WO2016159183A1 - ニトロバクター(Nitrobacter)属細菌の検出方法及びキット - Google Patents

ニトロバクター(Nitrobacter)属細菌の検出方法及びキット Download PDF

Info

Publication number
WO2016159183A1
WO2016159183A1 PCT/JP2016/060560 JP2016060560W WO2016159183A1 WO 2016159183 A1 WO2016159183 A1 WO 2016159183A1 JP 2016060560 W JP2016060560 W JP 2016060560W WO 2016159183 A1 WO2016159183 A1 WO 2016159183A1
Authority
WO
WIPO (PCT)
Prior art keywords
base sequence
primer
seq
bacteria
nitrobacter
Prior art date
Application number
PCT/JP2016/060560
Other languages
English (en)
French (fr)
Inventor
智和 満井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US15/563,000 priority Critical patent/US11124843B2/en
Priority to KR1020177031877A priority patent/KR102565490B1/ko
Priority to CN201680019328.5A priority patent/CN108291263B/zh
Publication of WO2016159183A1 publication Critical patent/WO2016159183A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to a detection method and kit for Nitrobacter bacteria.
  • nitrifying bacteria As nitrifying bacteria, ammonia oxidizing bacteria (nitrite bacteria) that oxidize ammonia to nitrite and nitrite oxidizing bacteria (nitrite bacteria) that oxidize nitrite to nitric acid are known. These nitrifying bacteria are responsible for nitrogen cycling in nature. On the other hand, in the industry, nitrifying bacteria play an important role in nitrogen removal in the biological treatment process of wastewater represented by the activated sludge method, for example, and are involved in preventing eutrophication of natural water areas due to the outflow of nitrogen salts. ing.
  • Activated sludge used for wastewater treatment contains various types of microorganisms.
  • bacteria belonging to the genus Nitrobacter are a kind of nitrite oxidizing bacteria that play an important role in nitrogen removal.
  • Non-Patent Documents 1 and 2 describe a real-time PCR method using a predetermined primer and a fluorescently labeled probe for detection of bacteria belonging to the genus Nitrobacter.
  • the present invention provides a method for detecting a Nitrobacter genus bacterium capable of specifically detecting and quantifying a Nitrobacter genus bacterium even in a system in which a plurality of microbial species are present, and a kit used therefor The purpose is to do.
  • the present inventors cloned the base sequence (SEQ ID NO: 18) of the 16S rRNA gene of the Nitrobacter genus bacteria present in the activated sludge, and the specific region is specific to the Nitrobacter genus bacteria in a system in which a plurality of microbial species exist.
  • the inventors have newly found that it is useful for detection and quantification, and have completed the present invention.
  • the present invention relates to the following [1] to [6], for example.
  • [1] A method for detecting a bacterium belonging to the genus Nitrobacter, which can amplify a base sequence of 110 to 157 bases in a sequence of SEQ ID NO: 1 using a test DNA as a template.
  • a method comprising a first step of amplifying nucleotides using a primer to obtain an amplification product, and a second step of detecting the amplification product.
  • the first primer includes one base sequence selected from the base sequences set forth in SEQ ID NOs: 4 to 8, and the second primer is one selected from the base sequence set forth in SEQ ID NOs: 9 or 10.
  • [4] The method according to any one of [1] to [3], wherein in the second step, an amplification product is detected using a probe comprising the base sequence set forth in SEQ ID NO: 11.
  • [5] A kit used for detection of bacteria belonging to the genus Nitrobacter, which hybridizes under stringent conditions with a nucleotide containing a base sequence complementary to the base sequence described in SEQ ID NO: 2
  • a first primer comprising the above base sequence
  • a second primer comprising a base sequence of 18 bases or more that hybridizes under stringent conditions with the base sequence of SEQ ID NO: 3
  • a probe comprising: a kit comprising: [6]
  • the first primer includes one base sequence selected from the base sequences set forth in SEQ ID NOs: 4 to 8
  • the second primer is one selected from the base sequence set forth in SEQ ID NOs: 9 or 10.
  • the kit according to [5] comprising a base sequence.
  • a method for detecting a Nitrobacter genus bacterium capable of specifically detecting and quantifying a Nitrobacter genus bacterium even in a system having a plurality of microbial species, and a kit used therefor are provided. It becomes possible. Thereby, for example, in the wastewater treatment, the nitrogen removal reaction in the wastewater can be controlled based on the detected amount of Nitrobacter genus bacteria in the activated sludge.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment.
  • the method for detecting a bacterium belonging to the genus Nitrobacter uses a test DNA as a template and a nucleotide sequence using a primer capable of amplifying a continuous base sequence of 110 to 157 bases out of the base sequence described in SEQ ID NO: 1. And a second step of detecting the amplification product.
  • test DNA examples include plasmids, cDNA, genomic DNA, and DNA prepared from activated sludge. These test DNAs may contain DNA derived from a plurality of types of microorganism species. As methods for preparing these test DNAs, methods well known to those skilled in the art can be used.
  • the test DNA is preferably DNA prepared from activated sludge from the viewpoint of controlling the nitrogen removal reaction in the waste water. As a method for preparing DNA from activated sludge, for example, a commercially available DNA extraction kit can be used.
  • SEQ ID NO: 1 shows the 901st to 1057th base sequence of SEQ ID NO: 18.
  • SEQ ID NO: 18 shows the nucleotide sequence of 16S rRNA gene of Nitrobacter genus bacteria. In the 16S rRNA gene, there are a conserved region containing a sequence common between species on the gene and nine variable regions (V1 to V9) containing sequences that differ depending on the species / genus.
  • V1 to V9 nine variable regions containing sequences that differ depending on the species / genus.
  • the 747th to 774th base sequence is the V5 region
  • the 920th to 966th base sequence is the V6 region
  • the 1038th to 1074th base sequence is the V7 region.
  • the base sequence described in SEQ ID NO: 1 is a region containing the V6 and V7 regions of the 16S rRNA gene.
  • the amplification product is prepared by amplifying nucleotides using a primer capable of amplifying a base sequence of 110 to 157 bases in the base sequence of SEQ ID NO: 1.
  • the amplification product may be prepared by amplifying nucleotides using a primer capable of amplifying a continuous base sequence of 120 to 157 bases, and a primer capable of amplifying a continuous base sequence of 125 to 157 bases May be prepared by amplifying nucleotides using.
  • amplification product prepared by amplification with such a primer
  • it may be a base sequence having 1 to 2 nucleotides different from the corresponding region of the base sequence described in SEQ ID NO: 1. Base sequences having the same nucleotide may be used.
  • Nitrobacter genus bacteria can be specifically detected in the subsequent second step.
  • the method for amplifying nucleotides to obtain amplification products is not particularly limited, and methods well known to those skilled in the art can be used. Examples of such a method include a polymerase chain reaction method (PCR method), a real-time PCR method, and a LAMP method. Among these methods, the real-time PCR method is preferable because detection in the second step can be performed simultaneously with amplification, and amplification products can be quantified.
