WO2021223223A1 - 防抖组件、摄像模组及电子设备 - Google Patents

防抖组件、摄像模组及电子设备 Download PDF

Info

Publication number
WO2021223223A1
WO2021223223A1 PCT/CN2020/089222 CN2020089222W WO2021223223A1 WO 2021223223 A1 WO2021223223 A1 WO 2021223223A1 CN 2020089222 W CN2020089222 W CN 2020089222W WO 2021223223 A1 WO2021223223 A1 WO 2021223223A1
Authority
WO
WIPO (PCT)
Prior art keywords
shake
microlens
micro lens
lens
filter
Prior art date
Application number
PCT/CN2020/089222
Other languages
English (en)
French (fr)
Inventor
简坤胜
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2020/089222 priority Critical patent/WO2021223223A1/zh
Publication of WO2021223223A1 publication Critical patent/WO2021223223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • This application relates to the field of camera technology, and in particular to an anti-shake component, camera module, and electronic equipment.
  • the camera can use integrated optical image stabilizer (OIS), electronic anti-shake (Electronic anti-shake, EIS) and other technologies to reduce the impact of camera shake on imaging clarity.
  • OIS optical image stabilizer
  • EIS electronic anti-shake
  • the traditional camera anti-shake system has the problem of low reliability.
  • the present application provides a camera module and electronic equipment to solve the problem of low reliability of the camera anti-shake system in the prior art.
  • the present application provides an anti-shake component, the anti-shake component is installed on a fixed frame, the fixed frame is provided with an accommodating cavity, and the anti-shake component includes a first driving part, a microlens filter holder, and The micro lens filter is arranged in the micro lens filter holder, the micro lens filter holder is movably arranged in the receiving cavity along a direction perpendicular to the optical axis, and the micro lens filter includes a micro lens A lens filter body and a micro lens array, the micro lens array is provided on at least one side of the micro lens filter body perpendicular to the optical axis, and the first driving part is at least partially located in the micro lens filter On the lens holder, the first driving part can drive the microlens filter holder to move in a direction perpendicular to the optical axis in the receiving cavity, thereby driving the microlens filter to move, so that the lens can pass through the lens.
  • the emitted light enters the micro lens array, it is refracted to
  • the microlens array when the electronic device is jittered and the image optical path is shifted and blurred, the microlens array can be moved to compensate for the shift of the optical path to compensate for the jitter.
  • This setting forms a new shake compensation mode, and compared with the traditional moving lens to realize the shake compensation setting, it can effectively improve the traditional shake mode due to the heavy lens, which leads to the large size and high power of the motor required to move the lens.
  • the problem of power consumption can effectively perform jitter compensation, improve the reliability of camera modules using microlens arrays, and have strong practicability and a wide range of applications.
  • the micro lens array is located on the object side of the micro lens filter body, that is, of the two surfaces of the micro lens filter body perpendicular to the optical axis, only those facing the lens A micro lens array is laid on one surface, so that the micro lens filter as a whole can refract light.
  • the microlens array is located on the object side and the image side of the microlens filter body, that is, the two surfaces of the microlens filter body perpendicular to the optical axis are both laid with The micro lens array, so that the micro lens filter as a whole can have the function of refracting light.
  • the surface of the micro lens array on the object side facing away from the micro lens filter body is coated with an infrared cut-off film, and the micro lens array on the image side An anti-reflection coating is plated on the surface of the micro lens filter body that is away from the body. .
  • the infrared cut-off film can transmit visible light, cut off infrared light, and play a blocking role.
  • the anti-reflection film can increase the transmittance of light and act as an anti-reflection function, so that the overall microlens filter can filter out The effect of infrared light and trimming the incoming light. Therefore, the micro lens filter has the dual performance of filtering light and refracting light, can diversify the use performance of the micro lens filter, has strong practicability, is beneficial to be applied to more use scenarios, and has a wide range of applications.
  • the microlens array includes a plurality of microlenses arranged in an array, and the shape of the surface of each microlens which is in contact with the microlens filter body includes hexagon, rectangle and Round.
  • the microlenses arranged in an array can be evenly laid on the surface of the microlens filter body, so as to ensure that the light emitted through the lens can penetrate the microlens and enter the microlens filter body, so that The light path shifts due to jitter, and the shift of the light path can also be compensated under the cooperation of the moving microlens filter and the refraction of the microlens, so as to achieve anti-shake.
  • the first driving part includes an anti-shake coil and an anti-shake magnet
  • the anti-shake coil is arranged on the microlens filter holder
  • the anti-shake magnet is arranged on the fixing frame. And it is arranged opposite to the anti-shake coil.
  • the anti-shake coil and the anti-shake magnet are arranged oppositely and a gap is formed between them.
  • the gap can make a certain relative separation distance between them, so that the anti-shake coil and the anti-shake magnet can pass through the magnetic field.
  • the interaction effectively drives the micro lens filter holder to move along the optical axis.
  • the anti-shake coil and the anti-shake magnet are not in contact with each other, but there is a radial distance, so that when the micro lens filter holder moves along the optical axis, there is a gap between the micro lens filter holder and the fixed frame.
  • the friction resistance is almost zero, effectively reducing energy consumption.
  • the inner side wall of the accommodating cavity is protrudingly provided with a base, the base is provided with a flexible circuit board, and the first driving part includes a memory metal piece, and the memory metal piece is connected to the Between the flexible circuit board and the micro lens filter holder.
  • the memory metal piece has the characteristic of expanding and contracting to a certain extent after being energized, and also has the characteristic that its size can be changed with the change of the energized current or voltage, so that the memory metal piece can realize the filtering of the microlens.
  • the support and fixation of the light sheet holder can also realize the function of the memory metal piece to drive the micro lens filter holder to move on a plane perpendicular to the optical axis, thereby realizing the translational anti-shake of the camera module. Large jitter compensation range, and the microlens filter holder can ensure the stability of the optical axis when it is shifted. This setting makes the structure of the camera module simple and the imaging effect is excellent.
  • the first driving part further includes an anti-shake elastic sheet, and the anti-shake elastic sheet is connected between the fixing frame and the microlens filter holder.
  • the anti-shake shrapnel can play a limiting role after the micro lens filter holder moves relative to the fixed frame to limit the moving range of the micro lens filter holder. In addition, it can also play a role after stopping the current input to the anti-shake coil. Reset function to provide restoring force for the micro lens filter holder to return to the original position.
  • the angle range of the refraction angle of the refraction is in the range of 0°-15°, so as to meet the compensation requirements of different degrees of jitter, with strong flexibility and wide application range.
  • the deviation range of the center line of the microlens filter from the optical axis is within a range of 0um to 200um. That is, the micro lens filter can be driven to move in the direction perpendicular to the optical axis in the range of 0um to 200um.
  • the compensation range of this translational compensation is large, which can effectively perform jitter compensation, which is beneficial to Better realize the optical image stabilization of the camera module.
  • the present application also provides a camera module, the camera module includes a fixing frame, a focusing assembly and the anti-shake assembly as described above, the fixing frame is provided with a receiving cavity, and the focusing assembly includes A lens carrier carrying a lens and a second driving part, the lens carrier being movably arranged in the receiving cavity along the direction of the optical axis and located above the micro lens filter of the focusing assembly, the second driving part Located on the fixing frame and the lens carrier, the second driving part can drive the lens carrier to move in the direction of the optical axis in the receiving cavity to realize automatic focusing.
  • the lens carrier can be a hollow cylindrical or prismatic structure, which has an installation through hole penetrating through itself, and the installation through hole is used to install the lens, so that the lens carrier can be moved when the lens carrier is driven by the second driving part. , Can drive the lens to move together to achieve auto focus along the optical axis.
  • a reliable driving force requirement can be provided for the up and down movement of the lens carrier in the receiving cavity along the optical axis direction, so that the lens carrier can move along the optical axis direction in the receiving cavity without additional complicated structure. It is mobile, practical and reliable.
  • the second driving unit includes a focus coil and a focus magnet, the focus coil is disposed on the lens carrier, and the focus magnet is disposed on the fixing frame and is disposed opposite to the focus coil .
  • the focusing coil and the focusing magnet are arranged oppositely and a gap is formed between them.
  • the gap can make a certain relative separation distance between them, so that the focusing coil and the focusing magnet can be effectively interacted with by the magnetic field.
  • the lens carrier is driven to move along the optical axis.
  • the focus coil and the focus magnet are not in contact with each other, but there is a radial distance, so that when the lens carrier moves along the optical axis, the frictional resistance between the lens carrier and the fixing frame is almost zero, which effectively reduces Energy consumption.
  • the second driving part further includes a focusing elastic piece, and the focusing elastic piece and the focusing magnet are spaced apart and connected between the fixing frame and the lens carrier.
  • the focus shrapnel can act as a limiter to limit the movement range of the lens carrier after the lens carrier moves relative to the fixing frame. In addition, it can also reset the lens carrier after stopping the current input to the focus coil to restore the lens carrier to its original position. Provide resilience.
  • the camera module further includes a circuit board
  • the fixing frame includes a lower bracket and an upper bracket
  • the lower bracket is disposed on the circuit board
  • the upper bracket is disposed on the lower bracket. Facing away from the surface of the circuit board, the lower bracket and the upper bracket jointly form the receiving cavity, the focusing assembly is located on the upper bracket, and the anti-shake assembly is located on the lower bracket.
  • the fixing frame as separate upper and lower brackets, and setting the focusing assembly on the upper bracket and the anti-shake assembly on the lower bracket, the focusing assembly and the anti-shake assembly are located on different supports Therefore, when one or both of the focus assembly and the anti-shake assembly need to be repaired, they can be smoothly disassembled and assembled to facilitate maintenance.
  • the present application also provides an electronic device including the above-mentioned camera module.
  • the technical solution of the present application is provided with a microlens array, so that when the electronic device is jittered and the image optical path is shifted and blurred, the microlens array can be moved to compensate for the shift of the optical path, thereby compensating for jitter.
  • This setting forms a new shake compensation mode, and compared with the traditional moving lens to realize the shake compensation setting, it can effectively improve the traditional shake mode due to the heavy lens, which leads to the large size and high power of the motor required to move the lens.
  • the problem of power consumption can effectively perform jitter compensation, improve the reliability of camera modules using microlens arrays, and have strong practicability and a wide range of applications.
