflective surface according to the test requirement of the device under test, and converge the wireless signals of the plurality of directions of the device to be tested to the test antenna through the reflective surface, and
  • the wireless signals in multiple directions can achieve the in-phase phase superposition and power synthesis at the measurement antenna, so that the sum of the powers of the wireless signals in multiple directions can be measured at one time.
  • the plane wave illumination in the test antenna is no longer needed, so the distance between the two can be smaller than the far-field distance required in the traditional test system, which simplifies the test system structure, reduces the system size, and has small repeatability error of test results.
  • the test results are stable, the test efficiency is high, and the cost is low. It is especially suitable for wireless terminal development and production of wireless terminals.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种无线终端的测试系统及用于其的控制方法,该系统包括:被测件,被测件是无线终端;反射面,用于对无线终端发射的无线信号进行全反射;测试天线,用于接收无线信号;吸收屏;被测件,测试天线以及反射面的位置关系对应同一个椭球面,其中,被测件和测试天线分别设置在同一个椭球面的两个焦点上,反射面设置在椭球面上;吸收屏设置在被测件与测试天线之间的直线上。本发明实施例的测试系统,可以一次测得多个方向无线信号的功率之和,并简化了测试系统结构,测试速度更快,且避免的多次重复测试操作,从而具有测试结果重复性误差小、测试结果稳定,测试效率、成本低高等优点,尤其适用于无线终端无线性能研发、生产等方面。

Description

无线终端的测试系统及用于其的控制方法 技术领域
本发明涉及无线终端技术领域,特别涉及一种无线终端的测试系统及用于其的控制方法。
背景技术
在无线终端的辐射性能测试中,需要测量多个方向的辐射信号大小、多个辐射方向的接收灵敏度大小,并且通过数学计算得到总辐射功率、总辐射灵敏度。由于移动无线通信终端的天线通常不是定向天线,而是向空间各个方向都有辐射,因此,在对移动终端的无线性能进行测试时,基本思想就是将被测件置于一个球心,用测试天线在球面上的多个位置测量信号的强度,得到所有位置的测量值后进行运算得到总的辐射强度。
目前,根据CTIA的测试标准,主要的测量方法是大圆法:将被测的移动终端置于一个三维转台的中心,被测件随着转台可以绕2个轴转动,采用一个测试天线,被测件和测试天线都设置在微波暗室中,被测件朝向测试天线的直射信号被测试天线接收,被测件向其他方向的辐射信号被微波暗室内设置的吸波材料吸收,测试时根据测试需求,以预设的角度间隔转动被测件,每转动到一个位置就停下来进行信号强度的测试;可以通过调整转动角度间隔来减少测量时间。将各个方向的辐射信号测量后,经过积分等数据处理,生成测试结果。
但是这种系统的测量速度较慢,又由于要求测试天线和被测件之间的距离大于远场距离,以使待测件处于测试天线的平面波照射,这就导致测量系统的体积庞大,制造成本高,且适用范围小。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种无线终端的测试系统,可以一次测得多个方向无线信号的功率之和,测试结果重复性误差小、测试结果稳定,测试效率高、成本低。
为达上述目的,根据本发明第一方面实施例提出了一种无线终端的测试系统,包括:被测件,所述被测件是无线终端;反射面,用于对所述无线终端发射的无线信号进行全反射;测试天线,用于接收无线信号;吸收屏,用于吸收无线电波;所述被测件,所述测试天线以及所述反射面的位置关系对应同一个椭球面,其中,所述被测件和所述测试天线分 别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上;所述吸收屏设置在所述被测件与所述测试天线之间的直线上。
