WO2016161754A1 - 显示驱动方法、驱动电路和显示装置 - Google Patents

显示驱动方法、驱动电路和显示装置 Download PDF

Info

Publication number
WO2016161754A1
WO2016161754A1 PCT/CN2015/088558 CN2015088558W WO2016161754A1 WO 2016161754 A1 WO2016161754 A1 WO 2016161754A1 CN 2015088558 W CN2015088558 W CN 2015088558W WO 2016161754 A1 WO2016161754 A1 WO 2016161754A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
sub
pixel
calculated
larger
Prior art date
Application number
PCT/CN2015/088558
Other languages
English (en)
French (fr)
Inventor
陈睿思
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to KR1020167029146A priority Critical patent/KR101869336B1/ko
Priority to EP15832725.4A priority patent/EP3282439B1/en
Priority to US14/913,564 priority patent/US9916786B2/en
Priority to JP2016565348A priority patent/JP6304908B2/ja
Publication of WO2016161754A1 publication Critical patent/WO2016161754A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present disclosure relates to a display device for a color vision defect person, and in particular to a display driving method, a driving circuit that performs the display driving method, and a display device including the driving circuit.
  • Color blindness is a common visual abnormality or missing disease, usually referred to by genetic factors, which is manifested by the lack of recognition of certain colors or the inability to recognize colors. According to statistics, male color blindness accounts for about 8% of the total male population, and female color blindness accounts for about 0.5% of the total female population. Due to the lack of color-discoloration ability, it brings a lot of inconvenience to the work and life of patients.
  • L-cone cells sensitive to long wavelength (535-575 nm), M-cone cells sensitive to medium wavelength (500-550 nm) and short wavelength (400-450 nm).
  • M-cone cells sensitive to medium wavelength (500-550 nm) and short wavelength (400-450 nm).
  • Sensitive S-cone cells The cause of color blindness is the absence or variation of retinal cone cells.
  • the deletion of L-cone cells corresponds to red dichromatic blindness
  • M-cone cells corresponds to green dichromatic blindness
  • S-cone cells corresponds to blue dichromatic blindness. Red and green color blindness cannot distinguish between red and green, and blue two-color blind cannot distinguish between blue and green.
  • Hans Brettel proposed a two-color blind simulation model.
  • the color observed by each two-color blind is concentrated on two planes, but since the angles of the two planes where the two color blinds are observed are small, they can be Approximating a plane, we define the plane as a two-color blind color surface, thus resulting in a simplified two-color blind model.
  • two-color blindness is caused by a deletion of three cone cells. This deletion corresponds to a change in one signal in the LMS space, while the other two signals remain unchanged. Therefore, red, green, and blue
  • the three two-color blinds are equivalent to transmitting the colors of the RGB space in different directions along the three directions of the LMS.
  • red and green are blind to red and green.
  • the color discrimination ability is lower, because the red and green colors are distributed on both sides of the red and green color blind color planes, and when projected onto the color surface, the two will coincide and be confused.
  • the ability to distinguish between blue and green colors is lower because blue and green colors are distributed on both sides of their color-blind color surface.
  • the image can be processed by rotating the H component of each sub-pixel.
  • the image is adjusted by this method, the image is easily distorted.
  • An object of the present disclosure is to provide a display driving method, a driving circuit that performs the display driving method, and a display device including the driving circuit.
  • a display driving method includes:
  • Stp1 obtaining the hue of each sub-pixel in the input image
  • Stp2 determining whether the sub-pixel to be calculated in the input image is a color that the two-color blind patient can distinguish from the reference color
  • Stp3 calculates the hue of the sub-pixel of the output image based on the judgment result of step Stp2.
  • step Stp3 further calculates the hue of the sub-pixel of the output image according to formula (1):
  • H 1 H 0 + ⁇ H (1)
  • H 0 is the hue of the sub-pixel to be calculated in the input image
  • H 1 is a hue of a sub-pixel in the output image corresponding to a sub-pixel position to be calculated in the input image
  • the sub-pixel to be calculated is a color that the two-color blind patient cannot distinguish from the reference color, ⁇ H ⁇ 0, so that the sub-pixel corresponding to the sub-pixel position to be calculated in the output image becomes a two-color blind patient a color that can be distinguished from the reference color;
  • the step Stp1 further includes acquiring saturation of each sub-pixel in the input image
  • the saturation of the sub-pixel of the output image is calculated according to the formula (2):
  • S 1 is the saturation of the sub-pixel to be calculated in the output image
  • S 0 is the saturation of the sub-pixel in the input image that is the same as the position of the sub-pixel to be calculated
  • the first range is [315°, 360°]
  • the second range is [0°, 45°]
  • H 0 is within the first range or within the second range
  • the step Stp2 when the hue of the sub-pixel to be calculated in the input image is in the third range, determining that the sub-pixel to be calculated is a color that cannot be distinguished from the reference color,
  • the third range is [75°, 165°], and when H 0 is within the third range, in the step Stp3, 1° ⁇ ⁇ H ⁇ 40°, 0 ⁇ ⁇ S ⁇ 1.
  • the luminance values of the respective sub-pixels in the output image are the same as the luminance values of the corresponding sub-pixels in the input image.
  • the display driving method further includes: between the Stp1 and the Stp2:
  • the Stp2 When the calculation start signal is received, the Stp2 is executed, and the output image is displayed according to the calculation result of the Stp3;
  • a driving circuit for a display device wherein the driving circuit includes:
  • An input signal acquisition module configured to acquire a color tone of each sub-pixel in the input image
  • the color determination module is configured to determine whether a sub-pixel to be calculated in the input image is a color that the two-color blind patient can distinguish from the reference color;
  • an output signal calculation module wherein the output signal calculation module is connected to the color determination module, and calculates a hue of the sub-pixel of the output image according to the determination result of the color determination module.
  • the output signal calculation module is further configured to calculate a hue of the sub-pixel of the output image according to formula (1):
  • H 1 H 0 + ⁇ H (1)
  • H 0 is the hue of the sub-pixel to be calculated in the input image
  • H 1 is a hue of a sub-pixel in the output image corresponding to a sub-pixel position to be calculated in the input image
