WO2016158998A1 - 蓄電素子の製造方法及び蓄電素子の製造装置 - Google Patents

蓄電素子の製造方法及び蓄電素子の製造装置 Download PDF

Info

Publication number
WO2016158998A1
WO2016158998A1 PCT/JP2016/060228 JP2016060228W WO2016158998A1 WO 2016158998 A1 WO2016158998 A1 WO 2016158998A1 JP 2016060228 W JP2016060228 W JP 2016060228W WO 2016158998 A1 WO2016158998 A1 WO 2016158998A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
jig
storage element
shield gas
container
Prior art date
Application number
PCT/JP2016/060228
Other languages
English (en)
French (fr)
Inventor
広和 上林
憲利 前田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to DE112016001546.1T priority Critical patent/DE112016001546T5/de
Priority to JP2017510050A priority patent/JP6819574B2/ja
Priority to CN201680014370.8A priority patent/CN107431148B/zh
Priority to US15/546,600 priority patent/US10637010B2/en
Publication of WO2016158998A1 publication Critical patent/WO2016158998A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for manufacturing a power storage element and a device for manufacturing a power storage element.
  • the conventional laser welding apparatus may cause poor welding.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a storage element that can reduce the occurrence of poor welding.
  • a method for manufacturing a power storage element is a method for manufacturing a power storage element that performs welding on a container of a power storage element.
  • the flow direction of the shield gas supplied from two different directions toward the two welding target portions is changed by the jig after passing through the vicinity of each welding target portion. Specifically, it goes in the direction away from the container. That is, by arranging the jig between the two welding target portions, the two flows of the shielding gas are suppressed from joining at the two welding target portions. For this reason, generation
  • a stable shield gas atmosphere can be formed in the welding target portion, and the occurrence of poor welding can be reduced.
  • FIG. 1 is a diagram illustrating an external appearance of a power storage device manufacturing apparatus according to the present embodiment.
  • FIG. 2 is a diagram for explaining the arrangement of jigs in the method for manufacturing the energy storage device according to the present embodiment.
  • FIG. 3 is a view for explaining a welding path of the container of the electricity storage device according to the present embodiment.
  • FIG. 4 is a perspective view showing an external appearance of the energy storage device according to the embodiment.
  • FIG. 5A is a perspective view when the jig according to the embodiment is viewed from the upper oblique direction.
  • FIG. 5B is a perspective view when the jig according to the embodiment is viewed from a lower oblique direction.
  • FIG. 6 is an enlarged view of a part around the jig in the VI-VI sectional view of the manufacturing apparatus in FIG. 1 according to the embodiment.
  • FIG. 7 is a flowchart showing a method for manufacturing the energy storage device according to the embodiment.
  • FIG. 8 is a diagram showing an external appearance of a storage device manufacturing apparatus according to a modification.
  • FIG. 9 is an enlarged view of a part around the jig in the IX-IX sectional view of the manufacturing apparatus in FIG.
  • FIG. 10 is an enlarged view of a part around the jig in the XX sectional view of the manufacturing apparatus in FIG.
  • FIG. 11 is a perspective view showing an appearance of a state in which the jig according to the modification is disposed at a predetermined position of the power storage element.
  • the conventional laser welding apparatus may cause poor welding.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a storage element that can reduce the occurrence of poor welding by forming a stable shielding gas atmosphere.
  • a method for manufacturing a power storage element is a method for manufacturing a power storage element that performs welding on a container of a power storage element.
  • the flow direction of the shield gas supplied from two different directions toward the two welding target portions is changed by the jig after passing through the vicinity of each welding target portion. Specifically, it goes in the direction away from the container. That is, by arranging the jig between the two welding target portions, the two flows of the shielding gas are suppressed from joining at the two welding target portions. For this reason, generation
  • the shield gas supplied to the welding target portion may flow along an inclined surface that is at least a part of the wall surface.
  • each of the two flows of the shield gas supplied from two different directions can be easily flown along the wall surface of the jig. Therefore, the direction in which each of the two flows of shield gas flows can be changed so that turbulent flow does not occur. Thereby, the atmosphere of the stable shield gas can be formed in two welding object parts, and generation
  • the jig may be placed in contact with the container.
  • a cooling step for cooling the jig may be included.
  • the heat generated by welding which is thermally conducted to the jig, can be released, and the high temperature can be suppressed by repeatedly using the jig.
  • the container of an electrical storage element it can suppress that a high temperature jig
  • tool can be extended.
  • the two welding target portions may be welded by irradiating a laser beam from a predetermined position toward the two welding target portions while changing an irradiation angle.
  • An electrical storage element manufacturing apparatus is an electrical storage element manufacturing apparatus for performing welding on an electrical storage element container, and includes two welding target portions to be welded.
  • a jig having a wall surface disposed between the two welding target portions to which shield gas is supplied from two different directions is provided.
  • the flow direction of the shield gas supplied from two different directions toward the two welding target portions is changed by the jig after passing through the vicinity of each welding target portion. Specifically, it goes in the direction away from the container. That is, by arranging the jig between the two welding target portions, the two flows of the shielding gas are suppressed from joining at the two welding target portions. For this reason, generation
  • blowout ports that supply shield gas from the two different directions may be provided in the two welding target portions.
  • the shielding gas can be easily supplied to the two welding target portions.
  • At least a part of the wall surface may be inclined with respect to the direction in which the shield gas flows.
  • the direction of the flow can be changed by causing each of the two flows of shield gas supplied from two different directions along the inclined surface of the jig. Therefore, the direction in which the shield gas flows can be changed so that turbulent flow does not occur. Thereby, the atmosphere of the stable shield gas can be formed in two welding object parts, and generation
  • the container includes a main body having a rectangular opening and a long plate-like lid that closes the opening, and the two welding target portions are formed in a rectangular annular shape between the main body and the lid.
  • the jig is disposed between the two long side portions, and at least a part of the wall surface is in a direction in which the shield gas flows.
  • the shield gas may be inclined so as to move away from the container toward the downstream side in the flow direction.
  • the distance between each other is short and the two welding distances are long portions. Since a jig is disposed between the long side portions, it is possible to suppress the joining of shield gases supplied from two different directions. Moreover, since the direction in which the shield gas flows can be changed to a direction away from the container, it is possible to suppress the shield gas supplied from two different directions from joining in the welding target portion of the container.
  • FIG. 1 is a diagram showing an external appearance of a storage element manufacturing apparatus according to an embodiment.
  • FIG. 2 is a view for explaining a jig and a plurality of fixing portions according to the embodiment.
  • the Z-axis direction is shown as the vertical direction, and in the following, the Z-axis direction is the vertical direction (that is, the Z-axis direction plus side is upward, the Z-axis direction is Although there is a portion that is described as the minus side below), in the actual usage, the Z-axis direction is not always the vertical direction.
  • manufacturing apparatus 10 for power storage element 500 includes welded portion 100, a plurality (four in this embodiment) of blowing portions 210 to 240, a jig 300, and a plurality of (this embodiment). 4) fixing portions 410 to 440.
  • manufacturing apparatus 10 is an apparatus for welding main body 511 and lid 512 of container 510 of power storage element 500. That is, in the present embodiment, the weld target portion 530 to be welded of the container 510 of the power storage element 500 is a boundary portion between the main body 511 and the lid body 512.
  • the welding unit 100 is a laser unit that welds the container of the electricity storage element 500 by irradiating the laser beam L1 (L2). Specifically, the welded portion 100 welds the welding target portion by irradiating the laser beam while changing the irradiation angle from a predetermined position P1 (above) toward the welding target portion of the container.
  • the welding part 100 welds a part of welding object part with the angle of the laser beam L1, and then welds another part of welding object part with the angle of the laser beam L2.
  • the welding unit 100 includes a scanner unit (for example, a galvano scanner unit) that scans by changing the angle of the laser beam emitted from the welding unit 100 by reflecting the laser beam to a mirror that can change the angle. Have.
  • FIG. 3 is a view for explaining a welding path of the container of the electricity storage device according to the present embodiment.
  • the welded portion 100 performs welding in the order of, for example, a long side portion 531, a short side portion 533, a long side portion 532, and a short side portion 534. . That is, the welded portion 100 performs welding on the container 510 by scanning the rectangular annular welding target portion 530 while changing the angle of the laser beam by one continuous laser beam irradiation.
  • the plurality of blowing units 210 to 240 supply the shield gas toward the welding target portion 530 of the container 510 of the storage element 500.
  • the plurality of blow-out portions 210 to 240 supply shield gas from both sides in the X-axis direction and both sides in the Y-axis direction to the upper surface of the container 510 where the welding target portion 530 is formed.
  • the two outlets 210 and 220 are disposed on both sides of the container 510 in the Y-axis direction, and supply shield gas from both sides in the Y-axis direction toward the welding target portion 530 on the upper surface of the container 510.
  • the two outlets 230 and 240 are arranged on both sides of the container 510 in the X-axis direction, and supply shield gas from both sides in the X-axis direction toward the welding target portion 530 on the upper surface of the container 510.
  • the shield gas is not particularly limited as long as it is an inert gas that can suppress oxidation due to the metal at the welded portion coming into contact with the outside air, and examples thereof include N 2 gas, Ar gas, and He gas.
  • Each of the plurality of outlets 210 to 240 has introduction ports 211, 221, 231, and 241 through which shield gas is introduced, and outlets 212, 222, 232, and 242 that blow out the shield gas toward the welding target portion 530.
  • Each of the plurality of outlets 210 to 240 rectifies the shield gas while the gas Gin introduced from the inlets 211, 221, 231, and 241 flows through the flow paths to the outlets 212, 222, 232, and 242. It also has a function as a rectifier. That is, the gas Gout blown by the plurality of blowing units 210 to 240 is a gas that is rectified by the plurality of blowing units 210 to 240 and has reduced turbulent flow.
  • FIG. 4 is a perspective view showing an external appearance of the energy storage device according to the embodiment.
  • the storage element 500 is a secondary battery that can charge and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 500 is applied to an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), a hybrid electric vehicle (HEV), or the like.
  • the electrical storage element 500 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a capacitor may be sufficient as it.
  • the power storage element 500 includes a container 510 including a main body 511 having a rectangular cylindrical shape and a bottom, and a lid 512 that is a plate-like member that closes an opening of the main body 511, and a positive electrode terminal 521. And a negative electrode terminal 522.
  • the lid 512 the plate-like outer edge portion of the lid 512 faces the inner wall surface of the opening of the main body 511 in a state where the opening of the main body 511 is closed.
  • the opening of the main body 511 is provided with a stepped portion 511a (see FIG. 6) that supports the lower surface of the lid body 512, and the upper end of the main body 511 and the upper surface of the lid body 512 are at the same position (level). It is comprised so that it may become. That is, the welding target portion 530 is formed on the upper surface of the container 510.
  • This container 510 is capable of sealing the inside by accommodating the electrode body and the like and then welding the lid body 512 and the main body 511.
  • the material of the lid 512 and the main body 511 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, or aluminum alloy.
  • the positive terminal 521 and the negative terminal 522 are attached to the lid 512.
  • the positive terminal 521 and the negative terminal 522 are formed to protrude upward from the upper surface of the lid 512.
  • the positive electrode terminal 521 and the negative electrode terminal 522 are electrode terminals that are electrically connected to each electrode of an electrode body (not shown) and output electric power stored inside or store electric power from outside. is there.
  • power storage element 500 has a long plate shape in which lid body 512 of container 510 has two long sides parallel to the X-axis direction and two short sides parallel to the Y-axis direction. It is a member. Therefore, as shown in FIG. 3, the welding target portion 530 of the container 510 has two long side portions 531 and 532 parallel to the X-axis direction and the Y-axis, similar to the outer shape when the lid 512 is viewed from above. It is a rectangular annular portion having two short side portions 533 and 534 parallel to the direction.
