WO2016161575A1 - 一种对南极磷虾脱水提取虾油的方法 - Google Patents

一种对南极磷虾脱水提取虾油的方法 Download PDF

Info

Publication number
WO2016161575A1
WO2016161575A1 PCT/CN2015/076056 CN2015076056W WO2016161575A1 WO 2016161575 A1 WO2016161575 A1 WO 2016161575A1 CN 2015076056 W CN2015076056 W CN 2015076056W WO 2016161575 A1 WO2016161575 A1 WO 2016161575A1
Authority
WO
WIPO (PCT)
Prior art keywords
antarctic krill
temperature
extraction
low
heat pump
Prior art date
Application number
PCT/CN2015/076056
Other languages
English (en)
French (fr)
Inventor
刘元法
孙德伟
李进伟
曹培让
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to PCT/CN2015/076056 priority Critical patent/WO2016161575A1/zh
Publication of WO2016161575A1 publication Critical patent/WO2016161575A1/zh
Priority to US15/597,037 priority patent/US10492508B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings or cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings or cooking oils characterised by the production or working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/40Shell-fish
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • C11B1/106Production of fats or fatty oils from raw materials by extracting using ultra-sounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a method for dehydrating and extracting shrimp oil from Antarctic krill, and belongs to the field of food biotechnology.
  • Antarctic krill (Euph ia superba) is a floating invertebrates that live in the waters of the Antarctic region. They live in clusters and use tiny phytoplankton as food. They are the largest single species on the planet. Resources. The newly caught Antarctic krill has a water content of up to 80%. At present, after the fishing, it is frozen and transported to the mainland for subsequent processing. This is not only a huge transportation cost but also reduces the payload of the shrimp ship.
  • the extraction process of Antarctic krill oil is generally followed by dehydration and extraction of krill oil. In the current process, dehydration is either high temperature or severe energy consumption.
  • the traditional solvent extraction of krill oil is accompanied by problems such as high temperature and incomplete dissolution.
  • Supercritical CO 2 extraction equipment has high manufacturing cost and high pressure, which has certain safety hazards.
  • Other methods for preparing krill oil from Antarctic krill powder or frozen Antarctic krill or fresh Antarctic krill are commonly found in the following disadvantages: 1. Drying method, high energy efficiency, low environmental friendliness; 2. Drying or extracting phosphorus Shrimp oil is accompanied by high temperatures, which cause oxidation of the active ingredients.
  • the present invention provides a method for dehydrating and extracting shrimp oil of Antarctic krill, which is kept at a relatively low temperature throughout the whole process and is enclosed in an oxygen-free environment, thereby minimizing the oxidation of active ingredients in the material.
  • the same problem avoids environmental problems caused by solvent evaporation.
  • Short ultrasonic assist can create a "cavitation effect" in the extraction system to allow the material to be more in contact with the solvent.
  • the sub-fluid is in a gaseous state at normal temperature and pressure, and the removal of the solvent ring avoids high temperatures and minimizes solvent residue.
  • the first technical problem to be solved by the present invention is to provide a method for dehydrating Antarctic krill, that is, coupling a low temperature hypoxic heat pump dehydration system and a microwave freezing blasting dehydration system to dehydrate an Antarctic krill successively, so that the Antarctic Krill forms a microstructure that facilitates the extraction of shrimp oil.
  • the method greatly reduces the inter-turn and saves energy while maintaining the dehydration effect.
  • the Antarctic krill is fresh or frozen Antarctic krill.
  • the low-temperature low-oxygen heat pump dehydration system refers to a drying system capable of efficiently utilizing thermal energy, and performs a dehydration process under low-temperature and low-oxygen conditions.
  • the dewatering system is set on the shrimp boat to reduce the moisture content of the shrimp material from 80 ⁇ 1% to 30 ⁇ 35%, which improves the batch loading capacity and reduces energy consumption of the shrimp boat.
  • the low-temperature low-oxygen heat pump dehydration system controls the temperature of 50 to 60 ° C, and is filled with nitrogen to remove air, thereby reducing the moisture content of the raw material from 80 ⁇ 1% to 30 to 35%.
  • the microwave freezing and blasting dehydration system the control air pressure is lower than 20Pa, the temperature is rapidly reduced to -45 ⁇ -50 °C, microwave assisted heating, the power control is 0.2 ⁇ 0.05w /g, further reduce the water to 8 ⁇ 9%.
  • the second technical problem to be solved by the present invention is to provide a method for extracting antarctic krill shrimp oil, which is characterized by coupling a low temperature hypoxic heat pump dehydration system and a microwave freezing and blasting dehydration system to dehydrate the Antarctic krill, and then pulverize it. Ultrasound-assisted subcritical fluid extraction of shrimp oil.
  • the pulverization is to pulverize the dehydrated shrimp to 30-60 mesh.
  • the ultrasonic assisted subcritical fluid extraction is a single or mixed solvent of butane, dimethyl ether or tetrafluoroethane as an extractant, and the total solid-liquid ratio is controlled to be 1:3 ⁇ 1:5 (g) /ml), extraction temperature 40 ⁇ 50°C, extraction pressure 1.2+0.1MPa, extraction of ultrasonic equipment, ultrasonic frequency 30 ⁇ 5KHz; single extraction 15 ⁇ 30min, decompression to atmospheric pressure volatile solvent, repeat Extracted 3 to 5 times; combined extracts were centrifuged to remove impurities to obtain Antarctic krill oil.