  • PCR method polymerase chain reaction method
  • a real-time PCR method a real-time PCR method
  • LAMP method LAMP method
  • the primer used to obtain the amplification product can amplify a region including the portion from the V6 region to the V7 region of the 16S rRNA gene of the genus Nitrobacter bacterium (the nucleotide sequence region from the 901st to the 1057th nucleotide of SEQ ID NO: 18) Can be designed.
  • the primer includes a first primer that hybridizes to the antisense strand of DNA encoding 16S rRNA under stringent conditions (forward primer) and a second primer that hybridizes to the sense strand under stringent conditions (reverse primer). )
  • the first primer is preferably one that hybridizes with a nucleotide containing a base sequence complementary to the base sequence shown in SEQ ID NO: 2 under stringent conditions.
  • the length of the primer is preferably 18 bases or more from the viewpoint of obtaining sufficient specificity.
  • the upper limit of the primer length is preferably 28 bases or less, more preferably 27 bases or less, and even more preferably 25 bases or less from the viewpoint of further improving the annealing efficiency.
  • Specific examples of the first primer include primers containing one base sequence selected from the base sequences described in SEQ ID NOs: 4 to 8.
  • a primer containing a base sequence having 2 bases different from the base sequence of 18 or more bases in the base sequence preferably a base of 18 or more bases in the base sequence of SEQ ID NO: 2
  • a primer including a base sequence having a base number different from the sequence of 1 can be exemplified, and more preferably, a primer including a base sequence of 18 or more consecutive bases in the base sequence described in SEQ ID NO: 2 is exemplified. it can.
  • the second primer is preferably one that hybridizes under stringent conditions with the nucleotide containing the base sequence described in SEQ ID NO: 3.
  • the length of the primer is preferably 18 bases or more, more preferably 19 bases or more, and still more preferably 20 bases or more, from the viewpoint of obtaining sufficient specificity.
  • the upper limit of the primer length is preferably 28 bases or less, more preferably 27 bases or less, and even more preferably 25 bases or less from the viewpoint of further improving the annealing efficiency.
  • Specific examples of the second primer include a primer containing the base sequence set forth in SEQ ID NO: 9 or 10.
  • a primer containing a base sequence of 18 bases or more that hybridizes under stringent conditions with a nucleotide containing the base sequence shown in SEQ ID NO: 3 for example, a base sequence complementary to the base sequence shown in SEQ ID NO: 3
  • a primer containing a base sequence having 2 bases different from the base sequence of 18 or more bases in the base sequence preferably a base sequence complementary to the base sequence described in SEQ ID NO: 3
  • a primer including a base sequence having a base number of 1 different from the consecutive base sequence of 18 or more bases, and more preferably in a base sequence complementary to the base sequence described in SEQ ID NO: 3 The primer which contains the base sequence of 18 or more bases of following can be mentioned.
  • stringent conditions means that a complementary strand of a nucleotide strand having homology to a target sequence preferentially hybridizes to the target sequence, and complementation of a nucleotide strand having no homology. It means conditions under which the strands do not substantially hybridize. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5 ° C. lower than the thermal melting temperature (Tm) for the specific sequence at a defined ionic strength and pH. Tm is the temperature at which 50% of the nucleotides complementary to the target sequence hybridize to the target sequence in equilibrium under a defined ionic strength, pH, and DNA concentration.
  • Tm thermal melting temperature
  • a target nucleotide and a high ion concentration eg, 6 ⁇ SSC (900 mM sodium chloride, 90 mM sodium citrate)] and the like are used.
  • a DNA-DNA hybrid and under low ion concentration [for example, 0.1 ⁇ SSC (15 mM sodium chloride, 1.5 mM sodium citrate) or the like is used. . ]
  • primers that can maintain the hybrid even after washing for 30 minutes at a temperature of 65 ° C.
  • the method for detecting the amplification product is not particularly limited, and methods well known to those skilled in the art can be used.
  • the method for detecting the amplification product include an agarose gel electrophoresis method, a real-time PCR method, a sequence analysis method, and a Southern blotting method.
  • a detection method using a probe is preferable from the viewpoint of excellent specificity.
  • a detection method using a probe for example, a real-time PCR method or a Southern blotting method can be mentioned. Among them, a real-time PCR method or a Southern blotting method can be used.
  • the PCR method is preferred.
  • the probe used for detection is preferably an oligonucleotide that hybridizes under stringent conditions to the sense strand or antisense strand of the amplification product obtained in the first step.
  • the length of the probe is preferably from 15 to 30 bases, more preferably from 15 to 25 bases, and even more preferably from 15 to 20 bases from the viewpoint of more specifically detecting the amplification product.
  • Specific examples of the probe include a probe containing the base sequence set forth in SEQ ID NO: 11.
  • the probe When the probe is used for real-time PCR, the probe is modified with a fluorescent substance at the 5 'end and a quencher for suppressing fluorescence emitted from the fluorescent substance at the 3' end.
  • the fluorescent substance include FAM, TET, HEX, TAMRA, and Cyanine 5.
  • the quencher include TAMRA, BHQ1, BHQ2, and BHQ3.
  • the fluorescent substance and quencher used for probe modification can be appropriately selected according to the excitation wavelength and measurement wavelength of the real-time PCR apparatus to be used.
  • the real-time PCR apparatus is not particularly limited as long as it includes a thermal cycler capable of amplifying DNA by PCR and a spectrofluorometer for detecting an amplification product.
  • a thermal cycler capable of amplifying DNA by PCR
  • a spectrofluorometer for detecting an amplification product.
  • An example of a real-time PCR apparatus is StepOnePlus (Applied Biosystems).
  • the amplified sample detected in the second step can be quantified. Therefore, the detection method of the present embodiment can not only detect Nitrobacter genus bacteria from the test DNA but also quantify the amount of Nitrobacter genus bacteria contained in the test DNA. For example, when real-time PCR is used for detection of amplification products in the second step, the amount of test DNA can be quantified from a calibration curve obtained using a standard sample. The calibration curve can be created based on the Ct value indicating the number of cycles when the amplification product reaches a certain value and the initial template amount.
  • the test DNA is derived from a bacterium belonging to the genus Nitrobacter. It can be determined that DNA is contained.