  • the blowout part 210 has the blower outlet 212 which faces the long side part 531 and has a width longer than the length of the long side part 531.
  • the blowout part 220 has a blower outlet 222 that faces the long side portion 532 and has a width longer than the length of the long side portion 532.
  • the two outlets 210 and 220 supply the shielding gas from two different directions to the two long side portions 531 and 532 parallel to the X-axis direction of the welding target portion 530, and the two long side portions. Shield gas is supplied over the whole of 531 and 532.
  • the two blowing parts 210 and 220 supply shield gas at substantially the same timing.
  • the blowout part 230 has the blower outlet 232 which faces the short side part 533 and has a width longer than the length of the short side part 533.
  • the blowing part 240 has a blower outlet 242 that faces the short side portion 534 and has a width longer than the length of the short side portion 534.
  • the two outlets 210 and 220 and the two outlets 230 and 240 supply shield gas at substantially the same timing. That is, the four outlets 210, 220, 230, and 240 supply shield gas at substantially the same timing and during substantially the same period.
  • the jig 300 is a jig for preventing the shielding gas supplied from a plurality of different directions from colliding with each other. As shown in FIG. 2, the jig 300 is disposed at a predetermined position P ⁇ b> 2 on the upper surface of the container 510 of the power storage element 500 before welding by the welded portion 100 is performed.
  • the predetermined position P2 is a position between two welding target parts (in this embodiment, two long side parts 531 and 532) to which shield gas is supplied from two different directions.
  • the jig 300 has wall surfaces A11 and A12 facing the two long side portions 531 and 532 in a state where the jig 300 is disposed at a predetermined position P2.
  • the wall surfaces A11 and A12 are wall surfaces for shielding the shielding gas.
  • the material of the jig 300 is not particularly limited, but since the heat generated by welding can be dissipated, it is preferably a member having thermal conductivity.
  • the material of the jig 300 is preferably a member having heat resistance that can withstand the heat generated by welding.
  • the jig 300 is preferably a metal such as aluminum, an aluminum alloy, copper, or a copper alloy.
  • the plurality of fixing portions 410 to 440 are jigs for positioning the electric storage element 500 with respect to the welding portion 100. Specifically, as shown in FIG. 2, the two fixing portions 410 and 420 face each other in the Y-axis direction, and sandwich the long side surface of the container 510 of the storage element 500 from both sides in the Y-axis direction.
  • the power storage element 500 is fixed at a predetermined position in the Y-axis direction.
  • the two fixing portions 430 and 440 are opposed to each other in the X-axis direction, and the power is stored at a predetermined position in the X-axis direction by sandwiching the short side surface of the container 510 of the power storage element 500 from both sides in the X-axis direction.
  • the element 500 may be located.
  • the position of the electricity storage element 500 in the Z-axis direction is determined by placing the electricity storage element 500 on a pedestal (not shown).
  • the power storage element 500 is fixed in a state where it is positioned at predetermined positions in the X-axis direction, the Y-axis direction, and the Z-axis direction by the plurality of fixing portions 410 to 440. Even if it replaces and fixes to this electrical storage element 500, the positional relationship of another electrical storage element 500 and the welding part 100 can be made into a fixed relationship.
  • FIG. 5A is a perspective view when the jig according to the embodiment is viewed from the upper oblique direction.
  • FIG. 5B is a perspective view when the jig according to the embodiment is viewed from a lower oblique direction.
  • the jig 300 has a base portion 310 on the negative side in the Z-axis direction and a wall portion 320 protruding from the base portion 310 toward the positive side in the Z-axis direction.
  • the base 310 is a part for being arranged on the upper surface of the container 510.
  • base 310 has a side surface facing in the Y-axis direction, but may not have a side surface.
  • the wall part 320 has wall surfaces A11 and A12.
  • the outer shape of the jig 300 may be any shape that does not block the irradiation of the laser beam to the welding target portion when the jig 300 is disposed in the container 510 and the container 510 is welded with the laser beam. .
  • the jig 300 has a groove 330 formed on the lower surface of the base 310.
  • the groove 330 has a shape for arranging the jig 300 without interfering with the positive electrode terminal 521 and the negative electrode terminal 522 when the jig 300 is arranged on the upper surface of the power storage element 500. Accordingly, since the positive electrode terminal 521 and the negative electrode terminal 522 can be accommodated inside the groove portion 330 of the base portion 310 of the jig 300, the jig is placed with the lower surface of the jig 300 in contact with the upper surface of the container 510. 300 can be arranged at a predetermined position P2 of the container 510.
  • the positive electrode terminal 521 and the negative electrode terminal 522 can be accommodated inside the jig 300, it is possible to suppress the shield gas from hitting the positive electrode terminal 521 and the negative electrode terminal 522, and the flow of the shield gas is disturbed. Generation of flow can be reduced.
  • the groove portion 330 has side surfaces on both sides in the X axis direction of the positive electrode terminal 521 and the negative electrode terminal 522 (a side surface on the negative side in the X axis direction of the positive electrode terminal 521 and a side surface on the positive side in the X axis direction of the negative electrode terminal 522).
  • the size is preferably such that the jig 300 can be positioned in the X-axis direction and the Y-axis direction by contacting the side surfaces on both sides in the axial direction.
  • the size of the groove 330 may be such that a predetermined gap is generated between the side surfaces on both sides in the X-axis direction and the side surfaces on both sides in the Y-axis direction of the positive electrode terminal 521 and the negative electrode terminal 522. . Moreover, the depth of the groove part 330 should just be larger than the height of the positive electrode terminal 521 and the negative electrode terminal 522. FIG. In FIG. 6 described later, the predetermined gap is not shown.
  • the groove 330 is formed in such a size that the jig 300 is not in contact with the positive electrode terminal 521 and the negative electrode terminal 522 in a state where the jig 300 is disposed at the predetermined position P2 of the container 510, so that the heat of laser welding is increased. And transmission to the negative terminal 522 can be suppressed.
  • the jig 300 may be in contact with the positive terminal 521 and the negative terminal 522.
  • the measure for preventing the heat of laser welding from being transmitted is, for example, a heat insulating material between the groove portion 330 of the jig 300 and the positive terminal 521 and the negative terminal 522 in a state where the jig 300 is disposed at the predetermined position P2 of the container 510. It is to provide. That is, the jig 300 may have a heat insulating material provided along the surface of the groove 330.
  • FIG. 6 is an enlarged view of a part around the jig in the VI-VI sectional view of the manufacturing apparatus in FIG. 1 according to the embodiment.
  • the two blow-out portions 210 and 220 that are arranged to face each other in the Y-axis direction have shield gas directed toward the welding target portion 530 while sandwiching the welding target portion 530 in the Y-axis direction.
  • the blow-out portion 210 disposed on the negative side in the Y-axis direction of the energy storage device 500 supplies the shielding gas toward the long side portion 531 that is a part of the welding target portion 530 on the negative side in the Y-axis direction.
  • the blow-out portion 220 disposed on the Y axis direction plus side of the power storage element 500 supplies a shielding gas toward the long side portion 532 that is a part on the Y axis direction plus side of the welding target portion 530.
  • the two blow-out portions 210 and 220 supply a shielding gas to a space at a predetermined interval from the upper surface of the container 510 of the power storage element 500 where the welding target portion 530 is formed.
  • the two outlets 210 and 220 are arranged such that the lower ends of the outlets 212 and 222 for blowing out the shielding gas are at the same height as the upper surface of the container 510.
  • the flow of gas blown out from the opening diffuses in the width direction of the flow, so that the flow has a width larger than the size of the opening. That is, by arranging the lower ends of the air outlets 212 and 222, which are openings, so as to be the same height as the upper surface of the container 510, the shield gas flows while reliably contacting the upper surface of the container 510. .
  • the flow F11 of the shielding gas supplied by the blow-out part 210 hits the wall surface A11 of the wall part 320 of the jig 300 after passing over the long side part 531. Accordingly, the flow direction of the shield gas flow F11 that has flowed along the horizontal direction (Y-axis direction) is changed along the wall surface A11 and is directed upward (Z-axis direction plus side).
  • the flow F12 of the shield gas supplied by the blow-out part 220 hits the wall surface A12 of the wall part 320 of the jig 300 after passing over the long side part 532. Accordingly, the flow direction of the shield gas flow F12 flowing along the horizontal direction (Y-axis direction) is changed along the wall surface A12 and is directed upward (Z-axis direction plus side).
  • the shield gas blown out from the blow-out portions 210 and 220 flows with the jig 300 changing the flow direction by a predetermined angle (90 degrees in the present embodiment).
  • the shielding gas flows along the surface of the jig 300 to at least the end of the jig 300 on the plus side in the Z-axis direction.
  • Shield gas blown from two different directions flows in the same direction (Z-axis direction plus side) by changing the flow direction by the jig 300.
  • the jig 300 can align the flow directions of the shield gas blown from two different directions, turbulent flow is generated when the shield gas blown from the two different directions collides with each other. Can be effectively suppressed.
  • the wall portion 320 of the jig 300 is formed so that the interval between the wall surface A11 and the wall surface A12 becomes shorter toward the plus side in the Z-axis direction. That is, part of the wall surfaces A11 and A12 is inclined with respect to the Y-axis direction in which the shield gas flows. Specifically, a part of the wall surfaces A11 and A12 is inclined with respect to the direction in which the shield gas flows so as to move away from the lid 512 toward the downstream side in the direction in which the shield gas flows.
  • the wall surface A11 and the wall surface A12 are formed such that the portion on the plus side in the Z-axis direction is more steeply set than the portion on the minus side in the Z-axis direction.
  • the portion is formed so as to be substantially orthogonal to the lid 512. That is, it can be said that the inclined surface is a curved curved surface and is curved so as to be convex inside the wall surface A11 and the wall surface A12.
  • the jig 300 is arranged at a predetermined position P2 of the container 510, and the height from the upper surface of the container 510 is the height of the outlets 212, 222, 232, 242 of the plurality of outlets 210-240.
  • This is a higher configuration. Thereby, it can suppress that the shielding gas blown out from the blower outlets 212, 222, 232, 242 collides with the welding target portion 530.
  • FIG. 7 is a flowchart showing a method for manufacturing the energy storage device according to the embodiment.
  • power storage element 500 it is assumed that power storage element 500 is already positioned by a plurality of fixing portions 410 to 440.
  • the jig 300 is arranged at a predetermined position P2 on the upper surface of the container 510 of the electricity storage element 500 (S10: arrangement step). Specifically, the jig 300 in which the wall surfaces A11 and A12 are formed is disposed between the two long side portions 531 and 532 to which the container 510 is welded. In the placement step S10, the jig 300 is preferably placed in contact with the two long side portions 531 and 532.
  • positioning step S10 may be performed by the manufacturing apparatus 10, and an operator (person) may perform it. For example, if the manufacturing apparatus 10 has a mechanism for moving the jig 300 to the predetermined position P2 of the container 510, the manufacturing apparatus 10 may perform the arrangement step S10.
  • the welding target portion 530 is welded while supplying the shielding gas toward the welding target portion 530 (S20: welding step). Specifically, the shielding gas is directed toward the two long side portions 531 and 532 and the two short side portions 533 and 534 of the welding target portion 530 from four different directions by the plurality of blowing portions 210 to 240, respectively. Supply.
  • the shield gas supplied to the welding target portion flows along the inclined surface by hitting the inclined surface (curved surface) of the jig 300. And the welding part 100 welds the welding object part 530 in the state by which shield gas was supplied.
  • jig 300 having a wall surface formed between two long side portions 531 and 532 to be welded is disposed.
  • the two long side portions 531 and 532 are welded while supplying the shielding gas to the two long side portions 531 and 532 from two different directions.
  • the flowing direction is changed by A11 and A12. Specifically, the direction is away from the container 510. That is, by arranging the jig 300 between the two long side portions 531 and 532, the two flows F11 and F12 of the shielding gas are suppressed from joining at the two long side portions 531 and 532. . For this reason, the occurrence of turbulent flow due to the shield gas in the two long side portions 531 and 532 can be reduced, and a stable shield gas atmosphere can be formed in the two long side portions 531 and 532. Therefore, the occurrence of poor welding can be reduced.