  • the krill oil phospholipid prepared by the invention has a content of more than 40% and is rich in polyunsaturated fatty acids, wherein DHA ⁇ EPA accounts for more than 30% of total fatty acids.
  • the invention utilizes a low-oxygen low-temperature heat pump dehydration system and a microwave freezing burst dehydration system to couple dehydration of Antarctic krill, and the low-oxygen low-temperature heat pump dehydration system has the advantages of rapid and energy-saving treatment of high-moisture materials.
  • the process can also inactivate lipase and amylase, which is beneficial to the extraction of krill oil in the late Antarctic krill oil and the utilization of krill protein in the residue.
  • the invention has the advantages of low temperature preparation and high energy saving, and the dehydration and shrimp oil extraction can be completed independently.
  • the first stage of dewatering can be carried out on board.
  • the low-oxygen low-temperature heat pump dehydration system can be designed on the shrimp boat.
  • the use of onboard thermal energy can effectively reduce the water to 30 ⁇ 35%, and the total weight of the material is reduced by about 70%.
  • the cargo capacity of the ship reduces the transportation cost.
  • the Antarctic krill can be frozen and preserved on the ship. After the ship arrives at the mainland, it is coupled with the second stage of microwave freeze blasting dehydration, which saves the pre-cooling process.
  • the microwave freezing and bursting dehydration system of the present invention causes the microstructure of the krill oil to precipitate and is reduced. Material moisture, which is beneficial to the extraction of Antarctic krill oil.
  • the ultrasonic assisted subcritical fluid extraction device maintains a lower temperature and isolates oxygen throughout the process, maximally avoiding oxidation problems.
  • the subcritical fluid is in a gaseous state at normal temperature and pressure, and the desolvation process is energy-saving and environmentally friendly, thereby minimizing solvent residue.
  • the method of the invention greatly reduces the processing time and reduces the cost while maintaining the quality of the shrimp oil.
  • FIG. 1 Scanning electron micrograph of Antarctic krill treated by a low temperature hypoxic heat pump dehydration system
  • FIG. 2 Scanning electron micrograph of Antarctic krill treated by a freeze burst dehydration system
  • the determination method of the moisture of Antarctic krill refers to GB 5009.3-2010, the determination method of the acid value of Antarctic krill oil.
  • the determination method of phospholipid content refers to GB-T 5537-2008.
  • the frozen Antarctic krill is thawed and treated by a low-oxygen low-temperature heat pump drying system, the temperature is controlled at 55 ° C, and the volume is filled into a volume of nitrogen, the thickness of the material is not more than 2 cm, and the wind speed is controlled at 3 m/sec. , the water is reduced to 33 ⁇ 0.1% ; after microwave freezing and bursting, the system pressure is kept below 20Pa, the temperature is rapidly reduced to -45°C, the microwave is turned on, the microwave power is set to 0.2w/g, and the water is reduced to 8.5 ⁇ 0.1% ; pulverized to 30 mesh.
  • the frozen Antarctic krill is thawed and treated by a low-oxygen low-temperature heat pump drying system, the temperature is controlled at 50 ° C, and the volume is filled into a volume of nitrogen, the thickness of the material is not more than 2 cm, and the wind speed is controlled at 3 m/sec. , the water is reduced to 33 ⁇ 0.1% ; after microwave freezing and bursting, the system pressure is kept below 20Pa, and the temperature is rapidly reduced. After the temperature was increased to -45 ° C, the microwave power was set to 0.2 w/g, the moisture was reduced to 8.5 ⁇ 0.1% , and the pulverization was carried out to 30 mesh.
  • Ultrasonic-assisted subcritical fluid butane extraction extraction pressure 1.2 ⁇ 0.1MPa, ratio of material to liquid 1:4 (g/m 1), temperature 45 °C, ultrasonic extraction, ultrasonic frequency 25KHz; extraction for 20min each time, device
  • the solvent was evaporated under reduced pressure to atmospheric pressure, and extracted three times repeatedly.
  • the combined extracts were filtered to obtain Antarctic krill oil.
  • Antarctic krill oil extraction rate (dry basis) 21.02%, acid value 8.1, phospholipid content 43.02%, DHA/EPA content in total fatty acids 33.48%.
  • the frozen Antarctic krill is thawed and treated by a low-oxygen low-temperature heat pump drying system, the temperature is controlled at 60 ° C, and the volume is filled into a volume of nitrogen, the thickness of the material is not more than 2 cm, and the wind speed is controlled at 3 m/sec. , the water is reduced to 33 ⁇ 0.1% ; after microwave freezing and bursting, the system pressure is kept below 20Pa, the temperature is rapidly reduced to -45°C, the microwave is turned on, the microwave power is set to 0.2w/g, and the water is reduced to 8.5 ⁇ 0.1% ; pulverized to 30 mesh.
  • Ultrasonic-assisted subcritical fluid butane extraction extraction pressure 1.2 ⁇ 0.1MPa, ratio of material to liquid 1:4 (g/m 1), temperature 45 °C, ultrasonic extraction, ultrasonic frequency 25KHz; extraction for 20min each time, device
  • the solvent was evaporated under reduced pressure to atmospheric pressure, and extracted five times repeatedly.
  • the combined extracts were filtered to obtain Antarctic krill oil.
  • Antarctic krill oil extraction rate (dry basis) 21.62%, acid price 9.5, phospholipid content 43.16%, DHA/EPA content in total fatty acids 33.16%.
