WO2016158900A1 - 制御装置、機器制御装置、制御システム、制御方法およびプログラム - Google Patents

制御装置、機器制御装置、制御システム、制御方法およびプログラム Download PDF

Info

Publication number
WO2016158900A1
WO2016158900A1 PCT/JP2016/060018 JP2016060018W WO2016158900A1 WO 2016158900 A1 WO2016158900 A1 WO 2016158900A1 JP 2016060018 W JP2016060018 W JP 2016060018W WO 2016158900 A1 WO2016158900 A1 WO 2016158900A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
demand adjustment
information
control
power
Prior art date
Application number
PCT/JP2016/060018
Other languages
English (en)
French (fr)
Inventor
龍 橋本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/562,701 priority Critical patent/US20180062389A1/en
Priority to JP2017509998A priority patent/JPWO2016158900A1/ja
Publication of WO2016158900A1 publication Critical patent/WO2016158900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a control device, a device control device, a control system, a control method, and a program for controlling a power supply and demand adjustment device.
  • Patent Document 1 describes a power system control system that performs power supply and demand adjustment using a plurality of storage batteries.
  • the hierarchical supply and demand control device receives information (for example, charging efficiency and remaining capacity) of each storage battery from each of the plurality of storage batteries.
  • the hierarchical supply and demand control apparatus collects information on each storage battery.
  • the hierarchical demand-and-supply control device transmits aggregate storage battery information, which is information of the aggregated storage battery, to the host device, and then receives control information about the aggregated storage battery from the host device.
  • the hierarchical supply and demand control apparatus generates control information for each storage battery based on the received control information and information for each storage battery.
  • the hierarchical supply and demand control device controls charging / discharging of each storage battery using control information of each storage battery.
  • the power system control system described in Patent Document 1 has a problem that the amount of communication processing with a storage battery increases when the number of storage batteries, which is an example of a power supply and demand adjustment device, increases. This problem occurs not only when the power supply / demand adjustment device is a storage battery, but also when the power supply / demand adjustment device is a device (for example, a power generation device, an electric device, or an electric vehicle) different from the storage battery.
  • An object of the present invention is to provide a control device, a device control device, a control system, a control method, and a program that can solve the above problems.
  • the control device of the present invention is a control device that controls a plurality of power supply and demand adjusting devices
  • a generating unit configured to generate operation control information of the part of the power supply and demand adjustment device based on the state information of the part of the power supply and demand adjustment device received from a part of the plurality of power supply and demand adjustment devices;
  • a transmission unit that transmits the operation control information to the part of the power supply and demand adjustment device.
  • the device control device of the present invention is a device control device that controls the operation of the supply and demand adjustment device connected to the power system, Detecting means for detecting a state of the supply and demand adjusting device; Communication means for transmitting the detection result of the detection means to an external device and receiving operation control information for controlling the operation of the supply and demand adjustment device from the external device; Control means for replacing the operation control information held by the operation control information received by the communication means, and controlling the operation of the supply and demand adjustment device based on the operation control information after the replacement.
  • the control system of the present invention includes a first control device that controls the operation of the power supply and demand adjustment device connected to the power system, and a second control device that communicates with the first control device,
  • the first control device includes: A detection unit for detecting a state related to the power supply and demand adjustment device; The state information indicating the state relating to the power supply / demand adjustment device detected by the detection unit is transmitted to the second control device, and the operation control information for controlling the operation of the power supply / demand adjustment device is received from the second control device.
  • a communication unit that A control unit that replaces the held operation control information with the operation control information received by the communication unit, and controls the operation of the power supply and demand adjustment device based on the operation control information
  • the second control device includes: A generating unit configured to generate operation control information of the partial power supply and demand adjustment device based on the state information of the partial power supply and demand adjustment device received from a part of the plurality of power supply and demand adjustment devices; A transmission unit that transmits the operation control information to the part of the power supply and demand adjustment device.
  • the control method of the present invention generates operation control information of the some power supply / demand adjustment devices based on the state information of the some power supply / demand adjustment devices received from some of the plurality of power supply / demand adjustment devices.
  • It is a method of transmitting the operation control information to the part of the power supply and demand adjustment device. Or, detect the state of the supply and demand adjustment device connected to the power system, Transmitting the detection result of the state of the supply and demand adjustment device to an external device, receiving operation control information for controlling the operation of the supply and demand adjustment device from the external device;
  • the held operation control information is replaced with the received operation control information, and the operation of the supply and demand adjusting device is controlled based on the replaced operation control information.
  • the program of the present invention is stored in a computer.
  • a detection procedure for detecting the state of the supply and demand adjustment device connected to the power system A communication procedure for transmitting a detection result of the state of the supply and demand adjustment device to an external device and receiving operation control information for controlling the operation of the supply and demand adjustment device from the external device;
  • the stored operation control information is replaced with the received operation control information, and a control procedure for controlling the operation of the supply and demand adjusting device is executed based on the replaced operation control information.
  • FIG. 1 is a diagram showing a control device A according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the operation of the control device A.
  • FIG. 3 is a diagram showing a control device B according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining the operation of the control device B.
  • FIG. 5 is a diagram illustrating a power control system including the control device C according to the third embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the operation control information.
  • FIG. 7 is a flowchart for explaining the transmission operation of the power supply and demand adjustment apparatus D.
  • FIG. 8 is a flowchart for explaining the operation at the start of the operation of the control apparatus C.
  • FIG. 1 is a diagram showing a control device A according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the operation of the control device A.
  • FIG. 3 is a diagram showing a control device B
  • FIG. 9 is a flowchart for explaining the operation after the start of the operation of the control device C.
  • FIG. 10 is a flowchart for explaining the operation when the power supply and demand adjustment apparatus D receives the operation control information.
  • FIG. 11A is a flowchart for explaining an operation in which the power supply and demand adjustment apparatus D controls the storage battery R2 based on the operation control information.
  • FIG. 11B is a diagram illustrating another example of the device control apparatus D1.
  • FIG. 12 is a diagram showing a power control system 1000 having the fourth embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an example of the power supply command unit 2, the power control device 7, and the plurality of device control devices 8.