  • the sub-pixel to be calculated is a color that the two-color blind patient cannot distinguish from the reference color, ⁇ H ⁇ 0, so that the sub-pixel corresponding to the sub-pixel position to be calculated in the output image becomes a two-color blind patient a color that can be distinguished from the reference color;
  • the input signal acquisition module is further configured to acquire saturation of each sub-pixel in the input image
  • the output signal calculation module is further configured to calculate a saturation of the sub-pixel of the output image according to formula (2):
  • S 1 is the saturation of the sub-pixel to be calculated in the output image
  • S 0 is the saturation of the sub-pixel in the input image that is the same as the position of the sub-pixel to be calculated
  • the color determination module determines that the sub-pixel to be calculated is a color that cannot be distinguished from the reference color, ⁇ 40° ⁇ H ⁇ -1 °, -1 ⁇ ⁇ S ⁇ 0, wherein the first range is [315°, 360°], the second range is [0°, 45°], and the color determination module stores the A range and the second range.
  • the color determining module determines that the sub-pixel to be calculated is a color that cannot be distinguished from the reference color, the first The third range is [75°, 165°], when H 0 is within the third range, 1° ⁇ ⁇ H ⁇ 40°, 0 ⁇ ⁇ S ⁇ 1, and the third range is stored in the color determination module. .
  • the output signal calculation module is configured to control a brightness value of each sub-pixel in the output image to be the same as a brightness value of a corresponding sub-pixel in the input image.
  • the display device further includes a trigger module and a control module, wherein the trigger module is connected to the control module, so that the trigger module can send a trigger signal to the control module, and the control module further
  • the output signal calculation module is connected to enable the control module to issue a calculation start signal to the output signal calculation module after receiving the trigger signal, and the output signal calculation module can receive the calculation start signal after receiving the calculation start signal start calculating.
  • control module is configured to control the driving circuit to directly output the input image when the trigger signal is not received.
  • a display device including a driving circuit and a display panel, wherein the driving circuit is the driving circuit provided by the present disclosure, and an output end of the driving circuit The inputs of the display panel are connected.
  • FIG. 1 is a schematic flow chart of a display driving method provided by the present disclosure
  • FIG. 2 is a block diagram of a driving circuit provided by the present disclosure.
  • a display driving method includes:
  • Stp1 obtaining the hue of each sub-pixel in the input image
  • Stp2 determining whether the sub-pixel to be calculated in the input image is a color that the two-color blind patient can distinguish from the reference color
  • Stp3 calculates the hue of the sub-pixel of the output image based on the judgment result of step Stp2.
  • step Stp3 includes calculating the hue of the sub-pixel of the output image according to formula (1):
  • H 1 H 0 + ⁇ H (1)
  • H 0 is the hue of the sub-pixel to be calculated in the input image
  • H 1 is a hue of a sub-pixel in the output image corresponding to a sub-pixel position to be calculated in the input image
  • the sub-pixel to be calculated is a color that the two-color blind patient cannot distinguish from the reference color, ⁇ H ⁇ 0, so that the sub-pixel corresponding to the sub-pixel position to be calculated in the output image becomes a two-color blind patient a color that can be distinguished from the reference color;
  • the reference color refers to one of two colors that cannot be distinguished by a two-color blind patient. For example, when the sub-pixel color to be calculated is red, the reference color is green; when the color of the sub-pixel to be calculated is green, the reference color is red; when the sub-pixel to be calculated is blue, the reference color It is green.
  • the color of all sub-pixels in the output image is a two-color blind patient
  • the color is distinguishable from the reference color, and therefore, the two-color blind patient can correctly discriminate the image (ie, output image) displayed by the display device by the driving method provided by the present disclosure.
  • the value of ⁇ H can be determined from a specifically selected two-color blind simulation model.
  • the projection of the color of each sub-pixel in the output image on the two-color blind color surface is not the same as the corresponding reference color in the two-color blind.
  • the projections on the color plane overlap, and there is also a distance between the projection of the reference color on the two-color blind color surface, the distance being sufficient for the two-color blind patient to distinguish the color of the sub-pixels in the output image from the reference color Open.
  • the saturation of the sub-pixel of the output image is calculated according to the formula (2):
  • step Stp3 Also included in the step Stp3 is to calculate the saturation of the sub-pixel of the output image according to the formula (2):
  • S 1 is the saturation of the sub-pixel to be calculated in the output image
  • S 0 is the saturation of the sub-pixel in the input image that is the same as the position of the sub-pixel to be calculated
  • the contrast of the colors that the two-color blind patient cannot distinguish in the input image can be further increased, thereby enabling the two-color blind patient to see an output image closer to the input image.
  • the saturation of the sub-pixels in the input image can be adjusted according to the severity of the color-blind patient.
  • the saturation is adjusted by no more than 0.45 units, ie
  • the color is input to the driving circuit that performs the driving method.
  • the color of H 0 in the first range or the second range can be defined as red, and the first range is [315°, 360°], The second range is [0°, 45°]. Therefore, in the step Stp2, when the hue of the sub-pixel to be calculated in the input image is within the first range or within the second range, it is determined that the sub-pixel to be calculated is incapable of being associated with the reference color (green) ) the color of the distinction.
  • the hue H 0 of the sub-pixel to be calculated in the input image is within the first range or within the second range, -40° ⁇ ⁇ H ⁇ -1°, -1 ⁇ ⁇ S ⁇ 0 in the step Stp3.
  • hue H 0 if the first sub-pixel to be calculated is calculated to be greater than the second sub-pixel hue H 0, then the hue is calculated to be involved in the first sub-pixels is smaller than the calculated ⁇ H second participation
  • the ⁇ H of the hue calculation of the sub-pixel to be calculated likewise, the ⁇ S of the hue calculation participating in the first sub-pixel to be calculated is smaller than the ⁇ S of the hue calculation participating in the second sub-pixel to be calculated.
  • the green color and the red color cannot be normally distinguished.
  • the color tone of the color is in the third range, it is determined that the sub-pixel to be calculated is a color that cannot be distinguished from the reference color (red), wherein