  • the frozen Antarctic krill was subjected to lyophilization treatment to control moisture of 8.5 ⁇ 0.1% ; and pulverized to 30 mesh.
  • Antarctic krill oil extraction rate (dry basis) 22.10%, acid price 7.2, phospholipid content 43.52%, DHA/EPA content in total fatty acids 34.94%.
  • the frozen Antarctic krill is thawed, dehydrated by hot air at 90 ° C, moisture control 8.5 ⁇ 0.1% ; pulverized to 30 mesh.
  • Antarctic krill oil extraction rate (dry basis) 16.2%, acid value 19.2, phospholipid content 42.36%, DHA/EPA content in total fatty acids 31 .94%.
  • the frozen Antarctic krill is thawed, dehydrated by hot air at 90 ° C, moisture control 8.5 ⁇ 0.1 ⁇ 3 ⁇ 4; pulverized to 30 mesh; n-hexane extraction, the ratio of material to liquid is 1:4 (g / ml), temperature 55 ° C 2 small mashes were extracted and extracted 3 times repeatedly.
  • the combined extracts were filtered to obtain Antarctic krill oil.
  • the extraction rate of Antarctic krill (dry basis) is 15.5%
  • the antarctic krill oil phospholipid content is 42.26%
  • the acid value is 21.5
  • the DHA/EPA content is 30.02% in total fatty acids.
  • the frozen Antarctic krill is thawed and then treated by a low-oxygen low-temperature heat pump drying system, the temperature is controlled at 55 ° C, and the volume is filled into a volume of nitrogen, the thickness of the material is not more than 2 cm, and the wind speed is controlled at 3 m/sec. , the water is reduced to 35 ⁇ 0.1% ; after microwave freezing and bursting, the system pressure is kept below 20Pa, the temperature is rapidly reduced to -45°C, the microwave is turned on, the microwave power is set to 0.2w/g, and the water is reduced to 8.5 ⁇ 0.1% ; pulverized to 30 mesh.
  • Ultrasonic-assisted subcritical fluid butane extraction extraction pressure 1.2 ⁇ 0.1MPa, ratio of material to liquid 1:4 (g/m 1), temperature 45 °C, ultrasonic extraction, ultrasonic frequency 25KHz; extraction for 20min each time, device
  • the solvent was evaporated under reduced pressure to atmospheric pressure, and extracted four times repeatedly.
  • the combined extracts were filtered to obtain Antarctic krill oil.
  • Antarctic krill oil extraction rate (dry basis) 21.52%, acid price 8.3, phospholipid content 43.20%, DHA/EPA content in total fatty acids 33.95%.
  • the frozen Antarctic krill is thawed and treated by a low-oxygen low-temperature heat pump drying system, the temperature is controlled at 55 ° C, and the volume is filled into a volume of nitrogen, the thickness of the material is not more than 2 cm, and the wind speed is controlled at 3 m/sec. , the moisture is reduced to 8.5 ⁇ 0.1% ; pulverized to 30 mesh.
  • Ultrasonic-assisted subcritical fluid butane extraction extraction pressure 1.2 ⁇ 0.1 MPa, ratio of material to liquid 1:4 (g/ml), temperature 45 °C, ultrasonic extraction, ultrasonic frequency 25KHz; extraction for 20min each time, device reduction Pressurize to atmospheric pressure volatile solvent, extract 4 times repeatedly, and combine the extract to obtain Antarctic krill oil.
  • Antarctic krill oil extraction rate (dry basis) 17.42%, acid price 12.3, phospholipid content 42.78%, DHA / EPA in total fatty acid content 32.05%.
  • Example 1-3 both coupled dehydration and subcritical fluid extraction were used, and the dry extracting rate, acid value and phospholipid content of Antarctic krill oil were all ideal.
  • the number of extractions of Example 2 was less than that of Examples 1 and 3, so the dry extraction rate of Antarctic krill oil was slightly lower than that of Examples 1 and 3.
  • Example 2 the temperature of the low-temperature heat pump is lower than that of the first embodiment, so that a relatively long processing time is required.
  • the third embodiment after the temperature of the low-temperature heat pump is increased a little, although the dehydration time is reduced, the antarctic oleic acid is reduced.
  • the price is slightly higher than in the first embodiment.
  • the water content of the shrimp in the first stage of the low-oxygen low-temperature heat pump drying system of Example 7 was 28%, which caused the depletion of the second stage of the blasting dehydration to be prolonged, resulting in an increase in the entire dehydration day.
  • Example 4 the extraction rate and acid value of the Antarctic krill oil were slightly better than those in Example 1, but the pretreatment was too long and the energy consumption was severe.
  • Example 5-6 the dry extraction rate of Antarctic krill oil was 2 ⁇ 3% lower than that of Examples 1-4.
  • Example 5 the hot air drying method was used, but the consumption was short, but the oil was The acid price is too high.
  • Example 6 the solvent extraction was also accompanied by a high temperature, and the acid value was higher than that of Example 5.
  • Example 7 the coupling dehydration moisture conversion point was 35%, although the comparative example 4 was drastically reduced in the daytime, the amount of dehydration enthalpy in the late stage of the comparative example 1 was increased, and the total dehydration time was increased.
  • Example 8 Direct low temperature heat pump dehydration, although there was a decrease in the daytime, the extraction rate (dry basis) of the Antarctic krill oil was 2.5 to 3.5% lower than that of the example which was subjected to the coupled dehydration treatment.
  • the final high water content of the material is not conducive to oil extraction, and the final water content is too low, which is more expensive and the oil extraction rate is not significantly increased. If the extraction ratio is too low, the extraction will be incomplete. Under the same extraction conditions, the oil extraction rate will decrease, but the extraction ratio will not increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