  • FIG. 14A is a diagram illustrating an example of a storage battery distribution rate curve 202a during discharging.
  • FIG. 14B is a diagram illustrating an example of a storage battery distribution rate curve 202b during charging.
  • FIG. 15A is a diagram illustrating an example of a DR1 charge / discharge gain line.
  • FIG. 15B is a diagram illustrating an example of a DR2 charge / discharge gain line.
  • FIG. 16 is a flowchart for explaining an operation in which the device control apparatus 8 determines usage information.
  • FIG. 17 is a sequence diagram for explaining the P ES derivation operation.
  • FIG. 18 is a sequence diagram for explaining the DR1 grasping operation.
  • FIG. 19 is a sequence diagram for explaining the DR1 sharing operation.
  • FIG. 20 is a diagram illustrating an example of the first local charge / discharge gain line 800A.
  • FIG. 21 is a sequence diagram for explaining the charge / discharge control operation.
  • FIG. 22 is a sequence diagram for explaining the DR2 grasping operation.
  • FIG. 23 is a sequence diagram for explaining the DR2 sharing operation.
  • FIG. 24 shows an example of second local charge / discharge gain line 800B.
  • FIG. 25 is a sequence diagram for explaining the charge / discharge control operation.
  • FIG. 26 is a diagram illustrating the fourth embodiment, a modified example of the fourth embodiment, and a comparative example.
  • FIG. 1 is a diagram showing a control device A according to the first embodiment of the present invention.
  • the control device A controls a plurality of power supply and demand adjustment devices connected to the power transmission and distribution network.
  • the transmission and distribution network is included in the power system.
  • the power supply and demand adjustment device adjusts the power supply and demand balance in the power transmission and distribution network.
  • the power supply / demand adjustment device adjusts the power supply / demand balance in the power transmission and distribution network by controlling, for example, the power demand (power consumption) and power supply (for example, discharge and power generation) of the device itself.
  • the power supply / demand adjustment device may be a device or device that adjusts the power supply / demand balance by controlling the power supply amount without controlling the power supply amount.
  • the power supply / demand adjustment device is, for example, a storage battery, an air conditioner, an electric water heater, a heat pump water heater, a pump, or a refrigerator.
  • the power supply and demand adjusting device is not limited to a storage battery, an air conditioner, an electric water heater, a heat pump water heater, a pump, and a refrigerator, but can be changed as appropriate.
  • an electric vehicle may be used for the power supply and demand adjustment device.
  • the control device A includes a generation unit A1 and a transmission unit A2.
  • the generation unit A1 is configured to instruct power consumption of each of the partial power supply / demand adjustment devices based on the status information of the partial power supply / demand adjustment devices received from a part of the plurality of power supply / demand adjustment devices. Generate information.
  • Some of the power supply and demand adjustment devices are, for example, F (F is an integer less than 1 and less than E) power supply and demand adjustment devices in E (E is an integer of 2 or more) units means.
  • the generation unit A1 receives the status information of the F power supply / demand adjustment devices received from the E power supply / demand adjustment devices from the E power supply / demand adjustment devices. You may use as status information of a supply-and-demand adjustment apparatus.
  • the generation unit A1 when the generation unit A1 receives only the status information of the F power supply and demand adjustment devices within a predetermined period, the generation unit A1 obtains the received status information of the F power supply and demand adjustment devices for some of the power supply and demand adjustment devices. It may be used as status information. In the present embodiment, the generation unit A1 stores the status information of the F power supply / demand adjustment devices received from the E power supply / demand adjustment devices received from the E power supply / demand adjustment devices. It is used as the status information of the power supply and demand adjustment device of the department.
  • the power consumption information is an example of operation control information for controlling the operation of the power supply and demand adjustment device.
  • the maximum power consumption of the power supply and demand adjustment device means the maximum charge power
  • the minimum power consumption of the power supply and demand adjustment device means the maximum discharge power.
  • the maximum power consumption and the minimum power consumption of the power supply / demand adjustment device may be mentioned.
  • the generation unit A1 has a plurality of power supply and demand adjustment devices under management.
  • the generation unit A1 for example, based on the maximum power consumption of some power supply / demand adjustment devices and the minimum power consumption of the some power supply / demand adjustment devices, the power consumption information of the some power supply / demand adjustment devices Is generated.
  • the generation unit A1 uses the allocated power allocated to the control device A as the minimum power consumption when the power consumption of each of the power supply and demand adjustment devices is less than or equal to the maximum power consumption of the power supply and demand adjustment device.
  • the power is distributed to some of the power supply and demand adjustment devices within a range that is equal to or greater than the power.
  • the generation unit A1 generates power consumption information representing the power consumption distributed to each of the power supply and demand adjustment devices.
  • the transmission unit A2 transmits each power consumption information generated by the generation unit A1 to the power supply and demand adjustment device corresponding to the power consumption information.
  • FIG. 2 is a flowchart for explaining the operation of the control device A.
  • each of the plurality of power supply and demand adjustment devices transmits status information (maximum power consumption and minimum power consumption) of the device itself to the control device A.
  • the generation unit A1 receives the state information of the power supply / demand adjustment device from each power supply / demand adjustment device. Subsequently, the generation unit A1 selects, based on the state information of a plurality of power supply / demand adjustment devices, the number of power supply / demand adjustment devices equal to or less than a threshold value (hereinafter referred to as “selected power supply / demand adjustment devices”).
  • the power consumption information of the power supply and demand adjustment device is generated (step S201).
  • the selected power supply / demand adjustment device is an example of a part of the power supply / demand adjustment device.
  • the number represented by the threshold is a number smaller than the number of a plurality of power supply and demand adjustment devices (power supply and demand adjustment devices under the control of the generation unit A1). Note that the number represented by the threshold may be changed at an arbitrary timing as long as the number is smaller than the number of the plurality of power supply and demand adjustment devices.
  • the threshold value is held in the generation unit A1.
