WO2016159327A1 - 3,5-二置換ベンゼンアルキニル化合物の結晶 - Google Patents

3,5-二置換ベンゼンアルキニル化合物の結晶 Download PDF

Info

Publication number
WO2016159327A1
WO2016159327A1 PCT/JP2016/060844 JP2016060844W WO2016159327A1 WO 2016159327 A1 WO2016159327 A1 WO 2016159327A1 JP 2016060844 W JP2016060844 W JP 2016060844W WO 2016159327 A1 WO2016159327 A1 WO 2016159327A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
compound
item
pyrazolo
ethynyl
Prior art date
Application number
PCT/JP2016/060844
Other languages
English (en)
French (fr)
Inventor
浩介 江上
Original Assignee
大鵬薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2980888A priority Critical patent/CA2980888C/en
Priority to JP2016566309A priority patent/JP6190079B2/ja
Priority to RU2017134584A priority patent/RU2672563C1/ru
Priority to MX2017012568A priority patent/MX2017012568A/es
Priority to ES16773207T priority patent/ES2812785T3/es
Priority to US15/562,455 priority patent/US10434103B2/en
Priority to DK16773207.2T priority patent/DK3279202T3/da
Application filed by 大鵬薬品工業株式会社 filed Critical 大鵬薬品工業株式会社
Priority to BR112017019809-6A priority patent/BR112017019809B1/pt
Priority to MYPI2017703525A priority patent/MY196077A/en
Priority to KR1020177030951A priority patent/KR101917557B1/ko
Priority to AU2016240841A priority patent/AU2016240841C1/en
Priority to CN201680019829.3A priority patent/CN107406455B/zh
Priority to PL16773207T priority patent/PL3279202T3/pl
Priority to SG11201707384YA priority patent/SG11201707384YA/en
Priority to EP16773207.2A priority patent/EP3279202B1/en
Priority to CN202010284155.8A priority patent/CN111393446B/zh
Publication of WO2016159327A1 publication Critical patent/WO2016159327A1/ja
Priority to PH12017501690A priority patent/PH12017501690A1/en
Priority to HK18105931.1A priority patent/HK1246297A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • a pharmaceutical composition for oral administration requires not only the stability of an active ingredient but also an excellent absorbability during oral administration and a method capable of mass production.
  • Crystals may have crystal polymorphs that have the same molecular arrangement but different molecular arrangements. In this case, it is known that the peaks obtained by powder X-ray diffraction measurement (XRD measurement) differ. ing. In addition, it is known that each crystal polymorph has different solubility, oral absorption, stability, etc., and it is required to find an optimal crystal in developing a pharmaceutical from various viewpoints.
  • XRD measurement powder X-ray diffraction measurement
  • Patent Documents 1, 2 and 3 describe (S) -1- () as a compound having excellent FGFR inhibitory activity and exhibiting antitumor activity.
  • 3- 4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propene-1 -On (hereinafter also referred to as “Compound 1”) is described.
  • Patent Documents 1, 2 and 3 have no description or suggestion about the crystal of Compound 1, the stability of the crystal, oral absorbability, and crystallization method.
  • An object of the present invention is to provide a crystal of Compound 1 described in Patent Document 1 useful as an antitumor agent, which is stable and excellent in oral absorbability and suitable for mass production, and a method for crystallizing the crystal.
  • compound 1 has three crystal forms (crystal I, crystal II, crystal III).
  • Crystal II is found to have high stability, excellent oral absorption, high crystallinity, high chemical purity, suitable for mass production, and has a uniform particle size distribution.
  • the present invention has been completed. It was also found that crystal II can be obtained by adding a specific solvent to compound 1 and crystallizing it. Furthermore, it has been found that the crystal I of the compound 1 has high stability and is excellent in oral absorbability.
  • the present invention provides the following items: Item 1.
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is at least three or more selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 °
  • S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidine-1 is a crystal showing a characteristic peak -Yl) -1-pyrrolidinyl) -2-propen-1-one crystals: Item 2.
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is at least 5 or more selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 °
  • the crystal according to Item 1 which is a crystal exhibiting a characteristic peak: Item 3.
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is a crystal having characteristic peaks of 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 °.
  • the crystal according to Item 1 or 2 Item 4.
  • a pharmaceutical composition comprising the crystal according to any one of Items 1 to 5: Item 7.
  • a pharmaceutical composition for oral administration comprising the crystal according to any one of Items 1 to 5: Item 8.
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is selected from 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 °, 23.3 °, 23.7 °, and 24.2 °
  • S) -1- (3- (4-amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4]) is a crystal having at least seven characteristic peaks.
  • -D] Pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one crystals: Item 9.
  • the crystal according to Item 8 which is a crystal exhibiting a unique peak Item 10.
  • a pharmaceutical composition comprising the crystal according to any one of Items 8 to 10: Item 12.
  • a pharmaceutical composition for oral administration comprising the crystal according to any one of Items 8 to 10:
  • Step (1) (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl ) -1-pyrrolidinyl) -2-propen-1-one with water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, C2-5 aprotic polar organic solvent, and A step of adding to a solvent selected from the group consisting of these mixed solvents, and step (2) (S) -1- (3- (4-amino-3-((3,5-dimethoxy) in step (1) Phenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one is stirred and (S) -1 -(3- (4-Amino-3-((3,5-dimethoxy
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is at least three or more selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 ° Item 14.
  • the crystal according to Item 13 which exhibits a characteristic peak: Item 15.
  • the crystal according to any one of Items 13 to 15, wherein an endothermic peak (peak top value) is about 166 ° C. in differential scanning calorimetry: Item 17.
  • Step (1) (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl ) -1-pyrrolidinyl) -2-propen-1-one with water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, C2-5 aprotic polar organic solvent, and Adding to a solvent selected from the group consisting of these mixed solvents, and (S) -1- (3- (4-amino-3-((3,5-dimethoxy) in step (2) and step (1) Phenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one is stirred and (S) -1 -(3- (4-Amino-3-((3,5-dimethoxyphen
  • Step (1) (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl ) -1-pyrrolidinyl) -2-propen-1-one with water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, C2-5 aprotic polar organic solvent, and Adding to a solvent selected from the group consisting of these mixed solvents, and (S) -1- (3- (4-amino-3-((3,5-dimethoxy) in step (2) and step (1) Phenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one is stirred and (S) -1 -(3- (4-Amino-3-((3,5-dimethoxyphen
  • Step (1) (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl ) -1-pyrrolidinyl) -2-propen-1-one with C7-10 hydrocarbon, C2-8 ether, C6-10 aliphatic carboxylic acid ester, or C7-10 hydrocarbon-C3-5 aliphatic (S) -1- (3- (4-amino-3-((3,5-dimethoxyphenyl) ethynyl) in the step of adding to a solvent containing a mixed solvent of carboxylic acid ester and in step (2) step (1) ) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one was added to the solvent, and (S) -1- (3 -(4-Amino-3-((3,
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is selected from 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 °, 23.3 °, 23.7 °, and 24.2 °
  • the crystal according to Item 25 which exhibits at least 7 or more characteristic peaks: Item 27.
  • the crystal according to Item 25 or 26, wherein the endothermic peak (peak top value) is about 169 ° C. in differential scanning calorimetry:
  • Step (1) (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidine-1- Yl) -1-pyrrolidinyl) -2-propen-1-one with C5-10 hydrocarbon, C2-8 ether, C6-10 aliphatic carboxylic acid ester, or C5-10 hydrocarbon-C3-5 fat Adding to a solvent containing a mixed solvent of a group carboxylic acid ester, and step (2): (S) -1- (3- (4-amino-3-((3,5-dimethoxyphenyl) in step (1) ) Ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1-pyrrolidinyl) -2-propen-1-one was stirred and the (S) -1- (3- (4-Amino-3-((3,5-)
  • Compound II Crystal II has high stability, excellent oral absorbability, high crystallinity, high chemical purity, suitable for mass production, homogeneous particle size Since it has a distribution, it can be used as an oral drug.
  • the crystal I of Compound 1 is a crystal having high stability, excellent oral absorbability, high crystallinity, and high chemical purity, and thus can be used as an oral medicine.
  • 1 shows a powder X-ray diffraction spectrum of Compound II Crystal II (the vertical axis represents intensity (cps) and the horizontal axis represents diffraction angle (2 ⁇ ⁇ 0.2 °)).
  • 1 shows a powder X-ray diffraction spectrum of Crystal I of Compound 1 (the vertical axis represents intensity (cps) and the horizontal axis represents a diffraction angle (2 ⁇ ⁇ 0.2 °)).
  • 1 shows a powder X-ray diffraction spectrum of Compound III Crystal III (vertical axis represents intensity (cps), horizontal axis represents diffraction angle (2 ⁇ ⁇ 0.2 °)).
  • 2 shows a differential scanning calorimetry (DSC) curve of Compound II Crystal II.
  • 2 shows a differential scanning calorimetry (DSC) curve of Compound I Crystal I.
  • 2 shows a differential scanning calorimetry (DSC) curve of Compound III Crystal III.
  • Compound 1 in the present invention can be synthesized based on the production method described in Patent Document 1.
  • Crystal refers to a solid in which atoms or molecules are arranged in a regular repeating structure, and is different from an amorphous (amorphous) solid having no repeating structure. Crystalline or amorphous solid by methods such as powder X-ray diffraction measurement (XRD measurement), differential scanning calorimetry (DSC measurement), thermogravimetry-differential thermal analysis (TG-DTA), infrared spectroscopy (IR) Can be examined.
  • XRD measurement powder X-ray diffraction measurement
  • DSC measurement differential scanning calorimetry
  • TG-DTA thermogravimetry-differential thermal analysis
  • IR infrared spectroscopy
  • Compound 1 has three crystal forms (Crystal I, Crystal II, and Crystal III).
  • Crystal III can be obtained by using a mixed solvent of ethyl acetate and hexane.
  • DSC measurement differential scanning calorimetry
  • Crystal III shows an endothermic peak or exothermic peak at around 145 ° C, so it is less stable than Crystal I or Crystal II, and crystallized during the manufacturing process, formulation, etc.
  • the shape may change. Therefore, it is not suitable for pharmaceutical crystals that require stability.