一种对南极磷虾脱水提取虾油的方法,采用耦合低温低氧热泵脱水系统和微波冷冻爆破脱水系统对南极磷虾进行脱水,粉碎后用超声波辅助亚临界流体提取虾油。

Description

说明书 发明名称:一种对南极磷虾脱水提取虾油的方法 技术领域
[0001] 本发明涉及一种对南极磷虾脱水提取虾油的方法, 属于食品生物技术领域。
背景技术
[0002] 南极磷虾 (学名 Euph ia superba) 是一种生活在南极区域水域似虾的浮游无 脊椎动物, 它们以群集方式生活, 以微小浮游植物作为食物, 是地球上数量最 大的单种生物资源。 新捕捞的南极磷虾含水量高达 80%, 目前, 捕捞后多冰冻保 存运抵大陆后幵展后续加工。 此举, 不仅运输成本巨大且降低了铺虾船有效载 荷。 南极磷虾油的提取过程一般是先脱水后提取磷虾油。 现工艺中脱水要么温 度较高、 要么耗能严重, 传统溶剂法提取磷虾油的脱溶环节伴有高温及脱溶不 完全等问题。 超临界 CO 2提取设备制造复杂造价高, 高压状态具有一定安全隐患 。 其它以南极磷虾粉或冰冻南极磷虾或鲜南极磷虾为原料制备磷虾油的方法, 普遍存在以下缺点: 1、 干燥方式耗能高效率低, 环境不友好; 2、 干燥或提取 磷虾油伴有高温, 造成有效成分氧化。
[0003] 针对现有问题, 本发明提供了一种对南极磷虾进行脱水并提取虾油的方法, 全 程保持相对低温且全程封闭在无氧环境, 最大程度降低了物料中有效成分的氧 化, 同吋避免了溶剂挥发带来的环境问题。 短吋超声波辅助可在提取系统中形 成"空泡效应"让物料与溶剂接触更充分。 亚流体常温常压下呈气态, 脱除溶剂环 节避免了高温, 且最大程度减少了溶剂残留问题。
问题的解决方案
技术解决方案
[0004] 本发明要解决的第一个技术问题是提供一种对南极磷虾进行脱水的方法, 即耦 合低温低氧热泵脱水系统和微波冷冻爆破脱水系统先后对南极磷虾进行脱水, 使南极磷虾形成有利于虾油提取的微观结构。 本方法与完全冷冻干燥相比, 在 保持脱水效果的同吋, 大幅度缩短了吋间, 节省了能量。
[0005] 在本发明的一种实施方式中, 所述南极磷虾是新鲜或冰冻南极磷虾。 [0006] 在本发明的一种实施方式中, 所述低温低氧热泵脱水系统是指能高效利用热能 的干燥系统, 在低温低氧条件进行脱水过程。 该脱水系统设置在捕虾船上, 将 虾料水分由 80±1%高效降低至 30~35%, 提高捕虾船的批次载货量、 减少能耗。
[0007] 在本发明的一种实施方式中, 所述低温低氧热泵脱水系统控制温度 50~60°C, 充入氮气排除空气, 将原料水分由 80±1%降低至 30~35%。
[0008] 在本发明的一种实施方式中, 所述微波冷冻爆破脱水系统, 控制气压低于 20Pa , 温度快速降低至 -45~-50°C, 微波辅助加热, 功率控制在 0.2±0.05w/g, 进一步 降低水分至 8~9%。
[0009] 本发明要解决的第二个技术问题是提供一种提取南极磷虾虾油的方法, 是耦合 低温低氧热泵脱水系统和微波冷冻爆破脱水系统对南极磷虾进行脱水, 粉碎后 , 超声波辅助亚临界流体提取虾油。
[0010] 所述粉碎, 是将脱水后的虾粉碎至 30-60目。
[0011] 所述超声波辅助亚临界流体提取, 是以丁烷、 二甲醚或四氟乙烷中的单种或混 合溶剂为提取剂, 控制总料液比 1:3~1:5 (g/ml) , 提取温度 40~50°C, 提取压力 1 .2+0.1MPa, 提取吋幵启超声设备, 超声波频率 30±5KHz; 单次提取 15~30min, 减压至常压挥发溶剂, 重复提取 3~5次; 合并萃取物离心去除杂质后得南极磷虾 油。
[0012] 本发明制备得到的磷虾油磷脂含量超过 40%, 富含多不饱和脂肪酸, 其中 DHA \EPA占总脂肪酸超过 30%。
[0013] 本发明利用低氧低温热泵脱水系统及微波冷冻爆裂脱水系统对南极磷虾耦合脱 水, 低氧低温热泵脱水系统处理高水分物料具有快速、 节能的优点。 同吋, 该 过程也可灭活脂肪酶和淀粉酶, 利于后期南极磷虾油提取及提余物中磷虾蛋白 质利用。 本发明优势在于低温制取和高效节能, 脱水和虾油提取可分幵独立完 成。 第一阶段脱水可选择在船上进行, 低氧低温热泵脱水系统可设计在捕虾船 上进行, 充分利用船上热能高效将水分降低至 30~35%, 物料总重量减少约 70% , 大大提升捕虾船的载货量, 减少了运输成本。 初次脱水后南极磷虾干可在船 上冰冻保存, 待船到达大陆后, 耦合第二阶段微波冷冻爆破脱水, 节省了预冷 环节。 本发明后期微波冷冻爆裂脱水系统造就磷虾油析出的微观结构且降低了 物料水分, 这都有利于南极磷虾油提取。 超声波辅助亚临界流体提取装置, 全 程保持较低温且隔绝氧气, 最大程度避免了氧化问题。 亚临界流体常温常压是 气态, 脱溶过程节能环保, 最大程度减少了溶剂残留。 本发明方法在保持虾油 品质的同吋, 极大地缩短了处理吋间, 减少成本。