  • the third range is [75°, 165°].
  • H 0 is within the third range, 1° ⁇ ⁇ H ⁇ 40°, and 0 ⁇ ⁇ S ⁇ 1.
  • the larger the H 0 is, the larger the ⁇ H is, the larger the H 0 is, the larger the ⁇ S is means that if the hue H 0 of the first sub-pixel to be calculated is larger than the second sub-pixel to be calculated The hue H 0 , then the ⁇ H of the hue calculation participating in the first sub-pixel to be calculated is larger than the ⁇ H of the hue calculation participating in the second sub-pixel to be calculated, and likewise, the hue of the first sub-pixel to be calculated The calculated ⁇ S is greater than the ⁇ S of the hue calculation participating in the second sub-pixel to be calculated.
  • H 0, the smaller the ⁇ H, H 0, the smaller the ⁇ S means: hue H 0 if the first sub-pixel to be calculated to be greater than the second calculated hue H 0 sub-pixels, Then the ⁇ H of the tone calculation of the sub-pixel to be calculated is smaller than the ⁇ H of the tone calculation of the sub-pixel to be calculated, and likewise, the ⁇ S of the tone calculation of the sub-pixel to be calculated is less than the participation. The ⁇ S of the second tonal calculation of the sub-pixel to be calculated.
  • the luminance value of each sub-pixel in the output image is the same as the luminance value of the corresponding sub-pixel in the input image.
  • the color of the sub-pixel in the input image needs to be adjusted.
  • the pair does not need to The color of the sub-pixel in the input image is adjusted.
  • the display driving method further comprises: between the Stp1 and the Stp2:
  • the calculation start signal can be artificially provided by the viewer, and how the artificial calculation start signal is artificially provided will be described in detail below, which will not be described herein.
  • the driving circuit includes:
  • An input signal acquisition module 100 configured to acquire a color tone of each sub-pixel in the input image
  • a color determination module 200 configured to determine whether a sub-pixel to be calculated in the input graphic is a color that the two-color blind patient can distinguish from the reference color
  • the output signal calculation module 300 is connected to the color determination module 200 and calculates the hue of the sub-pixel of the output image according to the determination result of the color determination module 200.
  • the output signal calculation module 300 is further configured to calculate the hue of the sub-pixel of the output image according to the formula (1):
  • H 1 H 0 + ⁇ H (1)
  • H 0 is the hue of the sub-pixel to be calculated in the input image
  • H 1 is a hue of a sub-pixel in the output image corresponding to a sub-pixel position to be calculated in the input image
  • the sub-pixel to be calculated is a color that the two-color blind patient cannot distinguish from the reference color, ⁇ H ⁇ 0, so that the sub-pixel corresponding to the sub-pixel position to be calculated in the output image becomes a two-color blind patient a color that can be distinguished from the reference color;
  • the color determination module 200 stores a two-color blind simulation model, and brings the color of each sub-pixel in the input image into the two-color blind simulation model, so that it can be determined whether each sub-pixel in the input image is The color that the two-color blind patient can distinguish from the reference color.
  • the output signal calculation module 300 may include an adder to perform the calculation in the formula (1).
  • the above-described driving method provided by the present disclosure can be performed by the above-described driving circuit provided by the present disclosure, so that an input image can be converted into an output image that can be correctly recognized by a two-color blind patient. Moreover, the output signal calculation module 300 only calculates the color that the two-color blind patient cannot distinguish from the reference color, and does not calculate the color that the two-color blind patient can distinguish from the reference color, thereby maximally retaining the original characteristics of the image, and Reduced the amount of calculation.
  • the input signal acquisition module 100 is further configured to acquire saturation of each sub-pixel in the input image
  • the output signal calculation module is further configured to calculate a saturation of the sub-pixel of the output image according to formula (2):
  • S 1 is the saturation of the sub-pixel to be calculated in the output image
  • S 0 is the saturation of the sub-pixel in the input image that is the same as the position of the sub-pixel to be calculated
  • the driving circuit is used to implement a display suitable for red dichromatic blindness, and a red dichromatic patient cannot color (ie, red) and green with a hue in a first range or a second range.
  • a red dichromatic patient cannot color (ie, red) and green with a hue in a first range or a second range.
  • H 0 is within the first range or within the second range, -40° ⁇ ⁇ H ⁇ -1°, -1 ⁇ ⁇ S ⁇ 0, wherein the first range is [315°, 360°], the second range is [0°, 45°], and the first range and the second range may be stored in the color determination module 200.
  • the driving circuit is used to implement a display suitable for green dichromatic blindness, and a green dichromatic patient cannot distinguish a color (ie, green) having a hue in a third range from red.
  • a green dichromatic patient cannot distinguish a color (ie, green) having a hue in a third range from red.
  • the hue of the sub-pixel to be calculated in the input image is in the third range
  • determining that the sub-pixel to be calculated is a color that cannot be distinguished from the reference color
  • the third range is [75°, 165°]
  • H 0 is within the third range, 1° ⁇ ⁇ H ⁇ 40°, 0 ⁇ ⁇ S ⁇ 1
  • the third range may be stored in the color determination module 200.
  • the luminance values of the respective sub-pixels in the output image are the same as the luminance values of the corresponding sub-pixels in the input image.
  • the display device further includes a trigger module 400 and a control module 500.
  • the trigger module 400 can send a trigger signal to the control module 500, and the control module 500 can output the signal 300 to the output signal after receiving the trigger signal.
  • a calculation start signal is issued, and the output signal calculation module 300 may start calculation after receiving the calculation start signal (ie, perform calculation in the formula (1) and/or the formula (2)).
  • control module 500 can control the driving circuit to directly output the input image when the trigger signal is not received.
  • a display device including a driving circuit and a display panel, wherein the driving circuit is the driving circuit provided by the present disclosure, and an output end of the driving circuit The inputs of the display panel are connected.
  • the display device is suitable for a two-color blind patient to view a display graphic, and the display device can ensure the trueness of the image to the utmost extent and minimize the amount of calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Image Processing (AREA)