根据本发明实施例的无线终端的测试系统,可根据对被测件的测试需求设置反射面,并通过反射面将被测件的多个方向的无线信号汇聚到测试天线,且多个方向的无线信号在测量天线处能够达到同相相位的叠加以及功率合成,从而可以一次测得多个方向无线信号的功率之和。相对于传统方法中,必须分别对每个方向的无线信号进行测试,然后将测试结果进行数据处理、功率相加来说,测试速度更快,且避免的多次重复测试操作,并且待测件不再需要处于测试天线的平面波照射,因此,二者之间的距离可以小于传统测试系统中所需的远场距离,从而简化了测试系统结构,减小系统尺寸,具有测试结果重复性误差小、测试结果稳定,测试效率高、成本低等优点,尤其适用于无线终端无线性能研发、生产等方面。
另外,根据本发明上述实施例的无线终端的测试系统还可以具有如下附加的技术特征:
所述反射面是一个环形反射面,所述环形反射面所在的平面垂直于所述被测件与所述测试天线之间的直线。
所述反射面为至少一个,其中,所述至少一个反射面的位置分别与所述被测件的主要辐射方向的至少一个辐射方向相对应。其中,所述反射面的个数是3个或者6个。
所述系统还包括:微波暗室,所述被测件,测试天线,反射面和吸收屏设置在所述微波暗室内,其中,所述微波暗室包括:屏蔽箱体,以及铺设在所述屏蔽箱体内部的吸波材料。
所述系统还包括:测试仪器,与所述测试天线,用于根据所述测试天线接收到的无线信号对所述被测件进行测试。
所述吸收屏由吸波材料制成。
所述吸波材料是浸碳粉后的海绵。
所述被测件,测试天线,反射面和吸收屏采用非金属材质的支撑件设置在对应的位置上。
本发明第二方面实施例提供了一种用于无线终端的测试系统的控制方法,其特征在于,其中,所述无线终端的测试系统包括:无线终端,用于接收无线信号的测试天线,对所述无线终端发射的无线信号进行全反射的反射面,用于吸收无线电波的吸收屏,其中,所述无线终端和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上,所述吸收屏设置在所述无线终端与所述测试天线之间的直线上,所述方法包括以下步骤:所述无线终端发射多个无线信号,并通过所述反射面将所述多个无线信号反射至所述测试天线;将反射至所述测试天线的多个反射信号在所述测试天线处同相叠加;根 据同相叠加结果对所述无线终端进行测试。
本发明实施例的用于无线终端的测试系统的控制方法,可根据对被测件的测试需求设置反射面,并通过反射面将被测件的多个方向的无线信号汇聚到测试天线,且多个方向的无线信号在测量天线处能够达到同相相位的叠加以及功率合成,从而可以一次测得多个方向无线信号的功率之和。相对于传统方法中,必须分别对每个方向的无线信号进行测试,然后将测试结果进行数据处理、功率相加来说,测试速度更快,且避免的多次重复测试操作,并且待测件不再需要处于测试天线的平面波照射,因此,二者之间的距离可以小于传统测试系统中所需的远场距离,从而简化了测试系统结构,减小系统尺寸,具有测试结果重复性误差小、测试结果稳定,测试效率高、成本低等优点,尤其适用于无线终端无线性能研发、生产等方面。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1为根据本发明一个实施例的无线终端的测试系统的结构示意图;
图2为根据本发明另一个实施例的无线终端的测试系统的结构示意图;
图3为根据本发明实施例中参考坐标系的示意图;
图4a-d的为根据本发明实施例的反射面的位置示意图;
图5为根据本发明一个实施例的用于无线终端的测试系统的控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的无线终端的测试系统和用于无线终端的测试系统的控制方法。
图1为根据本发明一个实施例的无线终端的测试系统的结构示意图。
如图1所示,根据本发明实施例的无线终端的测试系统,包括:被测件1、反射面2、测试天线3和吸收屏4。
具体地,被测件1是无线终端,可向反射面2发射无线信号。
反射面2用于对无线终端发射的无线信号进行全反射。
测试天线3用于接收无线信号。
其中,被测件1,测试天线3以及反射面2的位置关系对应同一个椭球面,其中,被测件1和测试天线3分别设置在同一个椭球面的两个焦点a和b上,反射面2设置在椭球面上。其中,反射面2设置在椭球面上是指反射面2与其设置位置处的椭球面重合。
本发明实施例中,无线终端发射的无线信号可以是电磁波信号。根据椭球面反射的物理原理可知,从一个焦点发送的电磁波信号经过椭球面的反射后会入射到另一个焦点,且椭球面上任意一点到椭球的两个焦点的距离和为一固定值。因此,无线终端发射的电磁波信号经反射面2后会反射至测试天线3,且从无线终端发射的多个电磁波信号经过反射面2反射后入射到测试天线3所经过的传播路径的长度是相同的。举例来说,如图3所示,图3中无线终端发射的3条电磁波信号反射至测试天线3的路径的长度分别为L1、L2和L3,且L1=L2=L3。从而传播路径引起上述多个电磁波信号的相位差是相同的,测试天线3接收到的无线信号可以实现同相叠加。