对附图的简要说明
附图说明
[0014] 图 1经过低温低氧热泵脱水系统处理后的南极磷虾扫描电子显微镜照片
[0015] 图 2南极磷虾经冷冻爆裂脱水系统处理后的扫描电子显微镜照片
本发明的实施方式
[0016] 南极磷虾水分的测定方法参照 GB 5009.3—2010, 南极磷虾油酸价的测定方法 参照 GBT5530-2005 ISO660-1996, 磷脂含量的测定方法参照 GB-T 5537-2008。
[0017] 南极磷虾油 DHA/EPA含量: GBT 17377-2008, 气相色谱 (GC) 测定。
[0018] 实施例 1
[0019] 冷冻南极磷虾解冻后经低氧低温热泵干燥系统处理, 温度控制在 55°C, 充入箱 体等体积氮气, 物料铺设厚度不超过 2厘米, 风速控制 3米 /秒穿透物料, 水分降 低至 33±0.1%; 后经微波冷冻爆裂处理, 保持系统压力低于 20Pa, 温度快速降低 至 -45°C后幵启微波, 微波功率设定为 0.2w/g, 将水分降低至 8.5±0.1%; 粉碎至 30 目。 超声波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/m 1) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压 至常压挥发溶剂, 反复萃取 4次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油 提取率 (干基) 21.32%, 酸价 8.4, 磷脂含量 43.10%, DHA/EPA在总脂肪酸中含 量 33.85%。 另外, 由图 1、 2可以看出, 经低温热泵系统、 冷冻爆裂脱水系统处 理后, 虾体出现大量微孔结构。
[0020] 实施例 2
[0021] 冷冻南极磷虾解冻后经低氧低温热泵干燥系统处理, 温度控制在 50°C, 充入箱 体等体积氮气, 物料铺设厚度不超过 2厘米, 风速控制 3米 /秒穿透物料, 水分降 低至 33±0.1%; 后经微波冷冻爆裂处理, 保持系统压力低于 20Pa, 温度快速降低 至 -45°C后幵启微波, 微波功率设定为 0.2w/g, 将水分降低至 8.5±0.1% ; 粉碎至 30 目。 超声波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/m 1) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压 至常压挥发溶剂, 反复萃取 3次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油 提取率 (干基) 21.02%, 酸价 8.1, 磷脂含量 43.02%, DHA/EPA在总脂肪酸中含 量 33.48%。
[0022] 实施例 3
[0023] 冷冻南极磷虾解冻后经低氧低温热泵干燥系统处理, 温度控制在 60°C, 充入箱 体等体积氮气, 物料铺设厚度不超过 2厘米, 风速控制 3米 /秒穿透物料, 水分降 低至 33±0.1% ; 后经微波冷冻爆裂处理, 保持系统压力低于 20Pa, 温度快速降低 至 -45°C后幵启微波, 微波功率设定为 0.2w/g, 将水分降低至 8.5±0.1% ; 粉碎至 30 目。 超声波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/m 1) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压 至常压挥发溶剂, 反复萃取 5次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油 提取率 (干基) 21.62%, 酸价 9.5, 磷脂含量 43.16%, DHA/EPA在总脂肪酸中含 量 33.16%。
[0024] 实施例 4
[0025] 冷冻南极磷虾经冷冻干燥处理水分控制 8.5±0.1% ; 粉碎至 30目。 超声波辅助亚 临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/ml) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压至常压挥发溶剂 , 反复萃取 4次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油提取率 (干基) 22.10% , 酸价 7.2, 磷脂含量 43.52%, DHA/EPA在总脂肪酸中含量 34.94%。
[0026] 实施例 5