  • step S ⁇ b> 201 the generation unit A ⁇ b> 1 within a range where the power consumption of each selected power supply and demand adjustment device is equal to or less than the maximum power consumption of the selected power supply and demand adjustment device and equal to or greater than the minimum power consumption of the selected power supply and demand adjustment device. Then, the allocated power consumption of the control device A is distributed to each selected power supply and demand adjustment device. Subsequently, the generation unit A1 generates and sets power consumption information representing the distributed power consumption for each selected power supply and demand adjustment device.
  • the generation unit A1 When the allocated power consumption of the control device A is larger than the sum of the maximum power consumption of the selected power supply and demand adjustment device, the generation unit A1, for example, as each power consumption of the selected power supply and demand adjustment device, each maximum consumption Power consumption information representing power is generated. Subsequently, the generation unit A1 outputs the power consumption information of each selected power supply and demand adjustment device to the transmission unit A2.
  • the transmission unit A2 transmits each power consumption information to the selected power supply and demand adjustment device corresponding to the power consumption information (step S202).
  • each selected power supply and demand adjusting device receives the power consumption information, it consumes power at the power consumption indicated by the power consumption information. For this reason, the operation of the selected power supply and demand adjustment apparatus is controlled by the power consumption information.
  • the generation unit A1 includes the partial power supply and demand adjustment device based on the maximum power consumption and the minimum power consumption of the partial power supply and demand adjustment device received from some of the plurality of power supply and demand adjustment devices. Each piece of power consumption information is generated.
  • the transmission unit A2 transmits each power consumption information to the power supply and demand adjustment device corresponding to the power consumption information. For this reason, the transmission part A2 can reduce the communication processing amount of power consumption information compared with the case where power consumption information is transmitted to all of the plurality of power supply and demand adjustment apparatuses.
  • the generation unit A1 is based on the maximum power consumption and the minimum power consumption of some of the power supply and demand adjustment devices among the maximum power consumption and the minimum power consumption received from the plurality of power supply and demand adjustment devices.
  • the power consumption information of the part of the power supply and demand adjustment device is generated. For this reason, the generation unit A1 can determine a power supply and demand adjustment device that generates power consumption information on its own.
  • Each of the plurality of power supply and demand adjustment devices may transmit the maximum power consumption and the minimum power consumption of the own device in the period Ta.
  • the generation unit A1 has the maximum power consumption and the minimum power consumption of a part of the power supply and demand adjustment devices among the maximum power consumption and the minimum power consumption of the plurality of power supply and demand adjustment devices received in the period Ta during the period Ta. Based on the power consumption, the power consumption information of the partial power supply and demand adjustment device may be generated.
  • the period Ta is, for example, 10 seconds.
  • the period Ta is not limited to 10 seconds and can be changed as appropriate.
  • the generation unit A1 may switch the selected power supply / demand adjustment device when the operation of generating the power consumption information of the selected power supply / demand adjustment device is executed a predetermined number of times (for example, once). Note that the predetermined number of times is not limited to one, and can be changed as appropriate. In this case, it is possible to prevent some of the power supply / demand adjustment devices from being continuously selected as the selected power supply / demand adjustment device. Furthermore, it is desirable that the generation unit A1 preferentially selects the power supply / demand adjustment device that is not selected as the selected power supply / demand adjustment device for a long period as the selected power supply / demand adjustment device.
  • the generation unit A1 is configured to select a power supply / demand adjustment device (hereinafter referred to as “a selected power supply / demand adjustment device”) so as to maintain fairness based on a preset unique identification number such as a manufacturing number of the power supply / demand adjustment device.
  • the non-target power supply and demand adjustment device may also be selected in order.
  • the generation unit A1 may select the non-target power supply / demand adjustment device instead of the period not selected as the selected power supply / demand adjustment device or based not only on the period but also on the power consumption so far. Good.
  • the generation unit A1 may select a power supply / demand adjustment device that has consumed a relatively large amount of power as a non-target power supply / demand adjustment device.
  • FIG. 3 is a diagram showing a control device B according to the second embodiment of the present invention.
  • the control device B controls a plurality of power supply and demand adjustment devices connected to the power transmission and distribution network.
  • the control device B includes a generation unit B1 and a transmission unit A2.
  • the generation unit A1 uses a part of the power supply / demand adjustment apparatus as the state information of a part of the plurality of power supply / demand adjustment apparatuses. Device status information was used.
  • the generation unit B1 when the status information of at least one of the plurality of power supply and demand adjustment apparatuses is not received within a predetermined period, the generation unit B1 receives the power supply and demand received within the predetermined period.
  • the state information of the adjusting device is used as the state information of some power supply and demand adjusting devices.
  • the maximum power consumption and the minimum power consumption of the power supply / demand adjustment device are used as the state information of the power supply / demand adjustment device.
  • the generation unit B1 has a plurality of power supply and demand adjustment devices under management. For example, the generation unit B1 holds identification information of a plurality of power supply / demand adjustment devices.
  • the generation unit B1 generates power consumption information of the partial power supply and demand adjustment device based on the maximum power consumption of the partial power supply and demand adjustment device and the minimum power consumption of the partial power supply and demand adjustment device To do.
  • the generation method of power consumption information in the generation unit B1 is the same as the generation method of power consumption information in the generation unit A1.
  • the transmission unit A2 transmits each power consumption information generated by the generation unit B1 to the power supply and demand adjustment apparatus corresponding to the power consumption information.
  • FIG. 4 is a flowchart for explaining the operation of the control device B.
  • each of the plurality of power supply and demand adjustment devices transmits the status information (maximum power consumption and minimum power consumption) of the device itself to the control device B.
  • each of the plurality of power supply and demand adjusting devices transmits the status information of the own device and the identification information of the own device to the control device A.
  • a power supply / demand adjustment device in which the state information does not reach the control device B may occur due to a communication error or a malfunction of the power supply / demand adjustment device itself.
  • the generation unit B1 When the generation unit B1 does not receive all the state information of the plurality of power supply and demand adjustment devices during a predetermined period (for example, 10 seconds), the state information of the power supply and demand adjustment device received within the predetermined period is Used as status information for some power supply and demand adjustment devices.