  • the shield gas supplied to the welding target portion 530 flows along an inclined surface that is a part of the wall surfaces A11 and A12 of the jig 300. Therefore, each of the two flows F11 and F12 of the shield gas supplied from two different directions can be easily flown along the wall surfaces A11 and A12 of the jig 300. Therefore, the direction in which each of the two flows F11 and F12 of the shield gas flows can be changed so that turbulent flow does not occur. Thereby, a stable shield gas atmosphere can be formed in the two long side portions 531 and 532, and the occurrence of poor welding can be reduced.
  • the jig 300 is arranged in contact with the container 510. For this reason, it can suppress that the two flows F11 and F12 of the shield gas supplied from two directions merge in the two long side parts 531 and 532. Moreover, since the heat generated in the container 510 by welding can be conducted to the jig 300, the two welding target portions can be cooled.
  • the two long side portions 531 and 532 are welded by irradiating the laser beam L1 from the predetermined position toward the two long side portions 531 and 532 while changing the irradiation angle.
  • the two long side portions 531 and 532 are provided with two outlets 212 and 222 for supplying shield gas from two different directions. According to this, the shield gas can be easily supplied to the two long side portions 531 and 532.
  • a part of wall surface A11, A12 inclines with respect to the direction where shield gas flows. In this way, the flow of the shield gas supplied from two different directions is changed along the inclined surface of the jig 300 to change the direction of the flow. The generation of turbulent flow caused by hitting can be reduced. Thereby, a stable shield gas atmosphere can be formed in the two long side portions 531 and 532, and the occurrence of poor welding can be reduced.
  • the container 510 includes a main body 511 having a rectangular opening and a long plate-like lid body 512 that closes the opening, and the two welding target portions are rectangular annular shapes of the main body 511 and the lid body 512.
  • Two long-side portions 531 and 532 facing each other in the boundary portion (welding target portion 530), and the jig 300 is disposed between the two long-side portions 531 and 532. That is, in the two opposing portions of the rectangular annular boundary portion between the main body 511 and the lid body 512 that are the welding target portions 530, the distance between each other is short and the two welding distances are long portions. Since a jig is disposed between the long side portions 531 and 532, it is possible to suppress the joining of shield gases supplied from two different directions.
  • part of the wall surfaces A11 and A12 is inclined with respect to the direction in which the shield gas flows so as to move away from the container 510 toward the downstream side in the direction in which the shield gas flows. That is, since the direction in which the shield gas flows can be changed to a direction away from the container 510, the shield gas supplied from two different directions is prevented from joining in the two long side portions 531 and 532 of the container 510. it can.
  • the jig 300 having the wall surfaces A11 and A12 including the surface inclined with respect to the Y-axis direction is employed, but not limited thereto, as shown in FIGS.
  • a jig 300a having wall surfaces A23 and A24 including surfaces inclined with respect to the X-axis direction may be employed as the wall surfaces A21 and A22 including surfaces inclined with respect to the Y-axis direction.
  • FIG. 8 is a diagram showing an external appearance of a storage element manufacturing apparatus according to a modification.
  • FIG. 9 is an enlarged view of a part around the jig in the IX-IX sectional view of the manufacturing apparatus in FIG.
  • FIG. 10 is an enlarged view of a part around the jig in the XX sectional view of the manufacturing apparatus in FIG. Since the configuration other than the jig 300a of the manufacturing apparatus 10a in FIG. 8 is the same as the configuration other than the jig 300 of the manufacturing apparatus 10 described above, the same reference numerals are given and the description is omitted.
  • the jig 300a is formed so that the interval between the wall surface A21 and the wall surface A22 becomes shorter toward the plus side in the Z-axis direction. That is, the jig 300a has a surface inclined with respect to the Y-axis direction in which the shield gas flows. As shown in FIG. 10, the jig 300a is formed so that the interval between the wall surface A23 and the wall surface A24 becomes shorter toward the Z axis plus side. That is, the jig 300a has a surface inclined with respect to the X-axis direction through which the shield gas flows.
  • the flow F21 of the shield gas supplied by the blow-out part 210 hits the wall surface A21 of the jig 300a after passing over the long side portion 531.
  • the flow direction of the shield gas flow F21 flowing along the horizontal direction (Y-axis direction) is changed along the wall surface A21 and is directed upward (Z-axis direction plus side).
  • the shield gas flow F ⁇ b> 22 supplied by the blow-out unit 220 hits the wall surface A ⁇ b> 22 of the jig 300 a after passing over the long side portion 532.
  • the flow direction of the shield gas flow F22 flowing along the horizontal direction (Y-axis direction) is changed along the wall surface A22, and is directed upward (Z-axis direction plus side).
  • the flow F23 of the shield gas supplied by the blowing unit 230 hits the wall surface A23 of the jig 300a after passing over the short side portion 533.
  • the shield gas flow F23 flowing along the horizontal direction (X-axis direction) is directed upward (Z-axis direction plus side) along the wall surface A23.
  • the flow F24 of the shielding gas supplied by the blowing part 240 hits the wall surface A24 of the jig 300a after passing over the short side portion 534.
  • the shield gas flow F24 flowing along the horizontal direction (X-axis direction) is directed upward (Z-axis direction plus side) along the wall surface A24.
  • the shielding gas blown out from the blowing portions 210, 220, 230, and 240 flows with the jig 300a changing the flowing direction by a predetermined angle (90 degrees in the present embodiment).
  • the shield gas flows along the surface of the jig 300a to at least the end of the jig 300a on the plus side in the Z-axis direction.
  • Shield gas blown from four different directions flows in the same direction (Z-axis direction plus side) by changing the flow direction by the jig 300a.
  • the jig 300a can align the flow directions of the shield gas blown from four different directions, the shield gas blown from the four different directions collides to generate turbulent flow. Can be effectively suppressed.
  • the flow of the shield gas supplied from the four different directions can be directed upward. For this reason, it can suppress that shield gas joins in the welding object part 530, and can reduce that a turbulent flow generate
  • the method for manufacturing the energy storage device may further include a cooling step for cooling the jigs 300 and 300a.
  • the heat transfer characteristics may be improved by providing irregularities on the wall surface in the Y-axis direction of the jig so that heat exchange with the shielding gas is further performed, and the jig may be cooled by the shielding gas.
  • a jig having improved heat transfer characteristics by providing a groove along the direction in which the shield gas flows may be employed.
  • the cooling step may be performed when the welding step is performed, or may be performed at another timing.
  • the heat generated by the welding conducted to the jig can be released to the outside, and the high temperature can be suppressed by repeatedly using the jig. .
  • the container of an electrical storage element it can suppress that a high temperature jig
  • tool can be extended.
  • the jig 300 is formed with the groove portion 330 including both the positive electrode terminal 521 and the negative electrode terminal 522 in a state where the jig 300 is disposed at the predetermined position P2 of the container 510.
  • the groove portion 330 is formed.
  • the present invention is not limited to this, and two recesses containing each of the positive electrode terminal 521 and the negative electrode terminal 522 may be formed.
  • a groove portion or a concave portion for enclosing the portion may be formed.
  • the welding target portion 530 to be welded of the container 510 of the power storage element 500 is a boundary portion between the main body 511 and the lid 512.
  • the present invention is not limited to this, and the container is in other parts.
  • the storage element manufacturing method and storage element manufacturing apparatus of the present invention can be applied to other parts.
  • the present invention can be applied when welding is performed to form the side surface of the container, and can also be applied when welding is performed to form the bottom surface of the container.
  • the four blow-out portions 210 to 240 supply the shielding gas to the four portions 531 to 534 of the welding target portion 530, respectively, so that the atmosphere of the shielding gas is given to the welding target portion 530.
  • the shield gas may not be supplied by the four outlets 210 to 240.
  • only the two blowing parts 210 and 220 may be configured to supply the shielding gas to the two long side parts 531 and 532 of the welding target part 530. That is, in the welding step, the two welding target portions may be welded while supplying the shielding gas from the two different directions to the two welding target portions corresponding to the two welding target portions.
  • the two long side portions 531 and 532 of the welding target portion 530 are parallel at a predetermined interval, but may not be parallel as long as they are separated by a predetermined interval.
  • the welding object part 530 is substantially rectangular shape, not only this but oval shape, elliptical shape, and circular shape may be sufficient.
  • the cover body 512 is arrange
  • the welding is not limited to this.
  • the lid may be disposed on the upper end of the main body, and may be applied to a container that is welded by irradiating a laser beam from the horizontal direction (X-axis direction and Y-axis direction).
  • the laser beam is scanned from a plurality of directions by providing a plurality of welded portions that irradiate the laser beam on the lateral side of the container.
  • the laser beam scanning method may not be used, and the method can also be applied to a method of welding by moving the laser head that irradiates the laser beam, and welding is performed by moving the pedestal to which the container is fixed. It can also be applied to the method.
  • a mirror for reflecting the laser beam irradiated from above in the horizontal direction is provided on the entire side of the lid of the container, the laser beam irradiation method from above in the above embodiment is also possible. realizable.
  • the wall surfaces A11, A12, A21 to A24 of the jigs 300 and 300a are inclined with respect to the flow direction of the shield gas, but may not be inclined.
  • a jig having a wall surface perpendicular to the flow direction of the shield gas may be used as long as the shield gas supplied from different directions can be prevented from joining at the welding target portion.
  • the plurality of blow-out portions 210 to 240 are directed from both sides in the X-axis direction and both sides in the Y-axis direction toward the welding target portion 530 of the container 510 of the power storage element 500.
  • the shielding gas is supplied in the direction along the direction or the Y-axis direction, the shielding gas may not be supplied in the direction along the X-axis direction or the Y-axis direction.
  • the plurality of blow-out portions 210 to 240 supply shield gas from the positions on both sides in the X-axis direction, both sides in the Y-axis direction, and on the plus side in the Z-axis direction (that is, obliquely upward) toward the welding target portion 530. May be. Further, the plurality of blow-out portions 210 to 240 supply shield gas from, for example, both sides in the X-axis direction, both sides in the Y-axis direction, and the negative side in the Z-axis direction (that is, obliquely downward) toward the welding target portion 530. May be.
  • two of the plurality of blowing portions 210 to 240 are, for example, two blowing portions 210 and 220 that are obliquely crossed with respect to the direction in which the long side portions 531 and 532 of the welding target portion 530 extend (oblique oblique lateral direction). Shielding gas may be supplied.
  • the remaining two blowing portions 230 and 240 of the plurality of blowing portions 210 to 240 are, for example, directions that obliquely intersect with the direction in which the short side portions 533 and 534 of the welding target portion 530 extend.
  • the shielding gas may be supplied from (obliquely lateral direction).
  • the blow-out portions 210 to 240 supply the shielding gas from the obliquely upward, obliquely downward, or obliquely lateral directions to the welding target portion 530, the jigs 300 and 300a are viewed from different directions. It can suppress that the shield gas supplied merges in the welding target part 530.
  • tool 300,300a is a solid member, However, If it is a member which has a surface on the both sides of a Y-axis direction, it may not be a solid member. And the member in which the two walls which have the wall surface corresponding to each of the two long side parts 531 and 532 of the welding object part 530 may be formed.
  • the jigs 300 and 300a are configured to cover the positive electrode terminal 521 and the negative electrode terminal 522 of the power storage element 500, but are not limited thereto.
  • the positive electrode terminal 521a and the negative electrode If the jig is configured to cover the terminal 522a, the jig interferes with the welding target portion 530 and laser welding cannot be performed.
  • FIG. 11 is a perspective view showing the appearance of a state in which the jig according to the modification is disposed at a predetermined position of the power storage element.
  • the present invention is useful as a method for manufacturing an electricity storage element that can form a stable shield gas atmosphere in a portion to be welded and can reduce the occurrence of poor welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 蓄電素子(500)の容器(510)に対して溶接を行う蓄電素子(500)の製造方法であって、溶接が行われる2つの溶接対象部分の間に、壁面(A11、A12)が形成された治具(300)を配置する配置ステップ(S10)と、2つの溶接対象部分に対応して、2つの異なる方向からシールドガスを2つの溶接対象部分に供給しながら、2つの溶接対象部分を溶接する溶接ステップ(S20)と、を含む。