  • Fig. 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the camera module of the electronic device shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of a microlens filter of the camera module of the electronic device shown in FIG. 1;
  • FIG. 4 is another schematic cross-sectional view of the microlens filter of the camera module of the electronic device shown in FIG. 1;
  • FIG. 5 is a schematic top view of the microlens filter of the camera module of the electronic device shown in FIG. 1;
  • FIG. 6 is another schematic top view of the microlens filter of the camera module of the electronic device shown in FIG. 1;
  • FIG. 7 is another schematic top view of the microlens filter of the camera module of the electronic device shown in FIG. 1;
  • FIG. 8 is another schematic cross-sectional view of the camera module of the electronic device shown in FIG. 1;
  • FIG. 9 is another schematic cross-sectional view of the camera module of the electronic device shown in FIG. 1;
  • FIG. 10 is another schematic cross-sectional view of the camera module of the electronic device shown in FIG. 1.
  • the electronic device 200 may be a digital camera, a digital video camera, a mobile phone, a tablet computer, a monitor, or other devices with a camera function.
  • the electronic device 200 is a mobile phone as an example for description.
  • the electronic device 200 includes a housing 210 and a camera module 100 mounted on the housing 210.
  • the camera module 100 is all contained in the housing 210, or the camera module 100 is mostly contained in the housing 210, and the camera module 100 It can enable the electronic device 200 to realize one or more of the functions of real-time image capture, real-time video call, or acquisition of three-dimensional information of the object to be measured, and it can be used as a front camera to capture static images or dynamics in front of the electronic device 200
  • the video can also be used as a rear camera to capture still images or dynamic videos behind the electronic device 200.
  • the camera module 100 includes a circuit board 10, a fixing frame 20, a focusing component 30 and an anti-shake component 40.
  • the fixing frame 20 is arranged on one side of the circuit board 10 and forms the housing structure of the camera module 100.
  • the focusing component 30 and the anti-shake component 40 are both installed on the fixing frame 20.
  • the focusing component 30 can enable the camera module 100 to have the function of auto-focusing.
  • the anti-shake component 40 can compensate for the displacement of the optical path caused by lens shake to Realize anti-shake, so as to ensure that the image is clear, stable and smooth.
  • the focusing assembly 30 and the anti-shake assembly 40 are arranged in sequence, and the anti-shake assembly 40 is closer to the circuit board 10 than the focusing assembly 30.
  • the focusing assembly 30 is located above the anti-shake assembly 40.
  • the fixing frame 20 is provided with a receiving cavity 21.
  • the focusing assembly 30 includes a lens 31, a lens carrier 32 for carrying the lens 31, and a second driving part 33.
  • the lens carrier 32 is movably arranged in the receiving cavity 21 along the direction of the optical axis I.
  • the second driving part 33 is located on the fixing frame 20 and the lens carrier 32, and the second driving part 33 can drive the lens carrier 32 to move in the direction of the optical axis I in the receiving cavity 21 to realize auto-focusing.
  • the lens carrier 32 can be a hollow cylindrical or prismatic structure, which has a mounting through hole 321 penetrating through itself, and the mounting through hole 321 is used to mount the lens 31, so that the lens carrier 32 can be driven secondly.
  • the unit 33 When the unit 33 is driven to move, it can drive the lens 31 to move together to achieve autofocus along the optical axis I direction.
  • the second driving part 33 a reliable driving force requirement can be provided for the up and down movement of the lens carrier 32 in the accommodating cavity 21 along the optical axis I, ensuring that the lens carrier 32 can move along the optical axis I, thereby driving
  • the lens 31 carried by the lens carrier 32 can also move in the direction of the optical axis I, so that the lens 31 can move in the direction of the optical axis I in the accommodating cavity 21 to achieve focusing without requiring additional structures for focusing. High performance and reliability.
  • the direction defining the optical axis I is the Z axis
  • the directions perpendicular to the optical axis I are the X axis and the Y axis, respectively
  • the X axis, the Y axis and the Z axis are perpendicular to each other.
  • the second driving unit 33 includes a focus coil 34 and a focus magnet 35, the focus coil 34 is disposed on the lens carrier 32, and the focus magnet 35 is disposed on the fixing frame 20 and is disposed opposite to the focus coil 34. It should be noted that the focusing coil 34 and the focusing magnet 35 are arranged oppositely and a gap is formed therebetween. The gap can provide a certain relative separation distance between the focusing coil 34 and the focusing magnet 35, so that the magnetic field can pass between the focusing coil 34 and the focusing magnet 35.
  • the lens carrier 32 is effectively driven to move in the direction of the optical axis I through the interaction.
  • the lens carrier 32 may have a quadrangular prism structure, and the focus coil 34 is sleeved on the periphery of the lens carrier 32, so that each side wall of the outer peripheral wall of the lens carrier 32 can be covered by the focus coil 34 .
  • the number of focusing magnets 35 is four.
  • the accommodating cavity 21 includes four side walls (not shown in the figure) connected in sequence, and each side wall is recessed toward the outside of the fixing frame 20 to form an accommodating groove (not shown in the figure), and the four focusing magnets 35 are respectively It is contained in four accommodating slots.
  • the four focusing magnets 35 are formed in two pairs, and each group of focusing magnets 35 are arranged opposite to each other in the X-axis or Y-axis direction.
  • the two opposite directions (positive direction or negative direction) of the axis so that after the focusing coil 34 is energized, the lens carrier 32 can be positioned on the X-axis or the Y-axis due to the interaction between the magnetic field of the focusing coil 34 and the focusing magnet 35 The direction is maintained at the center position and maintains better stability.
  • the lens carrier 32 can be moved in a direction perpendicular to the optical axis I under the common drive of the focusing coil 34 and the focusing magnet 35, so that the center line of the lens carrier 32 can always be aligned with the optical axis I, maintaining a better Stability and reliability.
  • the lens carrier 32 can not only move along the optical axis I to achieve focusing, but also can move the lens carrier 32 in a direction perpendicular to the optical axis I to achieve alignment, which is highly flexible and has a wide range of applications.
  • the lens carrier 32 may also have other shapes such as a cylindrical shape.
  • the focusing magnet 35 is not limited to being fixed on the cavity wall of the accommodating cavity 21 of the fixing frame 20 through the accommodating groove, and the focusing magnet 35 can also be directly bonded to the cavity wall of the accommodating cavity 21.
  • the focusing magnet 35 can be a permanent magnet or an electromagnet. If it is a permanent magnet, the focusing magnet 35 generates a constant magnetic field (ie, a permanent magnetic field), and if it is an electromagnet, it can generate a variable magnetic field.
  • the focusing magnet 35 is a permanent magnet.
  • the focusing coil 34 When the focusing coil 34 is not energized, the focusing coil 34 will not generate a magnetic field. At this time, only the permanent magnetic field generated by the focusing magnet 35 exists in the camera module 100. There is no magnetic force between the focus coil 34 and the focus magnet 35, so the lens carrier 32 maintains the initial position; when current flows in the focus coil 34, the focus coil 34 will generate a magnetic field. There is a permanent magnetic field generated by the focusing magnet 35, and there is also a variable magnetic field generated by the focusing coil 34. Depending on the direction and magnitude of the current applied to it, the direction and magnitude of the force acting on the focusing magnet 35 will also change accordingly. The movement direction and speed of the lens carrier 32 are changed.
  • the lens carrier 32 Since the focusing magnet 35 is fixed on the fixing frame 20 and cannot move, the lens carrier 32 is movably arranged in the accommodating cavity 21, and the focusing coil 34 is fixed on the lens carrier 32 so that the lens carrier 32 is movable. Therefore, the lens carrier 32
  • the focusing coil 34 can be driven by the focusing coil 34 to move along the optical axis I, so that the lens 31 carried thereon realizes the focusing function.
  • the current input to the focus coil 34 can be stopped to return the lens carrier 32 to the initial position, or a reverse current can be input to the focus coil 34 to generate a magnetic field in the opposite direction, so that the lens carrier 32 can return to the initial position.
  • the second driving part 33 further includes a focusing elastic plate 36 which is connected between the fixing frame 20 and the lens carrier 32.
  • the focusing spring 36 can play a limiting role to limit the moving range of the lens carrier 32.
  • it can also play a reset function after the current input to the focus coil 34 is stopped.
  • the carrier 32 returns to the initial position to provide a restoring force.
  • the focusing spring 36 and the focusing magnet 35 are spaced apart, so as to avoid interfering with the magnetic force of the focusing magnet 35 and the focusing coil 34.
  • the anti-shake assembly 40 includes a first driving portion 41, a microlens filter holder 42 and a microlens filter 43 arranged on the microlens filter holder 42.
  • the lens filter holder 42 is movably arranged in the accommodating cavity 21 along a direction perpendicular to the optical axis I.
  • the micro lens filter 43 includes a micro lens filter body 431 and a micro lens array 432.
  • the micro lens array 432 is arranged on the micro lens.
  • the first driving portion 41 is at least partially located on the microlens filter holder 42, and the first driving portion 41 can drive the microlens filter holder 42 in the receiving cavity
  • the inside of the lens 21 moves in a direction perpendicular to the optical axis I, thereby driving the micro lens filter 43 to move, so that the light emitted by the lens 31 is refracted when it enters the micro lens array 432 to compensate for the optical path deviation caused by the shake of the lens 31.
  • the optical path of the light entering the microlens filter 43 through the lens 31 will be shifted, causing the light entering the microlens array 432 to deviate from the predetermined optical path, resulting in the light It cannot be accurately incident on the photosensitive surface of the photosensitive element, resulting in a problem of low image quality.
  • the first drive unit 41 can drive the microlens filter holder 42 to move, thereby driving the microlens filter 43 as a whole.
  • the combination of the two can make the displacement of the optical path of the light be compensated, so that The light can still be incident on the subsequent photosensitive element at a predetermined incident angle to convert the light signal into an image signal.
  • the displacement can still be compensated by moving the microlens array 432 and the refraction of the microlens array 432
  • the deviation of the amount of light makes the deviation of the optical path corrected, which ensures that the image is not blurred due to shaking, realizes the optical anti-shake when shooting the camera module 100, and improves the shooting quality of the electronic device 200.