  • the power supply and demand adjustment device corresponding to the state information received within the predetermined period is referred to as “target power supply and demand adjustment device”.
  • the predetermined period is not limited to 10 seconds and can be changed as appropriate.
  • the generation unit B1 when the generation unit B1 does not receive all the identification information of the plurality of power supply and demand adjustment devices within the predetermined period, the generation unit B1 receives all the state information of the plurality of power supply and demand adjustment devices within the predetermined period. Judge that there was no.
  • the generation unit B1 generates power consumption information of the target power supply / demand adjustment device based on the state information of the target power supply / demand adjustment device (step S401). At this time, the generating unit B1 assigns the allocated power allocated to the control device B so that the power consumption of each target power supply and demand adjustment device is less than or equal to the maximum power consumption of the target power supply and demand adjustment device, and more than the minimum power consumption. Within the range, it distributes to each target electric power supply and demand adjustment device. Subsequently, the generation unit B1 generates power consumption information representing the distributed power consumption for each target power supply and demand adjustment device.
  • the generation unit B1 when the allocated power consumption of the control device B is larger than the sum of the maximum power consumption of the target power supply and demand adjustment device, the generation unit B1, for example, each of the maximum power consumption as the power consumption of the target power supply and demand adjustment device Power consumption information representing power is generated. Subsequently, the generation unit B1 outputs the power consumption information of each target power supply and demand adjustment device to the transmission unit A2. Upon receiving the power consumption information of each target power supply and demand adjustment device, the transmission unit A2 transmits each power consumption information to the target power supply and demand adjustment device corresponding to the power consumption information (step S402). When each target power supply and demand adjusting device receives the power consumption information, it consumes power at the power consumption indicated by the power consumption information.
  • the generation unit B1 receives the maximum consumption of the power supply and demand adjustment device received within the predetermined period.
  • the power and the minimum power consumption are used as the maximum power consumption and the minimum power consumption of some power supply and demand adjustment devices. For this reason, even if all the maximum power consumption and minimum power consumption of a plurality of power supply and demand adjustment devices cannot be received within a predetermined period, the maximum power consumption and the minimum power consumption of some power supply and demand adjustment devices are used. Thus, it becomes possible to generate power consumption information of the part of the power supply and demand adjustment device.
  • the maximum power consumption and the minimum power consumption of the power supply and demand adjustment device are used as the state information of the power supply and demand adjustment device.
  • the power supply and demand adjustment device As the state information, SOC (State of Charge) may be used.
  • SOC State of Charge
  • the generation unit A1 of the first embodiment and the generation unit B1 of the second embodiment operate as follows.
  • the generation unit A1 increases the value of the power consumption distributed to the selected power supply and demand adjusting device as the SOC of the selected power supply and demand adjusting device is smaller.
  • the generation unit B1 increases the value of the power consumption distributed to the target power supply and demand adjustment device as the SOC of the target power supply and demand adjustment device is smaller.
  • FIG. 5 is a diagram showing a power control system including the control device C according to the third embodiment of the present invention.
  • the power control system includes a control device C and a plurality of power supply and demand adjustment devices D.
  • the control device C controls a plurality of power supply and demand adjustment devices D connected to the power system R1.
  • the control device C has a plurality of power supply and demand adjustment devices D under management.
  • the control device C holds identification information of a plurality of power supply / demand adjustment devices D.
  • the electric power system R1 is connected to another electric power system R4 via the interconnection line R3.
  • the power supply / demand adjustment device D adjusts the power supply / demand balance in the power system R1.
  • the power supply and demand adjustment device D adjusts the power supply and demand balance in the power system R1 by controlling, for example, power demand (power consumption) and power supply (for example, discharge) in the storage battery R2.
  • the power supply / demand adjustment apparatus D transmits the chargeable / dischargeable capacity of the storage battery R2 to the control apparatus C at a cycle T1 (for example, 15 minutes).
  • the “chargeable / dischargeable capacity of the storage battery R2” may be simply referred to as “chargeable / dischargeable amount”.
  • the power supply / demand adjustment device D transmits the identification information of the device itself to the control device C together with the chargeable / dischargeable amount.
  • the chargeable / dischargeable capacity is an example of state information of the power supply and demand adjustment device D.
  • the chargeable / dischargeable capacity may be, for example, the capacity of the storage battery that the owner of the storage battery R2 has offered to offer by contract or the like, and may be specified according to the SOC of the storage battery R2.
  • a method for specifying the chargeable / dischargeable capacity according to the SOC of the storage battery R2 for example, a technique for specifying the chargeable / dischargeable capacity from the SOC using a table indicating the correspondence between the SOC and the chargeable / dischargeable capacity in the storage battery R2. May be used. This table is held by, for example, the control unit D1c in the power supply / demand adjustment apparatus D.
  • a table is used which shows the relationship that the chargeable / dischargeable capacity becomes maximum when the SOC is 0.5, and the chargeable / dischargeable capacity becomes smaller as the SOC is away from 0.5.
  • control device C When the control device C receives the chargeable / dischargeable capacity and the identification information from the power supply and demand adjustment device D, the control device C holds the reception result.
  • Control device C performs different operations at the start of operation and after that.
  • control device C When the control device C receives chargeable / dischargeable capacity from all the power supply / demand adjustment devices D under management, the control device C supplies power supply / demand for each power supply / demand adjustment device D based on each chargeable / dischargeable capacity. Operation control information for controlling the operation of the adjusting device D (hereinafter simply referred to as “operation control information”) is generated.
  • operation control information for controlling the operation of the adjusting device D
  • the control device C receives all the identification information of all the power supply / demand adjustment devices D under management together with the chargeable / dischargeable capacity, the chargeable / dischargeable capacity from all the power supply / demand adjustment devices D under management Is determined to have been received.
  • the operation control information shown in FIG. 6 includes the integral value of the frequency deviation of power in the power system R1 (hereinafter also simply referred to as “frequency deviation”) and the adjustment power amount (LFC (Load Frequency Control)) in the storage battery R2. ) Adjustment electric energy).
  • This operation control information is operation control information for causing the power supply and demand adjustment apparatus D to execute LFC adjustment processing.