Description

蓄電素子の製造方法及び蓄電素子の製造装置
 本発明は、蓄電素子の製造方法及び蓄電素子の製造装置に関する。
 従来、蓄電素子の製造において、蓄電素子の容器に対してレーザビーム溶接を行うことで容器を形成することが知られている。レーザビームを用いて溶接を行うレーザ溶接では、溶接対象部分(溶接箇所)の金属が外気に触れることによる酸化を抑制するために、シールドガスと呼ばれる不活性ガスを溶接対象部分に供給することで溶接対象部分を空気から遮断している。このように、溶接の対象となる溶接対象部分の全体をシールドガス雰囲気とするために、溶接対象部分を挟んだ両側の2方向から溶接対象部分に向けてシールドガスを供給するレーザ溶接装置が開示されている(例えば、特許文献1を参照)。
特開2010-105041号公報
 しかしながら、上記従来のレーザ溶接装置では、溶接不良を発生させるおそれがある。
 本発明は、上記問題を解決するためになされたものであり、溶接不良の発生を低減できる蓄電素子の製造方法などを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、蓄電素子の容器に対して溶接を行う蓄電素子の製造方法であって、前記溶接が行われる2つの溶接対象部分の間に、壁面が形成された治具を配置する配置ステップと、前記2つの溶接対象部分に対応して、2つの異なる方向からシールドガスを前記2つの溶接対象部分に供給しながら、前記2つの溶接対象部分を溶接する溶接ステップと、を含む。
 これによれば、2つの異なる方向から2つの溶接対象部分に向けて供給されるシールドガスのそれぞれは、各溶接対象部分付近を通過した後に、治具により、流れる方向が変更される。具体的には、容器から離れる方向に向かう。つまり、治具が2つの溶接対象部分の間に配置されることにより、シールドガスの2つの流れは、2つの溶接対象部分において合流することを抑制される。このため、2つの溶接対象部分においてシールドガスによる乱流が発生することを低減でき、2つの溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができる。よって、溶接不良の発生を低減できる。
 本発明における蓄電素子の製造方法によれば、溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる。
図1は、本実施の形態に係る蓄電素子の製造装置の外観を示す図である。 図2は、本実施の形態に係る蓄電素子の製造方法における治具の配置について説明するための図である。 図3は、本実施の形態に係る蓄電素子の容器の溶接経路について説明するための図である。 図4は、実施の形態に係る蓄電素子の外観を示す斜視図である。 図5Aは、実施の形態に係る治具を上斜め方向から見た場合の斜視図である。 図5Bは、実施の形態に係る治具を下斜め方向から見た場合の斜視図である。 図6は、実施の形態に係る図1における製造装置のVI-VI断面図のうちの治具周辺の一部を拡大した図である。 図7は、実施の形態に係る蓄電素子の製造方法を示すフローチャートである。 図8は、変形例に係る蓄電素子の製造装置の外観を示す図である。 図9は、図8における製造装置のIX-IX断面図のうちの治具周辺の一部を拡大した図である。 図10は、図8における製造装置のX-X断面図のうちの治具周辺の一部を拡大した図である。 図11は、変形例に係る治具を、蓄電素子の所定の位置に配置した状態の外観を示す斜視図である。
 上記従来のレーザ溶接装置では、溶接不良を発生させるおそれがある。
 すなわち、従来のレーザ溶接装置では、異なる2方向から溶接対象部分に流れ込んできたシールドガス同士がぶつかり合うことで、溶接対象部分付近で乱流が発生するおそれがある。このため、溶接対象部分において、安定したシールドガスの雰囲気を形成しておくことが難しく、その結果、溶接不良を発生させるおそれがある。
 本発明は、上記問題を解決するためになされたものであり、安定したシールドガスの雰囲気を形成しておくことで、溶接不良の発生を低減できる蓄電素子の製造方法などを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、蓄電素子の容器に対して溶接を行う蓄電素子の製造方法であって、前記溶接が行われる2つの溶接対象部分の間に、壁面が形成された治具を配置する配置ステップと、前記2つの溶接対象部分に対応して、2つの異なる方向からシールドガスを前記2つの溶接対象部分に供給しながら、前記2つの溶接対象部分を溶接する溶接ステップと、を含む。
 これによれば、2つの異なる方向から2つの溶接対象部分に向けて供給されるシールドガスのそれぞれは、各溶接対象部分付近を通過した後に、治具により、流れる方向が変更される。具体的には、容器から離れる方向に向かう。つまり、治具が2つの溶接対象部分の間に配置されることにより、シールドガスの2つの流れは、2つの溶接対象部分において合流することを抑制される。このため、2つの溶接対象部分においてシールドガスによる乱流が発生することを低減でき、2つの溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができる。よって、溶接不良の発生を低減できる。
 また、前記溶接ステップでは、前記溶接対象部分に供給されたシールドガスが前記壁面の少なくとも一部である傾斜面に沿って流れてもよい。
 このため、互いに異なる2方向から供給されるシールドガスの2つの流れのそれぞれを治具の壁面に沿って流れやすくすることができる。よって、乱流が発生しないように、シールドガスの2つの流れのそれぞれが流れる方向を変更することができる。これにより、2つの溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる。
 また、前記配置ステップでは、前記治具を前記容器に当接させて配置してもよい。
 このため、2つの方向から供給されるシールドガスの2つの流れが2つの溶接対象部分において合流することを抑制することができる。また、溶接により容器に生じた熱を治具に伝導させることができるため、2つの溶接対象部分を冷却できる。
 また、さらに、前記治具を冷却する冷却ステップを含んでもよい。
 このため、治具に熱伝導された、溶接により生じた熱を放出することができ、治具が繰り返し使用されることにより高温になることを抑制できる。これにより、蓄電素子の容器の溶接の際に、高温の治具が容器に当接することにより、蓄電素子に悪影響を与えることを抑制できる。また、治具が温度変化により劣化することを抑制できるため、治具の寿命を延ばすことができる。
 また、前記溶接ステップでは、所定の位置から前記2つの溶接対象部分に向けて、照射角度を変えながらレーザビームを照射して、前記2つの溶接対象部分を溶接してもよい。
 このため、2つの溶接対象部分がレーザビームの走査により溶接される場合であっても、2つの溶接対象部分に安定したシールドガス雰囲気を形成しておくことができる。
 また、本発明の一態様に係る蓄電素子の製造装置は、蓄電素子の容器に対して溶接を行うための蓄電素子の製造装置であって、前記溶接が行われる2つの溶接対象部分であって、2つの異なる方向からシールドガスが供給される前記2つの溶接対象部分の間に配置される壁面が形成された治具を備える。
 これによれば、2つの異なる方向から2つの溶接対象部分に向けて供給されるシールドガスのそれぞれは、各溶接対象部分付近を通過した後に、治具により、流れる方向が変更される。具体的には、容器から離れる方向に向かう。つまり、治具が2つの溶接対象部分の間に配置されることにより、シールドガスの2つの流れは、2つの溶接対象部分において合流することを抑制される。このため、2つの溶接対象部分においてシールドガスによる乱流が発生することを低減でき、2つの溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができる。よって、溶接が行われた場合に、溶接不良の発生を低減できる。
 また、さらに、前記2つの溶接対象部分に、前記2つの異なる方向からシールドガスを供給する2つの吹出口を備えてもよい。
 これによれば、2つの溶接対象部分に対してシールドガスを容易に供給できる。
 また、前記壁面の少なくとも一部は、前記シールドガスが流れる方向に対して傾斜していてもよい。
 このように、2つの異なる方向から供給されるシールドガスの2つの流れのそれぞれを、治具の傾斜面に沿わせることで、当該流れの方向を変えることができる。よって、乱流が発生しないように、シールドガスの流れる方向を変更することができる。これにより、2つの溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる。
 また、前記容器は、矩形状の開口を有する本体と、前記開口を塞ぐ長尺板状の蓋体と、を備え、前記2つの溶接対象部分は、前記本体と前記蓋体との矩形環状の境界部分のうちの互いに対向する2つの長辺部分であり、前記治具は、前記2つの長辺部分の間に配置され、前記壁面の少なくとも一部は、前記シールドガスが流れる方向に対して、当該シールドガスが流れる方向の下流側に向かうほど前記容器から遠ざかるように傾斜していてもよい。
 これによれば、溶接対象部分である本体と蓋体との矩形環状の境界部分のうちの対向する2つの部分において、互いの間隔が短く、かつ、それぞれの溶接距離が長い部分である2つの長辺部分の間に治具を配置することになるため、2つの異なる方向から供給されるシールドガスが合流することを抑制できる。また、シールドガスが流れる方向を、容器から遠ざかる方向に変更することができるため、2つの異なる方向から供給されるシールドガスが容器の溶接対象部分において合流することを抑制できる。
 以下、図面を参照しながら、本発明の実施の形態に係る蓄電素子の製造方法及び蓄電素子の製造装置について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、寸法等は厳密に図示したものではない。
 (実施の形態)
 まず、蓄電素子500の製造装置10について、説明する。
 図1は、実施の形態に係る蓄電素子の製造装置の外観を示す図である。図2は、実施の形態に係る治具及び複数の固定部を説明するための図である。なお、これらの図及び以降の図では、説明の便宜のため、Z軸方向を上下方向として示しており、以下ではZ軸方向を上下方向(つまり、Z軸方向プラス側を上方、Z軸方向マイナス側を下方)として説明している箇所があるが、実際の使用態様において、Z軸方向が上下方向になるとは限らない。
 同図に示すように、蓄電素子500の製造装置10は、溶接部100と、複数(本実施の形態では4つ)の吹出部210~240と、治具300と、複数(本実施の形態では4つ)の固定部410~440とを備える。本実施の形態では、製造装置10は、蓄電素子500の容器510の本体511と蓋体512とを溶接するための装置である。つまり、本実施の形態では、蓄電素子500の容器510の溶接される溶接対象部分530は、本体511と蓋体512との境界部分である。
 溶接部100は、レーザビームL1(L2)を照射することにより蓄電素子500の容器を溶接するレーザユニットである。具体的には、溶接部100は、所定の位置P1(上方)から容器の溶接対象部分に向けて、照射角度を変えながらレーザビームを照射して、溶接対象部分を溶接する。例えば、溶接部100は、レーザビームL1の角度で溶接対象部分の一部を溶接した後に、レーザビームL2の角度で溶接対象部分の他の一部を溶接する。溶接部100は、例えば、角度が変更自在に設けられたミラーにレーザビームを反射させることで、溶接部100から照射されるレーザビームの角度を変えて走査するスキャナユニット(例えばガルバノスキャナユニット)を有する。
 ここで、溶接部100により行われる溶接経路について、図3を用いて説明する。図3は、本実施の形態に係る蓄電素子の容器の溶接経路について説明するための図である。
