WO2016158957A1 - 撮像装置、マルチレンズカメラおよび撮像装置の製造方法 - Google Patents

撮像装置、マルチレンズカメラおよび撮像装置の製造方法 Download PDF

Info

Publication number
WO2016158957A1
WO2016158957A1 PCT/JP2016/060138 JP2016060138W WO2016158957A1 WO 2016158957 A1 WO2016158957 A1 WO 2016158957A1 JP 2016060138 W JP2016060138 W JP 2016060138W WO 2016158957 A1 WO2016158957 A1 WO 2016158957A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
imaging device
microlens
imaging
image sensor
Prior art date
Application number
PCT/JP2016/060138
Other languages
English (en)
French (fr)
Inventor
聖生 中島
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201680020241.XA priority Critical patent/CN107407852A/zh
Priority to US15/562,687 priority patent/US20180095275A1/en
Priority to JP2017510028A priority patent/JPWO2016158957A1/ja
Publication of WO2016158957A1 publication Critical patent/WO2016158957A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements

Definitions

  • the present invention relates to an imaging device, a multi-lens camera, and a manufacturing method of the imaging device.
  • Patent Document 1 In a camera using a light field photography technique (multi-lens camera), a technique for moving the entire micro lens array in the arrangement direction of the micro lenses (direction orthogonal to the optical axis) is known ( Patent Document 1).
  • the conventional technology only performs imaging with a pseudo reduction in the arrangement pitch of the microlenses, and cannot suppress the influence caused by blurring during imaging.
  • the imaging apparatus has a microlens array in which a plurality of microlenses are arranged two-dimensionally and a plurality of pixel groups including a plurality of pixels, and each microlens of the microlens array.
  • An image sensor that receives light passing through each pixel group, and a drive unit that changes the positional relationship between the image sensor and the microlens array in order to prevent blurring of an image received by the pixel group.
  • the drive unit changes the positional relationship between the imaging sensor and the microlens array based on a signal indicating blurring of the imaging device.
  • the drive unit is provided on at least one of a part facing the imaging sensor of the microlens array and a side part of the microlens array. It is preferable to change the position of the microlens array with respect to the imaging sensor.
  • the drive unit is provided at a portion facing the imaging sensor of the microlens array or at a side part of the microlens array at the four corners of the microlens array. It is preferable.
  • the drive unit is provided on a part of the four sides of the microlens array facing the imaging sensor of the microlens array or on a side part of the microlens array. It is preferable.
  • the driving unit has a two-dimensional intersection where at least a plurality of microlenses are arranged with respect to the microlens array. It is preferable that the translational movement in the biaxial direction and the rotational movement about the axis orthogonal to the two axes are performed.
  • the drive unit preferably includes a piezoelectric element.
  • the piezoelectric element in the imaging device according to the seventh aspect, preferably has a displacement amplification function.
  • a pixel that is provided between the microlens array and the imaging sensor and receives light that has passed through one microlens. It is preferable to provide a partition that prevents the light that has passed through the other microlenses from entering the group.
  • the partition wall is a portion where at least a part of the partition wall facing the microlens array is connected to the microlens array or a part of the partition wall facing the imaging sensor Is preferably connected to the imaging sensor.
  • the partition wall is arranged such that the partition wall and the microlens array or the partition wall and the imaging sensor are separated from each other.
  • the partition wall is connected to the micro lens array at a portion of the partition wall facing the micro lens array, and the image sensor of the partition wall is opposed to the image sensor. It is preferable to be connected to.
  • at least a part of the partition wall is preferably formed of an elastic member.
  • the information indicating the restriction on the signal from the pixel group when the positional relationship between the imaging sensor and the microlens array changes. It is preferable to provide an information generation unit for generating.
  • the information generation unit outputs a signal when the imaging sensor performs photoelectric conversion in a state where the positional relationship between the imaging sensor and the microlens array changes. It is preferable to generate additional information indicating that the number of signals used for processing is limited.
  • the information generation unit excludes signals from the pixels at the end of the pixel group that receives light that has passed through one microlens. Therefore, it is preferable to generate additional information indicating that the number of signals is limited.
  • a multi-lens camera includes the imaging device according to any one of the first to sixteenth aspects.
  • a method for manufacturing an imaging device comprising: preparing a microlens array in which a plurality of microlenses are two-dimensionally arranged; and a plurality of pixel groups including a plurality of pixels; In order to prepare an imaging sensor that receives light that has passed through each microlens of the microlens array, and to prevent blurring of an image received by the pixel group, the positions of the imaging sensor and the microlens array Preparing a drive unit for changing the relationship, and assembling a microlens array, an image sensor, and the drive unit.
  • an imaging apparatus has a microlens array in which a plurality of microlenses are two-dimensionally arranged and a plurality of pixel groups including a plurality of pixels, and each microlens of the microlens array.
  • An image sensor that receives light that has passed through each pixel group, and a microlens array that is provided between the image sensor and another pixel that receives light that has passed through one microlens.
  • a partition wall that prevents light from entering, and the partition wall, even if the positional relationship between the imaging sensor and the microlens array changes, to another pixel group that receives light that has passed through one microlens. It is configured to prevent light that has passed through from entering.
  • the imaging apparatus has a microlens array in which a plurality of microlenses are arranged two-dimensionally and a plurality of pixel groups including a plurality of pixels, and each microlens of the microlens array.
  • An image sensor that receives light that has passed through each pixel group, and a microlens array that is provided between the image sensor and another pixel that receives light that has passed through one microlens.
  • a partition that prevents light from entering, and an information generation unit that generates information indicating a restriction on a signal from the pixel group when the positional relationship between the imaging sensor and the microlens array changes.
  • FIG. 10A to FIG. 10A It is a figure explaining the principal part structure of a light field camera. It is a figure explaining the microlens array and piezoelectric element in FIG. It is an enlarged view of a piezo element. It is the figure which expanded a part of micro lens array and an image sensor. It is a figure explaining the example which translated the micro lens array of FIG. It is a flowchart explaining the process which a control part performs at the time of VR operation
  • FIG. 10C are diagrams for explaining the assembly procedure of the imaging unit of the LF camera.
  • FIG. 11A and FIG. 11B are diagrams illustrating a modified example related to the partition wall.
  • FIG. 12A to FIG. 12C are diagrams for explaining a modification example regarding the position of the piezo element. It is a figure which illustrates the external appearance of a thin light field camera. It is sectional drawing of the imaging part of the light field camera of FIG.
  • FIG. 15A to FIG. 15C are diagrams illustrating light that enters the pixel group PXs during the VR operation.
  • FIGS. 16A to 16C are diagrams for explaining light incident on the pixel group PXs during the VR operation.
  • FIG. 17A to FIG. 17C are diagrams for explaining light incident on the pixel group PXs during the VR operation.
  • FIG. 1 is a diagram for explaining a main configuration of a light field (hereinafter referred to as LF) camera 100 according to an embodiment.
  • the LF camera 100 captures a plurality of images with different viewpoints.
  • an imaging lens 201 projects light from a subject onto a microlens array 202.
  • the imaging lens 201 is configured to be replaceable, and is used by being attached to the body of the LF camera 100.
  • the subject light incident on the microlens array 202 passes through the microlens array 202 and is photoelectrically converted by the image sensor 203.
  • the imaging lens may be integrated with the body of the LF camera 100.
  • the pixel signal after photoelectric conversion read from the image sensor 203 is sent to the image processing unit 210.
  • the image processing unit 210 performs predetermined image processing on the pixel signal.
  • the image data after the image processing is recorded on a recording medium 209 such as a memory card. Note that the pixel signal read from the image sensor 203 may be recorded on the recording medium 209 without being subjected to image processing.
  • the LF camera 100 has a VR (Vibration Reduction) function that suppresses the influence of shaking (so-called camera shake) that occurs when hand-held imaging is performed.
  • the VR function is not limited to peristalsis or vibration that occurs when shooting by hand, and for example, perturbation or vibration when the LF camera 100 is fixed to an attachment (for example, a helmet) (for example, the LF camera is a so-called action). It may be one that suppresses the influence of blurring during shooting when used as a camera.
  • the imaging unit shown in FIG. 10 is not only applied to the LF camera 100 but may also be applied to a thin LF camera 300 (see FIG. 13) as described later.
  • the thin LF camera 300 can be attached to various parts (attached parts) because of its thinness.
  • the VR function functions to suppress the influence of camera shake due to the shaking of the mounted portion on which the thin LF camera 300 is mounted. Details of the VR operation will be described later. For example, metadata indicating that the VR operation is being performed is added to the image data captured during the VR operation. Further, the metadata may be configured to include acceleration information when the LF camera 100 moves in addition to information indicating that the VR operation is being performed.
  • the microlens array 202 is configured by two-dimensionally arranging microlenses (microlenses 202a described later) in a lattice shape or a honeycomb shape, and is provided on the imaging surface side (imaging lens 201 side) of the image sensor 203.
  • the microlens array 202 is supported by a piezo element 205 which is an example of a piezoelectric element.
  • a piezo element 205 which is an example of a piezoelectric element.
  • One end of the piezo element 205 is fixed to the microlens array 202, and the other end is fixed to a base 150 (FIG. 10) on which the image sensor 203 is mounted. Therefore, the relative positional relationship between the microlens array 202 and the image sensor 203 can be changed by driving the piezo element 205.
  • an actuator such as a voice coil motor or an ultrasonic motor can be used.
  • the VR operation is performed by controlling the positional relationship between the microlens array 202 and the image sensor 203.
  • the image sensor 203 may be configured to be driven by the piezo element 205.
  • the shake detection unit 207 includes an acceleration sensor and an angular velocity sensor. As the shake of the LF camera 100, the shake detection unit 207 detects, for example, a translational movement in each axial direction of the X axis, the Y axis, and the Z axis, and a rotation around each axis.
  • the control unit 208 controls the imaging operation of the LF camera 100. Further, the control unit 208 performs a VR calculation based on the detection signal from the shake detection unit 207.
  • the shake detection unit 207 includes an acceleration sensor, and the detection signal from the shake detection unit 207 includes acceleration information when the LF camera 100 moves.
  • the purpose of the VR calculation is to calculate the driving direction and the driving amount of the microlens array 202 necessary for suppressing the shaking of the image on the image sensor 203.
  • the VR calculation is the same as the calculation in a known VR operation for driving the imaging lens or a known VR operation for driving the image sensor, for example. For this reason, the detailed description about VR calculation is abbreviate
  • the piezo element drive circuit 206 drives the piezo element 205 in accordance with the drive direction and drive amount instructions from the control unit 208.
  • FIG. 2 is a diagram for explaining the microlens array 202 and the piezoelectric element 205 in FIG. In the example of FIG. 2, a plurality of microlenses 202a are arranged in a honeycomb shape.
  • the piezo element 205 includes four piezo elements 205-1 to 205-4. Each of the piezo elements 205-1 to 205-4 is fixed to the four corners of the microlens array 202 and to the surface behind the microlens array 202 (on the image sensor 203 side).
  • FIG. 3 is an enlarged view of the piezo element 205-1.
  • Each of the piezo elements 205-2 to 205-4 has the same configuration as the piezo element 205-1.
  • the piezo element 205-1 is formed by stacking three piezo elements having different displacement directions. That is, the piezoelectric element PZ1 is a thickness longitudinal vibration type element that is displaced in the Z-axis direction.
  • the piezo element PZ2 is a thickness-slip type element that is displaced in the Y-axis direction.
  • the piezo element PZ3 is a thickness-slip type element that is displaced in the X-axis direction.