  • the microlens array 432 By providing the microlens array 432, when the electronic device 200 is jittered and the image optical path is shifted and blurred, the microlens array 432 can be moved to compensate for the shift of the optical path, thereby compensating for jitter.
  • This setting forms a new shake compensation mode, and is compared with the traditional moving lens 31 to realize the shake compensation setting, which can effectively improve the traditional shake mode because the lens 31 is heavy and the motor required to move the lens 31 is larger.
  • it can effectively perform jitter compensation, improve the reliability of the camera module 100 using the microlens array 432, and has strong practicability and a wide range of applications.
  • the microlens array 432 is located on the object side and the image side of the microlens filter body 431. It can be understood that the object side is the side close to the lens 31, and the image side is the side away from the lens 31.
  • the microlens array 432 is located on opposite sides of the microlens filter body 431, and can be formed on two oppositely disposed surfaces of the microlens filter body 431 through a miniaturized injection molding process. That is, both surfaces of the micro lens filter body 431 perpendicular to the optical axis I are laid with a micro lens array 432, so that the micro lens filter 43 as a whole can refract light.
  • the surface of the micro lens array 432 on the object side facing away from the micro lens filter body 431 is coated with an infrared cut coating 433 (IR).
  • the infrared cut coating 433 can transmit visible light and cut off infrared light. Blocking effect; the surface of the micro lens array 432 on the image side facing away from the micro lens filter body 431 is coated with an anti-reflective coating 434 (AR), which can improve the light transmittance, It has an anti-reflection function, so that the micro lens filter 43 as a whole can filter out infrared light and trim the incoming light. Therefore, the microlens filter 43 has the dual performance of filtering light and refracting light, can diversify the use performance of the microlens filter 43, has strong practicability, is beneficial to be applied to more use scenarios, and has a wide range of applications.
  • AR anti-reflective coating 434
  • the difference from the foregoing embodiment is that the microlens array 432 is only located on the image side of the microlens filter body 431. That is, of the two surfaces of the microlens filter body 431 perpendicular to the optical axis I, only one surface facing the lens 31 is covered with the microlens array 432.
  • the surface of the microlens array 432 is coated with an infrared cut-off film 433.
  • the infrared cut-off film 433 can transmit visible light, cut off infrared light, and play a blocking role; the surface of the microlens filter body 431 facing away from the microlens array 432 is plated with The anti-reflection film 434 and the anti-reflection film 434 can increase the transmittance of light and have an anti-reflection effect, so that the microlens filter 43 as a whole can filter out infrared light and trim incoming light.
  • the microlens array 432 can be provided on one side and both sides of the microlens filter body 431 according to the requirements of optical design, with various choices and strong flexibility.
  • the microlens array 432 includes a plurality of microlenses 435 arranged in an array.
  • the microlenses 435 arranged in the array can be evenly laid on the surface of the microlens filter body 431 to ensure The light emitted by the lens 31 can penetrate the microlens and enter the microlens filter body 431, so that even if the optical path of the light is shifted due to jitter, the microlens filter 43 can be moved to compensate for the deviation of the optical path. Shift, so as to achieve anti-shake.
  • the micro lens 435 is a convex lens, which has the function of refracting light, and the angle of the refraction angle of its refraction is in the range of 0°-15°, so as to meet the compensation requirements of different degrees of jitter, and has strong flexibility. , Wide application range.
  • the shape of the surface of each microlens 435 in contact with the microlens filter body 431 may be hexagonal, rectangular, or circular.
  • the size of the microlens 435 and the interval size of each microlens 435 can be determined according to the actual optical design, which is not specifically limited in this application.
  • the shape of the outer surface of the microlens 435 (the surface that is not in contact with the microlens filter body 431) can be spherical, aspherical, or other curved surfaces. In FIG. 2, only a hemispherical arc is used. The surface is drawn as a schematic, and the actual surface shape is not limited to this.
  • the deviation range of the center line of the microlens filter 43 from the optical axis I is in the range of 0um to 200um. That is, the range of the micro lens filter 43 that can be driven to move in the direction perpendicular to the optical axis I is within the range of 0um to 200um.
  • This translational compensation has a large compensation range and can effectively perform jitter compensation. It is beneficial to better realize the optical image stabilization of the camera module 100.
  • the camera module 100 further includes a photosensitive chip 50.
  • the photosensitive chip 50 and the fixing frame 20 are both arranged on the same side of the circuit board 10, and the photosensitive chip 50 is located in the accommodating cavity 21 and enters the camera module through the lens 31 After passing through the microlens filter 43, the light in 100 can be incident on the photosensitive chip 50 at a certain angle.
  • the incident position of this light can be the preset light path of the incident light after jitter compensation (the light path when there is no jitter) ), which can effectively avoid the problem of image blur caused by the deviation of the optical path.
  • the photosensitive chip 50 senses the received light to obtain an optical signal, converts the optical signal into an electrical signal, and transmits it to a subsequent processing element such as an image signal processor on the motherboard through the circuit board 10, and then converts it into an image visible to the human eye. It can be understood that the photosensitive chip 50 is the aforementioned photosensitive element.
  • the first driving unit 41 includes an anti-shake coil 44 and an anti-shake magnet 45.
  • the anti-shake coil 44 is arranged on the microlens filter holder 42, and the anti-shake magnet 45 is arranged on the fixed frame 20 and is connected to the anti-shake magnet 45.
  • the dithering coils 44 are arranged oppositely.
  • the anti-shake coil 44 and the anti-shake magnet 45 are arranged opposite to each other and a gap is formed between them. The gap can make a certain relative separation distance between the anti-shake coil 44 and the anti-shake magnet 45
  • the microlens filter holder 42 can be effectively driven to move along the optical axis I through the interaction of the magnetic field.
  • the microlens filter holder 42 may have a quadrangular prism structure, which has a through hole 421 penetrating the microlens filter holder 42, and the microlens filter 43 is installed in the through hole 421.
  • the micro lens filter holder 42 can carry the micro lens filter 43.
  • the anti-shake coil 44 is sleeved on the periphery of the micro lens filter holder 42 so that each side wall of the outer peripheral wall of the micro lens filter holder 42 can be covered by the anti-shake coil 44.
  • the number of anti-shake magnets 45 is four.
  • each side wall of the accommodating cavity 21 is recessed toward the outside of the fixing frame 20 to form a accommodating groove (not shown in the figure), and the four anti-shake magnets 45 are respectively accommodated in the four accommodating grooves. That is, the four anti-shake magnets 45 form a group in pairs, each group of anti-shake magnets 45 are arranged opposite to each other in the X-axis or Y-axis direction, and the two anti-shake magnets 45 of each group are located on the X-axis. Or the two opposite directions of the Y axis (positive or negative).
  • the microlens filter holder 42 may also have other shapes such as a cylindrical shape.
  • each group of anti-shake magnets 45 and the corresponding anti-shake coil 44 can move the microlens filter holder 42 in an axial direction (X-axis or Y-axis) perpendicular to the optical axis I. . Therefore, after the anti-shake coil 44 is energized, the microlens filter holder 42 can move in the X-axis or Y-axis direction due to the interaction between the anti-shake coil 44 and the magnetic field of the anti-shake magnet 45.
  • the microlens filter holder 42 can be driven by the two sets of anti-shake magnets 45 and anti-shake coils 44, respectively, to move in two axial directions (X-axis and Y-axis) perpendicular to the optical axis I, thereby
  • the electronic device 200 can move in two directions in a targeted manner to compensate for the deviation of the optical path caused by the jitter, so that the image quality of the camera module 100 has better stability and reliability.
  • the two sets of anti-shake magnets 45 and anti-shake coils 44 cooperate to make the microlens filter holder 42 move in two axial directions (X-axis and Y-axis) perpendicular to the optical axis I, respectively, to compensate Jitter.
  • the first driving unit 41 can not only drive the microlens filter holder 42 to move in the direction perpendicular to the optical axis I in the housing cavity 21, but it can also drive the microlens filter holder 42 in the housing cavity 21.
  • the inner movement along the direction of the optical axis I is beneficial to further enhance the focusing effect of the lens 31 and improve the image quality of the image.
  • the micro lens filter holder 42 can not only move in a direction perpendicular to the optical axis I to achieve anti-shake, but also can move the micro lens filter holder 42 in a direction perpendicular to the optical axis I to further improve focus.
  • the effect, the flexibility are strong, the application range is wide.
  • the anti-shake magnet 45 is not limited to being fixed on the cavity wall of the receiving cavity 21 of the fixing frame 20 through the receiving groove, and the anti-shake magnet 45 can also be directly bonded to the cavity wall of the receiving cavity 21.
  • the anti-shake magnet 45 can be a permanent magnet or an electromagnet. If it is a permanent magnet, the anti-shake magnet 45 generates a constant magnetic field (i.e., a permanent magnetic field), and if it is an electromagnet, it can generate a variable magnetic field.
  • the anti-shake magnet 45 is a permanent magnet.
  • the anti-shake coil 44 When the anti-shake coil 44 is not energized, the anti-shake coil 44 will not generate a magnetic field. At this time, there is only the anti-shake magnet 45 in the camera module 100. In the permanent magnetic field generated, there will be no magnetic force between the anti-shake coil 44 and the anti-shake magnet 45, so the microlens filter holder 42 maintains the initial position; when current flows in the anti-shake coil 44, the anti-shake coil 44 will generate a magnetic field.
  • the anti-shake magnet 45 there is not only a permanent magnetic field generated by the anti-shake magnet 45, but also a variable magnetic field generated by the anti-shake coil 44, which acts on the anti-shake magnet according to the direction and magnitude of the incoming current.
  • the direction and magnitude of the force of 45 will also change accordingly, so that the moving direction and speed of the microlens filter holder 42 will change.
  • the anti-shake magnet 45 is fixed on the fixing frame 20 and cannot move
  • the micro lens filter holder 42 is movably arranged in the receiving cavity 21 and located below the lens carrier 32, and the anti-shake coil 44 is fixed to the micro lens filter.
  • the holder 42 makes the micro lens filter holder 42 movable.
  • the micro lens filter holder 42 can be driven by the anti-shake coil 44 to move in the direction perpendicular to the optical axis I, so that the micro lens carried on it can be moved.
  • the lens filter 43 implements an anti-shake function.