 本実施の形態では、溶接部100は、図3に示すように、例えば、長辺部分531、短辺部分533、長辺部分532、及び短辺部分534の順番に、連続して溶接を行う。つまり、溶接部100は、矩形環状の溶接対象部分530に対して、連続した1回のレーザビームの照射でレーザビームの角度を変えて走査を行うことで、容器510に対する溶接を行う。
 複数の吹出部210~240は、シールドガスを蓄電素子500の容器510の溶接対象部分530に向けて供給する。複数の吹出部210~240は、溶接対象部分530が形成されている容器510の上面に対して、X軸方向の両側及びY軸方向の両側からシールドガスを供給する。具体的には、2つの吹出部210、220は、容器510のY軸方向の両側に配置され、容器510の上面の溶接対象部分530に向けてシールドガスをY軸方向の両側から供給する。また、2つの吹出部230、240は、容器510のX軸方向の両側に配置され、容器510の上面の溶接対象部分530に向けてシールドガスをX軸方向の両側から供給する。なお、シールドガスは、溶接箇所の金属が外気に触れることによる酸化を抑制できる不活性ガスであれば特に限定されないが、例えば、N2ガス、Arガス、Heガス等である。
 複数の吹出部210~240のそれぞれは、シールドガスが導入される導入口211、221、231、241と、シールドガスを溶接対象部分530に向けて吹き出す吹出口212、222、232、242とを有する。複数の吹出部210~240のそれぞれは、導入口211、221、231、241から導入されたガスGinが吹出口212、222、232、242までの流路を流れる間に、シールドガスを整流する整流器としての機能も有する。つまり、複数の吹出部210~240により吹き出されるガスGoutは、複数の吹出部210~240によって整流され、乱流が低減されたガスである。
 ここで、溶接の対象となる蓄電素子500の構成の詳細について、図4を用いて説明する。図4は、実施の形態に係る蓄電素子の外観を示す斜視図である。
 蓄電素子500は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。例えば、蓄電素子500は、電気自動車(EV)、プラグインハイブリッド電気自動車(PHEV)、またはハイブリッド電気自動車(HEV)などに適用される。なお、蓄電素子500は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。
 図4に示すように、蓄電素子500は、矩形筒状で底を備える本体511と、本体511の開口を閉塞する板状部材である蓋体512とで構成される容器510と、正極端子521と、負極端子522とを備える。蓋体512は、本体511の開口を閉塞した状態で、蓋体512の板状の外縁部が、本体511の開口の内壁面に対向する。本体511の開口には、蓋体512の下面を支持する段差部511a(図6参照)が設けられており、本体511の上端部と、蓋体512の上面とが同じ位置(面一)となるように構成されている。つまり、溶接対象部分530は、容器510の上面に形成されている。
 この容器510は、電極体等を内部に収容後、蓋体512と本体511とが溶接されることにより、内部を密封することができるものとなっている。なお、蓋体512及び本体511の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属であるのが好ましい。
 また、正極端子521及び負極端子522は、蓋体512に取り付けられている。正極端子521及び負極端子522は、蓋体512の上面から上方に向かって突出して形成される。正極端子521及び負極端子522は、図示しない電極体の各極に電気的に接続され、内部に蓄えられた電力を外部に出力する、または、外部からの電力を内部に蓄えるための電極端子である。
 本実施の形態では、蓄電素子500は、容器510の蓋体512がX軸方向に平行な2つの長辺を有し、かつ、Y軸方向に平行な2つの短辺を有する長尺板状部材である。よって、図3に示すように、容器510の溶接対象部分530は、蓋体512を上方から見た場合の外形と同じく、X軸方向に平行な2つの長辺部分531、532と、Y軸方向に平行な2つの短辺部分533、534とを有する矩形環状の部分である。
 ここで、吹出部210は、長辺部分531に対向し、かつ、長辺部分531の長さよりも長い幅を有する吹出口212を有する。また、同様に、吹出部220は、長辺部分532に対向し、かつ、長辺部分532の長さよりも長い幅を有する吹出口222を有する。要するに、2つの吹出部210、220は、溶接対象部分530のX軸方向に平行な2つの長辺部分531、532に、2つの異なる方向からシールドガスを供給し、また、2つの長辺部分531、532の全体に亘ってシールドガスを供給する。また、2つの吹出部210、220は、互いに略同じタイミングでシールドガスを供給する。
 さらに、吹出部230は、短辺部分533に対向し、かつ、短辺部分533の長さよりも長い幅を有する吹出口232を有する。また、同様に、吹出部240は、短辺部分534に対向し、かつ、短辺部分534の長さよりも長い幅を有する吹出口242を有する。これにより、2つの吹出部230、240は、溶接対象部分530のY軸方向に平行な2つの短辺部分533、534のそれぞれに向けてシールドガスを供給し、また、2つの短辺部分533、534の全体に亘ってシールドガスを供給する。また、2つの吹出部230、240は、互いに略同じタイミングでシールドガスを供給する。
 また、2つの吹出部210、220と、2つの吹出部230、240とは、互いに略同じタイミングでシールドガスを供給する。つまり、4つの吹出部210、220、230、240は、互いに略同じタイミングで、かつ、略同じ期間中に、シールドガスを供給する。
 治具300は、異なる複数の方向から供給されるシールドガスがぶつかり合うことを抑制するための治具である。治具300は、図2に示すように、溶接部100による溶接が行われる前に、蓄電素子500の容器510の上面の所定の位置P2に配置される。ここで、所定の位置P2とは、2つの異なる方向からシールドガスが供給される2つの溶接対象部分(本実施の形態では、2つの長辺部分531、532)の間の位置である。また、治具300は、図3に示すように、所定の位置P2に配置された状態で、2つの長辺部分531、532に対向する壁面A11、A12を有する。つまり、壁面A11、A12は、シールドガスを遮蔽するための壁面である。治具300の材質は、特に限定されないが、溶接により生じた熱を放熱させることができるため、熱伝導性を有する部材であることが好ましい。また、治具300の材質は、溶接による熱に耐える耐熱性を有する部材であることが好ましい。治具300は、例えば、アルミニウム、アルミニウム合金、銅、銅合金などの金属であるのが好ましい。
 複数の固定部410~440は、溶接部100に対する蓄電素子500の位置決めを行う治具である。具体的には、図2に示すように、2つの固定部410、420は、Y軸方向で互いに対向しており、Y軸方向の両側から蓄電素子500の容器510の長側面を挟み込むことで、Y軸方向の所定の位置に蓄電素子500が位置するように固定する。また、2つの固定部430、440は、X軸方向で互いに対向しており、X軸方向の両側から蓄電素子500の容器510の短側面を挟み込むことで、X軸方向の所定の位置に蓄電素子500が位置するように固定する。なお、蓄電素子500のZ軸方向の位置は、図示しない台座に蓄電素子500を載置することにより位置決めされる。このように、蓄電素子500は、複数の固定部410~440により、X軸方向、Y軸方向、及びZ軸方向の所定の位置に位置決めされた状態で固定されるため、蓄電素子500を別の蓄電素子500に変えて固定したとしても、別の蓄電素子500と溶接部100との位置関係を一定の関係とすることができる。
 ここで、治具300の構成について、図5A及び図5Bを用いて詳細に説明する。
 図5Aは、実施の形態に係る治具を上斜め方向から見た場合の斜視図である。図5Bは、実施の形態に係る治具を下斜め方向から見た場合の斜視図である。
 これらの図に示すように、治具300は、Z軸方向マイナス側の基部310と、基部310からZ軸方向プラス側に向かって突出する壁部320とを有する。基部310は、容器510の上面に配置されるための部位である。本実施の形態では、基部310は、Y軸方向に面している側面を有するが、側面を有していなくてもよい。壁部320は、壁面A11、A12を有する。なお、治具300の外形は、治具300が容器510に配置され、容器510に対するレーザビームによる溶接が行われたときに、レーザビームの溶接対象部分への照射を遮らない形状であればよい。
 また、図5Bに示すように、治具300は、基部310の下面に溝部330が形成されている。溝部330は、治具300を、蓄電素子500の上面に配置するときに、正極端子521及び負極端子522と干渉させずに配置するための形状である。これにより、治具300の基部310の溝部330の内方に、正極端子521及び負極端子522を収めることができるため、治具300の下面を容器510の上面に当接させた状態で治具300を容器510の所定の位置P2に配置できる。このように、正極端子521及び負極端子522を治具300の内方に収めることができるため、正極端子521及び負極端子522に対してシールドガスが当たることを抑制でき、シールドガスの流れに乱流が発生することを低減できる。
 なお、溝部330は、正極端子521及び負極端子522のX軸方向の両側の側面(正極端子521のX軸方向マイナス側の側面、及び、負極端子522のX軸方向プラス側の側面)及びY軸方向の両側の側面に当接することで、治具300のX軸方向及びY軸方向の位置決めがされるような大きさであることが好ましい。この場合、溝部330の大きさは、正極端子521及び負極端子522のX軸方向の両側の側面及びY軸方向の両側の側面との間に所定の隙間が生じるような大きさであればよい。また、溝部330の深さは、正極端子521及び負極端子522の高さよりも大きければよい。なお、後述する図6では、上記の所定の隙間は省略して図示している。このように、治具300が容器510の所定の位置P2に配置された状態で正極端子521及び負極端子522に接触しない大きさに溝部330を形成することで、レーザ溶接の熱が正極端子521及び負極端子522に伝わることを抑制できる。
 なお、レーザ溶接の熱が伝わらない対策が行われる場合には、治具300が正極端子521及び負極端子522に接触する構成であってもよい。レーザ溶接の熱が伝わらない対策とは、例えば、治具300が容器510の所定の位置P2配置された状態で、治具300の溝部330と正極端子521及び負極端子522との間に断熱材を設けることである。つまり、治具300は、溝部330の表面に沿って設けられた断熱材を有していてもよい。
 次に、治具300を蓄電素子500の容器510の所定の位置P2に配置した状態で、複数の吹出部210~240からシールドガスを供給した場合のシールドガスの流れについて、図6を用いて説明する。
 図6は、実施の形態に係る図1における製造装置のVI-VI断面図のうちの治具周辺の一部を拡大した図である。
 図6に示すように、Y軸方向に対向して配置される2つの吹出部210、220は、Y軸方向で溶接対象部分530を挟んだ状態で、溶接対象部分530に向けてシールドガスを供給する。つまり、2つの吹出部210、220は、互いに異なる2方向から2つの溶接対象部分に向けてシールドガスを供給する。具体的には、蓄電素子500のY軸方向マイナス側に配置される吹出部210は、溶接対象部分530のうちのY軸方向マイナス側の一部である長辺部分531に向けてシールドガスを供給する。また、蓄電素子500のY軸方向プラス側に配置される吹出部220は、溶接対象部分530のうちのY軸方向プラス側の一部である長辺部分532に向けてシールドガスを供給する。