  • the piezoelectric element PZ2 and the piezoelectric element PZ3 are not only arranged so as to be displaced in the Y-axis direction and the X-axis direction as shown in FIG. 3, but are also displaced in any two intersecting directions on the XY plane. You may arrange as follows.
  • each piezo element may include an amplification mechanism (not shown).
  • the amplification mechanism may be any of a hinge type, an elliptical shell type, a honeycomb link type, and the like. Further, for example, the piezo element PZ1 that translates in the Z-axis direction may be omitted.
  • the microlens array 202 is moved with respect to the image sensor 203. It can be translated in the direction of the axis.
  • the piezo elements 205-1 to 205-4 positioned on the upper side of FIG. 2 and the piezo elements 205-2 and 205- positioned on the lower side of FIG. 3, when the displacement in the Z-axis direction is reversed, the microlens array 202 can be rotated around the X-axis with respect to the image sensor 203.
  • the piezoelectric elements 205-1 to 205-4 the piezoelectric elements 205-3 and 205-4 positioned on the right side of FIG. 2 and the piezoelectric elements 205-1 and 205-2 positioned on the left side of FIG.
  • the microlens array 202 can be rotated around the Y-axis with respect to the image sensor 203.
  • the piezo element 205-1 is displaced in the Y-axis plus direction
  • the piezo element 205-4 is displaced in the X-axis plus direction
  • the piezo element 205-3 is displaced in the Y-axis minus direction
  • the piezo element 205-2 Is displaced in the minus direction of the X axis, the microlens array 202 can be rotated clockwise around the Z axis with respect to the image sensor 203.
  • the microlens array 202 can be rotated counterclockwise around the Z axis with respect to the image sensor 203.
  • FIG. 4 is an enlarged view of a part of the microlens array 202 and the image sensor 203 in FIG.
  • a symbol G in the figure indicates a distance between the microlens array 202 and the image sensor 203.
  • the image sensor 203 has a plurality of pixels arranged two-dimensionally, and detects the intensity of light at each pixel.
  • a symbol P in the figure indicates a pixel pitch.
  • a pixel group PXs composed of a plurality of pixels is assigned to each microlens 202a. Each pixel constituting the pixel group PXs is arranged at a predetermined position with respect to the micro lens 202a. Thereby, the light that has passed through each micro lens 202a is divided into a plurality of pixels by the pixel group PXs arranged behind the micro lens 202a.
  • the surface 202d of the microlens array 202 on the image sensor 203 side is curved with respect to the XY plane.
  • the reason why the surface 202 is curved is that even when the microlens array 202 is rotated about the X axis and the Y axis by driving the piezoelectric elements 205-1 to 205-4 (FIG. 2), the microlens array 202 This is to ensure a predetermined gap between the image sensor 203 and the image sensor 203. Note that the curved surface in FIG. 4 is exaggerated for easy understanding.
  • a partition wall 204 that shields light is provided at a boundary portion of each microlens 202a.
  • the partition wall 204 is made of, for example, an elastic member, and one end of the partition wall 204 is connected to the surface 202 d of the microlens array 202. Further, the other end of the partition wall 204 is connected to the image sensor 203.
  • the reason why the partition wall 204 is provided is that light that has passed through the micro lens 202a is received only by the pixel group PXs arranged behind the micro lens 202a (downward in FIG. 4), and behind the adjacent micro lens 202a (FIG. 4). This is to prevent entry into the pixel group PXs arranged in the lower part of FIG.
  • FIG. 5 is a diagram for explaining an example in which the microlens array 202 in FIG. 4 is translated in the Y-axis plus direction.
  • the moving direction and moving amount of the microlens array 202 are determined based on the VR calculation result by the control unit 208.
  • each pixel of the image sensor 203 can receive light similar to the case where there is no shake of the LF camera 100 even after the shake of the LF camera 100.
  • the partition 204 is deformed so that the light passing through the microlens 202a is arranged behind the microlens 202a (downward in FIG. 5).
  • the light is received only by the pixel group PXs, and is prevented from entering the pixel group PXs arranged behind the adjacent microlens 202a (downward in FIG. 5).
  • the partition wall 204 is not deformed, the portion where the partition wall 204 is connected to the surface 202d of the microlens array 202 and the portion where the partition wall 204 is connected to the image sensor 203 are deformed. Light that has passed through the lens 202a is prevented from entering the pixel group PXs arranged behind the adjacent microlens 202a (downward in FIG. 5).
  • ⁇ VR operation> The flow of processing executed by the control unit 208 during the VR operation will be described with reference to the flowchart of FIG.
  • the control unit 208 activates the process illustrated in FIG.
  • a program for performing the processing in FIG. 6 is stored in, for example, a nonvolatile memory in the control unit 208.
  • step S20 the control unit 208 inputs a detection signal from the shake detection unit 207, and proceeds to step S30.
  • step S30 the control unit 208, based on the detection signal from the shake detection unit 207, calculates the initial position instead of the previously calculated attitude (in the first time after starting the process of FIG. 6). The position difference between the current position and the current position is calculated, and the process proceeds to step S40.
  • step S ⁇ b> 40 the control unit 208 drives the microlens array 202 in the driving direction and the driving amount for suppressing the influence of shaking (image shaking on the image sensor 203) due to the shaking of the LF camera 100 based on the attitude difference. Is calculated and the process proceeds to step S50.
  • step S50 the control unit 208 sends an instruction to the piezo element drive circuit 206 to drive the four piezo elements 205-1 to 205-4 in the drive direction calculated in step S40 by the calculated drive amount.
  • the piezo element PZ2 (FIG. 2) constituting the piezo element 205 (205-1 to 205-4 in FIG. 2). 3) is displaced in the Y-axis plus direction.
  • the microlens array 202 moves in the Y axis plus direction with respect to the image sensor 203.
  • step S60 the control unit 208 determines whether or not to end the VR operation.
  • the control unit 208 makes an affirmative determination in step S60 when a VR switch (not shown) is set to OFF, and ends the process of FIG. If the VR switch (not shown) is not set to OFF, the control unit 208 makes a negative determination in step S60 and returns to step S20. When returning to step S20, the control unit 208 repeats the processing described above.
  • FIG. 7 is a diagram schematically showing an optical system of the LF camera 100.
  • the imaging lens 201 guides light from the subject to the microlens array 202. Light from different parts of the subject is incident on each microlens 202a.
  • the light incident on the microlens array 202 is divided into a plurality of parts by the microlens 202 a that constitutes the microlens array 202.
  • the light that has passed through each microlens 202a is incident on the pixel group PXs of the image sensor 203 arranged at a predetermined position behind the corresponding microlens 202a (rightward in FIG. 7).
  • each micro lens 202a In the LF camera 100, light that has passed through each micro lens 202a is divided into a plurality of pixels by a pixel group PXs arranged behind the micro lens 202a. That is, each pixel constituting the pixel group PXs receives light from one part of the subject that has passed through different regions of the imaging lens 201.
  • the thickness of the microlens array 202 of the above embodiment is, for example, 150 ⁇ m.
  • the outer diameter of the micro lens 202a is, for example, 50 ⁇ m.
  • the number of pixels in the pixel group PXs arranged behind one micro lens 202a (right side in FIG. 7) is several hundreds, for example.
  • the pixel pitch P of the pixel group PXs is, for example, 2 ⁇ m.
  • the maximum displacement in one direction by the piezoelectric elements 205-1 to 205-4 is, for example, 6 ⁇ m.
  • a gap between the microlens array 202 and the image sensor 203 is, for example, 10 ⁇ m.
  • the incident direction of light to each pixel is determined by the positions of a plurality of pixels arranged behind each micro lens 202a (to the right in FIG. 7). That is, since the positional relationship between the microlens 202a and each pixel of the image sensor 203 behind (rightward in FIG. 7) is known as design information, the light rays incident on each pixel via the microlens 202a. The incident direction (direction information) is obtained. For this reason, the pixel signal of each pixel of the image sensor 203 represents the intensity of light (light ray information) from a predetermined incident direction. In this embodiment, light from a predetermined direction that enters the pixel is referred to as a light beam.
  • an LF image is subjected to image reconstruction processing using the data.
  • the reconstruction process refers to a process of generating an image at an arbitrary focus position or viewpoint by performing an operation based on the light ray information and the direction information of the LF image (an operation for rearranging light rays). Since such a reconstruction process is known, a detailed description of the reconstruction process is omitted.
  • the reconstruction process may be performed in the LF camera 100 by the image processing unit 210, or the LF image data recorded in the recording medium 209 is transmitted to an external device such as a personal computer, and the external device causes the external device to perform the reconstruction process. May be.
  • FIG. 8 is a diagram illustrating the pixel group PXs arranged behind the microlens array 202.
  • the image processing unit 210 normally performs reconstruction processing using each pixel signal (light ray information) of the pixel group PXs corresponding to each microlens 202a.
  • the pixel group PXs is a pixel that exists in the range 203b (shaded portion).
  • the image processing unit 210 when metadata is added to the data of the LF image, the image processing unit 210, as shown in FIG. 9, has a range 203c (shaded portion) whose diameter is smaller than the range 203b of FIG. Reconstruction processing is performed using each pixel signal (light ray information).
  • the range 203c is obtained by reducing the diameter of the range 203b by about 10%.
  • the reason for limiting the range used for the reconstruction process in the pixel group PXs is as follows.
  • the pixel signal (light ray information) of pixels in a range other than the range 203c (shaded portion) has low reliability. Therefore, by removing pixel signals (light ray information) of pixels (pixels in a range other than the range 203c (shaded portion)) away from the center of the pixel group PXs from the reconstruction process, the microlens array 202 and the image sensor Inappropriate reconstruction processing when the positional relationship with 203 is changed can be avoided.
  • FIG. 10A ⁇ Method for Manufacturing Imaging Unit>
  • an operator may be a robot
  • the operator mounts the image sensor 203 on the base 150, which is a base member, with the imaging surface of the prepared image sensor 203 facing upward in FIG.
  • illustration of the partition 204 (FIG. 4) is omitted, the partition 204 is provided at a predetermined position for each pixel group PXs in the image sensor 203.
  • an operator prepares the microlens array 202 and the piezo elements 205 (205-1 to 205-4).
  • the operator attaches one end of each of the piezo elements 205 (205-1 to 205-4) to the four corners (see FIG. 2) of the microlens array 202, and faces the image sensor 203 side of the microlens array 202 (see FIG. 2). Adhere to the lower surface in 10 (b).
  • an operator aligns the position of the microlens 202a with the pixel group PXs of the image sensor 203 from above the image sensor 203 mounted on the base 150, and the piezo element 205.
  • the microlens array 202 to which (205-1 to 205-4) is fixed is mounted.
  • the operator adheres the other ends of the piezo elements 205 (205-1 to 205-4) to the base 150, respectively. Thereby, an imaging part is completed.
  • the order of assembling the imaging unit described above may be changed as appropriate.
  • the image sensor 203, the piezo elements 205 (205-1 to 205-4), and the partition wall 204 may be mounted on the base 150, and the microlens array 202 may be finally mounted from above.
  • the imaging unit of the LF camera 100 includes a microlens array 202 in which a plurality of microlenses 202a are two-dimensionally arranged, an image sensor 203 that photoelectrically converts light that has passed through the microlens array 202, and the LF camera 100.
  • Piezo elements 205-1 to 205-4 for changing the positional relationship between the image sensor 203 and the microlens array 202 based on a signal indicating the vibration of the image sensor 203.
  • the VR operation can be realized with a small configuration as compared with the case where the positional relationship between the imaging lens 201 and the image sensor 203 is changed.
  • the piezo elements 205-1 to 205-4 are provided on the surface 202d of the microlens array 202 on the image sensor 203 side, and change the position of the microlens array 202 with respect to the image sensor 203. Since only the microlens array 202 needs to be moved, it can be moved by piezo elements 205-1 to 205-4 which are smaller than a voice coil motor or the like.
  • the piezo elements 205-1 to 205-4 are provided on the surface 202d of the microlens array 202 on the image sensor 203 side at the four corners of the microlens array 202. In comparison, the size in the X-axis direction and the Y-axis direction in FIG. 2 can be kept small.
  • Piezoelectric elements 205-1 to 205-4 are arranged in two-dimensionally intersecting two-axis (X-axis and Y-axis) directions where at least a plurality of microlenses 202a are arranged with respect to the microlens array 202.