  • a positive amount of adjustment power means charging of the storage battery R2.
  • a negative adjustment electric energy means discharging of the storage battery R2.
  • the frequency deviation is calculated using the expression “frequency of power of power system R1” ⁇ “reference frequency of power of power system R1 (for example, 50 Hz)”.
  • the reference frequency of power in the power system R1 is stored in the control unit D1c in the device control apparatus D1.
  • the control device C generates the operation control information so that the adjusted power amount (see FIG. 6) of the storage battery R2 is equal to or less than the chargeable / dischargeable capacity of the storage battery R2.
  • the control device C transmits each operation control information to the corresponding power supply and demand adjustment device D.
  • the control device C executes the following operation at a cycle T1 (for example, 15 minutes).
  • the control device C is based on the chargeable / dischargeable capacity of a part of the power supply / demand adjustment device (hereinafter referred to as “target power supply / demand adjustment device”) D among the chargeable / dischargeable capacities of the plurality of power supply / demand adjustment devices D.
  • target power supply / demand adjustment device the chargeable / dischargeable capacity of a part of the power supply / demand adjustment device
  • the operation control information of the power supply and demand adjustment device D to be processed is generated.
  • the control device C fails to receive chargeable / dischargeable capacity from all the power supply / demand adjustment devices D during the cycle T1, it can charge / discharge from the power supply / demand adjustment device D received during the cycle T1.
  • the capacity is used as the chargeable / dischargeable capacity from the power supply / demand adjustment apparatus D to be processed.
  • the control device C does not receive the identification information of all the power supply / demand adjustment devices D under management along with the chargeable / dischargeable capacity during the cycle T1, all the power supply / demand adjustments during the cycle T1. It is determined that the chargeable / dischargeable capacity could not be received from the device D. Note that when the charge / discharge capacity is received from all the power supply and demand adjustment devices D during the period T1, the control device C performs the same operation as that at the start of the operation.
  • the control device C determines the chargeable / dischargeable capacity of a power supply / demand adjustment device (hereinafter referred to as “non-processing power supply / demand adjustment device”) D other than the power supply / demand adjustment device D to be processed.
  • non-processing power supply / demand adjustment device a power supply / demand adjustment device
  • the control device C obtains the latest chargeable / dischargeable capacity among the chargeable / dischargeable capacities of the power supply / demand adjustment apparatus D that is not processed in the past, and the power supply / demand adjustment apparatus D that is not processed at that time.
  • the control device C recognizes the chargeable / dischargeable capacities of all the power supply / demand adjustment devices D by reusing the past chargeable / dischargeable capacities of the power supply / demand adjustment devices D that are not to be processed. Note that the control device C may use a preset value (for example, a default value) as the chargeable / dischargeable capacity of the power supply / demand adjustment device D that is not the processing target.
  • the control device C recognizes the chargeable / dischargeable capacity of all the power supply and demand adjustment devices D, it generates operation control information for each power supply and demand adjustment device D in the same manner as the operation control information generation method at the start of operation. .
  • the control device C When the control device C generates the operation control information for each power supply / demand adjustment device D, the control device C transmits the operation control information of the power supply / demand adjustment device D to be processed to the power supply / demand adjustment device D to be processed. At this time, the control device C does not transmit the operation control information to the power supply and demand adjustment device D that is not a processing target. Therefore, the communication processing amount of the operation control information in the control device C can be reduced as compared with the case where the operation control information is transmitted to the power supply and demand adjustment device D that is not the processing target.
  • the operation control information generation method executed by the control device C described above is executed by the generation unit C1 described later.
  • the power supply and demand adjustment device D When the power supply and demand adjustment device D (for example, a control unit D1c described later) receives the operation control information, it holds the operation control information.
  • the power supply and demand adjustment device D (for example, the control unit D1c) receives the operation control information and holds the previously received operation control information, the new operation control information is newly Replace with the received motion control information. This replacement means “overwrite saving” or “replacement holding”.
  • the power supply and demand adjustment apparatus D detects the power frequency of the power grid R1 in a cycle T2 shorter than the cycle T1.
  • the period T1 is, for example, several minutes to ten and several minutes (15 minutes or the like).
  • the period T2 is, for example, 0.5 seconds to 1 second.
  • the power supply and demand adjustment device D calculates the frequency deviation using the expression “frequency of power of the power system R1” ⁇ “reference frequency of power of the power system R1”. Subsequently, the power supply and demand adjustment device D (for example, the control unit D1c) calculates an integrated value of the frequency deviation.
  • the power supply and demand adjustment device D uses the held operation control information (see FIG. 6) to adjust the adjustment power amount corresponding to the integrated value of the frequency deviation (hereinafter, “corresponding adjustment power amount”). Specified).
  • the power supply and demand adjustment device D controls charging and discharging of the storage battery R2 with the corresponding adjustment power amount. Under this control, LFC adjustment processing is executed.
  • the power supply / demand adjustment device D (for example, the control unit D1c) does not transmit the chargeable / dischargeable capacity, and when the preset period T1 has elapsed, the power supply / demand adjustment device D (for example, the control unit D1c) Based on the stored past operation control information and the integrated value of the frequency deviation, the operation of the storage battery R2 is controlled at the cycle T2.
  • the power supply / demand adjustment device D (for example, the control unit D1c) does not transmit the chargeable / dischargeable capacity
  • the power supply / demand adjustment device D (for example, the control unit D1c) does not intentionally transmit the chargeable / dischargeable capacity.
  • the power supply / demand adjustment device D (for example, the control unit D1c) transmits the chargeable / dischargeable capacity, but the chargeable / dischargeable capacity does not reach the control device C, and the preset period T1 has elapsed.
  • the operation of the storage battery R2 is performed at the cycle T2 based on the past operation control information stored in the power supply and demand adjustment device D (for example, the control unit D1c) and the integrated value of the frequency deviation.
  • the detection operation of the state (frequency) of the power system R1 is executed by the detection unit D1b described later. Further, the operation of controlling the operation of the storage battery R2 based on the operation control information and the integrated value of the frequency deviation in the power system R1 is executed by the control unit D1c.