应当理解,在实际测试中并不在系统中设置一个椭球面。上述椭球面为虚拟的椭球面,仅用于对被测件1、测试天线3和反射面2的位置关系进行描述,以明确三者的位置关系。
被测件1向测试天线3方向发射的无线信号不经过反射可直接发射到测试天线3,此部分不经过反射的信号可被称为直射信号。由于直射信号与反射信号所经过的传播路径不同,则由传播路径引起的相位差也可能不同,因此,直射信号与反射信号在到达测试天线3时会因为相位不同而,而可能产生抵消或者部分叠加的效果,从而不一定能达到同相叠加、功率合成的目的。因此,为了避免此种影响,在本发明的实施例中,在被测件1与测试天线3之间的直线上设置了吸收屏4,用于吸收无线电波,从而,可通过吸收屏4吸收(或阻挡)被测件1到测试天线3的直射无线信号。
在本发明的一个实施例中,吸收屏4可由吸波材料制成。其中,吸波材料可以是浸碳粉后的海绵。
由于被测件1到测试天线3的直射信号被吸收屏4吸收,在本发明的实施例中不再考虑直射信号的影响。
在本发明的一个实施例中,如图2所示,在图1的基础上还可包括微波暗室和测试仪器。
其中,微波暗室包括:屏蔽箱体5以及铺设在屏蔽箱体5内部的吸波材料6。
屏蔽箱体5的作用是屏蔽外界(如微波暗室)的电磁波干扰,吸波材料可铺设在屏蔽箱体5的内壁上,用于吸收入射到屏蔽箱体5内壁的电磁波,减少金属屏蔽箱内部的反射。
在本发明的一个实施例中,被测件1,测试天线3,反射面2和吸收屏4采用非金属材质的支撑件设置在对应的位置上。从而能够避免因使用金属材质的支撑件而反射无线信号造成的干扰和误差。
测试仪器7与测试天线3相连,用于根据测试天线3接收到的无线信号对被测件1进行测试。
具体地,测试仪器7可对测试天线3接收到的多个无线信号进行功率合成,并根据功率合成结果进行测试。
下面结合图3、图4a-d对本发明实施例的无线终端的测试系统的实现原理进行说明。
可根据对被测件1的测量需求选择反射面2的个数、以及放置的位置。在本发明的实施例中,反射面2为至少一个,其中,至少一个反射面2的位置分别与被测件的主要辐射方向的至少一个辐射方向相对应。其中,主要辐射方向为辐射强度较大的辐射方向。
为了说明方便起见,我们采用图3表示的坐标系,被测件以手机为例,以手机的长度方为Z轴,手机的上部为Z轴正向,X轴垂直于手机屏幕,Y轴垂直于X轴与Z轴所在的平面,其中,X轴及Y轴的正方如图3所示。
如果根据测试要求,需要测试(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向的辐射信号的功率之和(其中,如图3所示,θ为需要测试的辐射信号的方向与Z轴正方向的夹角,φ为需要测试的辐射信号的方向在XY平面的投影与X轴正方向的夹角),即被测件在(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向的辐射值超过辐射阈值。那么就可以在(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向分别放置相应的反射面。其中,反射面具有所在位置的虚拟椭球面局部的形状,且放置在该位置时与虚拟椭球面完全吻合。
在这种设置下,位于焦点a的被测件1(手机)向(θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向的入射信号经过所设置的反射面反射到达位于焦点b的测试天线3,测试天线3接收,测试天线3的输出就是三个方向信号的功率之和。由此,测试仪器7可获取被测件1在θ=30°,φ=90°)、(θ=30°,φ=270°)、(θ=150°,φ=90°)三个方向功率之和。
从而,可根据测试需求确定反射面2的个数和设置位置。举例来说,图4a-d的为根据本发明实施例的反射面的位置示意图。
如果需要对于辐射强度均匀的被测件1来说,需要对一周各个方向的无线信号进行测试,则反射面可为一个环形反射面,该环形反射面所在的平面垂直于被测件1与测试天线3之间的直线(椭球面的长轴)。环形反射面的位置可根据测试需要设置,例如可如图4a所示设置在被测件1所在的焦点周围,或者如图4b所示设置在被测件1与测试天线3之间。从而能够一次性对反射面所在一周的各个方向的无线信号进行测试,相对于仅设置一个或多个局部反射面的方案来说,无需转动被测件1以使被测件1向各个方向发射的信号射向反射面,从而能够减少测试时间,实现了快速测试。
如果被测件1需要测试三个或六个方向的无线信号时,可根据各个方向的θ和φ分别在相应的位置设定反射面。如果需要测试三个方向的无线信号,则可如图4c所示设置三个反射面,其中,三个反射面位于被测件1所在焦点的周围,且垂直于椭球面的长轴、被测件1所在焦点的平面与三个反射面相交且三个反射面不相对。如果需要测试六个方向的无线信号,则可如图4d所示设置六个反射面,其中,三个反射面同图4c,与另外三个反射面相对且位于同一平面,该平面垂直于椭球面的长轴,且另外三个反射面位于被测件所在焦点周围。
由此可以看出,本发明所提出的方案,根据对被测件1测试的要求,将被测件1多个方向的辐射信号汇聚到测试天线3,多个方向的辐射信号在测试天线3处达到同相相位的叠加、功率合成,从而可以一次测得多个方向辐射信号的功率之和。如果采用传统的方法,必须将测量每个方向的辐射信号、然后将测量结果进行数据处理、功率相加。