  • the kit used for detecting the Nitrobacter genus bacteria of the present embodiment includes a base sequence of 18 bases or more that hybridizes under stringent conditions with a base sequence complementary to the base sequence described in SEQ ID NO: 2. And a second primer comprising a base sequence of 18 bases or more that hybridizes under stringent conditions with the primer of SEQ ID NO: 3 and a probe comprising the base sequence of SEQ ID NO: 11.
  • the first primer, the second primer, and the probe those similar to those used in the detection method described above can be used.
  • reagents or the like may be attached to the kit of this embodiment, if necessary.
  • examples of other reagents include DNA polymerase, deoxyribonucleotide mixture (dNTP Mix), buffer solution, sterilized water, and control DNA.
  • examples of the buffer solution include a buffer solution used in a general PCR method.
  • Example 1 Selection of primers and probes
  • (material) Primers and probes were designed to amplify the 16S rRNA gene from Nitrobacter bacteria.
  • Table 1 shows primers and probes for amplifying the V6-V7 region of 16S rRNA
  • Table 2 shows primers and probes for amplifying the V5-V7 region.
  • the primer which has the base sequence of sequence number 19 and sequence number 20 which are described in the nonpatent literature 2 as a primer which amplifies 16S rRNA gene derived from Nitrobacter genus bacteria was also used.
  • As the template DNA a plasmid into which the base sequence (SEQ ID NO: 18) of 16S rRNA gene derived from bacteria belonging to the genus Nitrobacter was introduced was used.
  • the template DNA is obtained by preparing an amplification product by PCR using a DNA extracted from a bacterium belonging to the genus Nitrobacter as a template and using primers having the nucleotide sequences of SEQ ID NOs: 21 and 22, and then introducing the amplification product into a plasmid. .
  • the PCR reaction was performed at (1) 94 ° C for 2 minutes, (2) 98 ° C for 10 seconds, (3) 60 ° C to 40 ° C for 30 seconds, (4) 68 ° C for 1.5 minutes, (2) Steps (4) to (4) were repeated 35 cycles.
  • Tables 3 and 4 show combinations of primers and probes that were able to amplify 16S rRNA genes derived from bacteria belonging to the genus Nitrobacter. 10 sets of primers and probes designed for the V6-V7 region, and 11 sets of primers and probes designed for the V5-V7 region were prepared by introducing a plasmid into which the base sequence (SEQ ID NO: 18) of the 16S rRNA gene derived from a bacterium belonging to the genus Nitrobacter was introduced. It was possible to detect plasmids from 1 pg / ⁇ L to 0.001 pg / ⁇ L.
  • Example 2 Specificity test using one kind of plasmid] (material) ⁇ Primers and probes in combination of 1-2, 1-4, 1-5, 1-7, 1-9, 1-10 or 2-5 ⁇ Plasmids introduced with 16S rRNA genes derived from various bacteria (described in Table 5) Derived from bacteria)
  • Table 5 shows the names of bacterial genera from which the 16S rRNA genes introduced into the plasmids used in the tests are derived, and the detection results of those plasmids.
  • Combinations of primers and probes designed in the V6-V7 region (1-2, 1-4, 1-5, 1-7, 1-9, 1-10), and primers and probes designed in the V5-V7 region According to the combination (2-5), the plasmid into which the 16S rRNA gene derived from bacteria other than the bacteria belonging to the genus Nitrobacter was introduced had a detection limit (0.001 pg / ⁇ L) or less.
  • these primers and probe sets did not show any detection against Bradyrhizobium genus bacteria, which are closely related to Nitrobacter genus bacteria. Therefore, it was shown that these primers and probes can specifically detect bacteria belonging to the genus Nitrobacter.
  • Example 3 Specificity test and quantitative test using plural kinds of mixed plasmids] (material) -Primers and probes in combination of 1-2, 1-4, 1-5, 1-7, 1-9, 1-10, 2-5-Base sequence of 16S rRNA gene derived from Nitrobacterium (SEQ ID NO: 18) ) -Introduced plasmid / various bacteria-derived 16S rRNA gene-introduced plasmid (from the bacteria described in Table 5)
  • Table 6 shows the measured value (pg / ⁇ L) of the plasmid into which the 16S rRNA gene derived from Nitrobacter bacterium quantified by real-time PCR was introduced.
  • the primer / probe combination of 1-2, 1-4, 1-5, 1-7, 1-9 and 1-10 with primers designed in the V6-V7 region is used, 16S derived from a plurality of bacteria Even when the plasmid into which the rRNA gene was introduced was used as a template DNA, only those derived from the genus Nitrobacter could be specifically detected and quantified to a concentration of 0.001 pg / ⁇ L.
  • the plasmid into which the 16S rRNA gene derived from another bacterium was introduced was below the detection limit (0.001 pg / ⁇ L).
  • the 2-5 primer / probe combination of primers designed in the V5-V7 region was used, only those derived from the genus Nitrobacter could be specifically detected up to a concentration of 1 pg / ⁇ L. At 0.1 pg / ⁇ L or less, those derived from the genus Nitrobacter could not be detected and quantified.
  • Table 7 shows the bacteria from which the genomic DNA used in the test was derived and the detection results of those genomic DNA.
  • genomic DNA of Nitrobacter winogradskyi NBRC14297 a bacterium belonging to the genus Nitrobacter
  • genomic DNA derived from other bacteria was below the detection limit (0.001 ng / ⁇ L). Therefore, it was shown that this primer and probe can specifically detect bacteria belonging to the genus Nitrobacter even when genomic DNA is used.
  • Example 5 Quantitative test using multiple types of mixed genomic DNA
  • material -Primer and probe in combination of 1-9-Genomic DNA derived from Nitrobacter winogradskyi NBRC14297 ⁇ Genomic DNA derived from various bacteria (derived from the bacteria listed in Table 8)
  • Nitrobacter wingradsky NBRC14297-derived genomic DNA was mixed at a final concentration of 100 pg / ⁇ L, 10 pg / ⁇ L, 1 pg / ⁇ g in a mixed solution in which genomic DNA derived from bacteria described in Table 8 was mixed (the final concentration of each genomic DNA was 100 pg / ⁇ L, respectively). It mixed so that it might become microliter or 0.1pg / microliter, and the genomic DNA liquid mixture was prepared. Real-time PCR was performed in the same manner as in Example 1 except that the primer and probe of 1-9 combination were used and the prepared genomic DNA mixture was used as template DNA.
  • Table 9 shows the results of quantification of genomic DNA derived from Nitrobacter winogradskyi NBRC14297 using the primers and probes in combination 1-9.
  • the measured values of genomic DNA shown in Table 9 are the average values of the results of measuring three samples.
  • the primer and probe of 1-9 combination are used, only genomic DNA derived from Nitrobacter winogradsky NBRC14297 can be specifically detected even if genomic DNA derived from a plurality of bacteria is used as a template DNA. Quantification was possible up to a concentration of 1 pg / ⁇ L. At this time, genomic DNA derived from other types of bacteria was below the detection limit (0.1 pg / ⁇ L).
  • Table 10 shows the quantification results when the genomic DNAs derived from the activated sludge samples 1 to 11 are converted into plasmid concentrations using the primer and probe combinations 1-9. From these results, it was shown that the Nitrobacter genus bacteria can be directly detected from the genomic DNA derived from activated sludge by using the primer and probe of 1-9 combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 ニトロバクター(Nitrobacter)属細菌の検出方法であって、被検DNAを鋳型に、配列番号1に記載の塩基配列のうち、連続した110塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅させ、増幅産物を得る第一工程と、増幅産物を検出する第二工程と、を有する方法を提供する。