  • the control device C includes a generation unit C1 and a communication unit C2.
  • the communication unit C2 is an example of a transmission unit.
  • the communication unit C2 communicates with each power supply and demand adjustment device D.
  • the communication unit C2 receives the chargeable / dischargeable capacity from the power supply and demand adjustment device D.
  • the communication unit C2 transmits an operation control signal to the power supply and demand adjustment device D.
  • the generation unit C1 generates operation control information of the power supply / demand adjustment apparatus D based on the chargeable / dischargeable capacity of the power supply / demand adjustment apparatus D.
  • the method for generating the operation control information is the same as the method for generating the operation control information by the control device C described above.
  • the power supply and demand adjustment device D includes a device control device D1 and a storage battery R2.
  • the power supply / demand adjustment device D also functions as, for example, a power storage device.
  • the device control device D1 is an example of a control device.
  • the device control device D1 includes a communication unit D1a, a detection unit D1b, and a control unit D1c.
  • the communication unit D1a is an example of a communication unit.
  • the communication unit D1a communicates with the control device C.
  • the communication unit D1a transmits the chargeable / dischargeable capacity of the storage battery R2 to the control device C together with the identification information. Further, the communication unit D1a receives the operation control information from the control device C.
  • the control device C is an example of an external device.
  • the detection unit D1b is an example of a detection unit.
  • the detection unit D1b detects the power frequency (system frequency) of the power system R1.
  • the control unit D1c is an example of a control unit.
  • the control unit D1c controls the device control device D1 and the storage battery R2.
  • the control unit D1c calculates the integral value of the frequency deviation using the detection result of the detection unit D1b.
  • the control unit D1c controls the operation (charging or discharging) of the storage battery R2 based on the operation control information and the integrated value of the frequency deviation.
  • the method for controlling the operation of the storage battery R2 is the same as the method for controlling the operation of the storage battery R2 by the power supply and demand adjustment apparatus D described above.
  • FIG. 7 is a flowchart for explaining an operation in which the power supply and demand adjustment device D transmits the chargeable / dischargeable capacity.
  • the control unit D1c detects the SOC of the storage battery R2 (step S701). Subsequently, the control unit D1c specifies the chargeable / dischargeable capacity from the SOC using a table indicating the correspondence relationship between the SOC and the chargeable / dischargeable capacity in the storage battery R2 (step S702). It is assumed that this table is held in advance by the control unit D1c.
  • control unit D1c transmits the chargeable / dischargeable capacity together with the identification information of the own device from the communication unit D1a to the control device C2 (step S703).
  • the control unit D1c repeats a series of operations in steps S701 to S703 at a cycle T1.
  • FIG. 8 is a flowchart for explaining the operation at the start of the operation of the control apparatus C.
  • the control device C when the communication unit C2 receives the chargeable / dischargeable capacity and the identification information from each power supply and demand adjustment device D, the communication unit C2 outputs the chargeable / dischargeable capacity and the identification information to the generation unit C1.
  • the generation unit C1 receives chargeable / dischargeable capacities of all the power supply / demand adjustment devices D under the control of the control device C, the generation unit C1 generates operation control information for each power supply / demand adjustment device D based on each chargeable / dischargeable capacity. (Step S801).
  • the generation unit C1 when the generation unit C1 receives the identification information of all the power supply / demand adjustment devices D under the control of the control device C, the generation unit C1 can charge / discharge all the power supply / demand adjustment devices D under the control of the control device C. It is determined that the capacity has been received.
  • This operation control information represents the relationship between the integrated value of the frequency deviation and the adjusted power amount in the storage battery R2 in the power supply and demand adjustment device D (see FIG. 6).
  • step S801 for each power supply / demand adjustment device D, the generation unit C1 determines that the absolute value of the adjusted power amount (see FIG. 6) of the storage battery R2 in the power supply / demand adjustment device D is equal to or less than the chargeable / dischargeable capacity of the storage battery R2.
  • the operation control information is generated. Further, the generation unit C1 increases the maximum value of the absolute value of the adjustment power amount in the operation control information as the power supply / demand adjustment device D having a larger chargeable / dischargeable capacity. Furthermore, the generation unit C1 changes the operation control information according to the adjustment amount information related to the power adjustment amount that the control device C is responsible for (for example, the power adjustment amount delegated by the power company or the power adjustment amount awarded in the power market). To do. For example, in the generation unit C1, the total amount of adjustment electric energy (see FIG. 6) of each storage battery R2 at an integral value of a certain frequency deviation matches the electric power adjustment amount that the control device C has with respect to the integration value of the frequency deviation.
  • the operation control information is generated for each power supply and demand adjustment device D. Subsequently, the generation unit C1 causes the communication unit C2 to execute a process of transmitting operation control information corresponding to the power supply / demand adjustment device D to each power supply / demand adjustment device D (step S802).
  • FIG. 9 is a flowchart for explaining the operation after the start of the operation of the control device C.
  • the generation unit C1 executes the operation after the start of the operation shown below in the cycle T1 after executing the operation at the start of the operation described above. If the generation unit C1 fails to receive chargeable / dischargeable capacity from all the power supply / demand adjustment devices D during the current cycle T1, the power supply / demand adjustment device D received during the current cycle T1 can be charged / discharged. The capacity is determined as the chargeable / dischargeable capacity to be processed (step S901).
  • the generation unit C1 fails to receive the identification information of all the power supply and demand adjustment devices D under management along with the chargeable / dischargeable capacity during the current cycle T1, all the power during the current cycle T1. It is determined that the chargeable / dischargeable capacity could not be received from the supply and demand adjustment device D. Note that the generation unit C1 operates in the same manner as when the operation is started when the chargeable / dischargeable capacity can be received from all the power supply and demand adjustment devices D during the current cycle T1. Subsequently, the generation unit C1 obtains the latest chargeable / dischargeable capacity among the chargeable / dischargeable capacities of the non-processing target power supply / demand adjustment apparatus D received in the past. It is determined as a dischargeable capacity (step S902).