  • the crystal I was stable as a crystal, and the possibility that the crystal form would change during formulation was very low. It was found to be chemically stable. Furthermore, the oral absorbability is very good, and it is suitable for pharmaceutical crystals that require stable and good oral absorbability.
  • the crystal II is stable as a crystal, and is unlikely to change its crystal form during formulation, etc. Found to be stable.
  • the crystal II when precipitated in a solvent, it does not adhere firmly to the reaction vessel, stirring blades, etc., and is suitable for mass production.
  • it is suitable for efficiently obtaining Compound 1 having an extremely high chemical purity. Therefore, it is suitable for crystals of pharmaceuticals that are stable and highly pure and require stable supply in large quantities.
  • Crystal I or crystal II only needs to contain crystal I or crystal II of compound 1, and may be a single crystal of crystal I or crystal II or a polymorphic mixture containing other crystals. . Specifically, 90% by weight or more of the crystal is preferably crystal I or crystal II, more preferably 95% by weight or more is crystal I or crystal II, and 99% by weight or more is crystal I or crystal II. It is particularly preferred.
  • the chemical purity is the purity when measured by high performance liquid chromatography, and when described as the chemical purity of compound 1, it means the purity when compound 1 is measured by high performance liquid chromatography.
  • the wavelength of the detector used for purity measurement can be set as appropriate.
  • the chemical purity of the crystal of Compound 1 is preferably 95.0% or more, more preferably 98.0% or more, and particularly preferably 99.0% or more.
  • the crystal I or crystal II of the present invention includes crystal habits having different external shapes due to differences in crystal plane growth. Therefore, even if the peak pattern of the diffraction angle 2 ⁇ obtained by XRD measurement of the crystal I or the crystal II is the same, those having different peak relative intensities are included.
  • the relative intensity is a relative value of each peak area when the peak of the diffraction angle 2 ⁇ in the powder X-ray diffraction spectrum having the maximum peak area is taken as 100.
  • the error of the peak at the diffraction angle 2 ⁇ in the powder X-ray diffraction spectrum of the present invention is about ⁇ 0.2 °. This is an error caused by the instrument used for measurement, sample preparation, data analysis method, and the like. Therefore, the XRD measurement value of the crystal in the present invention includes an error ⁇ 0.2 ° of the obtained diffraction angle 2 ⁇ .
  • the measured endothermic peak may vary depending on the temperature rise rate per minute, the weight of the sample, the purity of the sample, and the like.
  • the term “near” means ⁇ 5.0 ° C.
  • Crystal II of the present invention can be obtained by adding compound 1 to a specific solvent and stirring to crystallize. Therefore, the present invention Step (1) Step of adding Compound 1 to solvent, and Step (2) A step of crystallizing Compound 1 by stirring the solvent to which Compound 1 has been added in Step (1) to crystallize Compound 1 Also provide.
  • the method is Step (1) comprising adding compound 1 to the solvent, and step (2) stirring the solvent to which compound 1 has been added in step (1) to crystallize compound 1 to obtain crystal II, It can also be called a method for suppressing the scaling of the crystal of Compound 1.
  • the solvent that can be used for crystallization of the crystal I of the present invention is C7-10 hydrocarbon, C2-8 ether, C6-10 aliphatic carboxylic acid ester, or C7-10 hydrocarbon-C3-5 aliphatic carboxylic acid.
  • the mixed solvent of an acid ester is mentioned.
  • C7-10 hydrocarbon is a hydrocarbon having 7-10 carbon atoms, and includes heptane, decane, etc., preferably heptane.
  • C2-8 ether is an ether having 2 to 8 carbon atoms, and examples thereof include diethyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, and tetrahydrofuran, and tert-butyl methyl ether is preferred.
  • the C6-10 aliphatic carboxylic acid ester is an aliphatic carboxylic acid ester having 6 to 10 carbon atoms as a whole, and examples thereof include butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, and butyl propionate. Preferably, it is butyl acetate.
  • C3-5 aliphatic carboxylic acid ester is an aliphatic carboxylic acid ester having 3 to 5 carbon atoms in total, such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, methyl propionate, and ethyl propionate. Can be mentioned. Preferably, it is ethyl acetate.
  • Solvents that can be used for crystallization of Crystal I of the present invention include C7-10 hydrocarbons, C2-8 ethers, C6-10 aliphatic carboxylic acid esters, or C7-10 hydrocarbon-C3-5 aliphatic carboxylic acid esters, And a solvent selected from the group consisting of these mixed solvents, preferably a heptane, tert-butyl methyl ether, butyl acetate, or a mixed solvent of heptane-ethyl acetate.
  • Solvents that can be used to obtain the crystal II of the present invention are water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, C2-5 aprotic polar organic solvent, and these Examples thereof include a solvent selected from the group consisting of mixed solvents.
  • C1-4 alcohol is an alcohol having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, and preferably ethanol or isopropanol.
  • the C3-5 aliphatic carboxylic acid ester is the above-mentioned aliphatic carboxylic acid ester, and preferably ethyl acetate.
  • C3-6 ketone is a ketone having 3 to 6 carbon atoms in total, and includes acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like. Acetone or methyl ethyl ketone is preferred.
  • Examples of the C2-5 aprotic polar organic solvent include acetonitrile, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide.
  • Solvents that can be used for crystallization of crystal II of the present invention are water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, C2-5 aprotic polar organic solvent, and a mixed solvent thereof. And a solvent selected from the group consisting of water, C1-4 alcohol, C3-5 aliphatic carboxylic acid ester, C3-6 ketone, and mixed solvents thereof. . More preferred is a mixed solvent of ethanol, isopropanol, acetone, methyl ethyl ketone, ethyl acetate, and water-ethanol. Particularly preferred is a mixed solvent of water and ethanol.
  • the mixing ratio of water and C1-4 alcohol is usually 0.01 to 100 parts by weight, preferably 0.1 to 1 part by weight of C1-4 alcohol. It can be appropriately set in the range of ⁇ 50 parts by weight, more preferably 1-30 parts by weight.
  • the amount of the solvent that can be added to the crystal I or crystal II of the present invention is 1 to 100 (volume / weight) times the mass of the compound 1 from the viewpoint of crystal yield, and 2 to 50 (volume / weight). ) Times, preferably 4 to 30 (volume / weight) times.
  • the temperature for crystallization of the crystal I or crystal II of the present invention is appropriately set depending on the solvent used, and is set between 0 ° C. and the boiling point of the solvent. Further, the temperature in crystallization does not need to be constant, and it can be heated or cooled between 0 ° C. and the boiling point of the solvent.
  • heating refers to maintaining the temperature of the solvent at 40 ° C. or higher
  • cooling refers to maintaining the temperature of the solvent below 15 ° C.
  • Stirring in the crystallization of the crystal I or crystal II of the present invention is appropriately performed using a stirrer, a stirring blade, a magnetic stirrer or the like depending on the amount of solvent, the size of the reaction kettle, and the like.
  • the stirring speed is usually 1 to 600 rpm, preferably 10 to 300 rpm.
  • the stirring time in the crystallization of the crystal I or crystal II of the present invention is longer than a predetermined length so that the crystallization is sufficiently advanced and a crystal can be obtained in a high yield, and the decomposition of the crystal that causes a decrease in the yield is performed. It is preferable that the time is equal to or shorter than a predetermined time so as not to occur so much. Examples of the stirring time include 1 minute to 120 hours, preferably 1 to 72 hours, and more preferably 3 to 48 hours.
  • Scaling suppression in crystallization of crystal II of the present invention means that crystals remaining in the reaction vessel are suppressed to less than 20% of the theoretical yield, preferably less than 10%, more preferably 5% of the theoretical yield. Less than%.
  • the crystal I or crystal II of the present invention precipitated in the solvent can be isolated and purified by known separation and purification means such as filtration, washing with an organic solvent, and drying under reduced pressure.
  • the organic solvent used for the washing include the above-mentioned solvents, and preferably a mixed solvent of ethanol, isopropanol, acetone, methyl ethyl ketone, ethyl acetate, and water-ethanol.
  • the pressure in the vacuum drying is 0.1 atm (atm) or less, preferably 0.05 atm or less.
  • the temperature in the vacuum drying is 0 to 200 ° C., preferably 25 to 100 ° C.
  • crystal I or crystal II may be added as a seed crystal.
  • the seed crystal to be added is 0.1 to 10% by weight, preferably 1 to 3% by weight, based on the theoretical yield of Compound 1 in crystallization.
  • the crystal I of Compound 1 obtained as described above has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 ° in the powder X-ray diffraction spectrum. At least 7 peaks selected from 23.3 °, 23.7 °, and 24.2 ° are shown. More preferably, the crystal I of Compound 1 has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 ° in the powder X-ray diffraction spectrum as shown in FIG.
  • the crystal I of Compound 1 has an endothermic peak (for example, around 164 ° C. to 174 ° C., more preferably around 169 ° C. as a result of differential scanning calorimetry (DSC measurement) shown in FIG. Peak top value).
  • DSC measurement differential scanning calorimetry
  • the crystal I of Compound 1 obtained as described above has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 ° in the powder X-ray diffraction spectrum. It has at least 7 or more peaks selected from °, 23.3 °, 23.7 °, and 24.2 °, and an endothermic peak (peak top value) around 164 to 174 ° C in differential scanning calorimetry (DSC measurement) Have.
  • the crystal I of Compound 1 has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 ° in the powder X-ray diffraction spectrum as shown in FIG. It has characteristic peaks of °, 23.3 °, 23.7 °, and 24.2 °, and has an endothermic peak (peak top value) near 169 ° C in differential scanning calorimetry (DSC measurement) IV.
  • the crystal II of Compound 1 obtained as described above has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 in the powder X-ray diffraction spectrum. It shows at least 3 or more peaks selected from ° and 25.2 °. More preferably, Compound II Crystal II has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 ° in the powder X-ray diffraction spectrum. Show at least 5 or more peaks selected.