Abstract

一种显示驱动方法,包括:Stp1、获取输入图像中各个亚像素的色调;Stp2、判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;Stp3、根据判断结果计算输出图像的亚像素的色调。

Description

显示驱动方法、驱动电路和显示装置
相关申请的交叉引用
本公开主张在2015年4月9日在中国提交的中国专利申请号No.201510166719.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及用于色觉缺陷者的显示装置,具体地,涉及一种显示驱动方法、一种执行该显示驱动方法的驱动电路和一种包括该驱动电路的显示装置。
背景技术
色盲是一种普遍的视觉异常或缺失的疾病,通常为遗传因素所指,表现为对某些颜色认知力的缺失或者不能识别颜色。据统计,男性色盲大约占男性总人口的8%,女性色盲大约占女性总人口的0.5%。由于色盲变色能力的缺失,给患者的工作、生活带来很多的不便。
人类的视网膜上具有三种锥细胞,分比为对长波长(535-575nm)敏感的L-锥细胞、对中波长(500-550nm)敏感的M-锥细胞和对短波长(400-450nm)敏感的S-锥细胞。色盲产生的原因在于视网膜锥细胞的缺失或变异。例如,L-锥细胞的缺失对应红二色盲,M-锥细胞的缺失对应绿二色盲,S-锥细胞的缺失对应蓝二色盲。红、绿二色盲不能区分红色和绿色,蓝二色盲不能区分蓝色与绿色。
Hans Brettel提出了一种二色盲仿真模型,每种二色盲所观察到的颜色集中在两个平面上,但由于每种二色盲观察到的颜色所在的两个平面夹角很小,可以把它们近似为一个平面,我们定义该平面为二色盲的颜色面,因此得到了简化的二色盲模型。
前面介绍过,二色盲是三种锥细胞的一种缺失造成的,这种缺失在LMS空间对应的是某一种信号的变化,而其他两种信号保持不变,因此,红、绿、蓝三种二色盲就相当于把RGB空间的颜色沿着LMS三个方向分别透射在不同的平面上。经过科学家们的实验研究发现,红绿二色盲对红、绿这两类颜 色的区分能力较低,这是因为红、绿两类颜色分布在红、绿二色盲颜色面的两侧,当被投影到颜色面时,二者会重合,从而被混淆。对于蓝色忙患者,其对蓝绿两类颜色区分能力较低,是因为蓝、绿两类颜色分布在其色盲颜色面两侧。
现有技术中,可以通过旋转各个亚像素的H分量来对图像进行处理,但是,利用这种方法对图像进行调整后,容易造成图像的失真。
发明内容
本公开的目的在于提供一种显示驱动方法、一种执行该显示驱动方法的驱动电路和一种包括该驱动电路的显示装置。
为了实现上述目的,作为本公开的一个方面,提供一种显示驱动方法,其中,所述显示驱动方法包括:
Stp1、获取输入图像中各个亚像素的色调;
Stp2、判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
Stp3、根据步骤Stp2的判断结果计算输出图像的亚像素的色调。
可选地,步骤Stp3进一步根据公式(1)计算输出图像的亚像素的色调:
H1=H0+ΔH  (1);
其中,H0是输入图像中待计算的亚像素的色调;
H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
可选地,在所述步骤Stp1中进一步包括获取所述输入图像中各个亚像素的饱和度;
在所述步骤Stp3中进一步包括根据公式(2)计算输出图像的亚像素的饱和度:
S1=S0+ΔS  (2);
其中,S1是输出图像中待计算亚像素的饱和度;
S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔS=0。
可选地,|ΔS|≤0.45。
可选地,在所述步骤Stp2中,当所述输入图像中待计算的亚像素的色调在第一范围内或第二范围内时,则判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第一范围为[315°,360°],所述第二范围为[0°,45°],当H0在第一范围内或第二范围内时,在所述步骤Stp3中,-40°≤ΔH≤-1°,-1<ΔS<0。
可选地,当15°<H0≤45°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
当315°≤H0<345°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
当345°≤H0≤360°时,或者0°≤H0≤15°时,在所述步骤Stp3中,ΔH=-40°,ΔS=-0.1。
可选地,在所述步骤Stp2中,当所述输入图像中待计算的亚像素的色调在第三范围内时,则判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第三范围为[75°,165°],当H0在所述第三范围内时,在所述步骤Stp3中,1°≤ΔH≤40°,0<ΔS<1。
可选地,当75°≤H0<105°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
当105°≤H0≤135°时,在所述步骤Stp3中,ΔH=40°,ΔS=0.1;
当135°<H0≤165°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越小,H0越大,ΔS越小。
可选地,所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
可选地,所述显示驱动方法进一步包括在所述Stp1和所述Stp2之间进行的:
判断是否接收到计算开始信号;
当接收到所述计算开始信号时,执行所述Stp2,并根据所述Stp3的计算结果显示所述输出图像;
当未接收到所述计算开始信号时,直接将所述输入图像输出。
作为本方的另一个方面,提供一种用于显示装置的驱动电路,其中,所述驱动电路包括:
输入信号获取模块,所述输入信号获取模块用于获取输入图像中各个亚像素的色调;
颜色判定模块,所述颜色判定模块用于所述判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
输出信号计算模块,所述输出信号计算模块与所述颜色判定模块相连,并根据所述颜色判定模块的判断结果计算输出图像的亚像素的色调。
可选地,所述输出信号计算模块进一步用于根据公式(1)计算输出图像的亚像素的色调:
H1=H0+ΔH  (1);
其中,H0是输入图像中待计算的亚像素的色调;
H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
可选地,所述输入信号获取模块进一步用于获取输入图像中各个亚像素的饱和度,所述输出信号计算模块进一步用于根据公式(2)计算输出图像的亚像素的饱和度:
S1=S0+ΔS  (2);
其中,S1是输出图像中待计算亚像素的饱和度;
S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔS=0。
可选地,|ΔS|≤0.45。
可选地,当H0在第一范围内或第二范围内时,所述颜色判定模块判定所述待计算的亚像素为无法与参考颜色相区分的颜色,-40°≤ΔH≤-1°,-1<ΔS<0,其中,所述第一范围为[315°,360°],所述第二范围为[0°,45°],所述颜色判定模块中存储有所述第一范围和所述第二范围。
可选地,当15°<H0≤45°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
当315°≤H0<345°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