 また、2つの吹出部210、220は、溶接対象部分530が形成されている蓄電素子500の容器510の上面から所定の間隔の高さの空間に対してシールドガスを供給する。具体的には、2つの吹出部210、220は、シールドガスを吹き出すための吹出口212、222の下端が容器510の上面と同じ高さになるように配置されている。一般的に、開口から吹き出されたガスの流れは、流れの幅方向に拡散するため、開口の大きさよりも大きな幅の流れとなる。つまり、開口である吹出口212、222の下端を容器510の上面と同じ高さになるように配置することで、シールドガスが容器510の上面に確実に接触しながら流れることを実現している。
 なお、図6を用いて説明した上記のことは、X軸方向に対向して配置される2つの吹出部230、240に対しても同様に言える。
 ここで、吹出部210によって供給されたシールドガスの流れF11は、長辺部分531の上方を通過した後で、治具300の壁部320の壁面A11に当たる。これにより、水平方向(Y軸方向)に沿って流れていたシールドガスの流れF11は、壁面A11に沿って、流れる方向が変更され、上方(Z軸方向プラス側)に向かう。同様に、吹出部220によって供給されたシールドガスの流れF12は、長辺部分532の上方を通過した後で、治具300の壁部320の壁面A12に当たる。これにより、水平方向(Y軸方向)に沿って流れていたシールドガスの流れF12は、壁面A12に沿って、流れる方向が変更され、上方(Z軸方向プラス側)に向かう。
 つまり、吹出部210、220から吹き出されたシールドガスは、治具300によって、流れる方向が所定の角度(本実施の形態では90度)だけ変更されて流れる。これにより、シールドガスは、少なくとも治具300のZ軸方向プラス側の端部まで治具300の表面に沿って流れる。
 また、2つの異なる方向から吹き出されたシールドガスは、治具300によって流れる方向が変更されることで、互いに同一の方向(Z軸方向プラス側)に流れる。このように、治具300は、2つの異なる方向から吹き出されたシールドガスが流れる方向を揃えることができるため、2つの異なる方向から吹き出されたシールドガスがぶつかり合うことで乱流が発生することを効果的に抑制できる。
 ここで、図6に示すように、治具300の壁部320は、Z軸方向プラス側に向かうにつれて、壁面A11及び壁面A12の間隔が短くなるように、形成されている。つまり、壁面A11、A12の一部は、シールドガスが流れるY軸方向に対して傾斜している。具体的には、壁面A11、A12の一部は、シールドガスが流れる方向に対して、当該シールドガスが流れる方向の下流側に向かうほど蓋体512から遠ざかるように傾斜している。
 また、本実施の形態では、壁面A11及び壁面A12は、Z軸方向マイナス側の部分よりもZ軸方向プラス側の部分が急峻に立設されように形成されており、Z軸方向プラス側の部分において、蓋体512に対して略直交するように形成されている。つまり、傾斜面は、湾曲した曲面であり、壁面A11及び壁面A12の内側に凸になるようにカーブしているとも言える。
 また、治具300は、容器510の所定の位置P2に配置された状態で、容器510の上面からの高さが、複数の吹出部210~240の吹出口212、222、232、242の高さよりも高い構成である。これにより、吹出口212、222、232、242から吹き出されたシールドガスが、溶接対象部分530においてぶつかり合うことを抑制できる。
 次に、以上のように構成された治具300を用いた蓄電素子の製造方法について、図7を用いて説明する。図7は、実施の形態に係る蓄電素子の製造方法を示すフローチャートである。なお、蓄電素子500の製造方法では、既に、複数の固定部410~440によって、蓄電素子500の位置決めが為されているものとする。
 まず、蓄電素子500の容器510の上面の所定の位置P2に治具300を配置する(S10:配置ステップ)。具体的には、容器510の溶接される2つの長辺部分531、532の間に、壁面A11、A12が形成された治具300を配置する。配置ステップS10では、治具300を2つの長辺部分531、532の間に当接させて配置することが好ましい。なお、配置ステップS10は、製造装置10が行ってもよいし、作業者(人)が行ってもよい。例えば、製造装置10が、治具300を容器510の所定の位置P2に移動させるための機構を有していれば、製造装置10が配置ステップS10を行ってもよい。
 次に、シールドガスを溶接対象部分530に向けて供給しながら、溶接対象部分530を溶接する(S20:溶接ステップ)。具体的には、複数の吹出部210~240により、互いに異なる4方向から溶接対象部分530のうちの2つの長辺部分531、532及び2つの短辺部分533、534のそれぞれに向けてシールドガスを供給する。なお、溶接ステップS20では、溶接対象部分に供給されたシールドガスは、治具300の傾斜面(曲面)に当たることで、傾斜面に沿って流れる。そして、シールドガスが供給された状態で、溶接部100が、溶接対象部分530を溶接する。
 以上のように、本発明の実施の形態に係る蓄電素子500の製造方法によれば、溶接が行われる2つの長辺部分531、532の間に壁面が形成された治具300を配置し、2つの異なる方向からシールドガスを2つの長辺部分531、532に供給しながら、2つの長辺部分531、532を溶接する。
 つまり、2つの異なる方向から2つの長辺部分531、532に向けて供給されるシールドガスの流れF11、F12のそれぞれは、各長辺部分531、532を通過した後に、治具300の各壁面A11、A12により流れる方向が変更される。具体的には、容器510から離れる方向に向かう。つまり、治具300が2つの長辺部分531、532の間に配置されることにより、シールドガスの2つの流れF11、F12は、2つの長辺部分531、532において合流することを抑制される。このため、2つの長辺部分531、532においてシールドガスによる乱流が発生することを低減でき、2つの長辺部分531、532に安定したシールドガスの雰囲気を形成しておくことができる。よって、溶接不良の発生を低減できる。
 また、溶接ステップS20では、溶接対象部分530に供給されたシールドガスが治具300の壁面A11、A12の一部である傾斜面に沿って流れる。このため、2つの異なる方向から供給されるシールドガスの2つの流れF11、F12のそれぞれを治具300の各壁面A11、A12に沿って流れやすくすることができる。よって、乱流が発生しないように、シールドガスの2つの流れF11、F12のそれぞれが流れる方向を変更することができる。これにより、2つの長辺部分531、532に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる。
 また、配置ステップS10では、治具300を容器510に当接させて配置する。このため、2つの方向から供給されるシールドガスの2つの流れF11、F12が2つの長辺部分531、532において合流することを、抑制することができる。また、溶接により容器510に生じた熱を治具300に伝導させることができるため、2つの溶接対象部分を冷却できる。
 また、溶接ステップS20では、所定の位置から2つの長辺部分531、532に向けて、照射角度を変えながらレーザビームL1を照射して、2つの長辺部分531、532を溶接する。
 従来、トーチやワークが移動する場合、シールドガスを吹き出すガスノズルをレーザヘッドなどに取り付けることにより、レーザビームの移動に合わせて、ガスノズルが追従し、溶接されている部分にシールドガスを供給していた。近年においては、レーザ溶接は、トーチやワークが移動して溶接するのではなく、例えば、ガルバノスキャナによる溶接が主流となってきている。ガルバノスキャナによる溶接の場合、内部に搭載されたミラーの動作により、レーザビームが照射される。この場合、ガスノズルをレーザビームに追従させて移動させるのは難しいため、ワークの周囲からシールドガスを供給する必要がある。
 しかしながらシールドガスをワークの周囲から供給する場合、供給するシールドガス同士がぶつかり合い、ガスの流れが乱流となっていたので、溶接箇所における溶融池のシールドが不十分となる部分が発生する場合があり、溶接品質に悪影響を与えていた。このように、2つの長辺部分531、532がレーザビームL1の走査による溶接であって、2つの異なる方向からシールドガスが供給される溶接であっても、2つの長辺部分531、532の間に治具300を配置しているため、2つの長辺部分531、532に安定したシールドガス雰囲気を形成しておくことができる。
 また、2つの長辺部分531、532に、2つの異なる方向からシールドガスを供給する2つの吹出口212、222を備える。これによれば、2つの長辺部分531、532に対してシールドガスを容易に供給できる。
 また、壁面A11、A12の一部は、シールドガスが流れる方向に対して傾斜している。このように、2つの異なる方向から供給されるシールドガスの2つの流れのそれぞれを、治具300の傾斜面に沿わせることで、当該流れの方向を変えるため、当該流れが、治具の壁面に当たることにより生じる乱流の発生を低減できる。これにより、2つの長辺部分531、532に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる。
 また、容器510は、矩形状の開口を有する本体511と、開口を塞ぐ長尺板状の蓋体512と、を備え、2つの溶接対象部分は、本体511と蓋体512との矩形環状の境界部分(溶接対象部分530)のうちの互いに対向する2つの長辺部分531、532であり、治具300は、2つの長辺部分531、532の間に配置される。つまり、溶接対象部分530である本体511と蓋体512との矩形環状の境界部分のうちの対向する2つの部分において、互いの間隔が短く、かつ、それぞれの溶接距離が長い部分である2つの長辺部分531、532の間に治具を配置することになるため、2つの異なる方向から供給されるシールドガスが合流することを抑制できる。
 また、壁面A11、A12の一部は、シールドガスが流れる方向に対して、当該シールドガスが流れる方向の下流側に向かうほど容器510から遠ざかるように傾斜している。つまり、シールドガスが流れる方向を、容器510から遠ざかる方向に変更することができるため、2つの異なる方向から供給されるシールドガスが容器510の2つの長辺部分531、532において合流することを抑制できる。
 以上、本発明の実施の形態に係る蓄電素子500の製造方法及び蓄電素子500の製造装置10について説明したが、本発明は、上記実施の形態に限定されるものではない。つまり、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、上記実施の形態では、Y軸方向に対して傾斜した面を含む壁面A11、A12を有する治具300を採用しているが、これに限らずに、図8~10に示すように、Y軸方向に対して傾斜した面を含む壁面A21、A22に、さらに、X軸方向に対して傾斜した面を含む壁面A23、A24を有する治具300aを採用してもよい。
 図8は、変形例に係る蓄電素子の製造装置の外観を示す図である。図9は、図8における製造装置のIX-IX断面図のうちの治具周辺の一部を拡大した図である。図10は、図8における製造装置のX-X断面図のうちの治具周辺の一部を拡大した図である。なお、図8の製造装置10aの治具300a以外の構成は、上記で説明した製造装置10の治具300以外の構成と同様であるため同じ符号を付し、説明を省略する。