  • the crystal II of Compound 1 has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 in the powder X-ray diffraction spectrum as shown in FIG. It is a crystal showing characteristic peaks at ° and 25.2 °.
  • the crystal II of Compound 1 has an endothermic peak (eg, near 161 to 171 ° C., more preferably around 166 ° C. as a result of differential scanning calorimetry (DSC measurement) shown in FIG. Peak top value).
  • the crystal II of the present invention has a diffraction angle (2 ⁇ ⁇ 0.2 °) selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 ° in the powder X-ray diffraction spectrum. And has an endothermic peak (peak top value) near 161 to 171 ° C. in differential scanning calorimetry (DSC measurement).
  • the diffraction angle (2 ⁇ ⁇ 0.2 °) is at least 5 or more selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 ° And an endothermic peak (peak top value) around 166 ° C. in differential scanning calorimetry (DSC measurement). More preferably, in the powder X-ray diffraction spectrum, the diffraction angle (2 ⁇ ⁇ 0.2 °) has seven peaks selected from 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 °. And has an endothermic peak (peak top value) near 166 ° C. in differential scanning calorimetry (DSC measurement).
  • Crystal I or Crystal II of the present invention is useful as an antitumor agent because Compound 1 has excellent FGFR inhibitory activity.
  • the target cancer is not particularly limited, but head and neck cancer, gastrointestinal cancer (esophageal cancer, stomach cancer, gastrointestinal stromal tumor, duodenal cancer, liver cancer, biliary tract cancer (gallbladder cancer, bile duct cancer, etc.), pancreatic cancer, small intestine Cancer, colorectal cancer (colorectal cancer, colon cancer, rectal cancer, etc.), lung cancer, breast cancer, ovarian cancer, uterine cancer (cervical cancer, uterine body cancer, etc.), kidney cancer, bladder cancer, prostate cancer, urinary tract Skin cancer, bone and soft tissue sarcoma, blood cancer (B-cell lymphoma, chronic lymphocytic leukemia, peripheral T-cell lymphoma, myelodysplastic syndrome, acute myeloid leukemia, acute lymphocytic leukemia, etc.), multiple myeloma
  • the crystal I or crystal II of the present invention can be blended with a pharmaceutical carrier as necessary, and various administration forms can be adopted depending on the purpose of prevention or treatment. Oral preparations, injections, suppositories, ointments, patches and the like may be used, and oral preparations are preferred. Each of these dosage forms can be produced by a conventional formulation method known to those skilled in the art.
  • the pharmaceutical carrier various organic or inorganic carrier substances commonly used as pharmaceutical materials are used, and excipients, binders, disintegrants, lubricants, coloring agents in solid preparations, solvents in liquid preparations, dissolution aids, It is blended as a suspending agent, isotonic agent, buffer, soothing agent and the like.
  • formulation additives such as preservatives, antioxidants, colorants, sweeteners, stabilizers and the like can be used as necessary.
  • the crystal I or crystal II of the present invention is mixed with an excipient, and if necessary, an excipient, a binder, a disintegrant, a lubricant, a coloring agent, a corrigent-flavoring agent, etc.
  • an excipient e.g., a binder, a disintegrant, a lubricant, a coloring agent, a corrigent-flavoring agent, etc.
  • tablets, coated tablets, granules, powders, capsules and the like can be produced by conventional methods.
  • a pH adjuster, a buffer, a stabilizer, an isotonic agent, a local anesthetic, etc. are added to Crystal I or Crystal II of the present invention, and subcutaneous, intramuscular and intravenous are added by a conventional method. An internal injection can be produced.
  • the amount of the crystal I or crystal II of the present invention to be blended in each of the above dosage unit forms is not constant depending on the symptoms of the patient to which this is to be applied, or the dosage form thereof, but is generally per dosage unit form. Desirably, 0.05 to 1000 mg for oral preparations, 0.01 to 500 mg for injections, and 1 to 1000 mg for suppositories.
  • the daily dose of the drug having the above dosage form varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally, but it is usually an adult (weight 50 kg) as Crystal I or Crystal II of the present invention.
  • Powder X-ray diffraction measurement Powder X-ray diffraction was measured according to the following test conditions after lightly grinding an appropriate amount of the test substance with an agate mortar as necessary: Device: Rigaku RINT-ULTIMA + 2100 Target: Cu X-ray output setting: 40 mA, 40 kV Scanning range: 5.0 to 40.0 ° Step size: 0.010 ° Scanning speed: 5.00 °C / min. Divergent slit: 1/2 ° Scattering slit: 3.00mm Receiving slit: 13.00mm The handling of the device including data processing was in accordance with the method and procedure indicated by each device.
  • DSC measurement Differential scanning calorimetry (DSC measurement) DSC measurements were measured according to the following test conditions: Equipment: TA instrument Q1000 Sample: Approximately 1mg Sample container: Aluminum Heating rate: 10 ° C / min Atmospheric gas: Nitrogen Nitrogen gas flow rate: 50ml / min. The handling of the device including data processing was in accordance with the method and procedure indicated by each device.
  • Apparatus Waters ACQUITY SQD (quadrupole type) Sample: 0.1 mg / mL acetonitrile solution Mobile phase A: 0.1% formic acid aqueous solution Mobile phase B: 0.1% formic acid-acetonitrile Column: YMC-Triart C18, 2.0 ⁇ 50 mm, 1.9 ⁇ m manufactured by YMC Measurement wavelength: 254nm The handling of the device including data processing was in accordance with the method and procedure indicated by each device.
  • Example 1 (S) -1- (3- (4-Amino-3-((3,5-dimethoxyphenyl) ethynyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl) -1- Acquisition of Crystal II of Pyrrolidinyl) -2-propen-1-one
  • Compound 1 (1.00 g) obtained by the method described in Patent Document 1 was charged with ethanol (9 mL) and water (1 mL) at 75 ° C. For 5 minutes. Thereafter, the temperature was lowered to room temperature, and the mixture was stirred for 26 hours, and then the precipitate was collected by filtration to obtain Compound II Crystal II (771 mg, 77% yield).
  • the crystal II has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 9.5 °, 14.3 °, 16.7 °, 19.1 °, 20.8 °, 21.9 °, and 25.2 ° in the powder X-ray diffraction spectrum.
  • the characteristic peak was shown.
  • Crystal II showed an endothermic peak (peak top value) at around 166 ° C.
  • Example 2 Acquisition of Crystal I of Compound 1 By adding t-butyl methyl ether (1 mL) to Compound 1 (50 mg) obtained by the method described in Patent Document 1, and stirring at room temperature for 20 hours, Crystal 1 of compound 1 (28 mg, yield 56%) was obtained.
  • the crystal I has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 13.5 °, 17.9 °, 19.5 °, 20.6 °, 22.0 °, 22.6 °, 23.3 °, as shown in FIG. Characteristic peaks at 23.7 ° and 24.2 ° were shown. Further, as shown in FIG. 5, as a result of differential scanning calorimetry (DSC measurement), the crystal I showed an endothermic peak (peak top value) around 170 ° C.
  • the crystal III of compound 1 has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 9.5 °, 12.6 °, 13.5 °, 20.1 °, 20.6 °, 22.5 °, as shown in FIG. Characteristic peaks at 23.3 °, 23.7 °, and 24.2 ° were shown. Further, as shown in FIG. 6, as a result of differential scanning calorimetry (DSC measurement), Compound III Crystal III showed endothermic peaks (peak top values) at around 140 ° C. and 170 ° C.
  • Test Example 1 Solid Stability of Compound 1 in Crystal II Crystal 1 or Compound II of Compound 1 was allowed to stand for 1 month at 40 ° C., 40 ° C. (humidity 75%), or 60 ° C. Thereafter, when the chemical purity was measured by high performance liquid chromatography, the change in chemical purity was 0.1% or less under any condition. Further, from the results of differential scanning calorimetry (DSC measurement) in Example 1 or 2 and Comparative Example 1, Compound 1 Crystal I or Crystal II showed that Compound 1 shown in Comparative Example 1 when the temperature was raised. No peak suggesting a phase transition was observed as in Crystal III. From these results, it was found that the crystal I or the crystal II of the compound 1 was a crystal excellent in solid stability.
  • Test Example 2 Oral Absorbability of Compound 1 in Crystal II
  • Compound 1 Crystal I or Crystal II was suspended in a 0.5% HPMC aqueous solution and orally administered to BALB / c mice at 50 mg / kg. After administration, the fundus oculi were collected 0.5, 1, 2, 4, and 6 hours later, and the concentration of Compound 1 in the plasma was measured. The results shown in Table 1 were obtained. It was found that both the crystal I and the crystal II of the compound 1 have a good oral absorbability, and the crystal I has a better oral absorbability. In addition, it was found that the oral absorbability of crystal I or crystal II can be obtained at a sufficient concentration showing medicinal effects.
  • Test Example 3 Comparison of chemical purity of crystals I and II of compound 1 derived from the same lot Crude compound 1 (50 mg, chemical purity 98.6%) obtained by the method described in Patent Document 1 was added to 1 ml of acetone. After stirring at room temperature for 20 hours, the precipitate was collected by filtration to obtain Compound 1 of Crystal II.
  • Table 2 shows the chemical purity of crude compound 1, crystal II of compound 1 obtained from crude compound 1 with each of the above solvents, and crystal I. Usually, it is expected that the chemical purity is improved by recrystallization. From this result, it was found that the crystal II can efficiently remove impurities. According to Guidelines ICH-Q3A of the Japan-US EU Pharmaceutical Regulation Harmonization Conference, 0.03% or more of drug substance impurities can be controlled, so the results of this test example are useful.
  • Test Example 4 Comparison of Scaling of Crystal I and II of Compound 1 Crude (prepared to a theoretical yield of 767 mg) of Compound 1, ethyl acetate (30 mL) and heptane (24 mL) obtained by the method described in Patent Document 1 ) was added to the reaction vessel and heated to reflux for 1.5 hours. After allowing to cool, only the precipitates dispersed in the solvent in the reaction vessel were collected by filtration to obtain Compound 1 Crystal I (290 mg, yield 38%). Separately, a precipitate I that was firmly attached (scaling) to a reaction vessel or the like was collected to obtain Compound 1 Crystal I (312 mg, yield 41%).
  • Crystal II was obtained from Crude Compound 1 using a mixed solvent of water and ethanol, acetone, or ethyl acetate, but the scaled Crystal II was less than 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 本発明は、抗腫瘍剤として有用な(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの安定で経口吸収性に優れ、化学純度が高い結晶であり、大量製造に適している結晶を提供することを目的とする。本発明は、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶を提供する。また、本発明は、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上の特徴的なピークを示す結晶である(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶を提供する。