  • the translational movement and the rotational movement around the Z axis perpendicular to the two axes are performed.
  • VR operation suitable for suppression of the influence by camera shake can be realized.
  • the piezo element PZ1 FIG. 3
  • the Z-axis direction in FIG. 1, that is, the thickness of the imaging unit can be reduced.
  • the micro lens array 202 is moved by the piezoelectric elements 205-1 to 205-4 which are piezoelectric elements, for example, a stop mechanism required when using a voice coil motor is unnecessary, and a simple configuration Can be.
  • the movement amount of the microlens array 202 can be increased.
  • a suitable movement amount for the VR operation is, for example, about 2P to 3P (2 to 3 pixel pitch).
  • the image sensor 203 of the LF camera 100 has a large number of pixels that photoelectrically convert received light, and the microlens array 202 of the LF camera 100 has a plurality of pixels that receive the light that has passed through one microlens 202a. Arranged to receive light.
  • the VR operation of moving the microlens array 202 the influence of camera shake at the time of capturing an LF image can be appropriately suppressed.
  • partition wall 202 Since the partition wall 202 is formed by an elastic member, the partition wall 202 is deformed according to the changed positional relationship between the image sensor 203 and the microlens array 202, and the light that has passed through the other microlens 202a is surely entered. Can be prevented.
  • the LF camera 100 generates metadata indicating whether or not to limit the number of signals used for signal processing for reconstructing an image by performing predetermined signal processing on signals from a plurality of pixels. 208. As a result, an external device that performs a reconstruction process on the LF image checks the metadata, thereby preventing an inappropriate reconstruction process.
  • the control unit 208 generates the metadata when the image sensor 203 performs photoelectric conversion in a state where the positional relationship between the image sensor 203 and the microlens array 202 changes.
  • the external device makes the reconstruction process for the LF image acquired during the VR operation different from the reconstruction process for the LF image acquired during the non-VR operation. It is possible to cope with a change in the positional relationship between
  • the control unit 208 generates metadata for limiting the pixel signal used for the reconstruction process for the LF image acquired during the VR operation. Thereby, it is possible to avoid inappropriate reconstruction processing using a pixel signal with low reliability in the external device.
  • the light field camera of FIG. 1 has been described as an embodiment, all the components are not necessarily essential components of the present invention.
  • the present invention includes a microlens array 202, an image sensor 203 that photoelectrically converts light that has passed through the microlens array 202, and a drive unit that changes the positional relationship between the image sensor 203 and the microlens array 202. be able to. Even in that case, blurring can be suppressed.
  • the present invention provides a microlens array 202 that is arranged so that a plurality of pixels receive light that has passed through one microlens, and an image sensor 203 that photoelectrically converts light that has passed through the microlens array 202.
  • the driving unit that changes the positional relationship between the image sensor 203 and the microlens array 202 can be used. Even in such a case, blurring at the time of capturing an LF image can be suppressed.
  • the present invention provides a microlens array 202 that is arranged so that a plurality of pixels receive light that has passed through one microlens, and an image sensor 203 that photoelectrically converts light that has passed through the microlens array 202.
  • a partition wall provided between the microlens array 202 and the image sensor 203 for preventing light that has passed through another microlens from entering a plurality of pixels that receive light that has passed through one microlens, and an image It can be configured only by a drive unit that changes the positional relationship between the sensor 203 and the microlens array 202. Even in this case, it is possible to prevent the light that has passed through the other microlenses from entering.
  • Modification 1 In the above embodiment (FIGS. 4 and 5), an example in which one end of the partition wall 204 is connected to the surface 202d of the microlens array 202 and the other end of the partition wall 204 is connected to the surface of the image sensor 203 has been described. . Instead, as illustrated in FIG. 11A, only one end of the partition wall 204 may be connected to the surface 202d of the microlens array 202, and the other end of the partition wall 204 may be separated from the image sensor 203. Conversely, only one end of the partition wall 204 may be connected to the image sensor 203, and the other end of the partition wall 204 may be separated from the microlens array 202.
  • both ends of the partition wall 204 may be connected to the surface 202d of the microlens array 202 and the surface of the image sensor 203, respectively, and a part of the partition wall 204 may be configured by an elastic member.
  • a part or all of the partition walls may be configured using an expansion / contraction member having an expansion / contraction mechanism such as a bellows.
  • the piezo elements 205 (205-1 to 205-4) are respectively provided on the side portions of the microlens array 202 (at the four corners of the side portions or on each side of the side portions). It is good also as a structure.
  • a part of the piezo element 205 (for example, 205-1 and 205-2) is provided on the side of the microlens array 202, and the remaining piezo element 205 (for example, 205- 3, 205-4) may be provided on the rear surface of the microlens array 202.
  • the attachment positions of the piezo elements 205 (205-1 to 205-4) may be appropriately changed at the four corners or the four sides of the microlens array 202 on the side portion or the rear surface of the microlens array 202.
  • the piezoelectric elements 205 are provided on the four sides of the microlens array 202 on the image sensor 203 side of the microlens array 202 or on the side of the microlens array 202.
  • the piezo elements 205 (205-1 to 205-4) can be arranged at appropriate positions according to the space for accommodating the imaging unit as shown in FIG.
  • FIG. 13 is a diagram showing an example of the appearance of a thin LF camera 300.
  • the LF camera 300 is composed of a central part 301 and a peripheral part 302, for example.
  • an imaging unit (see FIG. 14) including a microlens array 202, an image sensor 203, and a piezo element 205 is disposed.
  • the peripheral portion 302 as shown by a broken line, for example, a battery 302a, a control circuit 302b, a shake detection unit 302c, a communication unit 302d, and the like are arranged.
  • the battery 302a for example, a rechargeable secondary battery or a capacitor having a sufficient charge storage capacity is used.
  • the shake detection unit 302c a thin one having the same function as the shake detection unit 207 described in FIG. 1 is used.
  • the control circuit 302b a thin circuit having the same functions as those of the piezo driving circuit 206 and the control unit 208 described in FIG. 1 is used.
  • the communication unit 302d transmits an image signal captured by the image sensor to an external receiver (for example, an external recording medium for recording an image, an electronic device such as a smartphone having an image display function and an image signal memory function) by wireless communication. Device, etc.).
  • an external receiver for example, an external recording medium for recording an image, an electronic device such as a smartphone having an image display function and an image signal memory function
  • control circuit 302b may be provided with the function of the image processing unit 210 described with reference to FIG. 1 so as to transmit an image-processed signal to an external receiver.
  • the battery 302 a disposed in the peripheral portion 302 is not essential.
  • the LF camera 300 may be configured to operate without a power source by using a known electromagnetic induction technique.
  • FIG. 14 shows an example of a cross-sectional view when the central portion 301 of the LF camera 300 of FIG. 13 is cut along the Y axis.
  • the image sensor 203 is fixed to a base 150 which is a base member.
  • one end of the piezo element 205 is fixed to the base 150, and the other end of the piezo element 205 is fixed to the microlens array 202 to support the microlens array 202.
  • the operation of the imaging unit including the microlens array 202, the image sensor 203, and the piezo element 205 described in FIG. 14 is the same as the operation of the LF camera 100 described above.
  • the following operational effects can be obtained. (1) Since the LF camera 300 is thin, it does not get in the way even if it is fixed to an attachment (for example, a helmet). (2) The LF camera 300 can be bent because it is thin, and can be adhered to an object to be attached (for example, a utility pole) having a curved surface. (3) Since the LF camera 300 is thin, it can be stored in a wallet or the like like various cards. (4) The LF camera 300 does not receive air resistance when it is fixed to an object to be mounted (for example, a car or a helicopter body) because of its thinness.
  • the object when incorporating the LF camera 300 or the central portion 301 (imaging unit) of the LF camera 300 into an object, the object can be incorporated without changing the design of the object. (6) When incorporating the LF camera 300 or the central portion 301 (imaging unit) of the LF camera 300 into an object, the object can be incorporated even when the object is thin.
  • FIG. 15A is a diagram schematically illustrating a positional relationship among the microlens array 202, the partition 204, and the image sensor 203 before the VR operation is started.
  • FIG. 15B shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the right side in FIG.
  • FIG. 15C shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the left in FIG. It is a figure which shows a relationship typically.
  • the partition wall 204 moves together with the microlens array 202.
  • the positional relationship between the other end of the partition wall 204 and the image sensor 203 is changed. For this reason, among the plurality of pixels of the pixel group PXs, there is a possibility that light incident on the pixels 203d and 203e located on the peripheral side may be blocked by the partition wall 204.
  • the control unit 208 be configured to generate.
  • FIG. 16A is a diagram schematically illustrating a positional relationship among the microlens array 202, the partition wall 204, and the image sensor 203 before starting the VR operation.
  • FIG. 16B shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the right side in FIG. It is a figure which shows a relationship typically.
  • FIG. 16C shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the left in FIG. It is a figure which shows a relationship typically.
  • the light that has passed through the microlens 202a enters the corresponding pixel group PXs.
  • FIGS. 16B and 16C when the positional relationship between the microlens array 202 and the image sensor 203 is changed by the VR operation, one end of the partition wall 204 is aligned with the microlens array 202. Move with.
  • the other end of the partition wall 204 is connected to the subject-side surface 203a of the image sensor 203, even if the positional relationship between the microlens array 202 and the image sensor 203 is changed by the VR operation, the other end of the partition wall 204 is The positional relationship between the image sensor 203 and the image sensor 203 does not change. Therefore, there is a low possibility that the light incident on the pixels located on the peripheral side among the plurality of pixels of the pixel group PXs is blocked by the partition wall 204.
  • the control unit 208 when one end of the partition wall 204 is connected to the surface 202d of the microlens array 202 and the other end of the partition wall 204 is connected to the subject side surface 203a of the image sensor 203, the control unit 208 The above-described metadata need not be generated.
  • FIG. 17A is a diagram schematically illustrating a positional relationship among the microlens array 202, the partition 204, and the image sensor 203 before the VR operation is started.
  • FIG. 17B shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the right side in FIG. It is a figure which shows a relationship typically.
  • FIG. 17C shows the positions of the microlens array 202, the partition wall 204, and the image sensor 203 when the microlens array 202 is moved to the left side in FIG. It is a figure which shows a relationship typically.
  • the light that has passed through the microlens 202a enters the corresponding pixel group PXs.
  • FIGS. 17B and 17C even if the positional relationship between the microlens array 202 and the image sensor 203 is changed by the VR operation, one end of the partition wall 204 remains at the microlens array 202. Since the other end of the partition wall 204 is connected to the subject side surface 203a of the image sensor 203, the positional relationship between the partition wall 204 and the image sensor 203 does not change. Therefore, the light incident on the pixels located on the peripheral side among the plurality of pixels of the pixel group PXs is not likely to be blocked by the partition wall 204.
  • the control unit 208 when one end of the partition wall 204 is separated from the surface 202d of the microlens array 202 and the other end of the partition wall 204 is connected to the subject-side surface 203a of the image sensor 203, the control unit 208 The above-described metadata need not be generated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 撮像装置は、複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、複数の画素を含む画素群を複数有し、マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、画素群で受光する像のブレを防止するために、撮像センサとマイクロレンズアレイとの位置関係を変化させる駆動部と、を備える。