Description

ニトロバクター(Nitrobacter)属細菌の検出方法及びキット
 Nitrobacter属細菌の検出方法及びキットに関する。
 硝化細菌としては、アンモニアを亜硝酸に酸化するアンモニア酸化細菌(亜硝酸菌)及び亜硝酸を硝酸に酸化する亜硝酸酸化細菌(硝酸菌)が知られている。これらの硝化細菌は自然界における窒素循環反応を担っている。一方産業上では、硝化細菌は、例えば活性汚泥法に代表される排水の生物処理プロセスにおける窒素除去において重要な役割を担っており、窒素塩の流出による自然水域の富栄養化の防止に関与している。
 排水処理に用いられる活性汚泥には様々な種類の微生物が含まれており、その中でも、ニトロバクター(Nitrobacter)属細菌は窒素除去において重要な役割を果たしている亜硝酸酸化細菌の一種である。このとき、排水中の窒素の量及び排水処理に要求される処理スピードに応じて、活性汚泥中のNitrobacter属細菌の量をモニタリングし、調節することが望まれている。そのためには、複数の微生物種が存在する活性汚泥からNitrobacter属細菌のみを迅速に検出及び定量することが課題となる。
 非特許文献1及び2には、Nitrobacter属細菌の検出のための所定のプライマー及び蛍光標識プローブを用いたリアルタイムPCR法が記載されている。
David W Grahamら、The ISME Journal vol.1(2007),p385-393 Joke Geeksら、Appl Microbiol Biotechnol. vol.75(2007),p211-221
 しかしながら、本発明者らが非特許文献1及び2に記載のプライマー及び蛍光標識プローブを用いて、活性汚泥からNitrobacter属細菌の検出を試みたところ、Nitrobacter属細菌以外の細菌を検出してしまうか、又は、一部のNitrobacter属細菌を検出できない、といった問題が生じた。このような問題が生じると、Nitrobacter属細菌の定量性にも影響が生じ、排水中の窒素除去反応を制御することが難しくなる。
 本発明は、上記事情に鑑み、複数の微生物種が存在する系においてもNitrobacter属細菌を特異的に検出し、定量することができるNitrobacter属細菌の検出方法、及び、そのために用いられるキットを提供することを目的とする。
 本発明者らは、活性汚泥に存在するNitrobacter属細菌の16S rRNA遺伝子の塩基配列(配列番号18)をクローニングし、特定の領域が、複数の微生物種が存在する系におけるNitrobacter属細菌の特異的検出及び定量に有用であることを新たに見出し、本発明を完成させるに至った。
 すなわち、本発明は、例えば、以下の[1]から[6]に関する。
[1]ニトロバクター(Nitrobacter)属細菌の検出方法であって、被検DNAを鋳型に、配列番号1に記載の塩基配列のうち、連続した110塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅させ、増幅産物を得る第一工程と、増幅産物を検出する第二工程と、を有する方法。
[2]第一工程において用いるプライマーが、配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第一のプライマー、及び、配列番号3に記載の塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第二のプライマーである、[1]に記載の方法。
[3]第一のプライマーが配列番号4から8に記載の塩基配列から選択される一つの塩基配列を含み、第二のプライマーが配列番号9又は10に記載の塩基配列から選択される一つの塩基配列を含む、[2]に記載の方法。
[4]第二工程において、配列番号11に記載の塩基配列を含むプローブを用いて、増幅産物を検出する、[1]から[3]のいずれかに記載の方法。
[5]ニトロバクター(Nitrobacter)属細菌の検出に用いられるキットであって、配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第一のプライマー及び配列番号3に記載の塩基配列とストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第二のプライマーと、配列番号11に記載の塩基配列を含むプローブと、を含むキット。
[6]第一のプライマーが配列番号4から8に記載の塩基配列から選択される一つの塩基配列を含み、第二のプライマーが配列番号9又は10に記載の塩基配列から選択される一つの塩基配列を含む、[5]に記載のキット。
 本発明によれば、複数の微生物種が存在する系においてもNitrobacter属細菌を特異的に検出し、定量することができるNitrobacter属細菌の検出方法、及び、そのために用いられるキットを提供することが可能になる。これにより、例えば、排水処理において、活性汚泥中のNitrobacter属細菌の検出量に基づき、排水中の窒素除去反応を制御することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
<Nitrobacter属細菌の検出方法>
 本実施形態のNitrobacter属細菌の検出方法は、被検DNAを鋳型に、配列番号1に記載の塩基配列のうち、連続した110塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅させ、増幅産物を得る第一工程と、増幅産物を検出する第二工程と、を有する。
 本実施形態に係る被検DNAとしては、例えば、プラスミド、cDNA、ゲノムDNA、活性汚泥から調製したDNAが挙げられる。これらの被検DNAは、複数種類の微生物種由来のDNAを含むものであってもよい。これらの被検DNAの調製方法は、当業者に周知の方法を用いることができる。被検DNAとしては、排水中の窒素除去反応を制御する観点から、活性汚泥から調製したDNAが好ましい。活性汚泥からDNAを調製する方法としては、例えば、市販されているDNA抽出キット等を用いることができる。
[第一工程]
 配列番号1は、配列番号18の901番目から1057番目の塩基配列を示す。配列番号18は、Nitrobacter属細菌の16S rRNA遺伝子の塩基配列を示す。16S rRNA遺伝子には、遺伝子上に種間に共通な配列を含む保存領域、及び種・属等によって異なる配列を含む9つの可変領域(V1からV9)が存在する。配列番号18中、747番目から774番目の塩基配列がV5領域であり、920番目から966番目の塩基配列がV6領域であり、1038番目から1074番目の塩基配列がV7領域である。
 配列番号1に記載の塩基配列は、16S rRNA遺伝子のV6及びV7領域を含む領域である。本実施形態に係る第一工程において、増幅産物は、配列番号1の塩基配列内の連続した110塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅して調製される。増幅産物は、連続した120塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅して調製してもよく、連続した125塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅して調製してもよい。このようなプライマーにより増幅して調製される増幅産物であれば、配列番号1に記載の塩基配列の対応領域に対して、1個から2個の相違するヌクレオチドを有する塩基配列であってもよく、同一のヌクレオチドを有する塩基配列であってもよい。上記増幅産物を用いることで、続く第二工程において、Nitrobacter属細菌を特異的に検出することができる。
 第一工程において、ヌクレオチドを増幅させ、増幅産物を得る方法としては、特に制限されるものではなく、当業者に周知の方法を用いることができる。このような方法としては、例えば、ポリメラーゼ連鎖反応法(PCR法)、リアルタイムPCR法、LAMP法が挙げられる。これらの方法の中でも、増幅と同時に、第二工程における検出を行えること、及び、増幅産物の定量を行えることから、リアルタイムPCR法が好ましい。
 増幅産物を得るために用いるプライマーは、Nitrobacter属細菌の16S rRNA遺伝子のV6領域からV7領域までの一部を含む領域(配列番号18の901番目から1057番目の塩基配列領域)を増幅できるように設計することができる。プライマーとしては、16S rRNAをコードするDNAのアンチセンス鎖にストリンジェントな条件でハイブリダイズする第一のプライマー(フォワードプライマー)及びセンス鎖にストリンジェントな条件でハイブリダイズする第二のプライマー(リバースプライマー)がある。
 第一のプライマーとしては、配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズするものが好ましい。プライマーの長さは、より十分な特異性を得る観点から、18塩基以上が好ましい。プライマーの長さの上限としては、よりアニーリング効率を高める観点から、28塩基以下が好ましく、27塩基以下がより好ましく、25塩基以下が更に好ましい。第一のプライマーとして、具体的には、配列番号4から8に記載の塩基配列から選択される一つの塩基配列を含むプライマーが挙げられる。