Description

3,5-二置換ベンゼンアルキニル化合物の結晶
  [関連出願の相互参照]
 本出願は、2015年3月31日に出願された、日本国特許出願第2015-070927号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
本発明は、安定で経口吸収性に優れ、抗腫瘍剤として有用な3,5-二置換ベンゼンアルキニル化合物の新規な結晶に関する。
 一般的に、経口投与用の医薬組成物においては、有効成分の安定性のみならず、経口投与時の優れた吸収性、大量製造可能な方法が求められる。
 結晶には、同一分子であっても結晶中の分子の配列が異なる結晶多形が存在する場合があり、その場合、粉末X線回折測定(XRD測定)で得られるピークが異なることが知られている。また、それぞれの結晶多形で溶解性、経口吸収性、安定性などが異なることが知られており、様々な観点から医薬品を開発する上で最適な結晶を見出すことが求められる。
 現在、抗腫瘍剤として複数のFGFR阻害剤が報告されており、特許文献1、2及び3には、優れたFGFR阻害作用を有し、抗腫瘍活性を示す化合物として(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン(以下、「化合物1」とも言う)が記載されている。
Figure JPOXMLDOC01-appb-C000001
 しかし、特許文献1、2及び3には、化合物1の結晶及びその結晶の安定性、経口吸収性、及び結晶化方法については全く記載も示唆もない。
国際公開WO2013/108809パンフレット 国際公開WO2015/008844パンフレット 国際公開WO2015/008839パンフレット
 本発明は、抗腫瘍剤として有用な特許文献1に記載の化合物1の、安定で経口吸収性に優れ、大量製造に適している結晶及びその結晶化方法を提供することを目的とする。
 本発明者らは、鋭意研究を重ねた結果、化合物1には3種の結晶形(結晶I、結晶II、結晶III)が存在することを見出した。そのうち結晶IIは高い安定性を有し、経口吸収性に優れ、結晶化度が高く、化学純度が高い結晶であり、大量製造に適しており、均質な粒度分布を有していることを見出し、本発明を完成するに至った。また、化合物1に特定の溶媒を添加して結晶化することにより結晶IIが得られることを見出した。さらに、化合物1の結晶Iは高い安定性を有し、経口吸収性に優れた結晶であることを見出した。
 すなわち、本発明は、以下の項を提供する:
項1.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す結晶である(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶:
項2.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも5つ以上の特徴的なピークを示す結晶である項1に記載の結晶:
項3.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°の特徴的なピークを示す結晶である項1又は2に記載の結晶:
項4.化学純度が99.0%以上である項1~3のいずれかに記載の結晶:
項5.示差走査熱量測定において吸熱ピーク(ピークトップ値)が166℃付近である項1~4のいずれかに記載の結晶:
項6.項1~5のいずれかに記載の結晶を含有する医薬組成物:
項7.項1~5のいずれかに記載の結晶を含有する経口投与用の医薬組成物:
項8.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上の特徴的なピークを示す結晶である(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶:
項9.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜の特徴的なピークを示す結晶である項8に記載の結晶:
項10.示差走査熱量測定において吸熱ピーク(ピークトップ値)が169℃付近である項8又は9に記載の結晶:
項11.項8~10のいずれかに記載の結晶を含有する医薬組成物:
項12.項8~10のいずれかに記載の結晶を含有する経口投与用の医薬組成物:
項13.工程(1)  (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを、水、C1~4アルコール、C3~5脂肪族カルボン酸エステル、C3~6ケトン、C2~5非プロトン性極性有機溶媒、及びこれらの混合溶媒からなる群から選択される溶媒に添加する工程、及び
工程(2) 工程(1)で(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを添加した溶媒を攪拌して、(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを結晶化させる工程を含む、
方法により製造された(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶:
項14.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す項13に記載の結晶:
項15.化学純度が99.0%以上である項13又は14に記載の結晶:
項16.示差走査熱量測定において吸熱ピーク(ピークトップ値)が166℃付近である項13~15のいずれかに記載の結晶:
項17.工程(1) (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを、水、C1~4アルコール、C3~5脂肪族カルボン酸エステル、C3~6ケトン、C2~5非プロトン性極性有機溶媒、及びこれらの混合溶媒からなる群から選択される溶媒に添加する工程、及び
工程(2)工程(1)で(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを添加した溶媒を攪拌して、(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを結晶化させる工程を含む、
(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の結晶化方法:
項18.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す項17に記載の結晶の結晶化方法:
項19.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の化学純度が99.0%以上である項17又は18に記載の結晶の結晶化方法:
項20.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の示差走査熱量測定において吸熱ピーク(ピークトップ値)が166℃付近である項17~19のいずれかに記載の結晶の結晶化方法:
項21.工程(1) (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを、水、C1~4アルコール、C3~5脂肪族カルボン酸エステル、C3~6ケトン、C2~5非プロトン性極性有機溶媒、及びこれらの混合溶媒からなる群から選択される溶媒に添加する工程、及び
工程(2)工程(1)で(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを添加した溶媒を攪拌して、(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを結晶化させる工程を含む、
(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶のスケーリング抑制方法:
項22.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す項21に記載の結晶のスケーリング抑制方法:
項23.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の化学純度が99.0%以上である項21又は22に記載の結晶のスケーリング抑制方法:
項24.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の示差走査熱量測定において吸熱ピーク(ピークトップ値)が166℃付近である項21~23のいずれかに記載の結晶のスケーリング抑制方法:
項25.工程(1) (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを、C7~10炭化水素、C2~8エーテル、C6~10脂肪族カルボン酸エステル、又はC7~10炭化水素-C3~5脂肪族カルボン酸エステルの混合溶媒を含む溶媒に添加する工程、及び
工程(2)工程(1)で(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを添加した溶媒を攪拌して、(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを結晶化させる工程を含む、
方法により結晶化された(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶:
項26.粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上の特徴的なピークを示す項25に記載の結晶:
項27.示差走査熱量測定において吸熱ピーク(ピークトップ値)が169℃付近である項25又は26に記載の結晶:
項28.工程(1): (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを、C5~10炭化水素、C2~8エーテル、C6~10脂肪族カルボン酸エステル、又はC5~10炭化水素-C3~5脂肪族カルボン酸エステルの混合溶媒を含む溶媒に添加する工程、及び
工程(2):工程(1)で(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを添加した溶媒を攪拌して、(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンを結晶化させる工程を含む、
(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶の結晶化方法:
項29.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上の特徴的なピークを示す項28に記載の結晶の結晶化方法:
項30.前記工程(2)で得られる(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オン結晶の示差走査熱量測定において吸熱ピーク(ピークトップ値)が169℃付近である項28又は29に記載の結晶:
 本発明によれば、化合物1の結晶IIは、高い安定性を有し、経口吸収性に優れ、結晶化度が高く、化学純度が高い結晶であり、大量製造に適しており、均質な粒度分布を有していることから経口用医薬品として利用できる。また、化合物1の結晶Iは、高い安定性を有し、経口吸収性に優れ、結晶化度が高く、化学純度が高い結晶であることから、経口用医薬品として利用できる。
化合物1の結晶IIの粉末X線回折スペクトルを示す(縦軸は強度(cps)、横軸は回折角(2θ±0.2°)を表す)。 化合物1の結晶Iの粉末X線回折スペクトルを示す(縦軸は強度(cps)、横軸は回折角(2θ±0.2°)を表す)。 化合物1の結晶IIIの粉末X線回折スペクトルを示す(縦軸は強度(cps)、横軸は回折角(2θ±0.2°)を表す)。 化合物1の結晶IIの示差走査熱量(DSC)曲線を示す。 化合物1の結晶Iの示差走査熱量(DSC)曲線を示す。 化合物1の結晶IIIの示差走査熱量(DSC)曲線を示す。
本発明における化合物1は、特許文献1に記載の製造方法に基づき合成することができる。
 結晶は、原子又は分子が規則的な繰り返し構造を配置している固体を示し、繰り返し構造を持たないアモルファス(非晶質)の固体とは異なる。粉末X線回折測定(XRD測定)、示差走査熱量測定(DSC測定)、熱重量測定-示差熱分析(TG-DTA)、赤外分光法(IR)などの方法により、結晶、又はアモルファスの固体を調べることができる。