Description

撮像装置、マルチレンズカメラおよび撮像装置の製造方法
 本発明は、撮像装置、マルチレンズカメラおよび撮像装置の製造方法に関する。
 ライト・フィールド・フォトグラフィ(Light Field Photography)技術を用いるカメラ(マルチレンズカメラ)において、マイクロレンズの配列方向(光軸に直交する方向)にマイクロレンズアレイ全体を移動させる技術が知られている(特許文献1参照)。
日本国特開2012-60460号公報
 従来技術では、マイクロレンズの配列ピッチを擬似的に短縮した撮像を行うにすぎず、撮影時に生じたブレによる影響を抑制できない。
 本発明の第1の態様によると、撮像装置は、複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、複数の画素を含む画素群を複数有し、マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、画素群で受光する像のブレを防止するために、撮像センサとマイクロレンズアレイとの位置関係を変化させる駆動部と、を備える。
 本発明の第2の態様によると、第1の態様の撮像装置において、駆動部は、撮像装置のブレを示す信号に基づき、撮像センサとマイクロレンズアレイとの位置関係を変化させることが好ましい。
 本発明の第3の態様によると、第1または第2の態様の撮像装置において、駆動部は、マイクロレンズアレイの撮像センサに対向する部分とマイクロレンズアレイの側部との少なくとも一方に設けられ、撮像センサに対するマイクロレンズアレイの位置を変化させることが好ましい。
 本発明の第4の態様によると、第3の態様の撮像装置において、駆動部は、マイクロレンズアレイの四隅において、マイクロレンズアレイの撮像センサに対向する部分またはマイクロレンズアレイの側部に設けられることが好ましい。
 本発明の第5の態様によると、第3の態様の撮像装置において、駆動部は、マイクロレンズアレイの四辺において、マイクロレンズアレイの撮像センサに対向する部分またはマイクロレンズアレイの側部に設けられることが好ましい。
 本発明の第6の態様によると、第1から第5のいずれか一態様の撮像装置において、駆動部は、マイクロレンズアレイに対して、少なくとも複数のマイクロレンズが配置される二次元上の交差する2軸方向への並進移動と、2軸に直交する軸の周りの回転移動とをさせることが好ましい。
 本発明の第7の態様によると、第1から第6のいずれか一態様の撮像装置において、駆動部は圧電素子を含むことが好ましい。
 本発明の第8の態様によると、第7の態様の撮像装置において、圧電素子は、変位増幅機能を有することが好ましい。
 本発明の第9の態様によると、第1から第8のいずれか一態様の撮像装置において、マイクロレンズアレイと撮像センサとの間に設けられ、1つのマイクロレンズを通過した光を受光する画素群へ、他のマイクロレンズを通過した光が進入することを妨げる隔壁を備えることが好ましい。
 本発明の第10の態様によると、第9の態様の撮像装置において、隔壁は、少なくとも隔壁のマイクロレンズアレイに対向する部分がマイクロレンズアレイに接続されるか、隔壁の撮像センサに対向する部分が撮像センサに接続されることが好ましい。
 本発明の第11の態様によると、第9の態様の撮像装置において、隔壁は、隔壁とマイクロレンズアレイ、または隔壁と撮像センサが離間するように配置されることが好ましい。
 本発明の第12の態様によると、第9の態様の撮像装置において、隔壁は、隔壁のマイクロレンズアレイに対向する部分がマイクロレンズアレイに接続され、隔壁の撮像センサに対向する部分が撮像センサに接続されることが好ましい。
 本発明の第13の態様によると、第12の態様の撮像装置において、隔壁は、少なくとも一部が弾性部材によって形成されることが好ましい。
 本発明の第14の態様によると、第1から第13のいずれか一態様の撮像装置において、撮像センサとマイクロレンズアレイとの位置関係が変化するとき、画素群からの信号に対する制限を示す情報を生成する情報生成部を備えることが好ましい。
 本発明の第15の態様によると、第14の態様の撮像装置において、情報生成部は、撮像センサとマイクロレンズアレイとの位置関係が変化する状態で撮像センサが光電変換を行う場合に、信号処理に用いる信号数を制限することを示す付加情報を生成することが好ましい。
 本発明の第16の態様によると、第15の態様の撮像装置において、情報生成部は、1つのマイクロレンズを通過した光を受光する画素群のうち、端部の画素からの信号を除外することによって信号数を制限することを示す付加情報を生成することが好ましい。
 本発明の第17の態様によると、マルチレンズカメラは、第1から第16のいずれか一態様の撮像装置を備える。
 本発明の第18の態様によると、撮像装置の製造方法は、複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイを準備することと、複数の画素を含む画素群を複数有し、マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサを準備することと、画素群で受光する像のブレを防止するために、撮像センサとマイクロレンズアレイとの位置関係を変化させる駆動部を準備することと、マイクロレンズアレイと、撮像センサと、駆動部とを組み立てることと、を有する。
 本発明の第19の態様によると、撮像装置は、複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、複数の画素を含む画素群を複数有し、マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、マイクロレンズアレイと撮像センサとの間に設けられ、一つのマイクロレンズを通過した光を受光する画素群へ他のマイクロレンズを通過した光が進入することを妨げる隔壁と、を備え、隔壁は、撮像センサとマイクロレンズアレイとの位置関係が変化しても、一つのマイクロレンズを通過した光を受光する画素群へ他のマイクロレンズを通過した光が進入することを妨げるよう構成される。
 本発明の第20の態様によると、撮像装置は、複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、複数の画素を含む画素群を複数有し、マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、マイクロレンズアレイと撮像センサとの間に設けられ、一つのマイクロレンズを通過した光を受光する画素群へ他のマイクロレンズを通過した光が進入することを妨げる隔壁と、撮像センサとマイクロレンズアレイとの位置関係が変化するとき、画素群からの信号に対する制限を示す情報を生成する情報生成部と、を備える。
ライト・フィールドカメラの要部構成を説明する図である。 図1におけるマイクロレンズアレイおよびピエゾ素子を説明する図である。 ピエゾ素子の拡大図である。 マイクロレンズアレイとイメージセンサの一部を拡大した図である。 図4のマイクロレンズアレイを並進移動させた例を説明する図である。 制御部がVR動作時に実行する処理を説明するフローチャートである。 ライト・フィールドカメラの光学系を模式的に示す図である。 撮像レンズ側から見たイメージセンサを例示する図である。 撮像レンズ側から見たイメージセンサを例示する図である。 図10(a)~図10(c)は、LFカメラの撮像部の組立手順について説明する図である。 図11(a)、図11(b)は、隔壁に関する変形例を説明する図である。 図12(a)~図12(c)は、ピエゾ素子の位置に関する変形例を説明する図である。 薄型のライト・フィールドカメラの外観を例示する図である。 図13のライト・フィールドカメラの撮像部の断面図である。 図15(a)~図15(c)は、VR動作中に画素群PXsに入射する光について説明する図である。 図16(a)~図16(c)は、VR動作中に画素群PXsに入射する光について説明する図である。 図17(a)~図17(c)は、VR動作中に画素群PXsに入射する光について説明する図である。
<ライト・フィールドカメラの概要>
 図1は、一実施の形態によるライト・フィールド(以下LFと呼ぶ)カメラ100の要部構成を説明する図である。一般に、LFカメラ100は、視点が異なる複数の画像を撮像する。図1において、撮像レンズ201は、被写体からの光をマイクロレンズアレイ202に投射する。撮像レンズ201は交換可能に構成されており、LFカメラ100のボディに装着して使用する。マイクロレンズアレイ202に入射した被写体光は、マイクロレンズアレイ202を通過し、イメージセンサ203によって光電変換される。
 なお、撮像レンズをLFカメラ100のボディと一体に構成してもよい。
 イメージセンサ203から読み出された光電変換後の画素信号は、画像処理部210へ送られる。画像処理部210は、画素信号に対して所定の画像処理を施す。画像処理後の画像データは、メモリカードなどの記録媒体209に記録される。
 なお、イメージセンサ203から読み出された画素信号に画像処理を施さずに記録媒体209へ記録してもよい。
 本実施形態のLFカメラ100は、手持ちで撮像を行う場合に生じる揺動(いわゆる手ブレ)の影響を抑えるVR(Vibration Reduction)機能を備える。なお、VR機能は、手持ちで撮影を行う場合に生じる搖動や振動に限られず、例えばLFカメラ100が被装着物(例えばヘルメット等)に固定された場合の搖動や振動(例えばLFカメラがいわゆるアクションカメラとして用いられる場合の撮影時のブレ)の影響を抑えるものであっても良い。
 なお図10に示される撮像部は、LFカメラ100に適用されるばかりではなく、後述するような薄型のLFカメラ300(図13参照)に適用されることもある。薄型のLFカメラ300は、その薄さゆえに様々な部位(被装着部)に装着可能である。上記VR機能は、薄型のLFカメラ300が装着されている被装着部の揺れに伴うカメラのブレの影響を抑えるものとして機能する。VR動作の詳細については後述する。VR動作中に撮像された画像データには、例えば、VR動作中であったことを示すメタデータが付加される。また、メタデータは、VR動作中であったことを示す情報に加え、LFカメラ100が移動した場合の加速度情報を含むように構成しても良い。
 マイクロレンズアレイ202は、微小レンズ(後述するマイクロレンズ202a)を格子状またはハニカム形状に二次元配列して構成されており、イメージセンサ203の撮像面側(撮像レンズ201側)に設けられる。
 マイクロレンズアレイ202は、圧電素子の一例であるピエゾ素子205によって支持される。ピエゾ素子205は、一端がマイクロレンズアレイ202に固定され、他端がイメージセンサ203を実装する基部150(図10)に固定される。このため、ピエゾ素子205を駆動することによって、マイクロレンズアレイ202とイメージセンサ203との相対的な位置関係の変更が可能である。なお、ピエゾ素子の代わりに、ボイスコイルモーターや超音波モーターなどのアクチュエータを用いることも可能である。
 本実施形態では、マイクロレンズアレイ202とイメージセンサ203との間の位置関係を制御することにより、上記VR動作を行う。本実施形態では、マイクロレンズアレイ202がピエゾ素子205によって駆動される例を用いて説明するが、イメージセンサ203がピエゾ素子205によって駆動されるように構成しても良い。
 振れ検出部207は、加速度センサおよび角速度センサによって構成される。振れ検出部207は、LFカメラ100の振れとして、例えば、X軸、Y軸、Z軸の各軸方向の並進移動、および各軸回りの回転をそれぞれ検出する。
 図1に示した座標軸において、被写体からの光はZ軸マイナス方向へ向かう。また、図1において、上向きかつZ軸に直交する向きをY軸プラス方向とし、紙面に垂直な手前方向で、Z軸およびY軸に直交する向きをX軸プラス方向とする。以降のいくつかの図においては、図1の座標軸を基準としてそれぞれの図における向きを表す。
 制御部208は、LFカメラ100の撮像動作を制御する。また、制御部208は、振れ検出部207からの検出信号に基づいてVR演算を行う。振れ検出部207は、加速度センサを含み、振れ検出部207からの検出信号はLFカメラ100が移動した場合の加速度情報を含んでいる。VR演算は、イメージセンサ203上における像の揺れを抑えるために必要なマイクロレンズアレイ202の駆動方向および駆動量の算出を目的とする。VR演算は、例えば撮像レンズを駆動する公知のVR動作や、イメージセンサを駆動する公知のVR動作における演算と同様である。このため、VR演算についての詳細な説明は省略する。
 ピエゾ素子駆動回路206は、制御部208からの駆動方向および駆動量の指示に応じて、ピエゾ素子205を駆動する。図2は、図1におけるマイクロレンズアレイ202およびピエゾ素子205を説明する図である。図2の例では、複数のマイクロレンズ202aがハニカム形状に配列されている。ピエゾ素子205は、4つのピエゾ素子205-1~205-4によって構成される。ピエゾ素子205-1~205-4はそれぞれ、マイクロレンズアレイ202の四隅であって、マイクロレンズアレイ202の後ろ側(イメージセンサ203側)の面に固定されている。
<ピエゾ素子>
 図3は、ピエゾ素子205-1の拡大図である。ピエゾ素子205-2~205-4は、いずれもピエゾ素子205-1と同様の構成を有する。図3において、ピエゾ素子205-1は、変位方向がそれぞれ異なる3つのピエゾ素子を積層して構成される。すなわち、ピエゾ素子PZ1は、Z軸方向に変位する厚み縦振動タイプの素子である。ピエゾ素子PZ2は、Y軸方向に変位する厚みすべりタイプの素子である。ピエゾ素子PZ3は、X軸方向に変位する厚みすべりタイプの素子である。なお、ピエゾ素子PZ2とピエゾ素子PZ3は、図3のようにY軸方向とX軸方向にそれぞれ変位するように配置するだけでなく、XY平面上の交差する任意の2軸方向にそれぞれ変位するように配置してもよい。
 また、3つのピエゾ素子PZ1~PZ3を積層する順番は、図3の通りでなくてもよく、順番を入れ替えてもよい。そしてまた、ピエゾ素子205-1~205-4で3つのピエゾ素子PZ1~PZ3を積層する順番が異なっていてもよい。さらにまた、各ピエゾ素子は、不図示の増幅機構を備えてもよい。増幅機構は、ヒンジ型、楕円シェル型、ハニカムリンク型などのいずれでもよい。また、例えば、Z軸方向の並進移動をするピエゾ素子PZ1を省略してもよい。この場合、X軸回りの回転移動、Y軸回りの回転移動、Z軸方向の並進移動はできなくなるが、図1におけるZ軸方向、すなわち撮像部の厚みを減らすことができる。
 図2に戻り、4つのピエゾ素子205-1~205-4を、それぞれ同じ向き(X軸、Y軸、またはZ軸方向)に変位させる場合、イメージセンサ203に対してマイクロレンズアレイ202を各軸の方向へ並進移動させることができる。
 また、4つのピエゾ素子205-1~205-4のうち、図2の上側に位置するピエゾ素子205-1および205-4と、図2の下側に位置するピエゾ素子205-2および205-3との間でZ軸方向の変位を逆向きにする場合、イメージセンサ203に対してマイクロレンズアレイ202をX軸の回りに回転移動させることができる。
 さらに、4つのピエゾ素子205-1~205-4のうち、図2の右側に位置するピエゾ素子205-3および205-4と、図2の左側に位置するピエゾ素子205-1および205-2との間でZ軸方向の変位を逆向きにする場合、イメージセンサ203に対してマイクロレンズアレイ202をY軸の回りに回転移動させることができる。
 さらにまた、ピエゾ素子205-1をY軸プラス方向へ変位させ、ピエゾ素子205-4をX軸プラス方向へ変位させ、ピエゾ素子205-3をY軸マイナス方向へ変位させ、ピエゾ素子205-2をX軸マイナス方向へ変位させる場合、イメージセンサ203に対してマイクロレンズアレイ202を、Z軸の回りに時計方向に回転させることができる。