  • the current input to the anti-shake coil 44 can be stopped to make the microlens filter holder 42 return to the initial position, or a reverse current can be input to the anti-shake coil 44 to generate a magnetic field in the opposite direction.
  • the microlens filter holder 42 is returned to the initial position.
  • the first driving portion 41 further includes an anti-shake elastic sheet 46 connected between the fixing frame 20 and the micro lens filter holder 42.
  • the anti-shake elastic sheet 46 can act as a limit to limit the movement range of the micro-lens filter holder 42 after the micro-lens filter holder 42 moves relative to the fixed frame 20.
  • the anti-shake coil 44 can also be stopped when the anti-shake coil 44 is stopped. After the current is input, the reset function is performed to provide a restoring force for the microlens filter holder 42 to return to the initial position.
  • the focusing component 30 and the anti-shake component 40 can be driven separately, so that the focusing component 30 is applied to the focus of the camera module 100, and the anti-shake component 40 is applied to the shake compensation of the camera module 100.
  • This setting does not need to pass Shaking the lens 31 can perform shake compensation, so that the size of the second driving part 33 that drives the lens 31 for focusing will be reduced, which is beneficial to realize the demand for balanced distribution of driving sources and reduce the power consumption of the camera module 100.
  • the difference from the foregoing implementation manner is that the first driving part 41 no longer includes the anti-vibration magnet 45 and the anti-vibration coil 44.
  • the anti-shake magnet 45 and the anti-shake coil 44 in the camera module 100 described in the foregoing embodiment these descriptions can be applied to the camera module 100 shown in FIG. 8 if there is no conflict.
  • the inner wall of the receiving cavity 21 of the fixing frame 20 is protrudingly provided with a base 22, and a flexible circuit board 60 is provided on the base 22.
  • the first driving portion 41 includes a memory metal piece 47 which is connected to the flexible circuit board. Between 60 and the micro lens filter holder 42.
  • the microlens filter holder 42 is suspended above the flexible circuit board 60 through a memory metal piece 47, and the memory metal piece 47 can drive the microlens filter holder 42 to be perpendicular to the optical axis I by energizing and stretching. Move on the plane of, which can drive the micro lens filter 43 to move together on the plane perpendicular to the optical axis I.
  • the memory metal piece 47 has the characteristic of expanding and contracting to a certain extent after being energized, and also has the characteristic that its size can be changed with the change of the energized current or voltage, so that the memory metal piece 47 can realize the filtering of the microlens.
  • the support and fixation of the light sheet holder 42 can also realize the function of the memory metal piece 47 driving the micro lens filter holder 42 to move on a plane perpendicular to the optical axis I, thereby realizing the translational anti-shake of the camera module 100.
  • the anti-shake type has a large shake compensation range, and the microlens filter holder 42 can ensure the stability of the optical axis I when it is shifted. This arrangement makes the camera module 100 simple in structure and excellent in imaging effects.
  • the material of the memory metal member 47 may be a shape memory alloy (SMA) such as Nitinol.
  • SMA shape memory alloy
  • the number of memory metal pieces 47 can be four.
  • the four memory metal pieces 47 are respectively arranged corresponding to the four successively connected sides of the micro lens filter holder 42, that is, each memory metal piece 47 is arranged corresponding to one side of the micro lens filter holder 42, so as to better
  • the support and fixation of the micro lens filter holder 42 can also be realized, and the memory metal piece 47 can drive the micro lens filter holder 42 to move.
  • the four memory metal pieces 47 are more resistant to fracture.
  • the quality of the optical image stabilization camera module 100 can be effectively improved.
  • the two memory metal pieces 47 located on the same axis are a group, and each group of memory metal pieces 47 are arranged oppositely in the X-axis or Y-axis direction, and because each group of two memory metal pieces 47 They are located in the two opposite directions (positive and negative) of the X-axis or Y-axis, so that after each group of memory metal pieces 47 is energized, the microlens filter holder 42 is affected by the set of memory metal pieces 47.
  • the telescopic action can move in the X-axis or Y-axis direction, which can effectively facilitate the memory metal piece 47 to drive the microlens filter holder 42 and then drive the microlens filter 43 to perform the X-axis or Y-axis compensation movement.
  • the memory metal piece 47 is electrically connected to the flexible circuit board 60, and the flexible circuit board 60 is electrically connected to the circuit board 10, so that the circuit board 10 can realize the power supply and control function of the memory metal piece 47.