 結晶には、同一分子であっても結晶中の分子の配列が異なる結晶多形が存在する場合があり、その場合、粉末X線回折測定(XRD測定)で得られるピークが結晶多形の間で異なることが知られている。また、それぞれの結晶多形で溶解性、経口吸収性、安定性などが異なることが知られており、様々な観点から医薬品を開発する上で最適な結晶を見出すことが求められる。
 本発明者らは、鋭意研究を重ねた結果、化合物1には3種の結晶形(結晶I、結晶II、結晶III )が存在することを見出した。
 結晶IIIは、酢酸エチルとヘキサンとの混合溶媒を用いることにより得られる。しかし、示差走査熱量測定(DSC測定)の結果、145℃付近に吸熱ピーク又は発熱ピークを示すことから、結晶I又は結晶IIに比べて安定性が劣り、製造過程、製剤化等の際に結晶形が変化してしまう可能性がある。そのため、安定性が求められる医薬品の結晶には適していない。
それに対して、結晶Iは、DSC測定において吸熱ピーク又は発熱ピークが検出できなかったことから、結晶として安定であり、製剤化等の際に結晶形が変化してしまう可能性は低く、非常に化学的に安定であることを見出した。更に、経口吸収性が極めて良好であり、安定性かつ良好な経口吸収性が求められる医薬品の結晶に適している。
 更に、結晶IIは、DSC測定において吸熱ピーク又は発熱ピークが検出できなかったことから、結晶として安定であり、製剤化等の際に結晶形が変化してしまう可能性は低く、非常に化学的に安定であることを見出した。加えて、溶媒中で析出させる際に、反応容器、撹拌羽根などに固く付着することはなく、大量製造に適している。加えて、化学的純度が極めて高い化合物1を効率的に得るのに適している。よって、安定性かつ高純度で大量に安定供給が求められる医薬品の結晶に適している。
 結晶I又は結晶IIは、化合物1の結晶I又は結晶IIを含むものであればよく、結晶I又は結晶IIの単一結晶であってもそれ以外の結晶を含む多形混合物であってもよい。具体的には結晶の90重量%以上が結晶I又は結晶IIであることが好ましく、95重量%以上が結晶I又は結晶IIであることがより好ましく、99重量%以上が結晶I又は結晶IIであることが特に好ましい。
 本明細書において、化学純度とは高速液体クロマトグラフィーで測定した際の純度であり、化合物1の化学純度と記載したときには、化合物1を高速液体クロマトグラフィーで測定した際の純度を言う。その際に、純度測定に用いる検出器の波長は適宜設定することができる。具体的には、化合物1の結晶の化学純度は95.0 %以上が好ましく、98.0%以上がより好ましく、99.0%以上が特に好ましい。
 また、本発明の結晶I又は結晶IIは、結晶面の成長の違いにより外形が異なる晶癖も含まれる。そのため、結晶I又は結晶IIのXRD測定で得られる回折角2θのピークのパターンは同じでも、ピークの相対強度が異なるものも含まれる。ここでいう相対強度とは、粉末X線回折スペクトルにおける回折角2θのピークのうち、ピーク面積が最大のものを100とした際の、各ピーク面積の相対値である。
 加えて、本発明における粉末X線回折スペクトルにおける回折角2θのピークの誤差は約±0.2°である。これは、測定に用いられた機器、試料調整、データ解析の方法などにより生じる誤差である。よって、本発明における結晶のXRD測定値は、得られた回折角2θの誤差±0.2°を含む。
 DSC測定において、測定される吸熱ピーク(ピークトップ値)は、1分あたりの昇温速度、試料の重量、試料の純度等により測定温度が変化することがある。本明細書において「付近」という用語は±5.0℃を意味する。
 本発明の結晶IIは、化合物1を特定の溶媒に添加し、撹拌して結晶化することにより得ることができる。従って、本発明は、
工程(1) 化合物1を溶媒に添加する工程、及び
工程(2) 工程(1)で化合物1を添加した溶媒を攪拌して、化合物1を結晶化させる工程を含む、結晶IIの結晶化方法も提供する。当該方法は、
工程(1) 化合物1を溶媒に添加する工程、及び
工程(2) 工程(1)で化合物1を添加した溶媒を攪拌して、化合物1を結晶化させて結晶IIを得る工程を含む、
化合物1の結晶のスケーリング抑制方法といいかえることもできる。
 ここで、本発明の結晶Iの結晶化に使用できる溶媒は、C7~10炭化水素、C2~8エーテル、C6~10脂肪族カルボン酸エステル、又はC7~10炭化水素-C3~5脂肪族カルボン酸エステルの混合溶媒が挙げられる。
 C7~10炭化水素は、炭素数が7~10個の炭化水素であり、ヘプタン、デカンなどが挙げられ、好ましくはヘプタンである。
 C2~8エーテルとは、炭素数が2~8個のエーテルであり、ジエチルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフランなどが挙げられ、好ましくはtert-ブチルメチルエーテルである。
 C6~10脂肪族カルボン酸エステルは、エステル全体の炭素数が6~10個の脂肪族カルボン酸エステルであり、酢酸ブチル、酢酸ペンチル、酢酸へキシル、酢酸オクチル、プロピオン酸ブチルなどが挙げられる。好ましくは、酢酸ブチルである。
 C3~5脂肪族カルボン酸エステルは、エステル全体の炭素数が3~5個の脂肪族カルボン酸エステルであり、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、プロピオン酸メチル、プロピオン酸エチルなどが挙げられる。好ましくは、酢酸エチルである。
 本発明の結晶Iの結晶化に使用できる溶媒は、C7~10炭化水素、C2~8エーテル、C6~10脂肪族カルボン酸エステル、又はC7~10炭化水素-C3~5脂肪族カルボン酸エステル、及びこれらの混合溶媒からなる群から選択される溶媒が挙げられ、好ましくはヘプタン、tert-ブチルメチルエーテル、酢酸ブチル、又はヘプタン-酢酸エチルの混合溶媒である。
 また、本発明の結晶IIを得るために使用できる溶媒は、水、C1~4アルコール、 C3~5脂肪族カルボン酸エステル、C3~6ケトン、 C2~5非プロトン性極性有機溶媒、及びこれらの混合溶媒からなる群から選択される溶媒が挙げられる。
 C1~4アルコールは、炭素数が1~4個のアルコールであり、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノールなど挙げられ、好ましくはエタノール、又はイソプロパノールである。
 C3~5脂肪族カルボン酸エステルは、上述の脂肪族カルボン酸エステルであり、好ましくは、酢酸エチルである。
 C3~6ケトンは、ケトン全体の炭素数が3~6個のケトンであり、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが挙げられる。好ましくはアセトン、又はメチルエチルケトンである。
 C2~5非プロトン性極性有機溶媒としては、アセトニトリル、N-メチル-2-ピロリドン、N、N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びジメチルスルホキシドなどが挙げられる。
 本発明の結晶IIの結晶化に使用できる溶媒は、水、C1~4アルコール、 C3~5脂肪族カルボン酸エステル、C3~6ケトン、 C2~5非プロトン性極性有機溶媒、及びこれらの混合溶媒からなる群から選択される溶媒が挙げられ、好ましくは水、C1~4アルコール、C3~5脂肪族カルボン酸エステル、C3~6ケトン、及びこれらの混合溶媒からなる群から選択される溶媒である。より好ましくは、エタノール、イソプロパノール、アセトン、メチルエチルケトン、酢酸エチル、及び水-エタノールの混合溶媒である。特に好ましくは、水-エタノールの混合溶媒である。水-C1~4アルコールの混合溶媒を用いる場合、水とC1~4アルコールとの配合比は、水1重量部に対して、C1~4アルコールを、通常、0.01~100重量部、好ましくは0.1~50重量部、より好ましくは1~30重量部の範囲で適宜設定できる。
 本発明の結晶I又は結晶IIに添加できる溶媒量は、結晶の収率の観点から、化合物1の質量に対して1~100(容量/重量)倍が挙げられ、2~50(容量/重量)倍が好ましく、4~30(容量/重量)倍がより好ましい。
 本発明の結晶I又は結晶IIの結晶化における温度は、用いる溶媒によって適宜設定され、0℃から溶媒の沸点の間で設定される。また、結晶化における温度は一定である必要はなく、0℃から溶媒の沸点の間で加熱又は冷却することができる。ここで、加熱とは溶媒の温度を40℃以上に維持することであり、冷却とは溶媒の温度を15℃未満に維持することである。
 本発明の結晶I又は結晶IIの結晶化における撹拌は、撹拌機、撹拌羽根、マグネチックスターラー等を、溶媒量、反応釜の大きさ等に応じて適宜用いて行う。撹拌速度は、通常、1~600rpmであり、10~300rpmが好ましい。
 本発明の結晶I又は結晶IIの結晶化における撹拌時間は、結晶化が十分に進み高収率で結晶が得られるように所定以上の長さで、かつ収率の低下をもたらす結晶の分解があまり生じないように所定の時間以下であることが好ましい。上記撹拌時間としては、1分~120時間が挙げられ、好ましくは1~72時間であり、より好ましくは3~48時間である。
 本発明の結晶IIの結晶化におけるスケーリング抑制は、反応容器に残存してしまう結晶が理論収量の20%未満に抑制することを言い、好ましくは10%未満であり、より好ましくは理論収量の5%未満である。
 溶媒中に析出した本発明の結晶I又は結晶IIは、例えば、ろ過、有機溶媒による洗浄、減圧乾燥等の公知の分離精製手段によって、単離精製することができる。洗浄に使用される有機溶媒としては、上記溶媒が挙げられ、好ましくはエタノール、イソプロパノール、アセトン、メチルエチルケトン、酢酸エチル、及び水-エタノールの混合溶媒である。減圧乾燥における気圧は0.1気圧(atm)以下であり、0.05気圧以下が好ましい。また、減圧乾燥における温度は0~200℃であり、好ましくは25~100℃である。
 本発明の結晶化において、種晶として結晶I又は結晶IIを加えてもよい。加える種晶は、結晶化における化合物1の理論収量の0.1~10重量%であり、好ましくは1~3重量%である。
 上記のようにして得られた化合物1の結晶Iは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上のピークを示す。より好ましくは、化合物1の結晶Iは、粉末X線回折スペクトルにおいて、図2に示すとおり、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜の特徴的なピークを示す。また、典型的な実施形態において、化合物1の結晶Iは、例えば、164~174℃付近、より好ましくは図5で示す示差走査熱量測定(DSC測定)の結果のとおり169℃付近に吸熱ピーク(ピークトップ値)を有する。
 また、上記のようにして得られた化合物1の結晶Iは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上のピークを有し、かつ示差走査熱量測定(DSC測定) において、164~174℃付近に吸熱ピーク(ピークトップ値)を有する。より好ましくは、化合物1の結晶Iは、粉末X線回折スペクトルにおいて、図2に示すとおり、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜の特徴的なピークを有し、かつ示差走査熱量測定(DSC測定) において、169℃付近に吸熱ピーク(ピークトップ値)を有する。
 また、上記のようにして得られた化合物1の結晶IIは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上のピークを示す。より好ましくは、化合物1の結晶IIは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも5つ以上のピークを示す。さらに好ましくは、化合物1の結晶IIは、図1に示すとおり、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°の特徴的なピークを示す結晶である。また、典型的な実施形態において、化合物1の結晶IIは、例えば、161~171℃付近、より好ましくは図4で示す示差走査熱量測定(DSC測定)の結果のとおり166℃付近に吸熱ピーク(ピークトップ値)を有する。