[0027] 冷冻南极磷虾解冻, 经热风 90°C脱水, 水分控制 8.5±0.1%; 粉碎至 30目。 超声 波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/ml) , 温 度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压至常压 挥发溶剂, 反复萃取 4次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油提取率 (干基) 16.2%, 酸价 19.2, 磷脂含量 42.36%, DHA/EPA在总脂肪酸中的含量 31 .94%。
[0028] 实施例 6
[0029] 冷冻南极磷虾解冻, 经热风 90°C脱水, 水分控制 8.5±0.1<¾; 粉碎至 30目; 正己 烷提取, 料液比为 1:4 (g/ml) , 温度 55°C, 提取 2小吋, 反复提取 3次, 合并萃 取物过滤后得南极磷虾油。 南极磷虾提取率 (干基) 15.5%, 该南极磷虾油磷脂 含量 42.26%, 酸价 21.5, DHA/EPA在总脂肪酸中含量 30.02%。
[0030] 实施例 7
[0031] 冷冻南极磷虾解冻后经低氧低温热泵干燥系统处理, 温度控制在 55°C, 充入箱 体等体积氮气, 物料铺设厚度不超过 2厘米, 风速控制 3米 /秒穿透物料, 水分降 低至 35±0.1%; 后经微波冷冻爆裂处理, 保持系统压力低于 20Pa, 温度快速降低 至 -45°C后幵启微波, 微波功率设定为 0.2w/g, 将水分降低至 8.5±0.1%; 粉碎至 30 目。 超声波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1MPa, 料液比为 1:4 (g/m 1) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz ; 每次萃取 20min, 装置减压 至常压挥发溶剂, 反复萃取 4次, 合并萃取物过滤后得南极磷虾油。 南极磷虾油 提取率 (干基) 21.52%, 酸价 8.3, 磷脂含量 43.20%, DHA/EPA在总脂肪酸中含 量 33.95%。
[0032] 实施例 8
[0033] 冷冻南极磷虾解冻后经低氧低温热泵干燥系统处理, 温度控制在 55°C, 充入箱 体等体积氮气, 物料铺设厚度不超过 2厘米, 风速控制 3米 /秒穿透物料, 水分降 低至 8.5±0.1%; 粉碎至 30目。 超声波辅助亚临界流体丁烷提取, 提取压力 1.2±0.1 MPa, 料液比为 1:4 (g/ml) , 温度 45°C, 提取吋超声处理, 超声频率 25KHz; 每次萃取 20min, 装置减压至常压挥发溶剂, 反复萃取 4次, 合并萃取物过滤后 得南极磷虾油。 南极磷虾油提取率 (干基) 17.42%, 酸价 12.3, 磷脂含量 42.78% , DHA/EPA在总脂肪酸中含量 32.05%。
[0034] 表 1各实施例参数比对
[0035]
[XXXX [0036] 实施例 1-3, 都采用了耦合脱水及亚临界流体提取, 南极磷虾油干基提取率、 酸价、 磷脂含量效果均比较理想。 实施例 2提取次数少于实施例 1和 3, 因此南极 磷虾油干基提取率略低于实施例 1和 3。 实施例 2中, 低温热泵温度低于实施例 1 , 因此需要相对长一点的处理吋间; 实施例 3中, 低温热泵温度升高一点后, 虽 然脱水吋间有所减少, 但南极磷油酸价比实施例 1略高。 实施例 7第一阶段低氧 低温热泵干燥系统处理后虾的含水量为 28%, 使得第二阶段的冷冻爆破脱水耗吋 有所延长, 使得整个脱水吋间有所增加。
[0037] 实施例 4中, 南极磷虾油干基提取率及酸价均略好于实施例 1, 但是前处理吋间 过长, 且耗能严重。 实施例 5-6未经过耦合脱水过程, 南极磷虾油干基提取率较 实例 1-4低 2~3%, 实施例 5中, 采用热风干燥手段, 耗吋虽短, 但导致了油的酸 价过高。 实施例 6中, 溶剂提取也伴有高温, 酸价较实施例 5还要高。 实施例 7, 耦合脱水水分转换点 35%, 虽然对比实施例 4能在吋间上大幅减少, 但对比实施 例 1后期冷冻爆破脱水吋间有所增加, 总脱水吋间有增加。 实施例 8, 直接低温 热泵脱水, 虽然吋间上有减少, 但对比采取耦合脱水处理的实施例南极磷虾油 提取率 (干基) 低 2.5~3.5%。
[0038] 此外, 物料最终含水量太高不利于油脂提取, 最终含水量太低则较耗吋费能而 油脂提取率没有明显升高。 萃取吋料液比太低会导致提取不完全, 同等提取次 数条件下会导致油脂提取率下降, 而萃取吋料液比太高提取率也没有明显升高
[0039] 虽然本发明已以较佳实施例公幵如上, 但其并非用以限定本发明, 任何熟悉此 技术的人, 在不脱离本发明的精神和范围内, 都可做各种的改动与修饰, 因此 本发明的保护范围应该以权利要求书所界定的为准。
[0040]