 配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含むプライマーとしては、例えば、配列番号2に記載の塩基配列中の連続した18塩基以上の塩基配列との相違塩基数が2である塩基配列を含むプライマーを挙げることができ、好ましくは、配列番号2に記載の塩基配列中の連続した18塩基以上の塩基配列との相違塩基数が1である塩基配列を含むプライマーを挙げることができ、より好ましくは、配列番号2に記載の塩基配列中の連続した18塩基以上の塩基配列を含むプライマーを挙げることができる。
 第二のプライマーとしては、配列番号3に記載の塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズするものが好ましい。プライマーの長さは、より十分な特異性を得る観点から、18塩基以上が好ましく、19塩基以上がより好ましく、20塩基以上が更に好ましい。プライマーの長さの上限としては、よりアニーリング効率を高める観点から、28塩基以下が好ましく、27塩基以下がより好ましく、25塩基以下が更に好ましい。第二のプライマーとして、具体的には、配列番号9又は10に記載の塩基配列を含むプライマーが挙げられる。
 配列番号3に記載の塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含むプライマーとしては、例えば、配列番号3に記載の塩基配列に対して相補的な塩基配列中の連続した18塩基以上の塩基配列との相違塩基数が2である塩基配列を含むプライマーを挙げることができ、好ましくは、配列番号3に記載の塩基配列に対して相補的な塩基配列中の連続した18塩基以上の塩基配列との相違塩基数が1である塩基配列を含むプライマーを挙げることができ、より好ましくは、配列番号3に記載の塩基配列に対して相補的な塩基配列中の連続した18塩基以上の塩基配列を含むプライマーを挙げることができる。
 本明細書において、「ストリンジェントな条件」とは、標的配列に対して相同性を有するヌクレオチド鎖の相補鎖が標的配列に優先的にハイブリダイズし、そして相同性を有さないヌクレオチド鎖の相補鎖が実質的にハイブリダイズしない条件を意味する。ストリンジェントな条件は配列依存的であり、種々の状況で異なる。より長い配列は、より高い温度で特異的にハイブリダイズする。一般に、ストリンジェントな条件は、規定されたイオン強度及びpHでの特定の配列についての熱融解温度(Tm)より約5℃低く選択される。Tmは、規定されたイオン強度、pH、及びDNA濃度下で、標的配列に相補的なヌクレオチドの50%が平衡状態で標的配列にハイブリダイズする温度である。
 「ストリンジェントな条件でハイブリダイズする塩基配列を含むプライマー」としては、例えば、目的とするヌクレオチドと高イオン濃度下[例えば、6×SSC(900mM塩化ナトリウム、90mMクエン酸ナトリウム)などが用いられる。]に65℃の温度条件でハイブリダイズすることにより、DNA-DNAハイブリッドを形成し、低イオン濃度下[例えば、0.1×SSC(15mM塩化ナトリウム、1.5mMクエン酸ナトリウム)などが用いられる。]に65℃の温度条件で30分間洗浄した後でも該ハイブリッドが維持されうるプライマーをあげることができる。
[第二工程]
 第二工程において、増幅産物を検出する方法としては、特に制限されるものではなく、当業者に周知の方法を用いることができる。増幅産物を検出する方法としては、例えば、アガロースゲル電気泳動法、リアルタイムPCR法、シークエンス解析法、サザンブロッティング法が挙げられる。これらの方法の中でも、特異性に優れるという観点から、プローブを用いる検出方法が好ましい。プローブを用いる検出方法としては、例えば、リアルタイムPCR法又はサザンブロッティング法が挙げられ、中でも、第一工程の増幅が同時に行え、且つ、特異的に検出でき、定量性にも優れるという観点から、リアルタイムPCR法が好ましい。
 検出に用いられるプローブは、第一工程で得られた増幅産物のセンス鎖又はアンチセンス鎖にストリンジェントな条件でハイブリダイズするオリゴヌクレオチドが好ましい。プローブの長さとしては、より特異的に増幅産物を検出する観点から、15塩基以上30塩基以下が好ましく、15塩基以上25塩基以下がより好ましく、15塩基以上20塩基以下が更に好ましい。プローブとして、具体的には、配列番号11に記載の塩基配列を含むプローブが挙げられる。
 上記プローブをリアルタイムPCR法に用いる場合、プローブは、5’末端を蛍光物質で、3’末端を蛍光物質が発する蛍光を抑制するためのクエンチャーで、それぞれ修飾される。蛍光物質としては、例えば、FAM、TET、HEX、TAMRA、Cyanine5が挙げられる。クエンチャーとしては、例えば、TAMRA、BHQ1、BHQ2、BHQ3が挙げられる。プローブの修飾に用いられる蛍光物質及びクエンチャーは、使用するリアルタイムPCR装置の励起波長及び測定波長に合わせて、適宜選択することができる。
 リアルタイムPCR装置としては、DNAをPCRにより増幅することができるサーマルサイクラーと、増幅産物を検出するための分光蛍光光度計と、を備えていれば、特に制限されるものではない。リアルタイムPCR装置としては、例えば、StepOnePlus(Applied Biosystems社製)が挙げられる。
 第二工程で検出した増幅サンプルは定量することもできる。そのため、本実施形態の検出方法は、被検DNAからNitrobacter属細菌を検出するだけでなく、被検DNAに含まれるNitrobacter属細菌の量を定量することもできる。例えば、第二工程で増幅産物の検出にリアルタイムPCRを用いた場合、スタンダードサンプルを用いて得られる検量線から、被検DNAの量を定量することができる。検量線は、増幅産物がある一定値に達した時のサイクル数を示すCt値及び初期鋳型量に基づき、作成することができる。
 本実施形態の検出方法において、第一工程で被検DNAから増幅産物が得られ、第二工程でその増幅産物を検出することができた場合、その被検DNAには、Nitrobacter属細菌由来のDNAが含まれると判定することができる。
<Nitrobacter属細菌のキット>
 本実施形態のNitrobacter属細菌の検出に用いられるキットは、配列番号2に記載の塩基配列に対して相補的な塩基配列とストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第一のプライマー及び配列番号3に記載の塩基配列とストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第二のプライマーと、配列番号11に記載の塩基配列を含むプローブと、を含む。
 第一のプライマー、第二のプライマー及びプローブは、上述した検出方法で用いたものと同様のものを用いることができる。
 本実施形態のキットには、第一のプライマー、第二のプライマー及び配列番号11に記載の塩基配列を含むプローブ以外に、必要に応じて、その他の試薬等を添付してもよい。その他の試薬としては、例えば、DNAポリメラーゼ、デオキシリボヌクレオチド混合物(dNTP Mix)、緩衝液、滅菌水、コントロール用DNAが挙げられる。
 本実施形態のキットに緩衝液を添付する場合、緩衝液としては、例えば、一般的なPCR法で使用する緩衝液が挙げられる。
[実施例1:プライマー及びプローブの選抜]
(材料)
 Nitrobacter属細菌由来の16S rRNA遺伝子を増幅させるため、プライマーとプローブを設計した。16S rRNAのV6-V7領域を増幅するためのプライマー及びプローブを表1に、V5-V7領域を増幅するためのプライマー及びプローブを表2にそれぞれ示す。また、Nitrobacter属細菌由来の16S rRNA遺伝子を増幅させるプライマーとして非特許文献2に記載されている、配列番号19及び配列番号20に記載の塩基配列を有するプライマーも用いた。鋳型DNAは、Nitrobacter属細菌由来の16S rRNA遺伝子の塩基配列(配列番号18)を導入したプラスミドを用いた。鋳型DNAは、Nitrobacter属細菌から抽出したDNAを鋳型に、配列番号21及び22に記載の塩基配列を有するプライマーを用いてPCRにより増幅産物を調製し、その後増幅産物をプラスミドに導入したものである。PCR反応は、(1)94℃、2分間、(2)98℃、10秒間、(3)60℃→40℃、30秒間、(4)68℃、1.5分間で行い、(2)~(4)の工程は35サイクル繰り返し行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(方法)
 表1及び2に示すプライマー及びプローブを用いて、リアルタイムPCR装置(StepOnePlus、Applied Biosystems社製)により、Nitrobacter属細菌の16S rRNA遺伝子の増幅を行った。