 また、本発明の結晶IIは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上のピークを有し、かつ示差走査熱量測定(DSC測定) において、161~171℃付近に吸熱ピーク(ピークトップ値)を有する。より好ましくは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも5つ以上のピークを有し、かつ示差走査熱量測定(DSC測定) において、166℃付近に吸熱ピーク(ピークトップ値)を有する。さらに好ましくは、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される7つのピークを有し、かつ示差走査熱量測定(DSC測定) において、166℃付近に吸熱ピーク(ピークトップ値)を有する。
 本発明の結晶I又は結晶IIは、化合物1が優れたFGFR阻害活性を有することから、抗腫瘍剤として有用である。対象となる癌は特に制限されないが、頭頚部癌、消化器癌(食道癌、胃癌、消化管間質腫瘍、十二指腸癌、肝臓癌、胆道癌(胆嚢癌、胆管癌など)、膵臓癌、小腸癌、大腸癌(結腸直腸癌、結腸癌、直腸癌など)など)、肺癌、乳癌、卵巣癌、子宮癌(子宮頚癌、子宮体癌など)、腎癌、膀胱癌、前立腺癌、尿路上皮癌、骨軟部肉腫、血液癌(B細胞リンパ腫、慢性リンパ性白血病、末梢性T細胞性リンパ腫、骨髄異形成症候群、急性骨髄性白血病、急性リンパ性白血病など)、多発性骨髄腫、皮膚癌、中皮腫等が挙げられる。
 本発明の結晶I又は結晶IIは、医薬として用いるにあたっては、必要に応じて薬学的担体を配合し、予防又は治療目的に応じて各種の投与形態を採用可能であり、該形態としては、例えば、経口剤、注射剤、坐剤、軟膏剤、貼付剤等のいずれでもよく、好ましくは、経口剤である。これらの投与形態は、各々当業者に公知慣用の製剤方法により製造できる。
 薬学的担体としては、製剤素材として慣用の各種有機或いは無機担体物質が用いられ、固形製剤における賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等として配合される。また、必要に応じて防腐剤、抗酸化剤、着色剤、甘味剤、安定化剤等の製剤添加物を用いることもできる。
 経口用固形製剤を調製する場合は、本発明の結晶I又は結晶IIに賦形剤、必要に応じて賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味-矯臭剤等を加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等を製造することができる。
 注射剤を調製する場合は、本発明の結晶I又は結晶IIにpH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下、筋肉内及び静脈内用注射剤を製造することができる。
 上記の各投与単位形態中に配合されるべき本発明の結晶I又は結晶IIの量は、これを適用すべき患者の症状により、或いはその剤形等により一定ではないが、一般に投与単位形態あたり、経口剤では0.05~1000mg、注射剤では0.01~500mg、坐剤では1~1000mgとするのが望ましい。
 また、上記投与形態を有する薬剤の1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり一概には決定できないが、本発明の結晶I又は結晶IIとして通常成人(体重50kg)1日あたり0.05~5000mg、好ましくは0.1~1000mgとすればよく、これを1日1回又は2~3回程度に分けて投与するのが好ましい。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらによって何ら限定されるものではない。本発明は実施例により十分に説明されているが、当業者により種々の変更及び/又は修飾が可能であろうことは理解される。したがって、そのような変更及び/又は修飾が本発明の範囲を逸脱するものでない限り、それらは本発明に包含される。
実施例で用いた各種試薬は、特に記載の無い限り市販品を使用した。
 粉末X線回折測定(XRD測定)
 粉末X線回折は、試験物質適量を必要に応じてメノウ製乳鉢で軽く粉砕した後、次の試験条件に従って測定した:
 装置:リガク RINT-ULTIMA+2100
 ターゲット:Cu
 X線出力設定:40mA,40kV
 走査範囲:5.0~40.0°
 ステップサイズ:0.010°   
 スキャンスピード:5.00℃/min.
 発散スリット:1/2°
 散乱スリット:3.00mm
 受光スリット:13.00mm
 データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順に従った。
 示差走査熱量測定(DSC測定)
 DSC測定は、次の試験条件に従って測定した:
 装置:TAインスツルメント Q1000
 試料:およそ1mg
 試料容器:アルミニウム製
 昇温速度:10℃/分
 雰囲気ガス:窒素
 窒素ガス流量:50ml/min.
 データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順に従った。
 高速液体クロマトグラフィー
 高速液体クロマトグラフィーによる測定は、次の試験条件に従って測定した。
 装置:アジレント テクノロジー社 1200 シリーズ バイナリ LC システム 
 試料:0.1mg/mL 0.1%リン酸水溶液-アセトニトリル(1/1)溶液
 移動相A:0.1%リン酸水溶液
 移動相B:アセトニトリル
 カラム:Ascentis ExpressC18 4.6×150mm S=2.7μm 
 測定波長:210nm
 データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順に従った。
または、高速液体クロマトグラフィーによる測定は、次の試験条件に従って測定した。
 装置:Waters社製ACQUITY SQD(四重極型)
 試料:0.1mg/mLアセトニトリル溶液
 移動相A:0.1%ギ酸水溶液
 移動相B:0.1%ギ酸-アセトニトリル
 カラム:YMC社製YMC-Triart C18,2.0X50mm,1.9μm 
 測定波長:254nm
 データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順に従った。
 実施例1 (S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶IIの取得
 特許文献1記載の方法によって得られた化合物1(1.00g)にエタノール(9mL)及び水(1mL)を投入して、75℃にて5分間撹拌した。その後、温度を室温まで下げ、26時間撹拌した後に析出物を濾取することにより、化合物1の結晶II(771mg、収率77%)を得た。
 また、結晶IIは、図1で示すとおり、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°の特徴的なピークを示した。また、図4で示すとおり、示差走査熱量測定(DSC測定)の結果、結晶IIは166℃付近に吸熱ピーク(ピークトップ値)を示した。
 実施例2 化合物1の結晶Iの取得
 特許文献1に記載の方法によって得られた化合物1(50mg)にt-ブチルメチルエーテル(1mL)を投入して、室温にて20時間撹拌することにより、化合物1の結晶I(28mg、収率56%)を得た。
 また、結晶Iは、図2で示すとおり、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜の特徴的なピークを示した。また、図5で示すとおり、示差走査熱量測定(DSC測定)の結果、結晶Iは170℃付近に吸熱ピーク(ピークトップ値)を示した。
 比較例1 化合物1の結晶III
 実施例1と同様の方法で、特許文献1に記載の方法によって得られた化合物1(1.91g)から酢酸エチルとn-ヘキサンとの混合溶媒を用いることにより、化合物1の結晶III(821mg、収率43%)を得た。
 また、化合物1の結晶IIIは、図3で示すとおり、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、12.6°、13.5゜、20.1°、20.6°、22.5°、23.3゜、23.7゜、及び24.2°の特徴的なピークを示した。また、図6で示すとおり、示差走査熱量測定(DSC測定)の結果、化合物1の結晶IIIは140℃、及び170℃付近に吸熱ピーク(ピークトップ値)を示した。
 試験例1 化合物1の結晶IIにおける固体安定性
 化合物1の結晶I又は結晶IIを40℃、40℃(湿度75%)、又は60℃の条件下にて1ヶ月放置した。その後、高速液体クロマトグラフィーにて化学純度を測定したところ、いずれの条件においても化学純度の変化は0.1%以下であった。また、実施例1又は2及び比較例1の示差走査熱量測定(DSC測定)の結果より、化合物1の結晶I又は結晶IIは、温度を上昇させた際に、比較例1に示した化合物1の結晶IIIのような相転移を示唆するピークは見られなかった。これらの結果より、化合物1の結晶I又は結晶IIは固体安定性に優れた結晶であることが分かった。
 試験例2 化合物1の結晶IIにおける経口吸収性
 化合物1の結晶I又は結晶IIを0.5%HPMC水溶液に懸濁させ、BALB/cマウスに50mg/kgとなるよう経口投与した。投与後、0.5, 1, 2, 4, 6時間後にそれぞれ眼底採血を実施し、血漿中の化合物1の濃度を測定したところ、表1のような結果が得られた。化合物1の結晶I又は結晶IIはどちらも経口吸収性が良好であり、結晶Iの方がより経口吸収性が良好であることが分かった。また、結晶I又は結晶IIの経口吸収性はどちらも薬効を示す十分な濃度が得られることが分かった。
Figure JPOXMLDOC01-appb-T000002
 試験例3 同一ロットから誘導される化合物1の結晶I、IIの化学純度の比較
 特許文献1に記載の方法によって得られたクルードの化合物1(50mg、化学純度98.6%)をアセトン1 mlに投入し、室温にて20時間撹拌した後に析出物を濾取することにより、結晶IIの化合物1を得た。
 同様に、上記クルードの化合物1を酢酸エチルに投入し、室温にて20時間撹拌した後に析出物を濾取することにより、化合物1の結晶IIを得た。
 また、上記クルードの化合物1をtert-ブチルメチルエーテルに投入し、室温にて20時間撹拌した後に析出物を濾取することにより、化合物1の結晶Iを得た。
 クルードの化合物1、それぞれの上記溶媒によってクルードの化合物1から得られた化合物1の結晶II、及び結晶Iの化学純度を表2に示す。通常、再結晶により化学純度が向上することが期待されるが、この結果より、結晶IIは効率的に不純物を除去できる結晶であることがわかった。日米EU医薬品規制調和国際会議のガイドラインICH-Q3Aによると、医薬品原薬の不純物は0.03%以上が制御対象になりうることから、本試験例の結果は有用である。
Figure JPOXMLDOC01-appb-T000003
 試験例4 化合物1の結晶I、IIのスケーリングの比較
 特許文献1に記載の方法によって得られたクルード(理論収量として767mgとなるように調製)の化合物1、酢酸エチル(30mL)とヘプタン(24mL)との混合溶媒を反応容器に投入し、1.5時間加熱環流させた。放冷後、反応容器中の溶媒に分散されている析出物のみを濾取することにより、化合物1の結晶Iを得た(290mg, 収率38%)。また、別途、反応容器などに固く付着(スケーリング)した析出物を収集することにより、化合物1の結晶Iを得た(312mg, 収率41%)。
 同様に、クルードの化合物1から水とエタノールとの混合溶媒、アセトン、又は酢酸エチルを用いて結晶IIを得たが、スケーリングした結晶IIは5%未満であった。
 以上の結果より、化合物1の結晶Iを得る際に収率の約40%がスケーリングしてしまい、工業スケールではこれらが収率低下や製造実機の故障に繋がる原因になることが示唆された。また、結晶IIではスケーリングが問題となるような示唆はなく、大量製造に適している結晶であると言える。