  • both the focusing assembly 30 and the anti-shake assembly 40 can be accommodated in the receiving cavity 21 in the fixing frame 20, and the focusing assembly 30 is located in the entirety of the anti-shake assembly 40.
  • the fixing frame 20 can be an integrated structure, and the integrated structure has strong consistency, which can reduce production costs and assembly procedures, is beneficial to avoid installation deviation, and improve the assembly accuracy of the camera module 100.
  • the fixing frame 20 includes a lower bracket 23 and an upper bracket 24.
  • the lower bracket 23 is disposed on the circuit board 10, and the upper bracket 24 is disposed on the lower bracket 23 away from the circuit.
  • the lower bracket 23 and the upper bracket 24 jointly form a receiving cavity 21, the focusing assembly 30 is located on the upper bracket 24, and the anti-shake assembly 40 is located on the lower bracket 23.
  • the lens carrier 32 is movably arranged in the portion of the receiving cavity 21 located on the upper bracket 24 along the direction of the optical axis I
  • the microlens filter holder 42 is movably arranged in the receiving cavity 21 in the lower bracket along the direction perpendicular to the optical axis I. Part of 23.
  • the fixing frame 20 as a separate upper support 24 and a lower support 23, and the focusing assembly 30 is arranged on the upper support 24, and the anti-shake assembly 40 is arranged on the lower support 23, so that the focusing assembly 30 and The anti-shake component 40 is located on different brackets, so that when one or both of the focus component 30 and the anti-shake component 40 need to be repaired, they can be smoothly disassembled and assembled for easy maintenance.
  • the microlens array 432 is provided, so that when the electronic device 200 is jittered and the image optical path is shifted and blurred, the microlens array 432 can be moved to compensate for the shift of the optical path, thereby compensating for jitter.
  • This setting forms a new shake compensation mode, and is compared with the traditional moving lens 31 to realize the shake compensation setting, which can effectively improve the traditional shake mode because the lens 31 is heavy and the motor required to move the lens 31 is larger.
  • it can effectively perform jitter compensation, improve the reliability of the camera module 100 using the microlens array 432, and has strong practicability and a wide range of applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种防抖组件(40)、摄像模组(100)及电子设备(200)。防抖组件(40)安装于固定架(20),固定架(20)内设收容腔(21),防抖组件(40)包括第一驱动部(41)、微透镜滤光片支架(42)和设于微透镜滤光片支架(42)的微透镜滤光片(43),微透镜滤光片支架(42)沿垂直于光轴(I)的方向活动设置于收容腔(21)内,微透镜滤光片(43)包括微透镜滤光片本体(431)和微透镜阵列(432),微透镜阵列(432)设于微透镜滤光片本体(431)的垂直于光轴(I)的至少一侧,第一驱动部(41)至少部分位于微透镜滤光片支架(42)上,第一驱动部(41)能够驱动微透镜滤光片支架(42)在收容腔(21)内沿垂直于光轴(I)的方向移动,从而带动微透镜滤光片(43)移动,以使经镜头(31)出射的光线入射至微透镜阵列(432)时发生折射而补偿镜头(31)抖动造成的光路偏移,解决了现有技术中摄像头防抖系统可靠性低的问题。

Description

防抖组件、摄像模组及电子设备 技术领域
本申请涉及摄像技术领域,尤其涉及一种防抖组件、摄像模组及电子设备。
背景技术
随着影像技术的快速发展,使用摄像头进行拍照的现象越来越普遍。用户在使用摄像头进行拍摄的过程中,存在因摄像头抖动而导致拍摄的图像模糊、不清晰的问题。目前摄像头可以通过集成光学防抖(Optical Image Stabilizer,OIS)、电子防抖(Electronic anti shake,EIS)等技术以减弱摄像头抖动对成像清晰度的影响。然而,传统的摄像头防抖系统存在可靠性低的问题。
申请内容
鉴于此,本申请提供一种摄像模组及电子设备,以解决现有技术中摄像头防抖系统可靠性低的问题。
第一方面,本申请提供一种防抖组件,所述防抖组件安装于固定架,所述固定架内设收容腔,所述防抖组件包括第一驱动部、微透镜滤光片支架和设于所述微透镜滤光片支架的微透镜滤光片,所述微透镜滤光片支架沿垂直于光轴的方向活动设置于所述收容腔内,所述微透镜滤光片包括微透镜滤光片本体和微透镜阵列,所述微透镜阵列设于所述微透镜滤光片本体的垂直于光轴的至少一侧,所述第一驱动部至少部分位于所述微透镜滤光片支架上,所述第一驱动部能够驱动所述微透镜滤光片支架在所述收容腔内沿垂直于光轴的方向移动,从而带动所述微透镜滤光片移动,以使经镜头出射的光线入射至所述微透镜阵列时发生折射而补偿镜头抖动造成的光路偏移。
由此,通过设置微透镜阵列,从而可以在电子设备发生抖动使得影像光路偏移而产生模糊时,移动微透镜阵列以对光路偏移进行位移量补偿,进而补偿抖动。此设置形成一种新的抖动补偿模式,且相对于传统的移动镜头而实现补偿抖动的设置,能够有效改善传统的抖动模式中因镜头重,导致移动镜头所需的马达体积较大以及高功耗的问题,能够有效的进行抖动补偿,提高应用微透 镜阵列的摄像模组的可靠性,实用性强,应用范围广泛。
一种可能的实施方式中,所述微透镜阵列位于所述微透镜滤光片本体的物侧,也即为,微透镜滤光片本体垂直于光轴的两个表面中仅有朝向镜头的一个表面铺设有微透镜阵列,从而使得微透镜滤光片整体能够具备折射光线的作用。
一种可能的实施方式中,所述微透镜阵列位于所述微透镜滤光片本体的物侧和像侧,也即为,微透镜滤光片本体垂直于光轴的两个表面均铺设有微透镜阵列,从而使得微透镜滤光片整体能够具备折射光线的作用。
一种可能的实施方式中,设于所述物侧的所述微透镜阵列的背离所述微透镜滤光片本体的表面镀有红外截止膜,设于所述像侧的所述微透镜阵列的背离所述微透镜滤光片本体表面镀有增透膜。。
可以理解的是,红外截止膜能够透过可见光线,截止红外光线,起阻挡作用,增透膜能够提高光线的透过率,起增透作用,从而使得微透镜滤光片整体能够具备滤除红外光线和修整进来的光线的作用。由此,微透镜滤光片具有过滤光线和折射光线的双重性能,能够多元化微透镜滤光片的使用性能,实用性强,有利于应用于更多的使用场景,应用范围广泛。
一种可能的实施方式中,所述微透镜阵列包括多个阵列布置的微透镜,每一所述微透镜的与所述微透镜滤光片本体接触的表面的形状包括六边形、矩形和圆形。
可以理解的是,阵列布置的微透镜能够均匀的铺设于微透镜滤光片本体的表面,从而保证经镜头出射的光线均能够穿透微透镜而射入微透镜滤光片本体,使得即使因抖动而使光线的光路发生偏移,也可在移动微透镜滤光片和微透镜的折射的配合下,补偿光路的偏移,从而能够实现防抖。
一种可能的实施方式中,所述第一驱动部包括防抖线圈和防抖磁体,所述防抖线圈设于所述微透镜滤光片支架,所述防抖磁体设于所述固定架且与所述防抖线圈相对设置。
需说明的是,防抖线圈和防抖磁体相对设置且其之间会形成间隙,间隙能够使其之间具有一定的相对间隔距离,以使防抖线圈和防抖磁体之间能够通过磁场的相互作用而有效驱动微透镜滤光片支架沿光轴方向进行移动。同时,因 防抖线圈和防抖磁体之间并非互相接触,而是存在径向距离,从而使得微透镜滤光片支架在沿光轴方向移动时,微透镜滤光片支架与固定架之间的摩擦阻力几乎为零,有效降低了能耗。
一种可能的实施方式中,所述收容腔的内侧壁凸设有底座,所述底座上设有柔性线路板,所述第一驱动部包括记忆金属件,所述记忆金属件连接于所述柔性线路板和所述微透镜滤光片支架之间。
可以理解的是,记忆金属件具有在通电后发生一定的伸缩的特性,并且还具有随着通电电流或者电压大小的改变可以改变其尺寸的特性,从而通过记忆金属件既能够实现对微透镜滤光片支架的支撑固定,还可以实现由记忆金属件带动微透镜滤光片支架在垂直于光轴的平面上移动的作用,进而实现摄像模组的平移式防抖,平移式防抖具有较大的抖动补偿范围,且微透镜滤光片支架在做平移时,能够保证光轴指向的稳定,此设置使得摄像模组结构简单,成像效果优良。
一种可能的实施方式中,所述第一驱动部还包括防抖弹片,所述防抖弹片连接于所述固定架和所述微透镜滤光片支架之间。防抖弹片可以在微透镜滤光片支架相对固定架发生移动后,起到限位作用以限制微透镜滤光片支架的移动范围,另外,还可在停止对防抖线圈输入电流后起到复位作用,以为微透镜滤光片支架回复到初始位置提供回复力。
一种可能的实施方式中,所述折射的折射角的角度范围在0°~15°的范围内,从而能够满足不同程度抖动的补偿需求,灵活性强,应用范围广泛。
一种可能的实施方式中,所述微透镜滤光片的中心线偏离所述光轴的偏移范围在0um~200um的范围内。也即为,微透镜滤光片能够被驱动而沿垂直于光轴的方向进行移动的范围在0um~200um的范围内,此平移式补偿的补偿范围大,能够有效的进行抖动补偿,有利于更好的实现摄像模组的光学防抖。