 図9に示すように、治具300aは、Z軸方向プラス側に向かうにつれて、壁面A21及び壁面A22の間隔が短くなるように、形成されている。つまり、治具300aは、シールドガスが流れるY軸方向に対して傾斜した面を有する。また、図10に示すように、治具300aは、Z軸プラス側に向かうにつれて、壁面A23及び壁面A24の間隔が短くなるように、形成されている。つまり、治具300aは、シールドガスが流れるX軸方向に対して傾斜した面を有する。
 このような外形を有する治具300aを用いると、4方向から溶接対象部分530に供給されるシールドガスは、図9及び図10に示すように流れる。
 図9に示すように、吹出部210によって供給されたシールドガスの流れF21は、長辺部分531の上方を通過した後で、治具300aの壁面A21に当たる。これにより、水平方向(Y軸方向)に沿って流れていたシールドガスの流れF21は、壁面A21に沿って、流れる方向が変更され、上方(Z軸方向プラス側)に向かう。同様に、吹出部220によって供給されたシールドガスの流れF22は、長辺部分532の上方を通過した後で、治具300aの壁面A22に当たる。これにより、水平方向(Y軸方向)に沿って流れていたシールドガスの流れF22は、壁面A22に沿って、流れる方向が変更され、上方(Z軸方向プラス側)に向かう。
 また、図10に示すように、吹出部230によって供給されたシールドガスの流れF23は、短辺部分533の上方を通過した後で、治具300aの壁面A23に当たる。これにより、水平方向(X軸方向)に沿って流れていたシールドガスの流れF23は、壁面A23に沿って上方(Z軸方向プラス側)に向かう。同様に、吹出部240によって供給されたシールドガスの流れF24は、短辺部分534の上方を通過した後で、治具300aの壁面A24に当たる。これにより、水平方向(X軸方向)に沿って流れていたシールドガスの流れF24は、壁面A24に沿って上方(Z軸方向プラス側)に向かう。
 つまり、吹出部210、220、230、240から吹き出されたシールドガスは、治具300aによって、流れる方向が所定の角度(本実施の形態では90度)だけ変更されて流れる。これにより、シールドガスは、少なくとも治具300aのZ軸方向プラス側の端部まで治具300aの表面に沿って流れる。
 また、4つの異なる方向から吹き出されたシールドガスは、治具300aによって流れる方向が変更されることで、互いに同一の方向(Z軸方向プラス側)に流れる。このように、治具300aは、4つの異なる方向から吹き出されたシールドガスが流れる方向を揃えることができるため、4つの異なる方向から吹き出されたシールドガスがぶつかり合うことで乱流が発生することを効果的に抑制できる。
 このように、異なる4方向に対向する壁面A21~A24を有する治具300aを用いることで、異なる4方向から供給されるシールドガスの流れを上方に向けることができる。このため、シールドガス同士が溶接対象部分530において合流することを抑制でき、溶接対象部分において乱流が発生することを低減できる。
 また、上記実施の形態に係る蓄電素子の製造方法は、配置ステップS10及び溶接ステップS20の2ステップで構成されるが、さらに、治具300、300aを冷却する冷却ステップを含んでもよい。例えば、治具のY軸方向の壁面に凹凸を設けることにより、熱伝達特性を向上させ、シールドガスとの熱交換がより行われるように構成し、シールドガスにより冷却されるようにしてもよい。具体的には、シールドガスが流れる方向に沿った溝を設けることにより、熱伝達特性を向上させた治具を採用してもよい。また、製造装置に治具を保持する部位がある場合には、治具を保持する部位に水などの冷媒を流すことにより、治具を冷却してもよい。また、例えば、治具自体に水などの冷媒を流すための流路を形成して、冷媒により治具を冷却してもよい。よって、冷却ステップは、溶接ステップが行われているときに、行われてもよいし、別のタイミングで行われてもよい。
 このようにさらに治具を冷却することにより、治具に熱伝導された、溶接により生じた熱を外部に放出することができ、治具が繰り返し使用されることにより高温になることを抑制できる。このため、蓄電素子の容器の溶接の際に、高温の治具が容器に当接することにより蓄電素子に悪影響を与えることを抑制できる。また、治具が温度変化により劣化することを抑制できるため、治具の寿命を延ばすことができる。
 また、上記実施の形態では、治具300は、容器510の所定の位置P2に配置された状態で、正極端子521及び負極端子522の両方を内包する溝部330が形成されているが、溝部330に限らずに、正極端子521及び負極端子522のそれぞれを内包する2つの凹部が形成されていてもよい。また、正極端子521及び負極端子522だけでなく、蓄電素子の蓋部から外方に向かって突出している部位があれば、当該部位を内包するための溝部または凹部が形成されていてもよい。
 また、上記実施の形態では、蓄電素子500の容器510の溶接される溶接対象部分530は、本体511と蓋体512との境界部分であるが、これに限らずに、容器がその他の部位において溶接される場合にはその他の部位にも本発明の蓄電素子の製造方法及び蓄電素子の製造装置を適用できる。例えば、本発明は、容器の側面を形成するために、溶接を行う場合にも適用できるし、容器の底面を形成するために、溶接を行う場合にも適用できる。
 また、上記実施の形態では、4つの吹出部210~240がそれぞれ、溶接対象部分530の4つの部分531~534に対してシールドガスを供給することにより、溶接対象部分530にシールドガスの雰囲気を形成しているが、4つの吹出部210~240によりシールドガスを供給しなくてもよい。例えば、2つの吹出部210、220のみが、溶接対象部分530のうちの2つの長辺部分531、532に対してシールドガスを供給する構成であってもよい。つまり、溶接ステップでは、2つの溶接対象部分に対応して、2つの異なる方向からシールドガスを2つの溶接対象部分に供給しながら、2つの溶接対象部分を溶接すればよい。
 また、上記実施の形態では、溶接対象部分530の2つの長辺部分531、532は、所定の間隔をおいて平行であるが、所定の間隔をおいて離れていれば平行でなくてもよい。また、溶接対象部分530は、略長方形状であるが、これに限らずに、長円形状、楕円形状、円形状であってもよい。
 また、上記実施の形態では、蓋体512が本体511の開口の内壁面と対向するように配置され、容器510の上面に溶接対象部分530が形成される構成であり、上方向(Z軸方向)からレーザビームを走査することにより溶接しているが、これに限らない。例えば、蓋体が本体部の上端の上に配置され、水平方向(X軸方向及びY軸方向)からレーザビームを照射することにより溶接する容器に適用してもよい。なお、この場合は、レーザビームを照射する溶接部が容器の水平方向側方の複数に設けることで、レーザビームを複数の方向から走査することが考えられる。また、レーザビームを走査する方式でなくてもよく、レーザビームを照射するレーザヘッドを移動させて溶接する方式にも適用できるし、また、容器が固定されている台座自体を動かすことにより溶接する方式にも適用できる。また、容器の蓋体の側方の全体に上方向から照射されたレーザビームを水平方向に反射させるためのミラーを設けておけば、上記実施の形態の上方向からレーザビームを照射する方式でも実現できる。
 また、上記実施の形態及びその変形例では、治具300、300aの壁面A11、A12、A21~A24は、シールドガスの流れ方向に対して傾斜しているが、傾斜していなくてもよい。つまり、異なる方向から供給されるシールドガス同士が溶接対象部分において合流されることを抑制できる治具であれば、シールドガスの流れ方向に対して垂直な壁面を有する治具であってもよい。
 また、上記実施の形態及びその変形例では、複数の吹出部210~240は、蓄電素子500の容器510の溶接対象部分530に向けて、X軸方向の両側及びY軸方向の両側からX軸方向またはY軸方向に沿った方向にシールドガスを供給するとしたが、X軸方向またはY軸方向に沿った方向にシールドガスを供給しなくてもよい。
 例えば、複数の吹出部210~240は、溶接対象部分530に向けて、X軸方向の両側及びY軸方向の両側、かつ、Z軸方向プラス側の位置(つまり斜め上方)からシールドガスを供給してもよい。また、複数の吹出部210~240は、例えば、溶接対象部分530に向けて、X軸方向の両側及びY軸方向の両側、かつ、Z軸方向マイナス側(つまり斜め下方)からシールドガスを供給してもよい。
 また、複数の吹出部210~240のうち2つの吹出部210、220は、例えば、溶接対象部分530の長辺部分531、532が延びる方向に対して斜めに交差する方向(斜め横方向)からシールドガスを供給してもよい。また、同様に、複数の吹出部210~240のうちの残りの2つの吹出部230、240は、例えば、溶接対象部分530の短辺部分533、534が延びる方向に対して斜めに交差する方向(斜め横方向)からシールドガスを供給してもよい。
 上記のように、吹出部210~240が溶接対象部分530に対して斜め上方、斜め下方、または斜め横方向からシールドガスを供給する場合であっても、治具300、300aは、異なる方向から供給されるシールドガス同士が溶接対象部分530において合流されることを抑制できる。
 また、上記実施の形態及びその変形例では、治具300、300aは、中実の部材であるが、Y軸方向の両側に面を有する部材であれば、中実の部材でなくてもよいし、溶接対象部分530の2つの長辺部分531、532のそれぞれに対応した壁面を有する2つの壁が形成されている部材であってもよい。
 また、上記実施の形態及びその変形例では、治具300、300aは、蓄電素子500の正極端子521及び負極端子522を覆うような構成であるが、これに限らない。例えば、図11に示す蓄電素子500aのように、容器510のY軸方向における幅に対して大きな割合を占める正極端子521a及び負極端子522aを備える蓄電素子500aの場合には、正極端子521a及び負極端子522aを覆うように治具を構成してしまうと、溶接対象部分530に治具が干渉してしまいレーザ溶接することができない。このため、このような正極端子521a及び負極端子522aに対応させるために、治具300に形成した溝部330の代わりに、正極端子521a及び負極端子522aを収納するための2つの溝部330bが形成された基部310bを有する治具300bを採用してもよい。なお、この場合の2つの溝部330bは、その両端が治具300bのY軸方向において開放されている形状である。このような形状の治具300bであっても、治具300bには、シールドガスを遮蔽するための壁面A31、A32が形成されているため、シールドガスの2つの流れが2つの長辺部分531、532において合流することを抑制できる。なお、図11は、変形例に係る治具を、蓄電素子の所定の位置に配置した状態の外観を示す斜視図である。
 また、上記実施の形態及びその変形例が備える各構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、溶接対象部分に安定したシールドガスの雰囲気を形成しておくことができ、溶接不良の発生を低減できる蓄電素子の製造方法などとして有用である。
 10、10a  製造装置
100  溶接部
210、220、230、240  吹出部
211、221、231、241  導入口
212、222、232、242  吹出口
300、300a、300b  治具
310、310b  基部
320  壁部
330、330b  溝部
410、420、430、440  固定部
500、500a  蓄電素子
510  容器
511  本体
511a  段差部
512  蓋体
521、521a  正極端子
522、522a  負極端子
530  溶接対象部分
531、532  長辺部分
533、534  短辺部分
A11、A12、A21~A24、A31、A32  壁面
F11、F12、F21、F22  シールドガスの流れ
P1、P2  所定の位置