Claims (12)

  1. 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも3つ以上の特徴的なピークを示す結晶である(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶。
  2. 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°から選択される少なくとも5つ以上の特徴的なピークを示す結晶である請求項1に記載の結晶。
  3. 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、9.5°、14.3°、16.7°、19.1°、20.8°、21.9°、及び25.2°の特徴的なピークを示す結晶である請求項1又は2に記載の結晶。
  4. 化学純度が99.0%以上である請求項1~3のいずれかに記載の結晶。
  5. 示差走査熱量測定において吸熱ピーク(ピークトップ値)が166℃付近である請求項1~4のいずれかに記載の結晶。
  6. 請求項1~5のいずれかに記載の結晶を含有する医薬組成物。
  7. 請求項1~5のいずれかに記載の結晶を含有する経口投与用の医薬組成物。
  8. 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜から選択される少なくとも7つ以上の特徴的なピークを示す結晶である(S)-1-(3-(4-アミノ-3-((3,5-ジメトキシフェニル)エチニル)-1H-ピラゾロ[3,4-d]ピリミジン-1-イル)-1-ピロリジニル)-2-プロぺン-1-オンの結晶。
  9. 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、13.5゜、17.9゜、19.5゜、20.6゜、22.0゜、22.6゜、23.3゜、23.7゜、及び24.2゜の特徴的なピークを示す結晶である請求項8に記載の結晶。
  10. 示差走査熱量測定において吸熱ピーク(ピークトップ値)が169℃付近である請求項8又は9のいずれかに記載の結晶。
  11. 請求項8~10のいずれかに記載の結晶を含有する医薬組成物。
  12. 請求項8~10のいずれかに記載の結晶を含有する経口投与用の医薬組成物。
PCT/JP2016/060844 2015-03-31 2016-03-31 3,5-二置換ベンゼンアルキニル化合物の結晶 WO2016159327A1 (ja)

Priority Applications (18)

Application Number Priority Date Filing Date Title
PL16773207T PL3279202T3 (pl) 2015-03-31 2016-03-31 Kryształ 3,5-dipodstawionego związku benzenoalkinylowego
RU2017134584A RU2672563C1 (ru) 2015-03-31 2016-03-31 Кристаллы 3,5-дизамещенного бензолалкинильного соединения
MX2017012568A MX2017012568A (es) 2015-03-31 2016-03-31 Cristal del compuesto alquinil benceno 3,5-disustituido.
ES16773207T ES2812785T3 (es) 2015-03-31 2016-03-31 Cristal de compuesto de alquinilo de benceno 3,5-disustituido
US15/562,455 US10434103B2 (en) 2015-03-31 2016-03-31 Crystal of 3,5-disubstituted benzene alkynyl compound
DK16773207.2T DK3279202T3 (da) 2015-03-31 2016-03-31 Krystal af 3,5-disubstitueret benzenalkynylforbindelse
KR1020177030951A KR101917557B1 (ko) 2015-03-31 2016-03-31 3,5-2치환 벤젠알키닐 화합물의 결정
BR112017019809-6A BR112017019809B1 (pt) 2015-03-31 2016-03-31 Cristal de composto de benzeno alquinila 3,5- dissubstituído e composições farmacêuticas que o compreendem
MYPI2017703525A MY196077A (en) 2015-03-31 2016-03-31 Crystal Of 3,5-Disubstituted Benzene Alkynyl Compound
CA2980888A CA2980888C (en) 2015-03-31 2016-03-31 Crystal of 3,5-disubstituted benzene alkynyl compound
AU2016240841A AU2016240841C1 (en) 2015-03-31 2016-03-31 Crystal of 3,5-disubstituted benzene alkynyl compound
CN201680019829.3A CN107406455B (zh) 2015-03-31 2016-03-31 3,5-二取代的苯炔基化合物晶体
JP2016566309A JP6190079B2 (ja) 2015-03-31 2016-03-31 3,5−二置換ベンゼンアルキニル化合物の結晶
SG11201707384YA SG11201707384YA (en) 2015-03-31 2016-03-31 Crystal of 3,5-disubstituted benzene alkynyl compound
EP16773207.2A EP3279202B1 (en) 2015-03-31 2016-03-31 Crystal of 3,5-disubstituted benzene alkynyl compound
CN202010284155.8A CN111393446B (zh) 2015-03-31 2016-03-31 3,5-二取代的苯炔基化合物晶体
PH12017501690A PH12017501690A1 (en) 2015-03-31 2017-09-15 Crystal of 3,5-disubstituted benzene alkynyl compound
HK18105931.1A HK1246297A1 (zh) 2015-03-31 2018-05-08 3,5-二取代的苯炔基化合物晶體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070927 2015-03-31
JP2015-070927 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159327A1 true WO2016159327A1 (ja) 2016-10-06

Family

ID=57006122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060844 WO2016159327A1 (ja) 2015-03-31 2016-03-31 3,5-二置換ベンゼンアルキニル化合物の結晶

Country Status (19)

Country Link
US (1) US10434103B2 (ja)
EP (1) EP3279202B1 (ja)
JP (2) JP6190079B2 (ja)
KR (1) KR101917557B1 (ja)
CN (2) CN111393446B (ja)
AU (1) AU2016240841C1 (ja)
CA (1) CA2980888C (ja)
DK (1) DK3279202T3 (ja)
ES (1) ES2812785T3 (ja)
HK (1) HK1246297A1 (ja)
HU (1) HUE051074T2 (ja)
MX (1) MX2017012568A (ja)
MY (1) MY196077A (ja)
PH (1) PH12017501690A1 (ja)
PL (1) PL3279202T3 (ja)
PT (1) PT3279202T (ja)
RU (1) RU2672563C1 (ja)
SG (1) SG11201707384YA (ja)
WO (1) WO2016159327A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124003B2 (en) 2013-07-18 2018-11-13 Taiho Pharmaceutical Co., Ltd. Therapeutic agent for FGFR inhibitor-resistant cancer
WO2019181876A1 (ja) 2018-03-19 2019-09-26 大鵬薬品工業株式会社 アルキル硫酸ナトリウムを含む医薬組成物
US10434103B2 (en) 2015-03-31 2019-10-08 Taiho Pharmaceutical Co., Ltd. Crystal of 3,5-disubstituted benzene alkynyl compound
WO2020096050A1 (ja) 2018-11-09 2020-05-14 大鵬薬品工業株式会社 ジメトキシベンゼン化合物の類縁物質、該化合物の分析方法及び標準品
WO2020170355A1 (ja) * 2019-02-20 2020-08-27 大鵬薬品工業株式会社 Fgfr1変異腫瘍の治療方法
US10894048B2 (en) 2013-07-18 2021-01-19 Taiho Pharmaceutical Co., Ltd. Antitumor drug for intermittent administration of FGFR inhibitor
KR20210088651A (ko) 2018-11-09 2021-07-14 다이호야쿠힌고교 가부시키가이샤 디메톡시벤젠 화합물의 제조 방법
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors
US11975002B2 (en) 2016-03-04 2024-05-07 Taiho Pharmaceutical Co., Ltd. Preparation and composition for treatment of malignant tumors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791928B (zh) * 2018-11-26 2023-02-11 日商大鵬藥品工業股份有限公司 透過併用纖維母細胞生長因子受體抑制劑與內分泌療法來治療及預防可適用內分泌療法之腫瘤的方法
JP2022533939A (ja) * 2019-05-17 2022-07-27 キネート バイオファーマ インク. 線維芽細胞増殖因子受容体キナーゼの阻害剤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108809A1 (ja) * 2012-01-19 2013-07-25 大鵬薬品工業株式会社 3,5-二置換ベンゼンアルキニル化合物及びその塩
WO2015008844A1 (ja) * 2013-07-18 2015-01-22 大鵬薬品工業株式会社 Fgfr阻害剤耐性癌の治療薬
WO2015008839A1 (ja) * 2013-07-18 2015-01-22 大鵬薬品工業株式会社 Fgfr阻害剤の間歇投与用抗腫瘍剤