  • the power supply / demand adjustment device D that is not the processing target is a power supply / demand adjustment device D other than the power supply / demand adjustment device D that is the processing target.
  • the generation unit C1 recognizes chargeable / dischargeable capacities of all the power supply and demand adjustment apparatuses D.
  • the generation unit C1 recognizes the chargeable / dischargeable capacity of all the power supply / demand adjustment devices D, the generation unit C1 operates for each power supply / demand adjustment device D in the same manner as the operation control information generation method at the start of operation (see step S801). Control information is generated (step S903).
  • the generation unit C1 generates the respective operation control information using the chargeable / dischargeable capacity of the power supply / demand adjustment device D to be processed without using the chargeable / dischargeable capacity of the power supply / demand adjustment device D that is not the processing target. May be.
  • the generation unit C1 determines that the absolute value of the adjusted power amount (see FIG. 6) in the storage battery R2 in the power supply / demand adjustment device D to be processed is the value of the storage battery R2.
  • Operation control information is generated so as to be equal to or less than the chargeable / dischargeable capacity.
  • the generation unit C1 increases the maximum value of the absolute value of the adjusted power amount in the operation control information as the power supply / demand adjustment device D to be processed has a larger chargeable / dischargeable capacity. Furthermore, the generation unit C1 changes the operation control information according to the adjustment amount information regarding the power adjustment amount that the control device C is responsible for. For example, the generation unit C1 determines that the total amount of the adjusted power amount (see FIG. 6) in the storage battery R2 in each processing target power supply and demand adjustment device D at an integral value of a certain frequency deviation is equal to the integral value of the frequency deviation. Operation control information is generated for each power supply / demand adjustment device D to be processed so as to match the power adjustment amount handled by the control device C. Subsequently, the generation unit C1 causes the communication unit C2 to execute a process of transmitting operation control information corresponding to the processing target power supply / demand adjustment apparatus D to the processing target power supply / demand adjustment apparatus D (step S904).
  • FIG. 10 is a flowchart for explaining the operation when the power supply and demand adjustment apparatus D receives the operation control information.
  • the communication unit D1a Upon receiving the operation control information (step S1001), the communication unit D1a outputs the operation control information to the control unit D1c.
  • the control unit D1c determines whether or not the operation control information that has been received in the past is held (step S1002). When the operation control information received in the past is held, the control unit D1c replaces the operation control information received in the past with the operation control information received this time (step S1003).
  • step S1003 the control unit D1c deletes the operation control information received in the past, and holds the operation control information received this time. On the other hand, if the control unit D1c does not hold the operation control information received in the past, the control unit D1c holds the operation control information received this time (step S1004).
  • FIG. 11A is a flowchart for explaining an operation in which the power supply and demand adjustment apparatus D controls the storage battery R2 based on the operation control information.
  • the equipment control device D1 in the power supply and demand adjustment device D repeats the following operation at a cycle T2.
  • the detection unit D1b detects the power frequency of the power grid R1 (step S1101). Subsequently, the detection unit D1b outputs the frequency of the power of the power system R1 to the control unit D1c.
  • control unit D1c When the control unit D1c receives the frequency of the power of the power system R1, the control unit D1c calculates the frequency deviation using the expression “frequency of power of the power system R1” ⁇ “reference frequency of power of the power system R1”. Subsequently, the control unit D1c calculates an integral value of the frequency deviation (step S1102). Subsequently, the control unit D1c specifies the adjustment power amount (corresponding adjustment power amount) corresponding to the integrated value of the frequency deviation using the held operation control information (see FIG. 6) (step S1103). Subsequently, the control unit D1c controls charging and discharging of the storage battery R2 with the corresponding adjustment power amount (step S1104).
  • the generation unit C1 is an operation that represents the relationship between the integrated value of the frequency deviation and the adjustment power amount in the storage battery R2 in the power supply / demand adjustment device D to be processed with respect to the power supply / demand adjustment device D to be processed in the cycle T1.
  • the control information is generated based on the chargeable / dischargeable capacity corresponding to the SOC of the storage battery R2.
  • the communication unit C2 transmits the operation control information to the power supply / demand adjustment device D to be processed in the cycle T1.
  • the power supply / demand adjustment device D to be processed whose latest chargeable / dischargeable capacity has reached the generation unit C1 is based on the operation control information corresponding to the latest chargeable / dischargeable capacity and the integrated value of the frequency deviation.
  • the operation of the storage battery R2 can be controlled at the cycle T2. Since the operation control information corresponds to the latest chargeable / dischargeable capacity, the operation of the storage battery R2 can be controlled with high accuracy.
  • the power supply / demand adjustment apparatus D that is not the processing target for which the latest chargeable / dischargeable capacity is not notified to the generation unit C1 is based on the operation control information received in the past and the integrated value of the frequency deviation.
  • T2 controls the operation of the storage battery R2. In this case, since the change in the SOC of the storage battery R2 is not as fast as the change in the integrated value of the frequency deviation, the operation of the storage battery R2 can be controlled with a certain degree of accuracy even if the previously received operation control information is used.
  • the generation unit C1 After the start of the operation of the control device C, the generation unit C1 performs the same operation as the operation at the start of the operation when the chargeable / dischargeable capacity can be received from all the power supply and demand adjustment devices D during the period T1.
  • the generation unit C1 and the communication unit C2 may operate as follows. When the generation unit C1 can receive chargeable / dischargeable capacity from all the power supply and demand adjustment apparatuses D during the period T1 after the operation start of the control apparatus C, based on the chargeable / dischargeable capacity of a part of them, Operation control information of the partial power supply and demand adjustment device D is generated.
  • the communication unit C2 transmits the operation control information to some of the power supply / demand adjustment devices D without transmitting the operation control information to the other power supply / demand adjustment devices D.
  • the generation unit C1 can receive chargeable / dischargeable capacity from all the power supply and demand adjustment devices D during the period T1, the power supply and demand adjustment of a number equal to or less than a predetermined threshold among all the power supply and demand adjustment devices D
  • the device D may be determined as the power supply / demand adjustment device D to be processed.