 各ピエゾ素子205-1~205-4の変位の向きを上記と逆向きにする場合、イメージセンサ203に対してマイクロレンズアレイ202を、Z軸の回りに反時計方向に回転させることができる。
<マイクロレンズアレイとイメージセンサの相対的位置関係>
 図4は、図1におけるマイクロレンズアレイ202とイメージセンサ203の一部を拡大した図である。図中の符号Gは、マイクロレンズアレイ202およびイメージセンサ203の間隔を示す。イメージセンサ203は、二次元に配列された複数の画素を有しており、各画素にて光の強度を検出する。図中の符号Pは、画素ピッチを示す。各マイクロレンズ202aに対して、複数の画素からなる画素群PXsがそれぞれ割り当てられる。画素群PXsを構成する各画素は、マイクロレンズ202aに対して所定の位置に配列される。これにより、各マイクロレンズ202aを通過した光は、そのマイクロレンズ202aの後ろに配列された画素群PXsによって複数に分割される。
 図4において、マイクロレンズアレイ202のイメージセンサ203側の面202dがXY平面に対して湾曲している。面202を湾曲させた理由は、ピエゾ素子205-1~205-4(図2)を駆動することによってマイクロレンズアレイ202をX軸回り、Y軸回りに回転させた場合でも、マイクロレンズアレイ202とイメージセンサ203との間に所定の空隙を確保するためである。
 なお、図4の湾曲面は、わかりやすくするために誇張したものである。
 各マイクロレンズ202aの境界部分には、光を遮光する隔壁204が設けられている。隔壁204は、例えば弾性部材によって構成されており、隔壁204の一方の端がマイクロレンズアレイ202の面202dと接続される。また、隔壁204の他方の端がイメージセンサ203と接続される。隔壁204を設ける理由は、マイクロレンズ202aを通過した光が、そのマイクロレンズ202aの後ろ(図4において下方)に配列された画素群PXsでのみ受光され、隣のマイクロレンズ202aの後ろ(図4において下方)に配列された画素群PXsへ進入しないようにするためである。
 図5は、図4におけるマイクロレンズアレイ202をY軸プラス方向へ並進移動させた例を説明する図である。マイクロレンズアレイ202の移動方向および移動量は、制御部208によるVR演算結果に基づいて決定される。これにより、イメージセンサ203の各画素では、LFカメラ100の振れの後においてもLFカメラ100の振れがなかった場合と同様の光が受光され得る。
 マイクロレンズアレイ202とイメージセンサ203との位置関係が変更された場合でも、隔壁204が変形することで、マイクロレンズ202aを通過した光が、そのマイクロレンズ202aの後ろ(図5において下方)に配列された画素群PXsでのみ受光され、隣のマイクロレンズ202aの後ろ(図5において下方)に配列された画素群PXsへ進入することが防止される。また、隔壁204が変形しなかったとしても、隔壁204がマイクロレンズアレイ202の面202dと接続している部分、および、隔壁204がイメージセンサ203と接続している部分が変形することにより、マイクロレンズ202aを通過した光が、その隣のマイクロレンズ202aの後ろ(図5において下方)に配列された画素群PXsへ進入することが防止される。
<VR動作>
 制御部208がVR動作時に実行する処理の流れについて、図6のフローチャートを参照して説明する。制御部208は、LFカメラ100に備わる不図示のVRスイッチがオン設定された場合に、図6による処理を起動させる。図6による処理を行うためのプログラムは、例えば制御部208内の不揮発性メモリに格納されている。
 図6のステップS10において、制御部208は、LFカメラ100の現在の姿勢を初期位置としてステップS20へ進む。ステップS20において、制御部208は、振れ検出部207から検出信号を入力してステップS30へ進む。
 ステップS30において、制御部208は、振れ検出部207からの検出信号に基づいて、前回算出した姿勢(図6の処理を起動して1回目の場合は、前回算出した姿勢の代わりに初期位置を用いる)と現在の姿勢との姿勢差を算出してステップS40へ進む。
 ステップS40において、制御部208は、姿勢差に基づき、LFカメラ100の揺動に起因するブレの影響(イメージセンサ203上における像の揺れ)を抑えるためのマイクロレンズアレイ202の駆動方向および駆動量を算出してステップS50へ進む。
 ステップS50において、制御部208はピエゾ素子駆動回路206へ指示を送り、4つのピエゾ素子205-1~205-4をそれぞれ、ステップS40において算出した駆動方向へ、算出した駆動量だけ駆動させる。
 例えば、イメージセンサ203(図1)に対してマイクロレンズアレイ202をY軸プラス方向へ並進移動させる場合、ピエゾ素子205(図2の205-1~205-4)を構成するピエゾ素子PZ2(図3)を、それぞれY軸プラス方向へ変位させる。これにより、マイクロレンズアレイ202がイメージセンサ203に対してY軸プラス方向へ移動する。
 ステップS60において、制御部208は、VR動作を終了するか否かを判定する。制御部208は、不図示のVRスイッチがオフ設定された場合にステップS60を肯定判定し、図6による処理を終了する。制御部208は、不図示のVRスイッチがオフ設定されない場合にはステップS60を否定判定し、ステップS20へ戻る。ステップS20へ戻った場合、制御部208は上述した処理を繰り返す。
<LFカメラの光学系>
 図7は、LFカメラ100の光学系を模式的に示す図である。撮像レンズ201は、被写体からの光をマイクロレンズアレイ202へ導く。各マイクロレンズ202aには、被写体の異なる部位からの光が入射される。マイクロレンズアレイ202へ入射された光は、マイクロレンズアレイ202を構成するマイクロレンズ202aによって複数に分割される。そして、各マイクロレンズ202aを通過した光はそれぞれ、対応するマイクロレンズ202aの後ろ(図7において右方)の所定位置に配列されたイメージセンサ203の画素群PXsに入射される。
 LFカメラ100では、各マイクロレンズ202aを通過した光が、そのマイクロレンズ202aの後ろに配列された画素群PXsによって複数に分割される。すなわち、画素群PXsを構成する各画素は、被写体の1つの部位からの光であって撮像レンズ201の異なる領域を通過した光をそれぞれ受光する。
 以上の構成により、被写体の異なる部位ごとに、被写体光が撮像レンズ201を通過した領域を示す光量分布である小画像が、マイクロレンズ202aの数だけ得られる。本実施形態では、このような小画像の集まりをLF画像と呼ぶ。
 上記実施形態のマイクロレンズアレイ202の厚みは、例えば150μmである。マイクロレンズ202aの外径は、例えば50μmである。1つのマイクロレンズ202aの後ろ(図7において右方)に配列される画素群PXsの画素数は、例えば数百である。画素群PXsの画素ピッチPは、例えば2μmである。ピエゾ素子205-1~205-4による1方向の最大変位は、例えば6μmである。マイクロレンズアレイ202とイメージセンサ203との空隙は、例えば10μmである。
 上述したLFカメラ100では、各マイクロレンズ202aの後ろ(図7において右方)に配列された複数の画素の位置によって、各画素への光の入射方向が定まる。つまり、マイクロレンズ202aと、その後ろ(図7において右方)のイメージセンサ203の各画素との位置関係が設計情報として既知であることから、マイクロレンズ202aを介して各画素に入射される光線の入射方向(方向情報)が求まる。このため、イメージセンサ203の各画素の画素信号は、所定の入射方向からの光の強度(光線情報)を表すことになる。
 本実施形態では、画素に入射される所定の方向からの光を光線と呼ぶことにする。
<再構築処理における有効範囲>
 一般に、LF画像は、そのデータを用いて画像の再構築処理が施される。再構築処理は、LF画像が有する上記光線情報と上記方向情報とに基づいた演算(光線を並べ替える演算)を行うことによって、任意のピント位置や視点での画像を生成する処理をいう。このような再構築処理は公知であるので、再構築処理についての詳細な説明は省略する。
 なお、再構築処理は、画像処理部210によってLFカメラ100内で行ってもよいし、記録媒体209に記録されたLF画像のデータをパーソナルコンピュータなどの外部機器へ送信し、外部機器に行わせてもよい。
 再構築処理において、LFカメラ100で取得されたLF画像のデータにVR動作中であったことを示すメタデータが付加されていた場合、再構築処理に用いる光線を制限する。すなわち、メタデータが付加されていた場合、マイクロレンズ202aの後ろに配列された画素群PXsで受光された光線情報の一部の情報を再構築処理に使用しない。図8は、マイクロレンズアレイ202の後ろに配列された画素群PXsを例示する図である。画像処理部210は、通常、各マイクロレンズ202aに対応する画素群PXsの各画素信号(光線情報)を使用して再構築処理を行う。画素群PXsは、範囲203b(網かけ部分)に存在している画素である。これに対し、LF画像のデータにメタデータが付加されていた場合、画像処理部210は、図9に示すように、図8の範囲203bよりも直径を縮めた範囲203c(網かけ部分)の各画素信号(光線情報)を使用して再構築処理を行う。なお、範囲203cは、例えば範囲203bの直径を約10%縮めたものである。
 画素群PXsにおいて、再構築処理に用いる範囲を制限する理由は以下の通りである。マイクロレンズアレイ202とイメージセンサ203との位置関係が変更された場合、範囲203c(網かけ部分)以外の範囲の画素の中には、光が到達しない画素が生じる。すなわち、範囲203c(網かけ部分)以外の範囲の画素の画素信号(光線情報)は信頼性が低い。そこで、画素群PXsの中心から離れている画素(範囲203c(網かけ部分)以外の範囲の画素)の画素信号(光線情報)を再構築処理から除外することで、マイクロレンズアレイ202とイメージセンサ203との位置関係が変更された場合における不適切な再構築処理を避けることができる。
<撮像部の製造方法>
 図10を参照してLFカメラ100に搭載される撮像部の組立手順について説明する。図10(a)に示す第1工程では、例えば作業者(ロボットでもよい)が、イメージセンサ203を準備する。作業者は、準備したイメージセンサ203の撮像面を図10(a)における上側にして、ベース部材である基部150へイメージセンサ203を実装する。
 なお、隔壁204(図4)の図示を省略しているが、イメージセンサ203において画素群PXsごとの所定位置に、隔壁204がそれぞれ設けられている。
 図10(b)に示す第2工程では、例えば作業者が、マイクロレンズアレイ202と、ピエゾ素子205(205-1~205-4)とを準備する。作業者は、ピエゾ素子205(205-1~205-4)の一端をそれぞれ、マイクロレンズアレイ202の四隅(図2参照)であって、マイクロレンズアレイ202のイメージセンサ203側となる面(図10(b)において下面)に接着する。
 図10(c)に示す第3工程では、例えば作業者が、基部150に実装されているイメージセンサ203の上から、メージセンサ203の画素群PXsにマイクロレンズ202aの位置を合わせて、ピエゾ素子205(205-1~205-4)が固着されているマイクロレンズアレイ202を実装する。作業者は、ピエゾ素子205(205-1~205-4)の他端をそれぞれ、基部150に接着する。これにより、撮像部が完成する。
 なお、上述した撮像部の組立手順は、適宜順番を入れ替えてもよい。例えば、基部150に対し、イメージセンサ203、ピエゾ素子205(205-1~205-4)、隔壁204をそれぞれ実装した上で、最後にマイクロレンズアレイ202を上から装着しても構わない。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)LFカメラ100の撮像部は、複数のマイクロレンズ202aが二次元上に配置されるマイクロレンズアレイ202と、マイクロレンズアレイ202を通過した光を光電変換するイメージセンサ203と、LFカメラ100の振れを示す信号に基づき、イメージセンサ203とマイクロレンズアレイ202との位置関係を変化させるピエゾ素子205-1~205-4とを備える。これにより、例えば撮像レンズ201とイメージセンサ203との位置関係を変化させる場合に比べて、小さな構成によってVR動作を実現し得る。
(2)ピエゾ素子205-1~205-4は、マイクロレンズアレイ202のイメージセンサ203側の面202dに設けられ、イメージセンサ203に対するマイクロレンズアレイ202の位置を変化させる。マイクロレンズアレイ202のみを移動させればよいので、ボイスコイルモーター等に比べて小さなピエゾ素子205-1~205-4で移動させることができる。
(3)ピエゾ素子205-1~205-4は、マイクロレンズアレイ202の四隅において、マイクロレンズアレイ202のイメージセンサ203側の面202dに設けたので、マイクロレンズアレイ202の側部に設ける場合と比べて、図2においてX軸方向およびY軸方向のサイズを小さく抑えることができる。
(4)ピエゾ素子205-1~205-4は、マイクロレンズアレイ202に対して、少なくとも複数のマイクロレンズ202aが配置される二次元上の交差する2軸(X軸およびY軸)方向への並進移動と、2軸に直交するZ軸の周りの回転移動とをさせる。これにより、手ブレによる影響の抑制に好適なVR動作を実現し得る。
 例えば、Z軸方向の並進移動をするピエゾ素子PZ1(図3)を省略する場合、図1におけるZ軸方向、すなわち撮像部の厚みを減らすことができる。
(5)圧電素子であるピエゾ素子205-1~205-4でマイクロレンズアレイ202を移動させるので、例えば、ボイスコイルモーターを使用する場合に必要とされる停止機構が不要であり、シンプルな構成にすることができる。
(6)変位増幅機能を有するピエゾ素子205-1~205-4を用いる場合、マイクロレンズアレイ202の移動量を増加させることができる。VR動作に好適な移動量は、例えば、2P~3P(2画素ピッチから3画素ピッチ)程度である。
(7)LFカメラ100のイメージセンサ203は、受光した光を光電変換する多数の画素を有し、LFカメラ100のマイクロレンズアレイ202は、1つのマイクロレンズ202aを通過した光を複数の画素が受光するように配置される。マイクロレンズアレイ202を移動させるVR動作によって、LF画像の撮像時における手ブレの影響を適切に抑制し得る。
(8)マイクロレンズアレイ202とイメージセンサ203との間に設けられ、1つのマイクロレンズ202aを通過した光を受光する複数の画素(画素群PXs)へ、他のマイクロレンズ202aを通過した光が進入するのを防ぐ隔壁204を備える。隔壁204は、イメージセンサ203とマイクロレンズアレイ202との位置関係が変化した場合にも他のマイクロレンズ202aを通過した光の進入を防ぐので、LF画像の劣化を防ぐことができる。
(9)隔壁204は、マイクロレンズアレイ202側の一端がマイクロレンズアレイ202に接続され、イメージセンサ203側の端がイメージセンサ203に接続されるので、イメージセンサ203とマイクロレンズアレイ202との位置関係が変化した場合にも、確実に、他のマイクロレンズ202aを通過した光が進入するのを防ぐことができる。
(10)隔壁202を弾性部材によって形成したので、変化したイメージセンサ203とマイクロレンズアレイ202との位置関係に応じて変形し、確実に、他のマイクロレンズ202aを通過した光が進入するのを防ぐことができる。
(11)LFカメラ100は、複数の画素からの信号に対して所定の信号処理を施して画像を再構築する信号処理に用いる信号数を制限するか否かを示すメタデータを生成する制御部208を備える。これにより、LF画像に対して再構築処理を行う外部機器がメタデータをチェックすることにより、不適切な再構築処理を避けることが可能になる。