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2624882C (en) 2005-10-06 2014-05-20 Schering Corporation Pyrazolopyrimidines as protein kinase inhibitors
US8648087B2 (en) 2005-11-15 2014-02-11 Array Biopharma, Inc. N4-phenyl-quinazoline-4-amine derivatives and related compounds as ErbB type I receptor tyrosine kinase inhibitors for the treatment of hyperproliferative diseases
JP5156644B2 (ja) 2006-01-25 2013-03-06 オーエスアイ・フアーマシユーテイカルズ・エル・エル・シー 不飽和mTOR阻害剤
EP1939197A1 (en) 2006-12-22 2008-07-02 Schwarz Pharma Ag 8-ethinylxanthine derivatives as selective A2A receptor antagonists
CA2681756C (en) 2007-03-28 2015-02-24 Pharmacyclics, Inc. Inhibitors of bruton's tyrosine kinase
AU2009261683A1 (en) 2008-06-19 2009-12-23 Astrazeneca Ab Pyrazole compounds 436
GB0819105D0 (en) 2008-10-17 2008-11-26 Chroma Therapeutics Ltd Pyrrolo-pyrimidine compounds
CA2759083A1 (en) 2009-04-30 2010-11-04 Novartis Ag Imidazole derivatives and their use as modulators of cyclin dependent kinases
KR101483215B1 (ko) 2010-01-29 2015-01-16 한미약품 주식회사 단백질 키나아제 저해활성을 갖는 비시클릭 헤테로아릴 유도체
EP2547698B1 (en) 2010-03-14 2015-07-29 The Translational Genomics Research Institute Methods of determining susceptibility of tumors to tyrosine kinase inhibitors
DE102011015188A1 (de) 2010-03-29 2011-09-29 Herbert Kannegiesser Gmbh Verfahren zur Nassbehandlung, insbesondere zum Reinigen, von Gegenständen
CA3240281A1 (en) 2010-06-03 2011-12-08 Pharmacyclics Llc Use of inhibitors of bruton's tyrosine kinase (btk) in the treatment of follicular lymphoma
MX342064B (es) 2011-04-06 2016-09-12 Taiho Pharmaceutical Co Ltd Novedoso compuesto de imidazo-oxazina o sal del mismo.
SG11201402876UA (en) * 2012-02-23 2014-12-30 Taiho Pharmaceutical Co Ltd Quinolylpyrrolopyrimidyl fused-ring compound or salt thereof
CN103570725B (zh) 2012-08-01 2017-03-22 中国科学院上海药物研究所 哌嗪并三唑类化合物及其制备方法和用途
JP2016510751A (ja) 2013-03-06 2016-04-11 ジェネンテック, インコーポレイテッド 抗がん剤耐性を治療及び予防する方法
CN109776525B (zh) 2013-04-19 2022-01-21 因赛特控股公司 作为fgfr抑制剂的双环杂环
WO2015163448A1 (ja) 2014-04-25 2015-10-29 中外製薬株式会社 4環性化合物を高用量含有する製剤
AU2016240841C1 (en) 2015-03-31 2018-05-17 Taiho Pharmaceutical Co., Ltd. Crystal of 3,5-disubstituted benzene alkynyl compound
AU2017226389B2 (en) 2016-03-04 2023-02-02 Taiho Pharmaceutical Co., Ltd. Preparation and composition for treatment of malignant tumors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108809A1 (ja) * 2012-01-19 2013-07-25 大鵬薬品工業株式会社 3,5-二置換ベンゼンアルキニル化合物及びその塩
WO2015008844A1 (ja) * 2013-07-18 2015-01-22 大鵬薬品工業株式会社 Fgfr阻害剤耐性癌の治療薬
WO2015008839A1 (ja) * 2013-07-18 2015-01-22 大鵬薬品工業株式会社 Fgfr阻害剤の間歇投与用抗腫瘍剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAVIN,MIKE: "Polymorphism in Process Development", CHEMISTRY & INDUSTRY, 1989, pages 527 - 529, XP001180136 *
BYRN,STEPHEN ET AL.: "Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations", PHARMACEUTICAL RESEARCH, vol. 12, no. 7, 1995, pages 945 - 954, XP000996386 *
MITSURU HASHIDA: "Keiko Toyo Seizai no Sekkei to Hyoka", KABUSHIKI KAISHA YAKUGYO JIHOSHA, 10 February 1995 (1995-02-10), pages 76 - 79 , 171 to 172, XP009506428 *
YUKI KAGOBUTSU KESSHO SAKUSEI HANDBOOK -GENRI TO KNOW-HOW, 25 July 2008 (2008-07-25), pages 57 - 84, XP008183996 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124003B2 (en) 2013-07-18 2018-11-13 Taiho Pharmaceutical Co., Ltd. Therapeutic agent for FGFR inhibitor-resistant cancer
US10835536B2 (en) 2013-07-18 2020-11-17 Taiho Pharmaceutical Co., Ltd. Therapeutic agent for FGFR inhibitor-resistant cancer
US10894048B2 (en) 2013-07-18 2021-01-19 Taiho Pharmaceutical Co., Ltd. Antitumor drug for intermittent administration of FGFR inhibitor
US10434103B2 (en) 2015-03-31 2019-10-08 Taiho Pharmaceutical Co., Ltd. Crystal of 3,5-disubstituted benzene alkynyl compound
US11975002B2 (en) 2016-03-04 2024-05-07 Taiho Pharmaceutical Co., Ltd. Preparation and composition for treatment of malignant tumors
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors
US11833151B2 (en) 2018-03-19 2023-12-05 Taiho Pharmaceutical Co., Ltd. Pharmaceutical composition including sodium alkyl sulfate
WO2019181876A1 (ja) 2018-03-19 2019-09-26 大鵬薬品工業株式会社 アルキル硫酸ナトリウムを含む医薬組成物
EP4353222A1 (en) 2018-03-19 2024-04-17 Taiho Pharmaceutical Co., Ltd. Use of sodium alkyl sulfate
KR20200131873A (ko) 2018-03-19 2020-11-24 다이호야쿠힌고교 가부시키가이샤 알킬황산나트륨을 포함하는 의약 조성물
WO2020096050A1 (ja) 2018-11-09 2020-05-14 大鵬薬品工業株式会社 ジメトキシベンゼン化合物の類縁物質、該化合物の分析方法及び標準品
KR20210088651A (ko) 2018-11-09 2021-07-14 다이호야쿠힌고교 가부시키가이샤 디메톡시벤젠 화합물의 제조 방법
WO2020171113A1 (ja) * 2019-02-20 2020-08-27 大鵬薬品工業株式会社 Fgfr1変異陽性脳腫瘍を治療するための医薬組成物及び治療方法
WO2020170355A1 (ja) * 2019-02-20 2020-08-27 大鵬薬品工業株式会社 Fgfr1変異腫瘍の治療方法

Also Published As

Publication number Publication date
AU2016240841C1 (en) 2018-05-17
PL3279202T3 (pl) 2020-12-28
EP3279202A4 (en) 2018-08-22
PT3279202T (pt) 2020-08-31
DK3279202T3 (da) 2020-08-17
JPWO2016159327A1 (ja) 2017-04-27
PH12017501690A1 (en) 2018-03-19
MY196077A (en) 2023-03-13
US10434103B2 (en) 2019-10-08
KR20170132251A (ko) 2017-12-01
RU2672563C1 (ru) 2018-11-16
MX2017012568A (es) 2018-01-25
KR101917557B1 (ko) 2018-11-09
JP6190079B2 (ja) 2017-08-30
CA2980888A1 (en) 2016-10-06
CN111393446A (zh) 2020-07-10
ES2812785T3 (es) 2021-03-18
CA2980888C (en) 2018-03-06
CN107406455B (zh) 2020-05-12
CN107406455A (zh) 2017-11-28
JP2017193581A (ja) 2017-10-26
AU2016240841A1 (en) 2017-10-05
CN111393446B (zh) 2022-12-20
AU2016240841B2 (en) 2018-02-01
EP3279202A1 (en) 2018-02-07
SG11201707384YA (en) 2017-10-30
HUE051074T2 (hu) 2021-03-01
HK1246297A1 (zh) 2018-09-07
US20180110782A1 (en) 2018-04-26
BR112017019809A2 (ja) 2018-05-29
EP3279202B1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6190079B2 (ja) 3,5−二置換ベンゼンアルキニル化合物の結晶
JP6526883B2 (ja) チピラシル塩酸塩の安定形結晶及びその結晶化方法
US10947233B2 (en) Crystals of azabicyclic compound
US10208065B2 (en) Crystalline free bases of C-Met inhibitor or crystalline acid salts thereof, and preparation methods and uses thereof
WO2018117267A1 (ja) 置換ピペリジン化合物の塩
JP6676626B2 (ja) アシルチオウレア化合物のメシル酸塩の結晶及びその製造方法
CN108884099B (zh) 一种咪唑并异吲哚类衍生物的游离碱的结晶形式及其制备方法
CN109516976B (zh) 取代嘧啶类pi3k抑制剂甲磺酸盐的晶型及其制备方法
JP2018002644A (ja) (S)−N−(4−アミノ−5−(キノリン−3−イル)−6,7,8,9−テトラヒドロピリミド[5,4−b]インドリジン−8−イル)アクリルアミドの結晶
CN109384791B (zh) 一种咪唑并异吲哚类衍生物游离碱的晶型及其制备方法
BR112017019809B1 (pt) Cristal de composto de benzeno alquinila 3,5- dissubstituído e composições farmacêuticas que o compreendem

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016566309

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201707384Y

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 122021001698

Country of ref document: BR

Ref document number: 12017501690

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2980888

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017019809

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15562455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012568

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134584

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016240841

Country of ref document: AU

Date of ref document: 20160331

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016773207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177030951

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017019809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170915

WWE Wipo information: entry into national phase

Ref document number: 12023552195

Country of ref document: PH