当345°≤H0≤360°时,或者0°≤H0≤15°时,ΔH=-40°,ΔS=-0.1。
可选地,当所述输入图像中待计算的亚像素的色调在第三范围内时,所述颜色判定模块判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第三范围为[75°,165°],当H0在所述第三范围内时,1°≤ΔH≤40°,0<ΔS<1,所述颜色判定模块中存储有所述第三范围。
可选地,当75°≤H0<105°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
当105°≤H0≤135°时,ΔH=40°,ΔS=0.1;
当135°<H0≤165°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且 H0越大,ΔH越小,H0越大,ΔS越小。
可选地,所述输出信号计算模块用于控制所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
可选地,所述显示装置进一步包括触发模块和控制模块,所述触发模块与所示控制模块相连,以使得所述触发模块能够向所述控制模块发出触发信号,所述控制模块进一步与所述输出信号计算模块相连,以使得所述控制模块能够在接收到所述触发信号后向所述输出信号计算模块发出计算开始信号,所述输出信号计算模块能够在接收到所述计算开始信号后开始计算。
可选地,所述控制模块能够在未接收到所述触发信号时,控制所述驱动电路直接输出所述输入图像。
作为本公开的再一个方面,提供一种显示装置,所述显示装置包括驱动电路和显示面板,其中,所述驱动电路为本公开所提供的上述驱动电路,所述驱动电路的输出端与所述显示面板的输入端相连。
在本公开所提供的方法中,只对二色盲患者无法与参考颜色相区分的颜色进行调整,而不对二色盲患者可以与参考颜色相区分的颜色进行调整,最大程度上保留了输出图像的真实度,并且降低了对亚像素进行颜色调整时所需的计算量。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开所提供的显示驱动方法的流程示意图;
图2是本公开所提供的驱动电路的模块示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限 制本公开。
如图1所示,作为本方的一个方面,提供一种显示驱动方法,其中,所述显示驱动方法包括:
Stp1、获取输入图像中各个亚像素的色调;
Stp2、判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
Stp3、根据步骤Stp2的判断结果计算输出图像的亚像素的色调。
其中,步骤Stp3包括根据公式(1)计算输出图像的亚像素的色调:
H1=H0+ΔH  (1);
其中,H0是输入图像中待计算的亚像素的色调;
H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
在本公开中,所述参考色是指,二色盲患者无法区别的两个颜色中的一个。例如,当待计算的亚像素颜色为红色时,参考色则为绿色;当待计算的亚像素的颜色为绿色时,参考色则为红色;当待计算的亚像素为蓝色时,参考色则为绿色。
需要指出的是,如何判断输入图像中的亚像素的颜色是否为二色盲患者无法与参考颜色相区分的颜色是本领域技术人员所公知的。例如,在Brettel H等人于1997年发表的论文“Computerized simulation of color appearance for dichormats”中就公开了一种二色盲仿真模型,通过该模型可以获得不同的二色盲患者不能够与参考颜色相区分的颜色。当然,本领域技术人员还可以根据其他的二色盲仿真模型确定二色盲患者不能够与参考颜色相区分的颜色。
经过计算后,所述输出图像中所有亚像素的颜色均为二色盲患者能 够与参考颜色相区分的颜色,因此,二色盲患者可以正确地辨别利用本公开所提供的驱动方法驱动显示装置显示的图像(即,输出图像)。
在本公开中,可以根据具体选定的二色盲仿真模型来确定ΔH的值。例如,当利用上文中所述的Brettel H等人提出的二色盲仿真模型进行计算时,输出图像中各个亚像素的颜色在二色盲颜色面上的投影不与相应的参考颜色在所述二色盲颜色面上的投影重叠,并且还与所述参考颜色在所述二色盲颜色面上的投影之间存在一定的距离,该距离足以使二色盲患者将输出图像中亚像素的颜色与参考颜色区分开来。
通过上述描述可知,在本公开所提供的方法中,只对二色盲患者无法与参考颜色相区分的颜色进行调整,而不对二色盲患者可以与参考颜色相区分的颜色进行调整,最大程度上保留了输出图像的真实度,并且降低了对亚像素进行颜色调整时所需的计算量。
可选地,在所述步骤Stp3中还包括根据公式(2)计算输出图像的亚像素的饱和度:
在所述步骤Stp3中还包括根据公式(2)计算输出图像的亚像素的饱和度:
S1=S0+ΔS  (2);
其中,S1是输出图像中待计算亚像素的饱和度;
S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔS=0。
通过对输入图像的亚像素的饱和度进行调整,可以进一步增加二色盲患者不能区分的颜色在输入图像中的对比度,从而使得二色盲患者能够看到更接近于输入图像的输出图像。
可以根据色盲患者的严重程度对输入图像中亚像素的饱和度进行调节,可选地,饱和度的调整不超过0.45个单位,即|ΔS|≤0.45。
为了减少计算步骤,可以将事先确定的“二色盲患者无法正确辨认 的颜色”输入至执行所述驱动方法的驱动电路中。
例如,对于红二色盲而言,无法分辨红色与绿色,通常,可以将H0在第一范围内或第二范围内的颜色定义为红色,第一范围为[315°,360°],第二范围为[0°,45°]。因此,在所述步骤Stp2中,当所述输入图像中待计算的亚像素的色调在第一范围内或第二范围内时,则判定所述待计算的亚像素为无法与参考颜色(绿色)相区分的颜色。当输入图像中待计算的亚像素的色调H0在第一范围内或第二范围内时,在所述步骤Stp3中,-40°≤ΔH≤-1°,-1<ΔS<0。
为了使输出图像中的图形尽可能与输入图像中的图形一致,可选地,当15°<H0≤45°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
当315°≤H0<345°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
当345°≤H0≤360°时,或者0°≤H0≤15°时,在所述步骤Stp3中,ΔH=-40°,ΔS=-0.1。
需要解释的是,“当15°<H0≤45°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大”的意思是:如果第一个待计算的亚像素的色调H0大于第二个待计算的亚像素的色调H0,那么参与第一个待计算的亚像素的色调计算的ΔH大于参与第二个待计算的亚像素的色调计算的ΔH,同样地,参与第一个待计算的亚像素的色调计算的ΔS大于参与第二个待计算的亚像素的色调计算的ΔS。
“当315°≤H0<345°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小”的意思是:如果第一个待计算的亚像素的色调H0大于第二个待计算的亚像素的色调H0,那么参与第一个待计算的亚像素的色调计算的ΔH小于参与第二个待计算的亚像素的色调计算的ΔH,同样地,参与第一个待计算的亚像素的色调计算的ΔS小于参与第二个待计算的亚像素的色调计算的ΔS。