Claims (9)

  1.  蓄電素子の容器に対して溶接を行う蓄電素子の製造方法であって、
     前記溶接が行われる2つの溶接対象部分の間に、壁面が形成された治具を配置する配置ステップと、
     前記2つの溶接対象部分に対応して、2つの異なる方向からシールドガスを前記2つの溶接対象部分に供給しながら、前記2つの溶接対象部分を溶接する溶接ステップと、を含む
     蓄電素子の製造方法。
  2.  前記溶接ステップでは、前記溶接対象部分に供給されたシールドガスが前記壁面の少なくとも一部である傾斜面に沿って流れる
     請求項1に記載の蓄電素子の製造方法。
  3.  前記配置ステップでは、前記治具を前記容器に当接させて配置する
     請求項1または2に記載の蓄電素子の製造方法。
  4.  さらに、
     前記治具を冷却する冷却ステップを含む
     請求項1から3のいずれか1項に記載の蓄電素子の製造方法。
  5.  前記溶接ステップでは、所定の位置から前記2つの溶接対象部分に向けて、照射角度を変えながらレーザビームを照射して、前記2つの溶接対象部分を溶接する
     請求項1から4のいずれか1項に記載の蓄電素子の製造方法。
  6.  蓄電素子の容器に対して溶接を行うための蓄電素子の製造装置であって、
     前記溶接が行われる2つの溶接対象部分であって、2つの異なる方向からシールドガスが供給される前記2つの溶接対象部分の間に配置される壁面が形成された治具を備える
     蓄電素子の製造装置。
  7.  さらに、
     前記2つの溶接対象部分に、前記2つの異なる方向からシールドガスを供給する2つの吹出口を備える
     請求項6に記載の蓄電素子の製造装置。
  8.  前記壁面の少なくとも一部は、前記シールドガスが流れる方向に対して傾斜している
     請求項6または7に記載の蓄電素子の製造装置。
  9.  前記容器は、矩形状の開口を有する本体と、前記開口を塞ぐ長尺板状の蓋体と、を備え、
     前記2つの溶接対象部分は、前記本体と前記蓋体との矩形環状の境界部分のうちの互いに対向する2つの長辺部分であり、
     前記治具は、前記2つの長辺部分の間に配置され、
     前記壁面の少なくとも一部は、前記シールドガスが流れる方向に対して、当該シールドガスが流れる方向の下流側に向かうほど前記容器から遠ざかるように傾斜している
     請求項6から8のいずれか1項に記載の蓄電素子の製造装置。
PCT/JP2016/060228 2015-03-31 2016-03-29 蓄電素子の製造方法及び蓄電素子の製造装置 WO2016158998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016001546.1T DE112016001546T5 (de) 2015-03-31 2016-03-29 Verfahren zur herstellung eines energiespeichergeräts und vorrichtung zur herstellung eines energiespeichergeräts
JP2017510050A JP6819574B2 (ja) 2015-03-31 2016-03-29 蓄電素子の製造方法及び蓄電素子の製造装置
CN201680014370.8A CN107431148B (zh) 2015-03-31 2016-03-29 蓄电元件的制造方法以及蓄电元件的制造装置
US15/546,600 US10637010B2 (en) 2015-03-31 2016-03-29 Method for manufacturing energy storage device and apparatus for manufacturing energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072970 2015-03-31
JP2015-072970 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158998A1 true WO2016158998A1 (ja) 2016-10-06

Family

ID=57005989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060228 WO2016158998A1 (ja) 2015-03-31 2016-03-29 蓄電素子の製造方法及び蓄電素子の製造装置

Country Status (5)

Country Link
US (1) US10637010B2 (ja)
JP (1) JP6819574B2 (ja)
CN (1) CN107431148B (ja)
DE (1) DE112016001546T5 (ja)
WO (1) WO2016158998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113160A (ja) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 電池ケースの封止方法および密閉型電池の製造方法
JP2020064747A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 電池の製造方法
JP2020149814A (ja) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 電池の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133052A (ja) * 1989-10-18 1991-06-06 Sanyo Electric Co Ltd 密閉型アルカリ電池
WO1999025035A1 (en) * 1997-11-07 1999-05-20 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
JP2003181666A (ja) * 2001-12-11 2003-07-02 Mitsubishi Heavy Ind Ltd 角型電池容器の溶接方法及び角型電池の製造方法
JP2003245776A (ja) * 2002-02-25 2003-09-02 Light Step:Kk 強風環境下における無風空間を形成するための整流化方法及び流体噴射ノズル
JP2010058124A (ja) * 2008-09-01 2010-03-18 Sankei Giken Kogyo Co Ltd レーザー溶接装置及び円筒体の製造方法
JP2010105041A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd レーザ溶接用治具、レーザ溶接装置及び角形電池の製造方法
JP2014220285A (ja) * 2013-05-02 2014-11-20 太陽誘電株式会社 電気化学デバイスの製造方法及び電気化学デバイス、並びに仮接合装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304777A (ja) 1993-04-27 1994-11-01 Sanyo Electric Co Ltd 電池の封口板を外装缶にレーザー溶接するガスノズル
JP3789352B2 (ja) * 2001-12-03 2006-06-21 株式会社京都製作所 封口溶接装置、電池及びコンデンサの製造方法
JP2009166065A (ja) 2008-01-15 2009-07-30 Nippon Densan Corp レーザ加工方法、軸受装置、スピンドルモータ、およびディスク駆動装置
WO2012026305A1 (ja) 2010-08-23 2012-03-01 株式会社ラクテル セキュリティラベル、その加工方法及び加工装置
JP5849804B2 (ja) 2012-03-22 2016-02-03 トヨタ自動車株式会社 二次電池の溶接装置および二次電池の製造方法
JP5971117B2 (ja) 2012-12-27 2016-08-17 株式会社豊田自動織機 二次電池溶接用治具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133052A (ja) * 1989-10-18 1991-06-06 Sanyo Electric Co Ltd 密閉型アルカリ電池
WO1999025035A1 (en) * 1997-11-07 1999-05-20 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
JP2003181666A (ja) * 2001-12-11 2003-07-02 Mitsubishi Heavy Ind Ltd 角型電池容器の溶接方法及び角型電池の製造方法
JP2003245776A (ja) * 2002-02-25 2003-09-02 Light Step:Kk 強風環境下における無風空間を形成するための整流化方法及び流体噴射ノズル
JP2010058124A (ja) * 2008-09-01 2010-03-18 Sankei Giken Kogyo Co Ltd レーザー溶接装置及び円筒体の製造方法
JP2010105041A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd レーザ溶接用治具、レーザ溶接装置及び角形電池の製造方法
JP2014220285A (ja) * 2013-05-02 2014-11-20 太陽誘電株式会社 電気化学デバイスの製造方法及び電気化学デバイス、並びに仮接合装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113160A (ja) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 電池ケースの封止方法および密閉型電池の製造方法
JP2020064747A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 電池の製造方法
JP7100802B2 (ja) 2018-10-16 2022-07-14 トヨタ自動車株式会社 電池の製造方法
JP2020149814A (ja) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 電池の製造方法
JP7194333B2 (ja) 2019-03-12 2022-12-22 トヨタ自動車株式会社 電池の製造方法

Also Published As

Publication number Publication date
US10637010B2 (en) 2020-04-28
CN107431148B (zh) 2020-08-25
JP6819574B2 (ja) 2021-01-27
CN107431148A (zh) 2017-12-01
DE112016001546T5 (de) 2018-01-04
JPWO2016158998A1 (ja) 2018-01-25
US20180006276A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP2010105041A (ja) レーザ溶接用治具、レーザ溶接装置及び角形電池の製造方法
JP3594555B2 (ja) 密閉式電池の製造方法及び密閉式電池
WO2016158998A1 (ja) 蓄電素子の製造方法及び蓄電素子の製造装置
EP2886241B1 (en) Welding system and welding method
US20150183058A1 (en) Welding device, welding method, and method for producing battery (as amended)
KR101664647B1 (ko) 전지 및 그 제조 방법
JP2011076776A (ja) 電極体の芯体露出部と集電用部材との溶接方法
JP6536885B2 (ja) 電池容器の製造方法および電池容器
JPH08315790A (ja) 角形電池の密閉容器の溶接方法
JP2013091085A (ja) 金属容器の溶接方法、金属容器、蓄電素子及び蓄電モジュール
JP2018010815A (ja) 蓄電素子及び蓄電素子の製造方法
JP2017054786A (ja) 二次電池の製造方法
JP2000133211A (ja) 角形電池の製造法
KR101838382B1 (ko) 밀폐형 전지 및 그 제조 방법
JP2003181666A (ja) 角型電池容器の溶接方法及び角型電池の製造方法
US9385400B2 (en) Method for manufacturing sealed battery
JP6341054B2 (ja) 蓄電素子の製造方法、及び、蓄電素子
JP2015208761A (ja) 溶接装置および溶接方法
JP2017191689A (ja) 蓄電素子の製造方法及び製造装置
JP2017076464A (ja) 二次電池
JP2011210464A (ja) 角形ケースの製造方法
KR20130097990A (ko) 이차전지 극주탭 t형상 용접 방법
US20070013471A1 (en) Superconducting coil, method for manufacturing thereof and welding device
CA1125862A (en) Radio frequency beam welding of battery terminals
KR20040044756A (ko) 자력을 이용한 공냉식 토치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546600

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017510050

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001546

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772879

Country of ref document: EP

Kind code of ref document: A1