(12)制御部208は、イメージセンサ203とマイクロレンズアレイ202との位置関係が変化する状態でイメージセンサ203が光電変換を行う場合に、上記メタデータを生成する。これにより、例えば外部機器が、VR動作中に取得されたLF画像に対する再構築処理を、非VR動作中に取得されたLF画像に対する再構築処理と異ならせるなど、マイクロレンズアレイ202とイメージセンサ203との位置関係が変化した場合における対処が可能となる。
(13)制御部208は、VR動作中に取得されたLF画像に対する再構築処理に利用する画素信号を制限するためのメタデータを生成する。これにより、外部機器において、信頼性の低い画素信号を用いた不適切な再構築処理を避けることができる。
 実施の形態として図1のライト・フィールドカメラを用いて説明したが、全ての構成要素が本発明の必須の構成要素であるとは限らない。例えば、本発明は、マイクロレンズアレイ202と、マイクロレンズアレイ202を通過した光を光電変換するイメージセンサ203と、イメージセンサ203とマイクロレンズアレイ202との位置関係を変化させる駆動部とから構成することができる。その場合であっても、ブレを抑制することができる。また、例えば、本発明は、1つのマイクロレンズを通過した光を複数の画素が受光するように配置されるマイクロレンズアレイ202と、マイクロレンズアレイ202を通過した光を光電変換するイメージセンサ203と、イメージセンサ203とマイクロレンズアレイ202との位置関係を変化させる駆動部のみから構成することができる。その場合であっても、LF画像の撮像時におけるブレを抑制することができる。また、例えば、本発明は、1つのマイクロレンズを通過した光を複数の画素が受光するように配置されるマイクロレンズアレイ202と、マイクロレンズアレイ202を通過した光を光電変換するイメージセンサ203と、マイクロレンズアレイ202とイメージセンサ203との間に設けられ、1つのマイクロレンズを通過した光を受光する複数の画素へ、他のマイクロレンズを通過した光が進入するのを防ぐ隔壁と、イメージセンサ203とマイクロレンズアレイ202との位置関係を変化させる駆動部のみから構成することができる。その場合であっても、他のマイクロレンズを通過した光が進入するのを防ぐことができる。
 また、次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上記実施形態(図4、図5)においては、隔壁204の一方の端をマイクロレンズアレイ202の面202dと接続し、隔壁204の他方の端をイメージセンサ203の面と接続する例を説明した。この代わりに、図11(a)に例示するように、隔壁204の一端のみをマイクロレンズアレイ202の面202dと接続し、隔壁204の他端をイメージセンサ203から離間させておいてもよい。反対に、隔壁204の一端のみをイメージセンサ203と接続し、隔壁204の他端をマイクロレンズアレイ202から離間させておいてもよい。
 また、図11(b)に例示するように、隔壁204の両端をマイクロレンズアレイ202の面202dおよびイメージセンサ203の面とそれぞれ接続するとともに、隔壁204の一部を弾性部材によって構成しても良い。例えば、隔壁204のうちイメージセンサ203(またはマイクロレンズアレイ202)と接続する接点部204bのみを弾性部材によって構成し、隔壁204の接点部以外の部分204aを非弾性部材によって構成する。
 さらに、弾性変形によって伸縮する弾性部材に代えて、例えば蛇腹のような伸縮機構を備える伸縮部材を用いて隔壁の一部または全部を構成してもよい。
(変形例2)
<隔壁の位置>
 上記実施形態(図4、図5)においては、隔壁204をマイクロレンズアレイ202とイメージセンサ203との間に設ける例を説明したが、隔壁をマイクロレンズアレイ202の前(図4において上方の撮像レンズ201側)に設けてもよいし、隔壁をマイクロレンズアレイ202内に埋め込んだ構成としてもよい。
(変形例3)
<ピエゾ素子の取り付け位置>
 上記実施形態(図2)においては、ピエゾ素子205(205-1~205-4)をマイクロレンズアレイ202の後ろ面の四隅(図2)にそれぞれ設ける例を説明した。この代わりに、図12(a)に例示するように、ピエゾ素子205(205-1~205-4)をマイクロレンズアレイ202の後ろ面の各辺に、それぞれ設ける構成としてもよい。このとき、各辺の中央部、各辺の端から3分の1の箇所など、任意の位置に構成することができる。
 また、図12(b)に例示するように、ピエゾ素子205(205-1~205-4)を、マイクロレンズアレイ202の側部において(側部の四隅または側部の各辺において)それぞれ設ける構成としてもよい。
 さらにまた、図12(c)に例示するように、ピエゾ素子205の一部(例えば205-1、205-2)をマイクロレンズアレイ202の側部に設け、残りのピエゾ素子205(例えば205-3、205-4)をマイクロレンズアレイ202の後ろ面に設ける構成にしてもよい。
 このように、ピエゾ素子205(205-1~205-4)は、マイクロレンズアレイ202の側部または後ろの面において、マイクロレンズアレイ202の四隅または四辺において取り付け位置を適宜変更してよい。
 変形例3によれば、ピエゾ素子205(205-1~205-4)を、マイクロレンズアレイ202の四辺において、マイクロレンズアレイ202のイメージセンサ203側またはマイクロレンズアレイ202の側部に設けるので、図10(c)のような撮像部を収容するスペースに応じて適切な位置へ、ピエゾ素子205(205-1~205-4)を配置することができる。
(変形例4)
<薄型のマルチレンズカメラ>
 以上の説明では、図1に例示したように、被写体光が撮像レンズ201を介して撮像部へ導かれるLFカメラを説明した。LFカメラは、これに限定されず、撮像レンズ201を省略して、マイクロレンズアレイ202と、イメージセンサ203と、ピエゾ素子205とからなるLFカメラとすることができる。撮像レンズ201を省略する場合、カードのような薄型のLFカメラが得られる。
 図13は、薄型のLFカメラ300の外観の一例を示す図である。LFカメラ300は、例えば中央部301と周辺部302とから構成されている。中央部301には、マイクロレンズアレイ202と、イメージセンサ203と、ピエゾ素子205とを含む撮像部(図14参照)が配置される。一方、周辺部302には、破線で記載するように 、例えば電池302a、制御回路302b、振れ検出部302c、通信部302dなどが配置される。電池302aとしては、 一例として、充電可能な二次電池や、十分な電荷蓄積容量を備えたコンデンサなどが使用される。
 振れ検出部302cとしては、図1にて既述した振れ検出部207と同様の機能を持ち、薄いものが使用される。制御回路302bとしては、図1にて既述したピエゾ駆動回路206および制御部208と同様の機能を持ち、薄いものが使用される。通信部302dは、イメージセンサで撮像した画像信号を、無線通信により外部受信機(例えば、画像の記録を行う外部記録媒体や、画像の表示機能や画像信号のメモリ機能を備えたスマートフォン等の電子機器、等)に対して送信する機能を有する。
 なお制御回路302bに、図1にて既述した画像処理部210の機能を設け、画像処理した信号を外部受信機に送信するように構成しても良い。なお、周辺部302に配置される電池302aは必須ではない。例えば、公知の電磁誘導技術を用いることにより、電源を持たなくてもLFカメラ300が動作できるように構成してもよい。
 図14は、図13のLFカメラ300の中央部301をY軸に沿って切断した場合の断面図の一例を示す。図14において、ベース部材である基部150 へイメージセンサ203が固定される。また、ピエゾ素子205の一端が基部150へ固定され、ピエゾ素子205の他端がマイクロレンズアレイ202と固定され、マイクロレンズアレイ202を支持する。
 LFカメラ300において、図14に記述したマイクロレンズアレイ202と、イメージセンサ203と、ピエゾ素子205とを含む撮像部の動作は、上述したLFカメラ100の動作と同様である。
 薄型のマルチレンズカメラに係る上記変形例4の実施形態によれば、次の作用効果が得られる。
(1)LFカメラ300は、薄型のために被装着物(例えばヘルメット等)に固定しても邪魔にならない。
(2)LFカメラ300は、薄型のために曲げることができ、曲面を有する被装着物(例えば電柱等)に接着することができる。
(3)LFカメラ300は、薄型のために各種カードのように財布等に収納することができる。
(4)LFカメラ300は、薄型のために被装着物(例えば車やヘリコプタのボディ等)に固定した場合に、空気抵抗を受けない。
(5)LFカメラ300、または、LFカメラ300の中央部301(撮像部)を物体に組込む場合に、物体のデザインを変更することなく組込むことができる。
(6)LFカメラ300、または、LFカメラ300の中央部301(撮像部)を物体に組込む場合に、物体が肉薄の場合であっても組込むことができる。
 図15から図17を参照して、VR動作中に画素群PXsに入射する光について説明する。
 図15(a)から図15(c)を参照して、隔壁204の一方の端がマイクロレンズアレイ202の面202dと接続され、隔壁204の他方の端がイメージセンサ203の被写体側の面203aから離間している場合について説明する。図15(a)は、VR動作を開始する前のマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図15(b)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印401で示すように図15における右側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図15(c)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印402で示すように図15における左側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。
 図15(a)に示すように、VR動作を開始する前は、マイクロレンズ202aを通過した光は、対応する画素群PXsに入射する。しかし、図15(b)、図15(c)に示すように、VR動作によってマイクロレンズアレイ202とイメージセンサ203との位置関係が変更されると、隔壁204がマイクロレンズアレイ202とともに移動するので、隔壁204の他方の端とイメージセンサ203との位置関係が変更される。そのため、画素群PXsの複数の画素のうち、周辺側に位置する画素203dや画素203eに入射する光が隔壁204によって妨げられるおそれがある。
 したがって、隔壁204の一方の端がマイクロレンズアレイ202の面202dと接続され、隔壁204の他方の端がイメージセンサ203の被写体側の面203aから離間している場合には、上述したメタデータを生成するように制御部208が構成されることが望ましい。
 図16(a)から図16(c)を参照して、隔壁204の一方の端がマイクロレンズアレイ202の面202dと接続され、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されている場合について説明する。図16(a)は、VR動作を開始する前のマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図16(b)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印401で示すように図16における右側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図16(c)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印402で示すように図16における左側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。
 図16(a)に示すように、VR動作を開始する前は、マイクロレンズ202aを通過した光は、対応する画素群PXsに入射する。また、図16(b)、図16(c)に示すように、VR動作によってマイクロレンズアレイ202とイメージセンサ203との位置関係が変更されると、隔壁204の一方の端がマイクロレンズアレイ202とともに移動する。しかし、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されているので、VR動作によってマイクロレンズアレイ202とイメージセンサ203との位置関係が変更されても、隔壁204の他方の端とイメージセンサ203との位置関係は変わらない。そのため、画素群PXsの複数の画素のうち、周辺側に位置する画素に入射する光が隔壁204によって妨げられるおそれは低い。
 したがって、隔壁204の一方の端がマイクロレンズアレイ202の面202dと接続され、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されている場合には、制御部208は、上述したメタデータを生成しなくてもよい。
 図17(a)から図17(c)を参照して、隔壁204の一方の端がマイクロレンズアレイ202の面202dから離間し、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されている場合について説明する。図17(a)は、VR動作を開始する前のマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図17(b)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印401で示すように図17における右側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。図17(c)は、VR動作によってマイクロレンズアレイ202がイメージセンサ203に対して矢印402で示すように図17における左側に移動したときのマイクロレンズアレイ202と隔壁204とイメージセンサ203との位置関係を模式的に示す図である。
 図17(a)に示すように、VR動作を開始する前は、マイクロレンズ202aを通過した光は、対応する画素群PXsに入射する。また、図17(b)、図17(c)に示すように、VR動作によってマイクロレンズアレイ202とイメージセンサ203との位置関係が変更されても、隔壁204の一方の端がマイクロレンズアレイ202の面202dから離間し、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されているので、隔壁204とイメージセンサ203との位置関係は変わらない。そのため、画素群PXsの複数の画素のうち、周辺側に位置する画素に入射する光が隔壁204によって妨げられるおそれはない。
 したがって、隔壁204の一方の端がマイクロレンズアレイ202の面202dから離間し、隔壁204の他方の端がイメージセンサ203の被写体側の面203aと接続されている場合には、制御部208は、上述したメタデータを生成しなくてもよい。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2015年第68875号(2015年3月30日出願)
100、300…LFカメラ
150…基部
201…撮像レンズ
202…マイクロレンズアレイ
202a…マイクロレンズ
203…イメージセンサ
204…隔壁
205(205-1~205-4、PZ1~PZ3)…ピエゾ素子
206…ピエゾ素子駆動回路
207…振れ検出部
208…制御部
209…記録媒体
210…画像処理部
PXs…画素群
 