对于绿二色盲而言,无法正常分辨绿色和红色,当颜色的色调在第 三范围内时,则判定所述待计算的亚像素为无法与参考颜色(红色)相区分的颜色,其中,所述第三范围为[75°,165°]。当H0在所述第三范围内时,1°≤ΔH≤40°,0<ΔS<1。
可选地,当75°≤H0<105°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
当105°≤H0≤135°时,在所述步骤Stp3中,ΔH=40°,ΔS=0.1;
当135°<H0≤165°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越小,H0越大,ΔS越小。
需要解释的是,“H0越大,ΔH越大,H0越大,ΔS越大”的意思是:如果第一个待计算的亚像素的色调H0大于第二个待计算的亚像素的色调H0,那么参与第一个待计算的亚像素的色调计算的ΔH大于参与第二个待计算的亚像素的色调计算的ΔH,同样地,参与第一个待计算的亚像素的色调计算的ΔS大于参与第二个待计算的亚像素的色调计算的ΔS。
“H0越大,ΔH越小,H0越大,ΔS越小”的意思是:如果第一个待计算的亚像素的色调H0大于第二个待计算的亚像素的色调H0,那么参与第一个待计算的亚像素的色调计算的ΔH小于参与第二个待计算的亚像素的色调计算的ΔH,同样地,参与第一个待计算的亚像素的色调计算的ΔS小于参与第二个待计算的亚像素的色调计算的ΔS。
为了减少计算量,在本公开中,无需对输入图像中各个亚像素的亮度进行调节,即,所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
为了提高显示装置的适用性,可选地,当观看显示图像的人为色盲患者时,需要对输入图像中亚像素的颜色进行调节,当观看显示图像的人为色觉正常的人时,则不需要对输入图像中亚像素的颜色进行调节。
相应地,所述显示驱动方法还包括在所述Stp1和所述Stp2之间进行的:
判断是否接收到计算开始信号;
当接收到所述计算开始信号时,执行所述Stp2,并根据所述Stp2 的计算结果显示所述输出图像;
当未接收到所述计算开始信号时,直接将所述输入图像输出。
可以由观看者人为地提供所述计算开始信号,下文中将详细地介绍如何人为地提供所述计算开始信号,这里先不赘述。
作为本公开的另一个方面,提供一种用于显示装置的驱动电路,该驱动电路用于执行本公开所提供的上述驱动方法,其中,如图2所示,所述驱动电路包括:
输入信号获取模块100,该输入信号获取模块100用于获取输入图像中各个亚像素的色调;
颜色判定模块200,该颜色判定模块200用于判断输入图形中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
输出信号计算模块300,该输出信号计算模块300与颜色判定模块200相连,并根据颜色判定模块200的判断结果计算输出图像的亚像素的色调。
其中,该输出信号计算模块300进一步用于根据公式(1)计算输出图像的亚像素的色调:
H1=H0+ΔH  (1);
其中,H0是输入图像中待计算的亚像素的色调;
H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
在本公开所提供的驱动电路中,颜色判定模块200中存储有二色盲仿真模型,将输入图像中各个亚像素的颜色带入二色盲仿真模型中,从而可以判定输入图像中各个亚像素是否为二色盲患者能够与参考颜色相区分的颜色。
输出信号计算模块300可以包括加法器,从而执行公式(1)中的计算。
利用本公开所提供的上述驱动电路可以执行本公开所提供的上述驱动方法,从而可以将输入图像转换为二色盲患者能够正确识别的输出图像。并且,输出信号计算模块300仅对二色盲患者无法与参考颜色相区分的颜色进行计算,不对二色盲患者可以与参考颜色相区分的颜色进行计算,从而最大程度地保留了图像的原始特性,并减小了计算量。
可选地,输入信号获取模块100还用于获取输入图像中各个亚像素的饱和度,所述输出信号计算模块还用于根据公式(2)计算输出图像的亚像素的饱和度:
S1=S0+ΔS  (2);
其中,S1是输出图像中待计算亚像素的饱和度;
S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔS=0。
如上文中所述,通过调整饱和度可以进一步增加二色盲患者不能区分的颜色在输入图像中的对比度,从而使得二色盲患者能够看到更接近于输入图像的输出图像。可选地,|ΔS|≤0.45。
作为本公开的一种实施方式,所述驱动电路用于实现适用于红二色盲的显示,红二色盲患者无法将色调在第一范围内或第二范围内的颜色(即,红色)与绿色区分开来,因此,可选地,当H0在第一范围内或第二范围内时,-40°≤ΔH≤-1°,-1<ΔS<0,其中,所述第一范围为[315°,360°],所述第二范围为[0°,45°],可以将所述第一范围和所述第二范围存储在颜色判定模块200中。
为了进一步确保显示图像的真实度,可选地,当15°<H0≤45°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
当315°≤H0<345°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
当345°≤H0≤360°时,或者0°≤H0≤15°时,ΔH=-40°,ΔS=-0.1。
作为本公开的一种实施方式,所述驱动电路用于实现适用于绿二色盲的显示,绿二色盲患者无法将色调在第三范围内的颜色(即,绿色)与红色区分开来,因此,可选地,当所述输入图像中待计算的亚像素的色调在第三范围内时,则判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第三范围为[75°,165°],当H0在所述第三范围内时,1°≤ΔH≤40°,0<ΔS<1,可以将所述第三范围存储在颜色判定模块200中。
为了确保图像的真实度,可选地,当75°≤H0<105°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
当105°≤H0≤135°时,ΔH=40°,ΔS=0.1;
当135°<H0≤165°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越小,H0越大,ΔS越小。
为了减小计算量,可选地,所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
为了提高显示装置的适用性,可选地,当观看显示图像的人为色盲患者时,需要对输入图像中亚像素的颜色进行调节,当观看显示图像的人为色觉正常的人时,则不需要对输入图像中亚像素的颜色进行调节。为了实现这一目的,所述显示装置还包括触发模块400和控制模块500,触发模块400能够向控制模块500发出触发信号,控制模块500能够在接收到所述触发信号后向输出信号计算模块300发出计算开始信号,该输出信号计算模块300可以在接收到所述计算开始信号后开始计算(即,执行公式(1)和/或公式(2)中的计算)。
可选地,控制模块500能够在未接收到所述触发信号时,控制所述驱动电路直接输出所述输入图像。
作为本公开的再一个方面,提供一种显示装置,所述显示装置包括驱动电路和显示面板,其中,所述驱动电路为本公开所提供的上述驱动电路,所述驱动电路的输出端与所述显示面板的输入端相连。
所述显示装置适用于二色盲患者观看显示图形,并且,所述显示装置可以最大程度地保证图像的真实度,并且最大程度地减少计算量。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (22)