 10μLの2×TaqMan fast Advanced Master Mix(Life technologies社製)、0.36μLのフォワードプライマー(50pmol/μL)、0.36μLのリバースプライマー(50pmol/μL)、0.50μLのプローブ、6.78μLの滅菌水、2.00μLの鋳型DNAを、マイクロチューブに加え、混合した。マイクロチューブをリアルタイムPCR装置に設置し、増幅反応を行った。反応は(1)95℃、20秒、(2)95℃、1秒、(3)60℃、20秒で行い、(2)及び(3)の工程は50サイクル繰り返し行った。反応は、492nmの励起光を照射し、蛍光物質である6-FAMの蛍光(515nm)を測定することで、リアルタイムで進行を確認した。
(結果)
 Nitrobacter属細菌由来の16S rRNA遺伝子を増幅することができたプライマー及びプローブの組み合わせを表3及び4に示す。V6-V7領域に設計したプライマー及びプローブでは10組、V5-V7領域に設計したプライマー及びプローブでは11組が、Nitrobacter属細菌由来の16S rRNA遺伝子の塩基配列(配列番号18)を導入したプラスミドを検出することができ、1pg/μLから0.001pg/μLまでのプラスミドを検出することができた。一方、配列番号19及び配列番号20に記載の塩基配列を有するプライマー並びにプローブ1の組み合わせでは、配列番号18の塩基配列を有する16S rRNA遺伝子を導入したプラスミドを検出することはできなかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実施例2:一種類のプラスミドを用いた特異性試験]
(材料)
・1-2、1-4、1-5、1-7、1-9、1-10又は2-5の組み合わせのプライマー及びプローブ
・各種細菌由来16S rRNA遺伝子を導入したプラスミド(表5に記載の細菌由来)
(方法)
 上記プライマー、プローブを用いたこと及び上記プラスミドのいずれか一種を鋳型DNAとして用いたこと以外は、実施例1と同様の方法でリアルタイムPCRを行った。
(結果)
 表5には、試験に用いたプラスミドに導入された16S rRNA遺伝子の由来となる細菌属名と、それらのプラスミドの検出結果を示す。V6-V7領域で設計したプライマー及びプローブの組み合わせ(1-2、1-4、1-5、1-7、1-9、1-10)、並びにV5-V7領域で設計したプライマー及びプローブの組み合わせ(2-5)によれば、Nitrobacter属細菌以外の細菌由来の16S rRNA遺伝子を導入したプラスミドは検出限界(0.001pg/μL)以下であった。また、これらプライマー及びプローブセットは、Nitorobacter属細菌の近縁種であるBradyrhizobium属細菌に対しても検出性を示さなかった。したがって、これらのプライマー及びプローブはNitrobacter属細菌を特異的に検出できることが示された。
Figure JPOXMLDOC01-appb-T000005
[実施例3:複数種の混合プラスミドを用いた特異性試験及び定量性試験]
(材料)
・1-2、1-4、1-5、1-7、1-9、1-10、2-5の組み合わせのプライマー及びプローブ
・Nitrobacter属細菌由来の16S rRNA遺伝子の塩基配列(配列番号18)を導入したプラスミド
・各種細菌由来16S rRNA遺伝子を導入したプラスミド(表5に記載の細菌由来)
(方法)
 表5に記載の細菌中、Nitrobacter属細菌を除く12種の細菌由来の16S rRNA遺伝子を導入したプラスミドを混合した混合液(各種プラスミドの終濃度はそれぞれ1pg/μL)に、Nitrobacter属細菌由来の16S rRNA遺伝子を導入したプラスミドを終濃度1pg/μL、0.1pg/μL、0.01pg/μL又は0.001pg/μLとなるように混合し、プラスミド混合液を調製した。上記の組み合わせのプライマー及びプローブを用いたこと、並びに、調製したプラスミド混合液を鋳型DNAとして用いたこと以外は、実施例1と同様の方法でリアルタイムPCRを行った。
(結果)
 表6には、リアルタイムPCRにより定量したNitrobacter属細菌由来の16S rRNA遺伝子を導入したプラスミドの測定値(pg/μL)を示す。V6-V7領域で設計したプライマーによる1-2、1-4、1-5、1-7、1-9及び1-10のプライマー・プローブの組み合わせを用いた場合、複数種の細菌由来の16S rRNA遺伝子を導入したプラスミドを鋳型DNAとしても、Nitrobacter属由来のもののみを特異的に検出することができ、且つ、0.001pg/μLの濃度まで定量することができた。このとき、他種の細菌由来の16S rRNA遺伝子を導入したプラスミドは、検出限界(0.001pg/μL)以下だった。一方、V5-V7領域で設計したプライマーによる2-5のプライマー・プローブの組み合わせを用いた場合、1pg/μLの濃度までは、Nitrobacter属由来のもののみを特異的に検出することができたが、0.1pg/μL以下では、Nitrobacter属由来のものを検出及び定量することができなかった。
Figure JPOXMLDOC01-appb-T000006
[実施例4:一種類のゲノムDNAを用いた特異性試験]
(材料)
・1-9の組み合わせのプライマー及びプローブ
・各種細菌由来ゲノムDNA(表7に記載の細菌由来)
(方法)
 1-9の組み合わせのプライマー及びプローブを用いたこと、並びに、表7に記載の細菌由来のゲノムDNA(1ng/μL)を鋳型DNAとして用いたこと以外は、実施例1と同様の方法でリアルタイムPCRを行った。
 表7には、試験に用いたゲノムDNAの由来となる細菌と、それらのゲノムDNAの検出結果を示す。1-9の組み合わせのプライマー及びプローブによれば、Nitrobacter属細菌であるNitrobacter winogradskyi NBRC14297のゲノムDNAを0.001ng/μLの濃度まで検出することができた。一方で、それ以外の細菌由来のゲノムDNAは検出限界(0.001ng/μL)以下であった。そのため、このプライマー及びプローブは、ゲノムDNAを用いたとしても、Nitrobacter属細菌を特異的に検出できることが示された。
Figure JPOXMLDOC01-appb-T000007
[実施例5:複数種の混合ゲノムDNAを用いた定量性試験]
(材料)
・1-9の組み合わせのプライマー及びプローブ
・Nitrobacter winogradskyi NBRC14297由来ゲノムDNA
・各種細菌由来ゲノムDNA(表8に記載の細菌由来)
(方法)
 表8に記載の細菌由来のゲノムDNAを混合した混合液(各種ゲノムDNAの終濃度はそれぞれ100pg/μL)に、Nitrobacter winogradskyi NBRC14297由来のゲノムDNAを終濃度100pg/μL、10pg/μL、1pg/μL又は0.1pg/μLとなるように混合し、ゲノムDNA混合液を調製した。1-9の組み合わせのプライマー及びプローブを用いたこと、並びに、調製したゲノムDNA混合液を鋳型DNAとして用いたこと以外は、実施例1を同様の方法でリアルタイムPCRを行った。
Figure JPOXMLDOC01-appb-T000008
(結果)
 表9に、1-9の組み合わせのプライマー及びプローブを用いて、Nitrobacter winogradskyi NBRC14297由来のゲノムDNAを定量した結果を示す。表9に示すゲノムDNAの測定値は、3サンプルについて測定を行った結果の平均値である。1-9の組み合わせのプライマー及びプローブを用いた場合、複数種の細菌由来のゲノムDNAを鋳型DNAとしても、Nitrobacter winogradskyi NBRC14297由来のゲノムDNAのみを特異的に検出することができ、且つ、0.1pg/μLの濃度まで定量することができた。このとき、他種の細菌由来のゲノムDNAは、検出限界(0.1pg/μL)以下だった。
Figure JPOXMLDOC01-appb-T000009
[実施例6:活性汚泥を用いたNitrobacter属細菌の検出及び定量]
(材料)
・1-9の組み合わせのプライマー及びプローブ
・活性汚泥サンプル1から11由来のゲノムDNA(活性汚泥のサンプリング量1.5mL、溶出量150μL)
(方法)
 1-9の組み合わせのプライマー及びプローブを用いたこと、並びに、活性汚泥サンプル1から11由来のゲノムDNA(2μL)を鋳型DNAとして用いたこと以外は、実施例1と同様の方法でリアルタイムPCRを行った。
(結果)
 表10に、1-9の組み合わせのプライマー及びプローブを用いて、活性汚泥サンプル1~11由来のゲノムDNAをプラスミド濃度に換算した際の定量結果を示す。この結果から、1-9の組み合わせのプライマー及びプローブによれば、活性汚泥由来のゲノムDNAから直接Nitrobacter属細菌を検出することができることが示された。
Figure JPOXMLDOC01-appb-T000010
 これらの結果から、V6-V7領域で設計したプライマー及びプローブを用いることで、複数の細菌種が存在する系においてもNitrobacter属細菌を特異的に検出することができ、且つ、正確に定量することができた。