第二方面,本申请还提供一种摄像模组,所述摄像模组包括固定架、对焦组件和如上所述的防抖组件,所述固定架内设收容腔,所述对焦组件包括用于承载镜头的镜头载体和第二驱动部,所述镜头载体沿光轴的方向活动设置于所述收容腔内且位于所述述对焦组件的微透镜滤光片的上方,所述第二驱动部位于所述固定架和所述镜头载体上,所述第二驱动部能够驱动所述镜头载体在所 述收容腔内沿光轴的方向移动以实现自动对焦。
可以理解的是,镜头载体可以为中空的圆柱状或棱柱状结构,其具有贯穿其自身的安装通孔,安装通孔用于安装镜头,从而可以在镜头载体被第二驱动部驱动进行移动时,能够带动镜头一起移动,以实现沿光轴方向的自动对焦。另外,通过设置第二驱动部,能够为镜头载体在收容腔内沿光轴方向的上下移动提供可靠的驱动力需求,使得镜头载体无需另设复杂的结构即可在收容腔内沿光轴方向进行移动,实用性和可靠性强。
一种可能的实施方式中,所述第二驱动部包括对焦线圈和对焦磁体,所述对焦线圈设于所述镜头载体,所述对焦磁体设于所述固定架且与所述对焦线圈相对设置。
需说明的是,对焦线圈和对焦磁体相对设置且其之间会形成间隙,间隙能够使其之间具有一定的相对间隔距离,以使对焦线圈和对焦磁体之间能够通过磁场的相互作用而有效驱动镜头载体沿光轴方向进行移动。同时,因对焦线圈和对焦磁体之间并非互相接触,而是存在径向距离,从而使得镜头载体在沿光轴方向移动时,镜头载体与固定架之间的摩擦阻力几乎为零,有效降低了能耗。
一种可能的实施方式中,所述第二驱动部还包括对焦弹片,所述对焦弹片与所述对焦磁体间隔设置且连接于所述固定架和所述镜头载体之间。对焦弹片可以在镜头载体相对固定架发生移动后,起到限位作用以限制镜头载体的移动范围,另外,还可在停止对对焦线圈输入电流后起到复位作用,以为镜头载体回复到初始位置提供回复力。
一种可能的实施方式中,所述摄像模组还包括电路板,所述固定架包括下支架和上支架,所述下支架设于所述电路板,所述上支架设于所述下支架背离所述电路板的表面,所述下支架和所述上支架共同形成所述收容腔,所述对焦组件位于所述上支架,所述防抖组件位于所述下支架。
可以理解的是,通过将固定架设置为分体式的上支架和下支架,并将对焦组件设于上支架,而防抖组件设于下支架,使得对焦组件和防抖组件位于不同的支架上,从而能够在对焦组件和防抖组件的一者或两者需要返修时,能够顺利拆装而便于维修。
第三方面,本申请还提供一种电子设备,所述电子设备包括如上所述的摄 像模组。
本申请的技术方案通过设置微透镜阵列,从而可以在电子设备发生抖动使得影像光路偏移而产生模糊时,移动微透镜阵列以对光路偏移进行位移量补偿,进而补偿抖动。此设置形成一种新的抖动补偿模式,且相对于传统的移动镜头而实现补偿抖动的设置,能够有效改善传统的抖动模式中因镜头重,导致移动镜头所需的马达体积较大以及高功耗的问题,能够有效的进行抖动补偿,提高应用微透镜阵列的摄像模组的可靠性,实用性强,应用范围广泛。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电子设备的示意图;
图2是图1所示的电子设备的摄像模组的一种剖面示意图;
图3是图1所示的电子设备的摄像模组的微透镜滤光片的一种剖面示意图;
图4是图1所示的电子设备的摄像模组的微透镜滤光片的另一种剖面示意图;
图5是图1所示的电子设备的摄像模组的微透镜滤光片的一种俯视示意图;
图6是图1所示的电子设备的摄像模组的微透镜滤光片的另一种俯视示意图;
图7是图1所示的电子设备的摄像模组的微透镜滤光片的又一种俯视示意图;
图8是图1所示的电子设备的摄像模组的另一种剖面示意图;
图9是图1所示的电子设备的摄像模组的又一种剖面示意图;
图10是图1所示的电子设备的摄像模组的再一种剖面示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,本申请提供一种电子设备200,电子设备200可以是数字相机、数字摄像机、手机、平板电脑、监视器或其他具有摄像功能的设备。本申请的实施例中,以电子设备200是手机为例进行说明。
电子设备200包括壳体210和安装于壳体210的摄像模组100,摄像模组100全部收容于壳体210内部,或者,摄像模组100大部分收容于壳体210内部,摄像模组100能够使得电子设备200实现实时采集影像、即时视频通话或者获取待测对象的三维信息等功能中的一者或多者,其即可以作为前置摄像头,以捕获电子设备200前方的静态图像或动态视频,也可以作为后置摄像头,以捕获电子设备200后方的静态图像或动态视频。
请一并参阅图1和图2,摄像模组100包括电路板10、固定架20、对焦组件30和防抖组件40。固定架20设于电路板10的一侧,其形成摄像模组100的外壳结构。对焦组件30和防抖组件40均安装于固定架20,对焦组件30能够使摄像模组100具备自动对焦的功能,防抖组件40能够对镜头抖动所造成的光路偏移进行位移量补偿,以实现防抖,从而保证影像的清晰、稳定和流畅。
可以理解的是,在垂直于电路板10的方向上,对焦组件30和防抖组件40依次设置,且防抖组件40相比于对焦组件30更靠近电路板10。换言之,如图2所示,对焦组件30位于防抖组件40的上方。
固定架20内设收容腔21,对焦组件30包括镜头31、用于承载镜头31的镜头载体32和第二驱动部33,镜头载体32沿光轴I的方向活动设置于收容腔21内,第二驱动部33位于固定架20和镜头载体32上,且第二驱动部33能够驱动镜头载体32在收容腔21内沿光轴I的方向移动以实现自动对焦。
可以理解的是,镜头载体32可以为中空的圆柱状或棱柱状结构,其具有贯穿其自身的安装通孔321,安装通孔321用于安装镜头31,从而可以在镜头载体32被第二驱动部33驱动进行移动时,能够带动镜头31一起移动,以实 现沿光轴I方向的自动对焦。另外,通过设置第二驱动部33,能够为镜头载体32在收容腔21内沿光轴I方向的上下移动提供可靠的驱动力需求,保证镜头载体32沿光轴I方向能够进行移动,从而带动镜头载体32所承载的镜头31也能够沿光轴I方向进行移动,使得镜头31无需另设其他用于实现对焦的结构即可在收容腔21内沿光轴I方向进行移动来实现对焦,实用性和可靠性强。
本申请的实施例中,定义光轴I的方向为Z轴,垂直于光轴I的方向分别为X轴和Y轴,X轴、Y轴和Z轴彼此垂直。
第二驱动部33包括对焦线圈34和对焦磁体35,对焦线圈34设于镜头载体32,对焦磁体35设于固定架20且与对焦线圈34相对设置。需说明的是,对焦线圈34和对焦磁体35相对设置且其之间会形成间隙,间隙能够使其之间具有一定的相对间隔距离,以使对焦线圈34和对焦磁体35之间能够通过磁场的相互作用而有效驱动镜头载体32沿光轴I方向进行移动。同时,因对焦线圈34和对焦磁体35之间并非互相接触,而是存在径向距离,从而使得镜头载体32在沿光轴I方向移动时,镜头载体32与固定架20之间的摩擦阻力几乎为零,有效降低了能耗。
一种可能的实施方式中,镜头载体32可以为四棱柱状结构,对焦线圈34套设于镜头载体32的外围,从而使得镜头载体32的外周壁的每一侧壁均可被对焦线圈34覆盖。相应地,为对应镜头载体32的四个棱面,保证能与每一棱面均具有相互作用力,对焦磁体35的数量为四个。具体而言,收容腔21包括四个依次连接的侧壁(图未标),每一侧壁均向固定架20的外侧凹陷形成一个容置槽(图未标),四个对焦磁体35分别收容于四个容置槽内。也即为,四个对焦磁体35两两为一组,每一组对焦磁体35均在X轴或Y轴方向相背设置,且由于每一组的两个对焦磁体35均位于X轴或Y轴的两个相背的方向(正方向或负方向),从而使得对焦线圈34通电后,镜头载体32因对焦线圈34和对焦磁体35的磁场之间的相互作用而可以在X轴或Y轴方向均维持在中心位置并保持较佳的稳定性。换言之,镜头载体32可在对焦线圈34和对焦磁体35的共同驱动下,沿垂直于光轴I的方向进行移动,使得镜头载体32的中心线能够始终与光轴I对正,保持较佳的稳定性和可靠性。由此,镜头载体32不仅能够沿光轴I方向进行移动而实现对焦,也可以使镜头载体32沿垂直于光 轴I的方向进行移动而实现对正,灵活性强,应用范围广泛。当然,其他的实施方式中,镜头载体32也可以为如圆柱状等其他形状。
需说明的是,对焦磁体35并不局限于通过容置槽来固定在固定架20的收容腔21的腔壁上,对焦磁体35也可直接粘接在收容腔21的腔壁上。而对焦磁体35可以为永久磁体或者电磁体,如果为永久磁体,则对焦磁体35产生不变的磁场(即永磁场),如果为电磁体,则可产生可变的磁场。
本申请的实施例中,对焦磁体35为永磁体,当对焦线圈34未通入电流时,对焦线圈34便不会产生磁场,此时,摄像模组100中仅存在对焦磁体35产生的永磁场,对焦线圈34与对焦磁体35之前不会存在磁作用力,故,镜头载体32保持初始位置;当对焦线圈34中有电流流入时,则对焦线圈34便会产生磁场,摄像模组100中不仅存在对焦磁体35产生的永磁场,而且还存在对焦线圈34产生的可变磁场,根据通入电流方向和大小的不同,作用于对焦磁体35的力的方向和大小也会相应的发生变化,从而使镜头载体32的运动方向和速度发生变化。由于对焦磁体35固定在固定架20上而无法运动,镜头载体32可移动地设置在收容腔21中,对焦线圈34固定于镜头载体32上使得镜头载体32是可动的,故,镜头载体32可被对焦线圈34带动而沿光轴I方向移动,以使承载于其上的镜头31实现对焦功能。当对焦完成后,可以停止给对焦线圈34输入电流,使得镜头载体32回到初始位置,或者输入反向电流给对焦线圈34使其产生方向相反的磁场,以使镜头载体32回到初始位置。
进一步地,第二驱动部33还包括对焦弹片36,对焦弹片36连接于固定架20和镜头载体32之间。对焦弹片36可以在镜头载体32相对固定架20发生移动后,起到限位作用以限制镜头载体32的移动范围,另外,还可在停止对对焦线圈34输入电流后起到复位作用,以为镜头载体32回复到初始位置提供回复力。进一步地,对焦弹片36与对焦磁体35间隔设置,从而避免干扰对焦磁体35与对焦线圈34的磁作用力。
请再次参阅图2,本申请的实施例中,防抖组件40包括第一驱动部41、微透镜滤光片支架42和设于微透镜滤光片支架42的微透镜滤光片43,微透镜滤光片支架42沿垂直于光轴I的方向活动设置于收容腔21内,微透镜滤光片43包括微透镜滤光片本体431和微透镜阵列432,微透镜阵列432设于微 透镜滤光片本体431的垂直于光轴I的至少一侧,第一驱动部41至少部分位于微透镜滤光片支架42上,第一驱动部41能够驱动微透镜滤光片支架42在收容腔21内沿垂直于光轴I的方向移动,从而带动微透镜滤光片43移动,以使经镜头31出射的光线入射至微透镜阵列432时发生折射而补偿镜头31抖动造成的光路偏移。
可以理解的是,在电子设备200发生抖动时,经镜头31射入微透镜滤光片43的光线的光路会产生偏移,导致入射至微透镜阵列432的光线会偏离预定的光路,导致光线无法全部准确入射至感光元件的感光面,从而造成成像质量低的问题。但因微透镜阵列432和第一驱动部41的设置,使得光线的光路发生偏移时,第一驱动部41能够驱动微透镜滤光片支架42移动,进而带动微透镜滤光片43整体进行移动,使得光线能够入射至微透镜滤光片43的微透镜阵列432,又因光线穿过微透镜阵列432时会发生折射,两者配合能够使光线的光路偏移的位移量被补偿,使得光线仍能够以预定的入射角度入射至后续的感光元件以便将光信号转换为图像信号。也即为,即使因抖动而导致光路偏移,使得入射至微透镜阵列432时光线的入射角度偏离预定轨迹,但是透过移动微透镜阵列432和微透镜阵列432的折射,仍可以补偿此位移量的偏移,使得光路的偏移得到补正,保证影像不因抖动而产生模糊,实现对摄像模组100拍摄时的光学防抖,提高电子设备200的拍摄质量。
通过设置微透镜阵列432,从而可以在电子设备200发生抖动使得影像光路偏移而产生模糊时,移动微透镜阵列432以对光路偏移进行位移量补偿,进而补偿抖动。此设置形成一种新的抖动补偿模式,且相对于传统的移动镜头31而实现补偿抖动的设置,能够有效改善传统的抖动模式中因镜头31重,导致移动镜头31所需的马达体积较大以及高功耗的问题,能够有效的进行抖动补偿,提高应用微透镜阵列432的摄像模组100的可靠性,实用性强,应用范围广泛。