  1. 一种显示驱动方法,所述显示驱动方法包括:
    Stp1、获取输入图像中各个亚像素的色调;
    Stp2、判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
    Stp3、根据步骤Stp2的判断结果计算输出图像的亚像素的色调。
  2. 根据权利要求1所述的显示驱动方法,其中,所述步骤Stp3包括:
    根据公式(1)计算输出图像的亚像素的色调:
    H1=H0+ΔH   (1);
    其中,H0是输入图像中待计算的亚像素的色调;
    H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
    当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
    当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
  3. 根据权利要求1所述的显示驱动方法,其中,在所述步骤Stp 1中进一步包括获取所述输入图像中各个亚像素的饱和度;
    所述步骤Stp3进一步包括:
    根据公式(2)计算输出图像的亚像素的饱和度:
    S1=S0+ΔS   (2);
    其中,S1是输出图像中待计算亚像素的饱和度;
    S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
    当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
    当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜 色时,ΔS=0。
  4. 根据权利要求3所述的显示驱动方法,其中,|ΔS|≤0.45。
  5. 根据权利要求4所述的显示驱动方法,其中,在所述步骤Stp2中,当所述输入图像中待计算的亚像素的色调在第一范围内或第二范围内时,则判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第一范围为[315°,360°],所述第二范围为[0°,45°],当H0在第一范围内或第二范围内时,在所述步骤Stp3中,-40°≤ΔH≤-1°,-1<ΔS<0。
  6. 根据权利要求5所述的显示驱动方法,其中,
    当15°<H0≤45°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
    当315°≤H0<345°时,在所述步骤Stp3中,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
    当345°≤H0≤360°时,或者0°≤H0≤15°时,在所述步骤Stp3中,ΔH=-40°,ΔS=-0.1。
  7. 根据权利要求3至6中任意一项所述的显示驱动方法,其中,在所述步骤Stp2中,当所述输入图像中待计算的亚像素的色调在第三范围内时,则判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第三范围为[75°,165°],当H0在所述第三范围内时,在所述步骤Stp3中,1°≤ΔH≤40°,0<ΔS<1。
  8. 根据权利要求7所述的显示驱动方法,其中,
    当75°≤H0<105°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
    当105°≤H0≤135°时,在所述步骤Stp3中,ΔH=40°,ΔS=0.1;
    当135°<H0≤165°时,在所述步骤Stp3中,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越小,H0越大,ΔS越小。
  9. 根据权利要求1至6中任意一项所述的显示驱动方法,其中,所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
  10. 根据权利要求1至6中任意一项所述的显示驱动方法,其中,所述显示驱动方法进一步包括在所述步骤Stp1和所述步骤Stp2之间进行的步骤:
    判断是否接收到计算开始信号;
    当接收到所述计算开始信号时,执行所述步骤Stp2,并根据所述步骤Stp3的计算结果显示所述输出图像;
    当未接收到所述计算开始信号时,直接将所述输入图像输出。
  11. 一种用于显示装置的驱动电路,所述驱动电路包括:
    输入信号获取模块,所述输入信号获取模块用于获取输入图像中各个亚像素的色调;
    颜色判定模块,所述颜色判定模块用于所述判断输入图像中待计算的亚像素是否为二色盲患者能够与参考颜色相区分的颜色;
    输出信号计算模块,所述输出信号计算模块与所述颜色判定模块相连,并根据所述颜色判定模块的判断结果计算输出图像的亚像素的色调。
  12. 根据权利要求11所述的驱动电路,其中,
    所述输出信号计算模块进一步用于根据公式(1)计算输出图像的亚像素的色调:
    H1=H0+ΔH   (1);
    其中,H0是输入图像中待计算的亚像素的色调;
    H1是输出图像中与所述输入图像中待计算的亚像素位置对应的亚像素的色调;
    当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔH≠0,以使得所述输出图像中与所述待计算的亚像素位置对应的亚像素成为二色盲患者能够与所述参考颜色区分开的颜色;
    当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔH=0。
  13. 根据权利要求11所述的驱动电路,其中,所述输入信号获取模块进一步用于获取输入图像中各个亚像素的饱和度,所述输出信号计算模块进一步用于根据公式(2)计算输出图像的亚像素的饱和度:
    S1=S0+ΔS   (2);
    其中,S1是输出图像中待计算亚像素的饱和度;
    S0是输入图像中与待计算亚像素位置相同的亚像素的饱和度;
    当所述待计算的亚像素为二色盲患者无法与参考颜色相区分的颜色时,ΔS≠0;
    当所述待计算的亚像素为二色盲患者能够与参考颜色相区分的颜色时,ΔS=0。
  14. 根据权利要求12所述的驱动电路,其中,|ΔS|≤0.45。
  15. 根据权利要求13所述的驱动电路,其中,当H0在第一范围内或第二范围内时,所述颜色判定模块判定所述待计算的亚像素为无法与参考颜色相区分的颜色,-40°≤ΔH≤-1°,-1<ΔS<0,其中,所述第一范围为[315°,360°],所述第二范围为[0°,45°],所述颜色判定模块中存储有所述第一范围和所述第二范围。
  16. 根据权利要求15所述的驱动电路,其中,当15°<H0≤45°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越大,H0越大,ΔS越大;
    当315°≤H0<345°时,-39°≤ΔH≤-1°,-0.099≤ΔS≤-0.001,且H0越大,ΔH越小,H0越大,ΔS越小;
    当345°≤H0≤360°时,或者0°≤H0≤15°时,ΔH=-40°,ΔS=-0.1。
  17. 根据权利要求13至16中任意一项所述的驱动电路,其中,当所述输入图像中待计算的亚像素的色调在第三范围内时,所述颜色判定模块判定所述待计算的亚像素为无法与参考颜色相区分的颜色,所述第三范围为[75°,165°],当H0在所述第三范围内时,1°≤ΔH≤40°,0<ΔS<1,所述颜色判定模块中存储有所述第三范围。
  18. 根据权利要求17所述的驱动电路,其中,当75°≤H0<105°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越大,H0越大,ΔS越大;
    当105°≤H0≤135°时,ΔH=40°,ΔS=0.1;
    当135°<H0≤165°时,1°≤ΔH≤39°,0.001≤ΔS≤0.099,且H0越大,ΔH越小,H0越大,ΔS越小。
  19. 根据权利要求11至16中任意一项所述的驱动电路,其中,所述输出信号计算模块用于控制所述输出图像中各个亚像素的亮度值与所述输入图像中相应的亚像素的亮度值相同。
  20. 根据权利要求11至16中任意一项所述的驱动电路,其中,所述显示装置进一步包括触发模块和控制模块,所述触发模块与所示控制模块相连,以使得所述触发模块能够向所述控制模块发出触发信号,所述控制模块进一步与所述输出信号计算模块相连,以使得所述控制模块能够在接收到所述触发信号后向所述输出信号计算模块发出计算开始信号,所述输出信号计算模块能够在接收到所述计算开始信号后开始计算。
  21. 根据权利要求20所述的驱动电路,其中,所述控制模块能够在未接收到所述触发信号时,控制所述驱动电路直接输出所述输入图像。
  22. 一种显示装置,所述显示装置包括驱动电路和显示面板,其中,所述驱动电路为权利要求11至21中任意一项所述的驱动电路,所述驱动电路的输出端与所述显示面板的输入端相连。
PCT/CN2015/088558 2015-04-09 2015-08-31 显示驱动方法、驱动电路和显示装置 WO2016161754A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167029146A KR101869336B1 (ko) 2015-04-09 2015-08-31 디스플레이 구동 방법, 구동회로 및 디스플레이 장치
EP15832725.4A EP3282439B1 (en) 2015-04-09 2015-08-31 Display drive method, drive circuit and display device
US14/913,564 US9916786B2 (en) 2015-04-09 2015-08-31 Display driving method, driving circuit and display device
JP2016565348A JP6304908B2 (ja) 2015-04-09 2015-08-31 表示駆動方法、駆動回路及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510166719.7 2015-04-09
CN201510166719.7A CN104732911B (zh) 2015-04-09 2015-04-09 显示驱动方法、驱动电路和显示装置