需要指出的是,被测件1朝向测试天线3的方向,由于所设置的吸收屏4,使得被测件1朝向测试天线3的方向的无线信号无法被测量。如果需要测量该方向的无线信号,则可通过转动被测件1使被测件1朝向测试天线3方向的无线信号转至朝向反射面2,以使该无线信号通过反射面反射至测试天线3,并进行测试。
因为无线信号的接收、发射是互易的,同理上述描述也适用于被测件1接收测试,本领域一般技术人员很容易理解,在此不再赘述。
本发明实施例的无线终端的测试系统,可根据对被测件的测试需求设置反射面,并通过反射面将被测件的多个方向的无线信号汇聚到测试天线,且多个方向的无线信号在测量天线处能够达到同相相位的叠加以及功率合成,从而可以一次测得多个方向无线信号的功率之和。相对于传统方法中,必须分别对每个方向的无线信号进行测试,然后将测试结果进行数据处理、功率相加来说,测试速度更快,且避免的多次重复测试操作,并且待测件不再需要处于测试天线的平面波照射,因此,二者之间的距离可以小于传统测试系统中所需的远场距离,从而简化了测试系统结构,减小系统尺寸,具有测试结果重复性误差小、测试结果稳定,测试效率高、成本低等优点,尤其适用于无线终端无线性能研发、生产等方面。
为了实现上述实施例,本发明还提出一种用于无线终端的测试系统的控制方法。
图5为根据本发明一个实施例的用于无线终端的测试系统的控制方法的流程图。
其中,该无线终端的测试系统包括无线终端,用于接收无线信号的测试天线,对无线终端发射的无线信号进行全反射的反射面,用于吸收无线电波的吸收屏,其中,无线终端和测试天线分别设置在同一个椭球面的两个焦点上,反射面设置在椭球面上,吸收屏设置在无线终端与测试天线之间的直线上。具体可参照图1和图2所示实施例。
如图5所示,根据本发明实施例的用于无线终端的测试系统的控制方法,包括以下步骤。
S501,无线终端发射多个无线信号,并通过反射面将多个无线信号反射至测试天线。
S502,将反射至测试天线的多个反射信号在测试天线处同相叠加。
S503,根据同相叠加结果对无线终端进行测试。
具体地,可通过测试仪器根据测试天线接收到的多个反射信号的同相叠加结果对无线终端进行测试。
本发明实施例中,无线终端发射的无线信号可以是电磁波信号。根据椭球面反射的物理原理可知,从一个焦点发送的电磁波信号经过椭球面的反射后会入射到另一个焦点,且椭球面上任意一点到椭球的两个焦点的距离和为一固定值。因此,无线终端发射的电磁波信号经反射面后会反射至测试天线,且从无线终端发射的多个电磁波信号经过反射面反射后入射到测试天线所经过的传播路径的长度是相同的。举例来说,如图3所示,图3中无线终端发射的3条电磁波信号反射至测试天线的路径的长度分别为L1、L2和L3,且L1=L2=L3。从而传播路径引起上述多个电磁波信号的相位差是相同的,测试天线接收到的无线信号可以实现同相叠加。
应当理解,在实际测试中并不在系统中设置一个椭球面。上述椭球面为虚拟的椭球面,仅用于对被测件、测试天线和反射面的位置关系进行描述,以明确三者的位置关系。
被测件向测试天线方向发射的无线信号不经过反射可直接发射到测试天线,此部分不经过反射的信号可被称为直射信号。由于直射信号与反射信号所经过的传播路径不同,则由传播路径引起的相位差也可能不同,因此,直射信号与反射信号在到达测试天线时会因为相位不同而,而可能产生抵消或者部分叠加的效果,从而不一定能达到同相叠加、功率合成的目的。因此,为了避免此种影响,在本发明的实施例中,在被测件与测试天线之间的直线上设置了用于吸收无线电波的吸收屏,从而,可通过吸收屏吸收(或阻挡)被测件到测试天线的直射无线信号。
在本发明的一个实施例中,吸收屏可由吸波材料制成。其中,吸波材料可以是浸碳粉后的海绵。
由于被测件到测试天线的直射信号被吸收屏吸收,在本发明的实施例中不再考虑直射信号的影响。
在本发明的一个实施例中,被测件,测试天线,反射面和吸收屏采用非金属材质的支撑件设置在对应的位置上。从而能够避免因使用金属材质的支撑件而反射无线信号造成的干扰和误差。
具体地,本发明实施例的无线终端的测试系统的实现原理可参照图3、图4a-d所示实 施例,在此不再赘述。
本发明实施例的用于无线终端的测试系统的控制方法,可根据对被测件的测试需求设置反射面,并通过反射面将被测件的多个方向的无线信号汇聚到测试天线,且多个方向的无线信号在测量天线处能够达到同相相位的叠加以及功率合成,从而可以一次测得多个方向无线信号的功率之和。相对于传统方法中,必须分别对每个方向的无线信号进行测试,然后将测试结果进行数据处理、功率相加来说,测试速度更快,且避免的多次重复测试操作,并且待测件不再需要处于测试天线的平面波照射,因此,二者之间的距离可以小于传统测试系统中所需的远场距离,从而简化了测试系统结构,减小系统尺寸,具有测试结果重复性误差小、测试结果稳定,测试效率高、成本低等优点,尤其适用于无线终端无线性能研发、生产等方面。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具 体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种无线终端的测试系统,其特征在于,包括:
    被测件,所述被测件是无线终端;
    反射面,用于对所述无线终端发射的无线信号进行全反射;
    测试天线,用于接收无线信号;
    吸收屏,用于吸收无线电波;
    所述被测件,所述测试天线以及所述反射面的位置关系对应同一个椭球面,其中,所述被测件和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上;
    所述吸收屏设置在所述被测件与所述测试天线之间的直线上。
  2. 根据权利要求1所述的系统,其特征在于,所述反射面是一个环形反射面,所述环形反射面所在的平面垂直于所述被测件与所述测试天线之间的直线。
  3. 根据权利要求1所述的系统,其特征在于,所述反射面为至少一个,其中,所述至少一个反射面的位置分别与所述被测件的主要辐射方向的至少一个辐射方向相对应。
  4. 根据权利要求3所述的系统,其特征在于,所述反射面的个数是3个或者6个。
  5. 根据权利要求1所述的系统,其特征在于,还包括:
    微波暗室,所述被测件,测试天线,反射面和吸收屏设置在所述微波暗室内,其中,所述微波暗室包括:
    屏蔽箱体,以及铺设在所述屏蔽箱体内部的吸波材料。
  6. 根据权利要求1所述的系统,其特征在于,还包括:
    测试仪器,与所述测试天线相连,用于根据所述测试天线接收到的无线信号对所述被测件进行测试。
  7. 根据权利要求1所述的系统,其特征在于,所述吸收屏由吸波材料制成。
  8. 根据权利要求7所述的系统,其特征在于,所述吸波材料是浸碳粉后的海绵。
  9. 根据权利要求1所述的系统,其特征在于,所述被测件,测试天线,反射面和吸收屏采用非金属材质的支撑件设置在对应的位置上。
  10. 一种用于无线终端的测试系统的控制方法,其特征在于,所述无线终端的测试系统包括:无线终端,用于接收无线信号的测试天线,对所述无线终端发射的无线信号进行全反射的反射面,用于吸收无线电波的吸收屏,其中,所述无线终端和所述测试天线分别设置在同一个椭球面的两个焦点上,所述反射面设置在所述椭球面上,所述吸收屏设置在所述无线终端与所述测试天线之间的直线上,所述方法包括以下步骤:
    所述无线终端发射多个无线信号,并通过所述反射面将所述多个无线信号反射至所述测试天线;
    将反射至所述测试天线的多个反射信号在所述测试天线处同相叠加;
    根据同相叠加结果对所述无线终端进行测试。
PCT/CN2016/077236 2015-04-10 2016-03-24 无线终端的测试系统及用于其的控制方法 WO2016161897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16776072.7A EP3282266A4 (en) 2015-04-10 2016-03-24 Wireless terminal testing system and method for controlling same
US15/565,282 US10416214B2 (en) 2015-04-10 2016-03-24 System for testing wireless terminal and method for controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510167640.6 2015-04-10
CN201510167640.6A CN106160893B (zh) 2015-04-10 2015-04-10 无线终端的测试系统及用于其的控制方法

Publications (1)

Publication Number Publication Date
WO2016161897A1 true WO2016161897A1 (zh) 2016-10-13

Family

ID=57072359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077236 WO2016161897A1 (zh) 2015-04-10 2016-03-24 无线终端的测试系统及用于其的控制方法

Country Status (4)

Country Link
US (1) US10416214B2 (zh)
EP (1) EP3282266A4 (zh)
CN (1) CN106160893B (zh)
WO (1) WO2016161897A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462190B1 (en) * 2017-09-29 2022-06-29 Rohde & Schwarz GmbH & Co. KG Measurement system and method for performing test measurements
JP6824204B2 (ja) * 2018-02-05 2021-02-03 アンリツ株式会社 無線端末測定装置
CN108988963B (zh) * 2018-04-12 2021-02-05 华为技术有限公司 一种测试方法、发射设备和测试设备及测试系统