Claims (6)

  1.  ニトロバクター(Nitrobacter)属細菌の検出方法であって、
     被検DNAを鋳型に、配列番号1に記載の塩基配列のうち、連続した110塩基以上157塩基以下の塩基配列を増幅可能なプライマーを用いてヌクレオチドを増幅させ、増幅産物を得る第一工程と、
     前記増幅産物を検出する第二工程と、を有する方法。
  2.  前記第一工程において用いるプライマーが、配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第一のプライマー、及び、配列番号3に記載の塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第二のプライマーである、請求項1に記載の方法。
  3.  前記第一のプライマーが配列番号4から8に記載の塩基配列から選択される一つの塩基配列を含み、前記第二のプライマーが配列番号9又は10に記載の塩基配列から選択される一つの塩基配列を含む、請求項2に記載の方法。
  4.  前記第二工程において、配列番号11に記載の塩基配列を含むプローブを用いて、前記増幅産物を検出する、請求項1から3のいずれか一項に記載の方法。
  5.  ニトロバクター(Nitrobacter)属細菌の検出に用いられるキットであって、
     配列番号2に記載の塩基配列に対して相補的な塩基配列を含むヌクレオチドとストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第一のプライマー及び配列番号3に記載の塩基配列とストリンジェントな条件でハイブリダイズする18塩基以上の塩基配列を含む第二のプライマーと、
     配列番号11に記載の塩基配列を含むプローブと、を含むキット。
  6.  前記第一のプライマーが配列番号4から8に記載の塩基配列から選択される一つの塩基配列を含み、前記第二のプライマーが配列番号9又は10に記載の塩基配列から選択される一つの塩基配列を含む、請求項5に記載のキット。
PCT/JP2016/060560 2015-04-03 2016-03-30 ニトロバクター(Nitrobacter)属細菌の検出方法及びキット WO2016159183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/563,000 US11124843B2 (en) 2015-04-03 2016-03-30 Method and kit for detecting bacteria of genus nitrobacter
KR1020177031877A KR102565490B1 (ko) 2015-04-03 2016-03-30 니트로박터(Nitrobacter)속 세균의 검출 방법 및 키트
CN201680019328.5A CN108291263B (zh) 2015-04-03 2016-03-30 硝化菌(Nitrobacter)属细菌的检测方法及试剂盒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-076951 2015-04-03
JP2015076951A JP6501594B2 (ja) 2015-04-03 2015-04-03 ニトロバクター(Nitrobacter)属細菌の検出方法及びキット