Claims (20)

  1.  複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、
     複数の画素を含む画素群を複数有し、前記マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、
     前記画素群で受光する像のブレを防止するために、前記撮像センサと前記マイクロレンズアレイとの位置関係を変化させる駆動部と、
     を備える撮像装置。
  2.  請求項1に記載の撮像装置において、
     前記駆動部は、前記撮像装置のブレを示す信号に基づき、前記撮像センサと前記マイクロレンズアレイとの位置関係を変化させる撮像装置。
  3.  請求項1または2に記載の撮像装置において、
     前記駆動部は、前記マイクロレンズアレイの前記撮像センサに対向する部分と前記マイクロレンズアレイの側部との少なくとも一方に設けられ、前記撮像センサに対する前記マイクロレンズアレイの位置を変化させる、
     撮像装置。
  4.  請求項3に記載の撮像装置において、
     前記駆動部は、前記マイクロレンズアレイの四隅において、前記マイクロレンズアレイの前記撮像センサに対向する部分または前記マイクロレンズアレイの側部に設けられる、
     撮像装置。
  5.  請求項3に記載の撮像装置において、
     前記駆動部は、前記マイクロレンズアレイの四辺において、前記マイクロレンズアレイの前記撮像センサに対向する部分または前記マイクロレンズアレイの側部に設けられる、
     撮像装置。
  6.  請求項1から5のいずれか一項に記載の撮像装置において、
     前記駆動部は、前記マイクロレンズアレイに対して、少なくとも前記複数のマイクロレンズが配置される二次元上の交差する2軸方向への並進移動と、前記2軸に直交する軸の周りの回転移動とをさせる、
     撮像装置。
  7.  請求項1から6のいずれか一項に記載の撮像装置において、
     前記駆動部は圧電素子を含む、
     撮像装置。
  8.  請求項7に記載の撮像装置において、
     前記圧電素子は、変位増幅機能を有する、
     撮像装置。
  9.  請求項1から8のいずれか一項に記載の撮像装置において、
     前記マイクロレンズアレイと前記撮像センサとの間に設けられ、1つのマイクロレンズを通過した光を受光する前記画素群へ、他のマイクロレンズを通過した光が進入することを妨げる隔壁を備える、
     撮像装置。
  10.  請求項9に記載の撮像装置において、
     前記隔壁は、少なくとも前記隔壁の前記マイクロレンズアレイに対向する部分が前記マイクロレンズアレイに接続されるか、前記隔壁の前記撮像センサに対向する部分が前記撮像センサに接続される、
     撮像装置。
  11.  請求項9に記載の撮像装置において、
     前記隔壁は、前記隔壁と前記マイクロレンズアレイ、または前記隔壁と前記撮像センサが離間するように配置される、
     撮像装置。
  12.  請求項9に記載の撮像装置において、
     前記隔壁は、前記隔壁の前記マイクロレンズアレイに対向する部分が前記マイクロレンズアレイに接続され、前記隔壁の前記撮像センサに対向する部分が前記撮像センサに接続される、
     撮像装置。
  13.  請求項12に記載の撮像装置において、
     前記隔壁は、少なくとも一部が弾性部材によって形成される、
     撮像装置。
  14.  請求項1から13のいずれか一項に記載の撮像装置において、
     前記撮像センサと前記マイクロレンズアレイとの位置関係が変化するとき、前記画素群からの信号に対する制限を示す情報を生成する情報生成部を備える、
     撮像装置。
  15.  請求項14に記載の撮像装置において、
     前記情報生成部は、前記撮像センサと前記マイクロレンズアレイとの位置関係が変化する状態で前記撮像センサが光電変換を行う場合に、信号処理に用いる信号数を制限することを示す付加情報を生成する、
     撮像装置。
  16.  請求項15に記載の撮像装置において、
     前記情報生成部は、1つのマイクロレンズを通過した光を受光する前記画素群のうち、端部の画素からの信号を除外することによって前記信号数を制限することを示す付加情報を生成する、
     撮像装置。
  17.  請求項1から16のいずれか一項に記載の撮像装置を備えるマルチレンズカメラ。
  18.  複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイを準備することと、
     複数の画素を含む画素群を複数有し、前記マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサを準備することと、
     前記画素群で受光する像のブレを防止するために、前記撮像センサと前記マイクロレンズアレイとの位置関係を変化させる駆動部を準備することと、
     前記マイクロレンズアレイと、前記撮像センサと、前記駆動部とを組み立てることと、
     を有する撮像装置の製造方法。
  19.  複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、
     複数の画素を含む画素群を複数有し、前記マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、
     前記マイクロレンズアレイと前記撮像センサとの間に設けられ、一つのマイクロレンズを通過した光を受光する前記画素群へ他のマイクロレンズを通過した光が進入することを妨げる隔壁と、を備え、
     前記隔壁は、前記撮像センサと前記マイクロレンズアレイとの位置関係が変化しても、前記一つのマイクロレンズを通過した光を受光する前記画素群へ他のマイクロレンズを通過した光が進入することを妨げるよう構成される撮像装置。
  20.  複数のマイクロレンズが二次元上に配置されるマイクロレンズアレイと、
     複数の画素を含む画素群を複数有し、前記マイクロレンズアレイの各マイクロレンズを通過した光を各画素群でそれぞれ受光する撮像センサと、
     前記マイクロレンズアレイと前記撮像センサとの間に設けられ、一つのマイクロレンズを通過した光を受光する前記画素群へ他のマイクロレンズを通過した光が進入することを妨げる隔壁と、
     前記撮像センサと前記マイクロレンズアレイとの位置関係が変化するとき、前記画素群からの信号に対する制限を示す情報を生成する情報生成部と、
     を備える撮像装置。
PCT/JP2016/060138 2015-03-30 2016-03-29 撮像装置、マルチレンズカメラおよび撮像装置の製造方法 WO2016158957A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680020241.XA CN107407852A (zh) 2015-03-30 2016-03-29 拍摄装置、多透镜相机及拍摄装置的制造方法
US15/562,687 US20180095275A1 (en) 2015-03-30 2016-03-29 Image-capturing device, multi-lens camera, and method for manufacturing image-capturing device
JP2017510028A JPWO2016158957A1 (ja) 2015-03-30 2016-03-29 撮像装置、マルチレンズカメラおよび撮像装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068875 2015-03-30
JP2015-068875 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158957A1 true WO2016158957A1 (ja) 2016-10-06