TWI670502B (zh) * 2018-10-25 2019-09-01 廣達電腦股份有限公司 訊號測試系統及其電波暗室
US10903916B1 (en) * 2019-07-01 2021-01-26 Rohde & Schwarz Gmbh & Co. Kg Measurement system and corresponding method for investigating the receive behavior of a device under test
EP3823187B1 (en) * 2019-11-14 2022-08-31 Rohde & Schwarz GmbH & Co. KG Measurement system and method of performing an over-the-air test
WO2021131420A1 (ja) * 2019-12-27 2021-07-01 マクセルホールディングス株式会社 測定システム、および電波遮蔽部
JP7128855B2 (ja) * 2020-05-20 2022-08-31 アンリツ株式会社 移動端末試験装置、及び移動端末試験方法
JP7221243B2 (ja) * 2020-06-18 2023-02-13 アンリツ株式会社 移動端末試験装置、及び移動端末試験方法
CN112462169A (zh) * 2020-11-05 2021-03-09 陕西飞机工业(集团)有限公司 一种飞机整机屏蔽效能测试系统及方法
CN112929920B (zh) * 2021-03-17 2023-06-23 深圳创维数字技术有限公司 网络性能测试装置和方法
JP7143500B1 (ja) 2021-11-25 2022-09-28 株式会社フジクラ 電波伝搬特性測定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931798A (en) * 1987-06-03 1990-06-05 Tokin Corporation Electromagnetic anechoic chamber with an inner electromagnetic wave reflection surface and an electromagnetic wave absorption small ball disposed in the chamber
CN101802625A (zh) * 2007-09-28 2010-08-11 安立股份有限公司 发射功率测定方法、发射功率测定用耦合器以及发射功率测定装置
US20100306165A1 (en) * 2009-05-27 2010-12-02 Sun Microsystems, Inc. Radio frequency microscope for amplifying and analyzing electromagnetic signals
CN102016608A (zh) * 2008-05-09 2011-04-13 安立股份有限公司 用于测定辐射功率的方法、辐射功率的测定用耦合器以及用于测定辐射功率的装置
US20120050118A1 (en) * 2010-08-31 2012-03-01 Anritsu Corporation Radiation power measuring method and radiation power measuring apparatus
US20140327586A1 (en) * 2013-05-03 2014-11-06 The Howland Company Reflective Ellipsoid Chamber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1100625A (en) * 1977-04-01 1981-05-05 Leland H. Hemming Plane wave lens
JP2003332785A (ja) * 2002-05-14 2003-11-21 Advanced Telecommunication Research Institute International 電波伝搬用空間
US7688246B2 (en) * 2005-05-10 2010-03-30 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
CN102546056B (zh) * 2011-12-30 2014-04-16 国家无线电监测中心检测中心 手机的全向辐射功率的同步测量方法
CN106161704B (zh) * 2015-04-10 2019-07-12 深圳市通用测试系统有限公司 无线终端的测试系统