Publications (1)

Publication Number Publication Date
WO2016159183A1 true WO2016159183A1 (ja) 2016-10-06

Family

ID=57006921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060560 WO2016159183A1 (ja) 2015-04-03 2016-03-30 ニトロバクター(Nitrobacter)属細菌の検出方法及びキット

Country Status (6)

Country Link
US (1) US11124843B2 (ja)
JP (1) JP6501594B2 (ja)
KR (1) KR102565490B1 (ja)
CN (1) CN108291263B (ja)
TW (1) TWI729982B (ja)
WO (1) WO2016159183A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708021B2 (ja) 2016-06-30 2020-06-10 住友化学株式会社 ノボスフィンゴビウム属細菌の検出方法及びキット
CN115521937A (zh) * 2022-06-21 2022-12-27 大连鑫玉龙海洋生物种业科技股份有限公司 一种用于定量检测污泥群落中功能菌的质粒标准品、构建方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538785A (ja) * 1999-03-03 2002-11-19 ザ・ユニバーシティ・オブ・シカゴ 多重遺伝子情報をより単純なパターンに変換するカスタマイズされたオリゴヌクレオチドマイクロチップは、移動可能でありそして再利用可能である
JP2012187067A (ja) * 2011-03-11 2012-10-04 Kao Corp ラクトバチルス属細菌の定量方法
JP2014030409A (ja) * 2012-08-06 2014-02-20 Mitsubishi Heavy Ind Ltd 亜硝酸酸化細菌の検出方法、金属の腐食予測方法、及び亜硝酸酸化細菌検出用プライマー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU753130B2 (en) * 1997-09-16 2002-10-10 Crc For Waste Management And Pollution Control Limited Aquatic nitrite oxidising microorganisms
JP2005229929A (ja) * 2004-02-20 2005-09-02 Kobelco Eco-Solutions Co Ltd 亜硝酸酸化還元酵素遺伝子検出用プライマー
US8232051B2 (en) * 2007-03-26 2012-07-31 Arkray, Inc. Primer set for gene amplification, reagent for gene amplification including the same, and uses thereof
CN101086023A (zh) * 2007-06-08 2007-12-12 哈尔滨工业大学 用于检测厌氧反硝化细菌的引物和荧光探针
KR20130090296A (ko) 2012-02-03 2013-08-13 윤석호 수질정화용 미생물제재 오염도 측정을 위한 방법
KR101459589B1 (ko) * 2012-11-19 2014-11-12 대한민국 산토모나스 데이콜라 동정방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538785A (ja) * 1999-03-03 2002-11-19 ザ・ユニバーシティ・オブ・シカゴ 多重遺伝子情報をより単純なパターンに変換するカスタマイズされたオリゴヌクレオチドマイクロチップは、移動可能でありそして再利用可能である
JP2012187067A (ja) * 2011-03-11 2012-10-04 Kao Corp ラクトバチルス属細菌の定量方法
JP2014030409A (ja) * 2012-08-06 2014-02-20 Mitsubishi Heavy Ind Ltd 亜硝酸酸化細菌の検出方法、金属の腐食予測方法、及び亜硝酸酸化細菌検出用プライマー

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GenBank 17 May 2007 (2007-05-17), "Definition: Nitrobacter vulgaris partial 16S rRNA gene , strain BB3", XP055315380, Database accession no. AM 286398 *
DATABASE GenBank 31 July 2007 (2007-07-31), "Definition: Nitrobacter sp. Io acid partial 16S rRNA gene , strain Io acid", XP055315385, Database accession no. AM 292298 *

Also Published As

Publication number Publication date
KR102565490B1 (ko) 2023-08-09
US20180057858A1 (en) 2018-03-01
CN108291263B (zh) 2021-10-15
TW201643254A (zh) 2016-12-16
US11124843B2 (en) 2021-09-21
JP2016195564A (ja) 2016-11-24
TWI729982B (zh) 2021-06-11
JP6501594B2 (ja) 2019-04-17
CN108291263A (zh) 2018-07-17
KR20170133484A (ko) 2017-12-05

Similar Documents

Publication Publication Date Title
CN107849603B (zh) 利用有限核苷酸组成的引物扩增
EP2025761B1 (en) Nucleic acid amplification method
JP6652693B2 (ja) ブロッキングオリゴヌクレオチドを用いたdna増幅の方法
EP2379753A2 (en) Single-cell nucleic acid analysis
WO2005003384A1 (en) Method for selective detection of a target nucleic acid
JP2012080871A (ja) Rnaの直接検出法
KR102648647B1 (ko) 짧은 호모폴리머릭 반복서열의 개선된 검출법
EP2333109B1 (en) Composition for detection of rna
KR102565490B1 (ko) 니트로박터(Nitrobacter)속 세균의 검출 방법 및 키트
KR101561034B1 (ko) 이노신 함유 변형 프라이머를 이용한 바이설파이트 처리에 의해 변환된 dna의 메틸화 검출방법
EP3438280B1 (en) Haemoplasma detection method
JP2005229839A (ja) 乳酸菌の検出・識別方法
JP6708021B2 (ja) ノボスフィンゴビウム属細菌の検出方法及びキット
JP2016195565A (ja) 芳香族化合物分解性スフィンゴモナダセアエ科細菌の検出方法及びキット
US20080026429A1 (en) Solution pre-treatment
WO2022025066A1 (ja) ポリヌクレオチド、ポリヌクレオチドセット、ポルフィロモナス・ジンジバリス検出方法、歯周病罹患可能性の評価方法、ポルフィロモナス・ジンジバリス検出用キット、及び歯周病の罹患可能性評価用キット
JP5779440B2 (ja) ベンゼン分解菌の検出方法
CN115678989A (zh) 标志物在预测结直肠癌的复发和/或转移风险中的用途
JP2006271290A (ja) 新規オリゴヌクレオチドプライマー及びそれを用いた点突然変異の検出方法
JP2005229838A (ja) 偏性嫌気性グラム陰性菌の検出・識別方法
JP2011087534A (ja) 夾雑物の影響を排除する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031877

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16773064

Country of ref document: EP

Kind code of ref document: A1