Publications (1)

Publication Number Publication Date
WO2016161754A1 true WO2016161754A1 (zh) 2016-10-13

Family

ID=53456763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088558 WO2016161754A1 (zh) 2015-04-09 2015-08-31 显示驱动方法、驱动电路和显示装置

Country Status (6)

Country Link
US (1) US9916786B2 (zh)
EP (1) EP3282439B1 (zh)
JP (1) JP6304908B2 (zh)
KR (1) KR101869336B1 (zh)
CN (1) CN104732911B (zh)
WO (1) WO2016161754A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732911B (zh) * 2015-04-09 2017-03-15 京东方科技集团股份有限公司 显示驱动方法、驱动电路和显示装置
CN105187809A (zh) * 2015-10-16 2015-12-23 京东方科技集团股份有限公司 显示处理方法、显示处理装置和显示装置
US11069311B1 (en) * 2020-04-13 2021-07-20 Robert Sternbach Colorblind video adapter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951101A (zh) * 2004-05-11 2007-04-18 皇家飞利浦电子股份有限公司 用于处理彩色图像数据的方法
CN101047866A (zh) * 2006-01-25 2007-10-03 联发科技股份有限公司 一种适用于一彩色图片的色彩索引搜寻方法
US20100231603A1 (en) * 2009-03-13 2010-09-16 Dolby Laboratories Licensing Corporation Artifact mitigation method and apparatus for images generated using three dimensional color synthesis
CN103514585A (zh) * 2013-09-12 2014-01-15 深圳市华星光电技术有限公司 一种图像处理方法
CN104732911A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 显示驱动方法、驱动电路和显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682385B2 (ja) * 1987-05-15 1994-10-19 日本放送協会 色覚変換装置
NL1007531C2 (nl) 1997-11-12 1999-06-02 Tno Werkwijze en inrichting voor het weergeven van een kleurenbeeld.
CN1323374C (zh) 2002-04-26 2007-06-27 韩国电子通信研究院 根据终端用户的色觉特征自适应变换可视内容的方法和系统
EP1453006A1 (en) 2003-02-28 2004-09-01 Océ-Technologies B.V. Converted digital colour image with improved colour distinction for colour-blinds
JP2004272516A (ja) 2003-03-07 2004-09-30 Matsushita Electric Ind Co Ltd 色覚情報変換装置
US7502032B2 (en) * 2004-10-06 2009-03-10 Microsoft Corporation Integrating color discrimination assessment into operating system color selection
KR20060128450A (ko) * 2005-06-10 2006-12-14 삼성전자주식회사 표시 장치 및 표시 장치의 구동 장치
US7705855B2 (en) * 2005-06-15 2010-04-27 Samsung Electronics Co., Ltd. Bichromatic display
CN101034542A (zh) 2006-03-07 2007-09-12 乐金电子(南京)等离子有限公司 图像显示设备的颜色校正方法
JP4764781B2 (ja) * 2006-07-27 2011-09-07 株式会社ティー・ワイ・エー 色覚変換システム並びに色覚変換ネットワークシステム
JP2010191771A (ja) 2009-02-19 2010-09-02 Dainippon Printing Co Ltd カラー印刷システム、装置、方法、プログラム、記録媒体
WO2012137819A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置、及び表示方法
EP2525326B1 (en) * 2011-05-20 2014-05-14 Sony Corporation An image processing method and an image processing device
WO2013141268A1 (ja) * 2012-03-23 2013-09-26 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法
JP6309777B2 (ja) * 2014-02-10 2018-04-11 シナプティクス・ジャパン合同会社 表示装置、表示パネルドライバ、及び、表示パネルの駆動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951101A (zh) * 2004-05-11 2007-04-18 皇家飞利浦电子股份有限公司 用于处理彩色图像数据的方法
CN101047866A (zh) * 2006-01-25 2007-10-03 联发科技股份有限公司 一种适用于一彩色图片的色彩索引搜寻方法
US20100231603A1 (en) * 2009-03-13 2010-09-16 Dolby Laboratories Licensing Corporation Artifact mitigation method and apparatus for images generated using three dimensional color synthesis
CN103514585A (zh) * 2013-09-12 2014-01-15 深圳市华星光电技术有限公司 一种图像处理方法
CN104732911A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 显示驱动方法、驱动电路和显示装置

Also Published As

Publication number Publication date
CN104732911A (zh) 2015-06-24
JP2017515157A (ja) 2017-06-08
EP3282439A1 (en) 2018-02-14
EP3282439A4 (en) 2018-09-19
US20170039922A1 (en) 2017-02-09
JP6304908B2 (ja) 2018-04-04
US9916786B2 (en) 2018-03-13
EP3282439B1 (en) 2020-05-06
KR101869336B1 (ko) 2018-06-21
CN104732911B (zh) 2017-03-15
KR20160135783A (ko) 2016-11-28

Similar Documents

Publication Publication Date Title
CN105046663B (zh) 一种模拟人类视觉感知的自适应低照度图像增强方法
CN106657946B (zh) 图像紫边消除系统和方法
CN103491357B (zh) 一种图像传感器白平衡处理方法
WO2016161754A1 (zh) 显示驱动方法、驱动电路和显示装置
JP2006121713A (ja) コントラストの強調
US8559668B2 (en) Red-eye reduction using facial detection
JP2010531102A5 (zh)
WO2017080015A1 (zh) 控制低灰阶白平衡的方法及装置
WO2016184035A1 (zh) 辅助色盲用户的系统和方法
CN103345099A (zh) 一种基于偏振光消光的成像方法
CN103618886A (zh) 一种根据主色调智能脱色的摄像方法
WO2018113050A1 (zh) 一种显示面板的驱动方法及驱动装置
WO2018105411A1 (ja) 画像処理装置および方法、並びに手術顕微鏡システム
WO2017063377A1 (zh) 显示处理方法、显示处理装置和显示装置
CN110223658A (zh) 显示亮度控制的方法、装置、设备及显示装置
CN106550227A (zh) 一种图像饱和度调整方法及装置
CN104240666B (zh) 一种视频处理方法及装置
US8842128B2 (en) Image processing method and an image processing device for changing a saturation of image data
CN105513566A (zh) 可依据不同环境执行最佳化调整的影像调整方法及其显示器
CN101790101A (zh) 图像饱和度调整方法与图像饱和度调整装置
CN105208362B (zh) 基于灰度平衡原理的图像色偏自动校正方法
CN115472262A (zh) 一种图像-背景分离的光谱深度知觉评估训练方法
TWI416433B (zh) 紅眼影像偵測方法及其相關裝置
JP6887824B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2019085053A1 (zh) 提高显示器色域的方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913564

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167029146

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016565348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015832725

Country of ref document: EP