Claims

权利要求书
一种对南极磷虾进行脱水的方法, 其特征在于, 耦合低温低氧热泵脱 水系统和微波冷冻爆破脱水系统对南极磷虾进行脱水。
根据权利要求 1所述的方法, 其特征在于, 所述南极磷虾是新鲜或冰 冻南极磷虾。
根据权利要求 1所述的方法, 其特征在于, 所述低温低氧热泵脱水系 统控制温度 50~60°C, 充入氮气排除空气, 将原料水分由 80±1%降低 至 30~35%; 所述微波冷冻爆破脱水系统, 控制气压低于 20Pa, 温度 快速降低至 -45〜- 50°C, 幵启微波辅助加热, 功率控制在 0.2±0.05w/g , 进一步降低水分至 8~9%。
根据权利要求 1所述的方法, 其特征在于, 所述低温低氧热泵脱水系 统设置在捕虾船上, 将南极磷虾脱水后用于运输。
一种提取南极磷虾虾油的方法, 其特征在于, 耦合低温低氧热泵脱水 系统和微波冷冻爆破脱水系统对南极磷虾进行脱水, 粉碎后, 超声波 辅助亚临界流体提取虾油。
根据权利要求 5所述的方法, 其特征在于, 所述粉碎是将脱水后的虾 粉碎至 30-60目。
根据权利要求 5所述的方法, 其特征在于, 所述低温低氧热泵脱水系 统控制温度 50~60°C, 充入氮气排除空气, 将原料水分由 80±1%降低 至 30~35%; 所述微波冷冻爆破脱水系统, 控制气压低于 20Pa, 温度 快速降低至 -45〜- 50°C, 幵启微波辅助加热, 功率控制在 0.2±0.05w/g , 降低水分至 8~9%。
根据权利要求 5所述的方法, 其特征在于, 所述超声波辅助亚临界流 体提取, 是以丁烷、 二甲醚或四氟乙烷中的单种或混合溶剂为提取剂 , 控制总料液比 l:3~l:5g/mL, 提取温度 40~50°C, 提取压力 1.2±0.1M Pa; 单次提取 15~30min, 提取吋使用频率为 30±5KHz的超声波处理, 减压至常压挥发溶剂, 重复提取 3~5次; 合并萃取物离心去除杂质后 得南极磷虾油。
PCT/CN2015/076056 2015-04-08 2015-04-08 一种对南极磷虾脱水提取虾油的方法 WO2016161575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/076056 WO2016161575A1 (zh) 2015-04-08 2015-04-08 一种对南极磷虾脱水提取虾油的方法
US15/597,037 US10492508B2 (en) 2015-04-08 2017-05-16 Method for extracting oil from dehydrated Euphausia superba

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076056 WO2016161575A1 (zh) 2015-04-08 2015-04-08 一种对南极磷虾脱水提取虾油的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/597,037 Continuation US10492508B2 (en) 2015-04-08 2017-05-16 Method for extracting oil from dehydrated Euphausia superba

Publications (1)

Publication Number Publication Date
WO2016161575A1 true WO2016161575A1 (zh) 2016-10-13

Family

ID=57071685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076056 WO2016161575A1 (zh) 2015-04-08 2015-04-08 一种对南极磷虾脱水提取虾油的方法

Country Status (2)

Country Link
US (1) US10492508B2 (zh)
WO (1) WO2016161575A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635400A (zh) * 2016-11-08 2017-05-10 新疆科宇科技有限公司 一种亚临界技术提取沙棘种子毛油的生产方法
CN107904009A (zh) * 2017-12-21 2018-04-13 山东师范大学 一种从南极磷虾虾渣再提取油脂的方法
CN117126698A (zh) * 2023-06-14 2023-11-28 中山大学 一种亚临界流体萃取黑水虻幼虫油的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122842A (en) * 1974-08-20 1976-02-23 Daigo Takamura Panruino seizohoho
JPS5476858A (en) * 1977-11-28 1979-06-19 Tokai Suisan Kikai Kk Production of protein concentrate of *okiami*
JPS59196032A (ja) * 1983-04-23 1984-11-07 Fumio Nishikawa オキアミの変性防止及び鮮度保持の方法
JPH02100654A (ja) * 1988-10-07 1990-04-12 Taiyo Fishery Co Ltd 新規なオキアミすり身とその製造法
CN102405988A (zh) * 2011-11-14 2012-04-11 辽宁省大连海洋渔业集团公司 从磷虾中提取高磷脂含量磷虾油的方法
CN102485899A (zh) * 2010-12-03 2012-06-06 张永志 一种制备富含多不饱和双键脂肪酰基的磷脂酰丝氨酸的高品质南极磷虾油的方法
CN102492545A (zh) * 2011-12-28 2012-06-13 中国水产科学研究院黄海水产研究所 从南极磷虾中提取高品质虾油和制备脱脂磷虾蛋白粉的方法
CN102533432A (zh) * 2011-12-28 2012-07-04 中国水产科学研究院黄海水产研究所 从南极磷虾粉中提取高品质虾油和脱脂磷虾蛋白粉的方法
CN104479850A (zh) * 2014-12-15 2015-04-01 中国水产科学研究院黄海水产研究所 从鲜南极磷虾中提取高磷脂含量磷虾油的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672370A (en) * 1996-04-16 1997-09-30 The University Of British Columbia Method of producing a dried krill product
EP2335494A4 (en) * 2008-09-26 2013-03-27 Nippon Suisan Kaisha Ltd PROCESS FOR LIPID CONCENTRATION