请一并参阅图2和图3,一种可能的实施方式中,微透镜阵列432位于微透镜滤光片本体431的物侧和像侧。可以理解的是,物侧为靠近镜头31的一侧,像侧为背离镜头31的一侧。换言之,微透镜阵列432位于微透镜滤光片本体431的相对两侧,其可通过微型化注塑工艺成形于微透镜滤光片本体431 的相对设置的两个表面。也即为,微透镜滤光片本体431垂直于光轴I的两个表面均铺设有微透镜阵列432,从而使得微透镜滤光片43整体能够具备折射光线的作用。而设于物侧的微透镜阵列432的背离微透镜滤光片本体431的表面镀有红外截止膜433(Infrared cut coating,IR),红外截止膜433能够透过可见光线,截止红外光线,起阻挡作用;设于像侧的微透镜阵列432的背离微透镜滤光片本体431的表面镀有增透膜434(Anti-reflective coating,AR),增透膜434能够提高光线的透过率,起增透作用,从而使得微透镜滤光片43整体能够具备滤除红外光线和修整进来的光线的作用。由此,微透镜滤光片43具有过滤光线和折射光线的双重性能,能够多元化微透镜滤光片43的使用性能,实用性强,有利于应用于更多的使用场景,应用范围广泛。
请一并参阅图2和图4,另一种可能的实施方式中,与上述实施方式不同的是,微透镜阵列432仅位于微透镜滤光片本体431的像侧。也即为,微透镜滤光片本体431垂直于光轴I的两个表面中仅有朝向镜头31的一个表面铺设有微透镜阵列432。而此微透镜阵列432的表面镀有红外截止膜433,红外截止膜433能够透过可见光线,截止红外光线,起阻挡作用;微透镜滤光片本体431背向微透镜阵列432的表面镀有增透膜434,增透膜434能够提高光线的透过率,起增透作用,从而使得微透镜滤光片43整体能够具备滤除红外光线和修整进来的光线的作用。
由此,本申请的实施例中,可根据光学设计的需求而在微透镜滤光片本体431的单面和双面设置微透镜阵列432,选择多样,灵活性强。
请一并参阅图2、图3和图5,微透镜阵列432包括多个阵列布置的微透镜435,阵列布置的微透镜435能够均匀的铺设于微透镜滤光片本体431的表面,从而保证经镜头31出射的光线均能够穿透微透镜而射入微透镜滤光片本体431,使得即使因抖动而使光线的光路发生偏移,也可在移动微透镜滤光片43补偿光路的偏移,从而能够实现防抖。
可以理解的是,微透镜435为凸透镜,其具有折射光线的作用,且其折射的折射角的角度范围在0°~15°的范围内,从而能够满足不同程度抖动的补偿需求,灵活性强,应用范围广泛。进一步地,如图5-图7所示,每一微透镜435与微透镜滤光片本体431接触的表面的形状可以是六边形、矩形和圆形。 而微透镜435的尺寸和各微透镜435的间隔尺寸可依照实际的光学设计而制定,本申请在此不做具体限制。
需说明的是,微透镜435的外表面(不与微透镜滤光片本体431接触的表面)的形状可以是球面、非球面或其他的弧形面,图2中仅以半球状的弧形面作为示意画出,实际表面形态并不以此为限。
进一步地,微透镜滤光片43的中心线偏离光轴I的偏移范围在0um~200um的范围内。也即为,微透镜滤光片43能够被驱动而沿垂直于光轴I的方向进行移动的范围在0um~200um的范围内,此平移式补偿的补偿范围大,能够有效的进行抖动补偿,有利于更好的实现摄像模组100的光学防抖。
请再次参阅图2,摄像模组100还包括感光芯片50,感光芯片50与固定架20均设于电路板10的同侧,且感光芯片50位于收容腔21内,经镜头31进入摄像模组100内的光线在经过微透镜滤光片43后,可以一定角度入射至感光芯片50,此光线的入射位置可以为经抖动补偿后所射入的光线的预设光路(未发生抖动时的光路)的最终位置,从而能够有效避免因光路偏移所带来的影像模糊的问题。而感光芯片50感应接收的光线以获得光信号,并将光信号转换为电信号并通过电路板10传输给主板上的后续处理元件如图像信号处理器等,进而转化为人眼可见的图像。可以理解的是,感光芯片50即为前文所述的感光元件。
一种可能的实施方式中,第一驱动部41包括防抖线圈44和防抖磁体45,防抖线圈44设于微透镜滤光片支架42,防抖磁体45设于固定架20且与防抖线圈44相对设置。需说明的是,防抖线圈44和防抖磁体45相对设置且其之间会形成间隙,间隙能够使其之间具有一定的相对间隔距离,以使防抖线圈44和防抖磁体45之间能够通过磁场的相互作用而有效驱动微透镜滤光片支架42沿光轴I方向进行移动。同时,因防抖线圈44和防抖磁体45之间并非互相接触,而是存在径向距离,从而使得微透镜滤光片支架42在沿光轴I方向移动时,微透镜滤光片支架42与固定架20之间的摩擦阻力几乎为零,有效降低了能耗。
一种可能的实施方式中,微透镜滤光片支架42可以为四棱柱状结构,其具有贯穿微透镜滤光片支架42的通孔421,微透镜滤光片43安装于通孔421 内以使微透镜滤光片支架42能够承载微透镜滤光片43。防抖线圈44套设于微透镜滤光片支架42的外围,从而使得微透镜滤光片支架42的外周壁的每一侧壁均可被防抖线圈44覆盖。相应地,为对应微透镜滤光片支架42的四个棱面,保证能与每一棱面均具有相互作用力,防抖磁体45的数量为四个。具体而言,收容腔21的每一侧壁均向固定架20的外侧凹陷形成一个收容槽(图未标),四个防抖磁体45分别收容于四个收容槽内。也即为,四个防抖磁体45两两为一组,每一组防抖磁体45均在X轴或Y轴方向相背设置,且每一组的两个防抖磁体45均位于X轴或Y轴的两个相背的方向(正方向或负方向)。当然,其他的实施方式中,微透镜滤光片支架42也可以为如圆柱状等其他形状。
可以理解的是,每一组防抖磁体45和对应的防抖线圈44配合均可使微透镜滤光片支架42在垂直于光轴I的一个轴向(X轴或Y轴)上进行移动。从而使得防抖线圈44通电后,微透镜滤光片支架42因防抖线圈44和防抖磁体45的磁场之间的相互作用而可以在X轴或Y轴方向进行移动。换言之,微透镜滤光片支架42可在两组防抖磁体45和防抖线圈44配合驱动下,分别在垂于光轴I的两个轴向(X轴和Y轴)上进行移动,从而能够在电子设备200发生抖动时,有针对性的在两个方向上进行移动而补偿抖动所造成的光路偏移的问题,使得摄像模组100的影像质量具有较佳的稳定性和可靠性。也即为,两组防抖磁体45和防抖线圈44配合可使微透镜滤光片支架42分别在垂直于光轴I的两个轴向(X轴和Y轴)上进行移动,以补偿抖动。
需说明的是,第一驱动部41不仅能够驱动微透镜滤光片支架42在收容腔21内沿垂直于光轴I的方向移动,其还能驱动微透镜滤光片支架42在收容腔21内沿光轴I的方向移动,有利于进一步提高镜头31的对焦效果,改善影像的画面质量。由此,微透镜滤光片支架42不仅能够沿垂直于光轴I方向进行移动而实现防抖,也可以使微透镜滤光片支架42沿垂直于光轴I的方向进行移动而进一步提高对焦效果,灵活性强,应用范围广泛。
另外,防抖磁体45并不局限于通过收容槽来固定在固定架20的收容腔21的腔壁上,防抖磁体45也可直接粘接在收容腔21的腔壁上。而防抖磁体45可以为永久磁体或者电磁体,如果为永久磁体,则防抖磁体45产生不变的 磁场(即永磁场),如果为电磁体,则可产生可变的磁场。
本申请的实施例中,防抖磁体45为永磁体,当防抖线圈44未通入电流时,防抖线圈44便不会产生磁场,此时,摄像模组100中仅存在防抖磁体45产生的永磁场,防抖线圈44与防抖磁体45之前不会存在磁作用力,故,微透镜滤光片支架42保持初始位置;当防抖线圈44中有电流流入时,则防抖线圈44便会产生磁场,摄像模组100中不仅存在防抖磁体45产生的永磁场,而且还存在防抖线圈44产生的可变磁场,根据通入电流方向和大小的不同,作用于防抖磁体45的力的方向和大小也会相应的发生变化,从而使微透镜滤光片支架42的运动方向和速度发生变化。由于防抖磁体45固定在固定架20上而无法运动,微透镜滤光片支架42可移动地设置在收容腔21中且位于镜头载体32的下方,防抖线圈44固定于微透镜滤光片支架42上使得微透镜滤光片支架42是可动的,故,微透镜滤光片支架42可被防抖线圈44带动而沿垂直于光轴I方向移动,以使承载于其上的微透镜滤光片43实现防抖功能。当防抖功能完成后,可以停止输入给防抖线圈44的电流,使得微透镜滤光片支架42回到初始位置,或者输入反向电流给防抖线圈44使其产生方向相反的磁场,以使微透镜滤光片支架42回到初始位置。
请继续参阅图2,进一步地,第一驱动部41还包括防抖弹片46,防抖弹片46连接于固定架20和微透镜滤光片支架42之间。防抖弹片46可以在微透镜滤光片支架42相对固定架20发生移动后,起到限位作用以限制微透镜滤光片支架42的移动范围,另外,还可在停止对防抖线圈44输入电流后起到复位作用,以为微透镜滤光片支架42回复到初始位置提供回复力。
由此,对焦组件30和防抖组件40可被分别的驱动,从而使得对焦组件30应用于摄像模组100的对焦,而防抖组件40应用于摄像模组100的抖动补偿,此设置无需通过摆动镜头31即可进行抖动补偿,使得驱动镜头31进行对焦的第二驱动部33的尺寸会有所减小,有利于实现驱动源的平衡分配需求,降低摄像模组100的功耗。
请参阅图8,另一种可能的实施方式中,与上述实施方式不同的是,第一驱动部41不再设置防抖磁体45和防抖线圈44。而前述实施方式中描述的摄像模组100中的除防抖磁体45和防抖线圈44外其他部件,在不冲突的情况下, 这些描述均可应用于图8所示的摄像模组100。
具体而言,固定架20的收容腔21的内侧壁凸设有底座22,底座22上设有柔性线路板60,第一驱动部41包括记忆金属件47,记忆金属件47连接于柔性线路板60和微透镜滤光片支架42之间。
可以理解的是,微透镜滤光片支架42通过记忆金属件47悬空设置于柔性线路板60的上方,记忆金属件47可以通过通电伸缩而带动微透镜滤光片支架42在垂直于光轴I的平面上移动,进而能够带动微透镜滤光片43一起在垂直于光轴I的平面移动。具体为,记忆金属件47具有在通电后发生一定的伸缩的特性,并且还具有随着通电电流或者电压大小的改变可以改变其尺寸的特性,从而通过记忆金属件47既能够实现对微透镜滤光片支架42的支撑固定,还可以实现由记忆金属件47带动微透镜滤光片支架42在垂直于光轴I的平面上移动的作用,进而实现摄像模组100的平移式防抖,平移式防抖具有较大的抖动补偿范围,且微透镜滤光片支架42在做平移时,能够保证光轴I指向的稳定,此设置使得摄像模组100结构简单,成像效果优良。
本申请的实施例中,记忆金属件47的材料可以为如镍钛合金的记忆合金(ShapeMemory Alloys,SMA)。记忆金属件47的数量可以为四个。四个记忆金属件47分别对应微透镜滤光片支架42的四个依次连接的侧面设置,即每个记忆金属件47均对应微透镜滤光片支架42的一个侧面设置,从而能更好地实现对于微透镜滤光片支架42的支撑固定,也可以更好的实现由记忆金属件47带动微透镜滤光片支架42移动的作用,同时四个记忆金属件47抗断裂的能力更强,能够有效提高光学防抖摄像模组100的质量。
可以理解的是,位于同一轴线上的两个记忆金属件47为一组,每一组记忆金属件47均在X轴或Y轴方向相对设置,且由于每一组的两个记忆金属件47均位于X轴或Y轴的两个相背的方向(正方向和负方向),从而使得每一组的记忆金属件47通电后,微透镜滤光片支架42因该组记忆金属件47的伸缩作用而可以在X轴或Y轴方向进行移动,从而能够有效方便记忆金属件47带动微透镜滤光片支架42,进而带动微透镜滤光片43进行X轴或Y轴的的补偿移动。
进一步地,记忆金属件47与柔性线路板60电性连接,而柔性线路板60 又电连接电路板10,从而可以实现电路板10对记忆金属件47的供电和控制的功能。
请再次参阅图2和图8,一种可能的实施方式中,对焦组件30和防抖组件40均可以收容于固定架20内的收容腔21里,且对焦组件30整体位于防抖组件40的上方。也即为,固定架20可以为一体式的结构,一体式的结构一致性强,能够减少生产成本和组装工序,有利于避免安装偏差,提高摄像模组100的组装精度。
请一并参阅图9和图10,另一种可能的实施方式中,固定架20包括下支架23和上支架24,下支架23设于电路板10,上支架24设于下支架23背离电路板10的表面,下支架23和上支架24共同形成收容腔21,对焦组件30位于上支架24,防抖组件40位于下支架23。具体而言,镜头载体32沿光轴I的方向活动设置于收容腔21位于上支架24的部分,微透镜滤光片支架42沿垂直于光轴I的方向活动设置于收容腔21位于下支架23的部分。
可以理解的是,通过将固定架20设置为分体式的上支架24和下支架23,并将对焦组件30设于上支架24,而防抖组件40设于下支架23,使得对焦组件30和防抖组件40位于不同的支架上,从而能够在对焦组件30和防抖组件40的一者或两者需要返修时,能够顺利拆装而便于维修。
本申请的技术方案通过设置微透镜阵列432,从而可以在电子设备200发生抖动使得影像光路偏移而产生模糊时,移动微透镜阵列432以对光路偏移进行位移量补偿,进而补偿抖动。此设置形成一种新的抖动补偿模式,且相对于传统的移动镜头31而实现补偿抖动的设置,能够有效改善传统的抖动模式中因镜头31重,导致移动镜头31所需的马达体积较大以及高功耗的问题,能够有效的进行抖动补偿,提高应用微透镜阵列432的摄像模组100的可靠性,实用性强,应用范围广泛。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理理解为对本申请的限制。