Family

ID=57007181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060138 WO2016158957A1 (ja) 2015-03-30 2016-03-29 撮像装置、マルチレンズカメラおよび撮像装置の製造方法

Country Status (4)

Country Link
US (1) US20180095275A1 (ja)
JP (1) JPWO2016158957A1 (ja)
CN (1) CN107407852A (ja)
WO (1) WO2016158957A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488148B (zh) * 2016-11-01 2019-09-17 首都师范大学 一种超分辨率图像传感器及其构造方法
CN109031668B (zh) * 2018-09-18 2020-12-01 京东方科技集团股份有限公司 一种虚拟现实装置及其焦距智能调节方法
CN109781261B (zh) * 2018-12-31 2021-03-02 苏州大学 紧凑型折反式无热化成像光谱仪
CN110505384B (zh) * 2019-08-29 2021-05-14 Oppo广东移动通信有限公司 成像系统、终端和图像获取方法
CN112630932B (zh) * 2019-10-09 2023-05-26 英属开曼群岛商音飞光电科技股份有限公司 摩尔纹成像装置
CN112995452B (zh) * 2019-12-17 2022-11-11 英属开曼群岛商音飞光电科技股份有限公司 摩尔纹影像处理装置
WO2021223223A1 (zh) * 2020-05-08 2021-11-11 南昌欧菲光电技术有限公司 防抖组件、摄像模组及电子设备
CN113946002A (zh) * 2020-07-17 2022-01-18 英属开曼群岛商音飞光电科技股份有限公司 摩尔纹成像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095435A (ja) * 2009-10-29 2011-05-12 Sony Corp 光学部材駆動装置、光学部材鏡筒、および撮像装置
JP2011182237A (ja) * 2010-03-02 2011-09-15 Osaka Univ 複眼撮像装置及び該装置における画像処理方法
WO2013069292A1 (ja) * 2011-11-10 2013-05-16 パナソニック株式会社 画ブレ補正装置
WO2015005056A1 (ja) * 2013-07-11 2015-01-15 コニカミノルタ株式会社 撮像装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057937B2 (ja) * 2003-03-25 2008-03-05 富士フイルム株式会社 露光装置
CN100534140C (zh) * 2003-10-22 2009-08-26 松下电器产业株式会社 成像传感器的制造方法
US7355793B2 (en) * 2004-05-19 2008-04-08 The Regents Of The University Of California Optical system applicable to improving the dynamic range of Shack-Hartmann sensors
US20060055811A1 (en) * 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
WO2006101064A1 (ja) * 2005-03-24 2006-09-28 Matsushita Electric Industrial Co., Ltd. 撮像装置及びそれに用いられるレンズアレイ
JP4147273B2 (ja) * 2006-01-20 2008-09-10 松下電器産業株式会社 複眼方式のカメラモジュール及びその製造方法
JP2007295140A (ja) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd 撮像装置
JP4264569B2 (ja) * 2007-01-09 2009-05-20 ソニー株式会社 撮像装置
CN101548154B (zh) * 2007-07-23 2012-05-02 松下电器产业株式会社 具有测距功能的复眼式摄像装置
CN101251706A (zh) * 2008-03-24 2008-08-27 香港应用科技研究院有限公司 一种光学模组、照相机及移动终端设备
US8212912B2 (en) * 2008-04-10 2012-07-03 Panasonic Corporation Imaging device, imaging system, and imaging method
JP5105482B2 (ja) * 2008-09-01 2012-12-26 船井電機株式会社 光学的条件設計方法及び複眼撮像装置
EP2502115A4 (en) * 2009-11-20 2013-11-06 Pelican Imaging Corp RECORDING AND PROCESSING IMAGES THROUGH A MONOLITHIC CAMERA ARRAY WITH HETEROGENIC IMAGE CONVERTER
JP5218611B2 (ja) * 2011-07-19 2013-06-26 株式会社ニコン 画像合成方法及び撮像装置
ES2442178B2 (es) * 2011-10-20 2014-07-30 Asociacion Industrial De Optica, Color E Imagen - Aido Cámara de fondo de ojo multi-perspectiva.
EP2858342A4 (en) * 2012-05-28 2016-04-06 Nikon Corp IMAGING DEVICE
US9083873B1 (en) * 2013-03-28 2015-07-14 Google Inc. Devices and methods for providing multi-aperture lens functionality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095435A (ja) * 2009-10-29 2011-05-12 Sony Corp 光学部材駆動装置、光学部材鏡筒、および撮像装置
JP2011182237A (ja) * 2010-03-02 2011-09-15 Osaka Univ 複眼撮像装置及び該装置における画像処理方法
WO2013069292A1 (ja) * 2011-11-10 2013-05-16 パナソニック株式会社 画ブレ補正装置
WO2015005056A1 (ja) * 2013-07-11 2015-01-15 コニカミノルタ株式会社 撮像装置

Also Published As

Publication number Publication date
US20180095275A1 (en) 2018-04-05
CN107407852A (zh) 2017-11-28
JPWO2016158957A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2016158957A1 (ja) 撮像装置、マルチレンズカメラおよび撮像装置の製造方法
JP6207963B2 (ja) 屈曲撮像光学系
TWI556054B (zh) Anti-resonance method of optical unit with vibration correction function, and optical unit with vibration correction function
CN112805612B (zh) 致动器组件及其控制方法
CN110235041B (zh) 相机模块和电子装置
JP5581813B2 (ja) レンズ駆動装置
JP2008172347A (ja) 撮像装置
CN101842728A (zh) 镜头镜筒以及透镜支撑构造
JP5909877B2 (ja) 撮像装置
JP2006235020A (ja) レンズ鏡筒
JP2009271354A5 (ja)
US20230350152A1 (en) Imaging lens system, image capturing unit and electronic device
CN104834151B (zh) 抖动修正装置、透镜单元以及摄像装置
JP2019113637A (ja) カメラモジュール
JP5044209B2 (ja) レンズ駆動装置
US20140333725A1 (en) 3-dimensional camera module and method for auto focusing the same
JP5843523B2 (ja) レンズ鏡筒、及び撮像装置
JP2009282375A (ja) レンズ駆動装置及びカメラモジュール並びに携帯端末
JP5173961B2 (ja) 光学機器
EP3690543B1 (en) Driving device, image blur correction device, and image pickup apparatus including image blur correction device
JP2007058156A (ja) カメラ
JP2011033981A5 (ja)
JP4774859B2 (ja) 沈胴ズーム式レンズ鏡筒
JP2006309005A (ja) 光学機器
JP2008076612A (ja) ブレ補正装置及び光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510028

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562687

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772838

Country of ref document: EP

Kind code of ref document: A1