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122842A (en) * 1974-08-20 1976-02-23 Daigo Takamura Panruino seizohoho
JPS5476858A (en) * 1977-11-28 1979-06-19 Tokai Suisan Kikai Kk Production of protein concentrate of *okiami*
JPS59196032A (ja) * 1983-04-23 1984-11-07 Fumio Nishikawa オキアミの変性防止及び鮮度保持の方法
JPH02100654A (ja) * 1988-10-07 1990-04-12 Taiyo Fishery Co Ltd 新規なオキアミすり身とその製造法
CN102485899A (zh) * 2010-12-03 2012-06-06 张永志 一种制备富含多不饱和双键脂肪酰基的磷脂酰丝氨酸的高品质南极磷虾油的方法
CN102405988A (zh) * 2011-11-14 2012-04-11 辽宁省大连海洋渔业集团公司 从磷虾中提取高磷脂含量磷虾油的方法
CN102492545A (zh) * 2011-12-28 2012-06-13 中国水产科学研究院黄海水产研究所 从南极磷虾中提取高品质虾油和制备脱脂磷虾蛋白粉的方法
CN102533432A (zh) * 2011-12-28 2012-07-04 中国水产科学研究院黄海水产研究所 从南极磷虾粉中提取高品质虾油和脱脂磷虾蛋白粉的方法
CN104479850A (zh) * 2014-12-15 2015-04-01 中国水产科学研究院黄海水产研究所 从鲜南极磷虾中提取高磷脂含量磷虾油的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635400A (zh) * 2016-11-08 2017-05-10 新疆科宇科技有限公司 一种亚临界技术提取沙棘种子毛油的生产方法
CN107904009A (zh) * 2017-12-21 2018-04-13 山东师范大学 一种从南极磷虾虾渣再提取油脂的方法
CN117126698A (zh) * 2023-06-14 2023-11-28 中山大学 一种亚临界流体萃取黑水虻幼虫油的方法

Also Published As

Publication number Publication date
US20170251688A1 (en) 2017-09-07
US10492508B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
CN106805180B (zh) 一种结合酶与超声处理由带内种皮核桃仁中提取多酚物质的方法
CN104140100B (zh) 一种真空冷冻干燥制备气体吸附用微孔活性炭的方法
CN102824377B (zh) 灵芝子实体中功能性成分的提取方法
CN103788228B (zh) 一种枸杞多糖的制备方法
CN106749151B (zh) 一种蓝莓果渣花青素的快速提取方法
WO2016161575A1 (zh) 一种对南极磷虾脱水提取虾油的方法
CN105349241A (zh) 一种水酶法提取大豆油及副产物的应用
CN108576311A (zh) 一种负压-超声辅助纤维素酶解提取茯砖茶多酚的方法
CN108558725A (zh) 一种低温亚临界萃取雨生红球藻中虾青素的方法
CN103666752A (zh) 一种红松仁油的提取与纯化方法
CN103073914B (zh) 一种从玉米蛋白中提取玉米黄色素的方法
CN104388178A (zh) 一种从藻类细胞中提取dha藻油的方法
CN102433216A (zh) 一种提取亚麻油的方法
CN101548782A (zh) 一种利用鲭鱼头或鱿鱼内脏提取鱼油的方法
CN106699913A (zh) 一种高效制备江蓠硫酸酯多糖的方法
CN107164075A (zh) 一种基于腊梅的化妆品用油的生产方法
CN107177407A (zh) 一种基于美藤果的化妆品用油的生产方法
CN106987308A (zh) 一种基于杏仁的化妆品用油的生产方法
CN102399622A (zh) 一种制备苦杏仁提取物的方法
CN103638077B (zh) 火炬树果实中抗氧化成分的制备方法
CN116355682A (zh) 以鲜黑水虻幼虫为原料制备黑水虻油的方法
CN104558642A (zh) 一种植物提取物及其作为生物交联剂交联胶原蛋白的方法
CN106588724A (zh) 一种亚临界流体萃取制备萝卜硫素的方法
CN114539437A (zh) 一种黄精多糖的提取方法
CN103800372A (zh) 一种低温超声裂解提取鹿茸素的工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.02.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888132

Country of ref document: EP

Kind code of ref document: A1