Claims (15)

  1. 一种防抖组件,所述防抖组件安装于固定架,所述固定架内设收容腔,其特征在于,所述防抖组件包括第一驱动部、微透镜滤光片支架和设于所述微透镜滤光片支架的微透镜滤光片,所述微透镜滤光片支架沿垂直于光轴的方向活动设置于所述收容腔内,所述微透镜滤光片包括微透镜滤光片本体和微透镜阵列,所述微透镜阵列设于所述微透镜滤光片本体的垂直于光轴的至少一侧,所述第一驱动部至少部分位于所述微透镜滤光片支架上,所述第一驱动部能够驱动所述微透镜滤光片支架在所述收容腔内沿垂直于光轴的方向移动,从而带动所述微透镜滤光片移动,以使经镜头出射的光线入射至所述微透镜阵列时发生折射而补偿镜头抖动造成的光路偏移。
  2. 如权利要求1所述的防抖组件,其特征在于,所述微透镜阵列位于所述微透镜滤光片本体的物侧。
  3. 如权利要求1所述的防抖组件,其特征在于,所述微透镜阵列位于所述微透镜滤光片本体的物侧和像侧。
  4. 如权利要求3所述的防抖组件,其特征在于,设于所述物侧的所述微透镜阵列的背离所述微透镜滤光片本体的表面镀有红外截止膜,设于所述像侧的所述微透镜阵列的背离所述微透镜滤光片本体表面镀有增透膜。
  5. 如权利要求1所述的防抖组件,其特征在于,所述微透镜阵列包括多个阵列布置的微透镜,每一所述微透镜的与所述微透镜滤光片本体接触的表面的形状包括六边形、矩形和圆形。
  6. 如权利要求1所述的防抖组件,其特征在于,所述第一驱动部包括防抖线圈和防抖磁体,所述防抖线圈设于所述微透镜滤光片支架,所述防抖磁体设于所述固定架且与所述防抖线圈相对设置。
  7. 如权利要求1所述的防抖组件,其特征在于,所述收容腔的内侧壁凸设有底座,所述底座上设有柔性线路板,所述第一驱动部包括记忆金属件,所述记忆金属件连接于所述柔性线路板和所述微透镜滤光片支架之间。
  8. 如权利要求6或7任一项所述的防抖组件,其特征在于,所述第一驱动部还包括防抖弹片,所述防抖弹片与所述防抖磁体间隔设置且连接于所述固定架和所述微透镜滤光片支架之间。
  9. 如权利要求1所述的防抖组件,其特征在于,所述折射的折射角的角度范围在0°~15°的范围内。
  10. 如权利要求1所述的防抖组件,其特征在于,所述微透镜滤光片的中心线偏离所述光轴的偏移范围在0um~200um的范围内。
  11. 一种摄像模组,其特征在于,所述摄像模组包括固定架、对焦组件和如权利要求1-10任一项所述的防抖组件,所述固定架内设收容腔,所述对焦组件包括用于承载镜头的镜头载体和第二驱动部,所述镜头载体沿光轴的方向活动设置于所述收容腔内且位于所述对焦组件的微透镜滤光片的上方,所述第二驱动部位于所述固定架和所述镜头载体上,所述第二驱动部能够驱动所述镜头载体在所述收容腔内沿光轴的方向移动以实现自动对焦。
  12. 如权利要求11所述的摄像模组,其特征在于,所述第二驱动部包括对焦线圈和对焦磁体,所述对焦线圈设于所述镜头载体,所述对焦磁体设于所述固定架且与所述对焦线圈相对设置。
  13. 如权利要求12所述的摄像模组,其特征在于,所述第二驱动部还包括对焦弹片,所述对焦弹片与所述对焦磁体间隔设置且连接于所述固定架和所述镜头载体之间。
  14. 如权利要求11所述的摄像模组,其特征在于,所述摄像模组还包括电路板,所述固定架包括下支架和上支架,所述下支架设于所述电路板,所述上支架设于所述下支架背离所述电路板的表面,所述下支架和所述上支架共同形成所述收容腔,所述对焦组件位于所述上支架,所述防抖组件位于所述下支架。
  15. 一种电子设备,其特征在于,所述电子设备包括如权利要求11-14任一项所述的摄像模组。
PCT/CN2020/089222 2020-05-08 2020-05-08 防抖组件、摄像模组及电子设备 WO2021223223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089222 WO2021223223A1 (zh) 2020-05-08 2020-05-08 防抖组件、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089222 WO2021223223A1 (zh) 2020-05-08 2020-05-08 防抖组件、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021223223A1 true WO2021223223A1 (zh) 2021-11-11

Family

ID=78468605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089222 WO2021223223A1 (zh) 2020-05-08 2020-05-08 防抖组件、摄像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2021223223A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143431A (zh) * 2021-11-30 2022-03-04 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114173037A (zh) * 2021-11-30 2022-03-11 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114938419A (zh) * 2022-03-21 2022-08-23 Oppo广东移动通信有限公司 防抖组件、摄像头模组及电子设备
CN115052093A (zh) * 2022-04-15 2022-09-13 华为技术有限公司 摄像头模组和电子设备
WO2024041163A1 (zh) * 2022-08-24 2024-02-29 Oppo广东移动通信有限公司 音圈马达、摄像头模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550307B1 (ko) * 2014-07-07 2015-09-04 조성구 카메라용 광학렌즈 시스템
CN107071253A (zh) * 2017-05-27 2017-08-18 深圳奥比中光科技有限公司 结构紧凑的光场相机
CN107407852A (zh) * 2015-03-30 2017-11-28 株式会社尼康 拍摄装置、多透镜相机及拍摄装置的制造方法
CN110365886A (zh) * 2019-08-01 2019-10-22 珠海格力电器股份有限公司 一种光学防抖摄像头模组
CN210246879U (zh) * 2019-08-09 2020-04-03 南昌欧菲光电技术有限公司 摄像模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550307B1 (ko) * 2014-07-07 2015-09-04 조성구 카메라용 광학렌즈 시스템
CN107407852A (zh) * 2015-03-30 2017-11-28 株式会社尼康 拍摄装置、多透镜相机及拍摄装置的制造方法
CN107071253A (zh) * 2017-05-27 2017-08-18 深圳奥比中光科技有限公司 结构紧凑的光场相机
CN110365886A (zh) * 2019-08-01 2019-10-22 珠海格力电器股份有限公司 一种光学防抖摄像头模组
CN210246879U (zh) * 2019-08-09 2020-04-03 南昌欧菲光电技术有限公司 摄像模组及电子设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143431A (zh) * 2021-11-30 2022-03-04 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114173037A (zh) * 2021-11-30 2022-03-11 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114173037B (zh) * 2021-11-30 2023-12-05 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114143431B (zh) * 2021-11-30 2023-12-05 新思考电机有限公司 驱动组件、摄像头模组及电子设备
CN114938419A (zh) * 2022-03-21 2022-08-23 Oppo广东移动通信有限公司 防抖组件、摄像头模组及电子设备
CN114938419B (zh) * 2022-03-21 2023-10-13 Oppo广东移动通信有限公司 防抖组件、摄像头模组及电子设备
CN115052093A (zh) * 2022-04-15 2022-09-13 华为技术有限公司 摄像头模组和电子设备
CN115052093B (zh) * 2022-04-15 2023-07-18 华为技术有限公司 摄像头模组和电子设备
WO2024041163A1 (zh) * 2022-08-24 2024-02-29 Oppo广东移动通信有限公司 音圈马达、摄像头模组及电子设备

Similar Documents

Publication Publication Date Title
CN212183604U (zh) 防抖组件、摄像模组及电子设备
WO2021223223A1 (zh) 防抖组件、摄像模组及电子设备
CN212364777U (zh) 可达成影像稳定的反射模组、相机模组与电子装置
US11627253B2 (en) Camera actuator and a camera module including the same
CN212723615U (zh) 相机模块
US20220128885A1 (en) A lens assembly and a camera module including the same
WO2021104017A1 (zh) 摄像头模组及电子设备
CN213690191U (zh) 光路转换模块及包括其的相机模块和便携式终端
KR20200006607A (ko) 카메라 모듈
CN113630528A (zh) 防抖组件、摄像模组及电子设备
CN211206941U (zh) 潜望式光学模块以及光学系统
CN214756582U (zh) 光学镜头及摄像模组
KR20200119630A (ko) 카메라 모듈 및 이를 포함하는 카메라 장치
US20220082786A1 (en) Camera module having reflective element and electronic device
CN112823311B (zh) 相机致动器和包括相机致动器的相机模块
JP2022509604A (ja) カメラモジュール
KR20210014875A (ko) 렌즈 어셈블리 구동 장치 및 이를 포함하는 카메라 모듈
KR20180076165A (ko) 카메라 모듈
CN113050340B (zh) 相机模块
KR101579586B1 (ko) 카메라 렌즈 모듈
CN114911025B (zh) 一种潜望式镜头驱动装置、摄像装置及移动终端
US20220279125A1 (en) Camera actuator and camera module including the same
JP2022542671A (ja) 駆動装置、カメラモジュール及び携帯端末機器
KR102537561B1 (ko) 프리즘을 포함하는 영상 흔들림 방지장치 및 이를 포함하는 카메라 모듈
CN220730584U (zh) 透镜驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934382

Country of ref document: EP

Kind code of ref document: A1