US10012683B2 (en) * 2015-04-10 2018-07-03 General Test Systems Inc. System for testing wireless terminal and method for controlling same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931798A (en) * 1987-06-03 1990-06-05 Tokin Corporation Electromagnetic anechoic chamber with an inner electromagnetic wave reflection surface and an electromagnetic wave absorption small ball disposed in the chamber
CN101802625A (zh) * 2007-09-28 2010-08-11 安立股份有限公司 发射功率测定方法、发射功率测定用耦合器以及发射功率测定装置
CN102016608A (zh) * 2008-05-09 2011-04-13 安立股份有限公司 用于测定辐射功率的方法、辐射功率的测定用耦合器以及用于测定辐射功率的装置
US20100306165A1 (en) * 2009-05-27 2010-12-02 Sun Microsystems, Inc. Radio frequency microscope for amplifying and analyzing electromagnetic signals
US20120050118A1 (en) * 2010-08-31 2012-03-01 Anritsu Corporation Radiation power measuring method and radiation power measuring apparatus
US20140327586A1 (en) * 2013-05-03 2014-11-06 The Howland Company Reflective Ellipsoid Chamber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282266A4 *

Also Published As

Publication number Publication date
EP3282266A1 (en) 2018-02-14
EP3282266A4 (en) 2019-01-02
US20180172747A1 (en) 2018-06-21
CN106160893A (zh) 2016-11-23
CN106160893B (zh) 2019-06-14
US10416214B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2016161897A1 (zh) 无线终端的测试系统及用于其的控制方法
WO2016161654A1 (zh) 无线终端的测试系统及用于其的控制方法
WO2016161898A1 (zh) 无线终端的测试系统
KR101009630B1 (ko) 안테나 방사 성능 측정 장치 및 그 설계 방법
TWI635290B (zh) 應用於多重路徑環境下的天線輻射場型量測系統
CN106936524B (zh) 无线终端的测试系统
JP4438905B2 (ja) 放射効率測定装置および放射効率測定方法
TWI676035B (zh) 天線輻射場型自動量測系統
JP7329085B2 (ja) 高速ota生産ラインテストプラットフォーム
CN106161703B (zh) 无线终端的测试系统及用于其的控制方法
CN106291145B (zh) 无线终端的测试系统
Boehm et al. Robotically controlled directivity and gain measurements of integrated antennas at 280 GHz
CN109037871B (zh) 一种太赫兹波导极化衰减装置
US11372037B2 (en) Freespace antenna measurement system
TWI674416B (zh) 用於量測天線的自動化系統
CN205356355U (zh) 无线终端的测试系统
CN111212177B (zh) 无线终端的测试系统
CN111211846B (zh) 无线终端的测试系统
TWM583134U (zh) 環形縮距天線測試裝置
WO2021062816A1 (zh) 一种基站设备的检测装置及检测方法
JP2013019856A (ja) 無線端末のアンテナ反射損測定方法および測定装置
CN115276836A (zh) 一种紧缩场测试系统
JP2023181951A (ja) 改善された信号伝送路を有する電波装置テストシステム
CN114747114A (zh) 基于天线阵列的信号处理方法和装置
JP2000171503A (ja) Emi測定方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016776072

Country of ref document: EP