  • the generation unit C1 may use the chargeable / dischargeable capacity received within the current cycle T1 as the chargeable / dischargeable capacity of the power supply / demand adjustment apparatus D that is not the target of processing.
  • the latest chargeable / dischargeable capacity may be used among the chargeable / dischargeable capacity of the power supply / demand adjustment apparatus D.
  • the communication processing amount of the operation control information by the communication unit C2 can be reduced even when the chargeable / dischargeable capacity can always be received from all the power supply and demand adjustment devices D in each cycle T1.
  • the control unit D1c of the power supply and demand adjustment device D that is not the target of processing transmits the new operation control information even after the preset period T1 has elapsed after transmitting the chargeable / dischargeable capacity. Cannot receive.
  • control unit D1c of the power supply and demand adjustment device D that is not the target of processing performs the operation of the storage battery R2 at the cycle T2 based on the past operation control information stored in the control unit D1c and the integrated value of the frequency deviation. Control.
  • the power supply and demand adjustment device D controls the storage battery R2 based on the operation control information and the integrated value of the frequency deviation, but instead of the integrated value of the frequency deviation, the frequency deviation and An index determined based on the tidal current of the interconnection line R3 may be used.
  • the operation control information the operation control information representing the relationship between the index and the adjusted power amount in the storage battery R2 in the power supply / demand adjustment apparatus D to be processed is used.
  • the index is an example of an index related to the adjustment power amount.
  • the index is generated by a predetermined device (for example, the power supply command unit or the control device C) at the cycle T2.
  • the indicator is determined as follows, for example.
  • An integral value obtained by subtracting the multiplication result from the frequency deviation is determined as an index.
  • the subtracted value means a corrected frequency deviation obtained by correcting the frequency deviation with the power flow on the interconnection line R3.
  • the index is transmitted to each power supply and demand adjustment device D using one-way communication or two-way communication (for example, one-to-N two-way communication).
  • the communication unit D1a receives and grasps the index using one-way communication or two-way communication (for example, one-to-N two-way communication).
  • the communication unit D1a outputs the received index to the control unit D1c.
  • the communication unit D1a also serves as a grasping unit.
  • FIG. 11B shows an example of the device control apparatus D1 in which a communication unit D1d different from the communication unit D1a receives and grasps an index using one-way communication or two-way communication (for example, one-to-N two-way communication).
  • the communication unit D1d is an example of a grasping unit.
  • the control unit D1c repeats the following operation at the cycle T2.
  • the control unit D1c When the control unit D1c receives the index from the communication unit D1a, the control unit D1c specifies the adjustment power amount (corresponding adjustment power amount) corresponding to the index using the held operation control information. Subsequently, the control unit D1c controls charging and discharging of the storage battery R2 with the corresponding adjustment power amount.
  • the index is information that cannot be obtained by examining the power system R1.
  • the device control apparatus D1 can receive an index that cannot be obtained even by examining the power system R1.
  • the tide of the interconnection line R3 is reflected in the indicator. For this reason, the accuracy of the information corresponding to the supply and demand adjustment amount of the entire power system is higher in the index than the integrated value of the frequency deviation.
  • the control unit D1c receives the operation control information at the cycle T1 (15 minutes), receives the indicator at the cycle T2 (0.5 to 1 second), and uses the received operation control information to store the battery with the adjusted power corresponding to the indicator. Charge and discharge R2.
  • the power supply and demand adjustment apparatus D receives A at an interval of T2 as follows, and receives A and B when the interval of T1 is reached.
  • devices and devices for adjusting the power supply / demand balance by adjusting the power demand for example, an air conditioner, an electric water heater, a heat pump water heater, A pump, a refrigerator, an electric vehicle
  • a power consuming capacity may be used instead of the chargeable / dischargeable capacity.
  • a renewable energy source having an output suppression function such as a solar power generator or a wind power generator may be used instead of the storage battery R2.
  • an estimated value of the maximum power generation capacity may be used instead of the charge / discharge capacity.
  • FIG. 12 is a diagram showing a power control system 1000 employing the fourth embodiment of the present invention.
  • the power control system 1000 includes a thermal power generator 1, a power supply command unit 2, a power system 3, a connection line 4, a distribution transformer 5, a power line 6, a power control device 7, and a plurality of device controls. Device 8, a plurality of storage batteries 9, and a plurality of loads 10 are included.
  • the power control device 7 is an example of a control device.
  • the thermal power generator 1, the power supply command unit 2, the power system 3, the interconnection line 4, the distribution transformer 5 and the power line 6 are devices owned by the electric power company.
  • the power control device 7 is a device held by a PPS (Power Producer and Supplier: a specific scale electric power company).
  • PPS Power Producer and Supplier: a specific scale electric power company
  • the power control device 7 may be held by an aggregator.
  • the device control device 8, the storage battery 9, and the load 10 are devices held by each consumer. Each consumer may be a general household or a building such as a building.
  • the thermal power generator 1, the distribution transformer 5, and the power line 6 are included in the power system 3.
  • a renewable power source (solar power generator) 111 and a renewable power source (wind power generator) 112 are connected to the power system 3.
  • one renewable power source 111 and one renewable power source 112 are shown, but actually, a plurality of renewable power sources 111 and a plurality of renewable power sources 112 are connected to the electric power system 3.
  • the detection unit 111a detects the amount of power generated by the renewable power source 111.
  • the communication unit 111b notifies the power control device 7 of the detection result of the detection unit 111a.
  • the detection unit 111a and the communication unit 111b are provided for each renewable power source 111.
  • the detection unit 112a detects the power generation amount of the renewable power source 112.
  • the communication unit 112b notifies the power control device 7 of the detection result of the detection unit 112a.
  • the detection unit 112a and the communication unit 112b are provided for each renewable power source 112.
  • the storage battery 9 is an example of a power supply and demand adjustment device.
  • the storage battery 9 is connected to the power system 3.
  • the load 10 is, for example, a home appliance.
  • the power supply command unit 2 on the power company side transmits a request (demand) for power supply and demand adjustment processing to the power control device 7 on the PPS side.
  • the power control device 7 on the PPS side receives the demand of the power company from the power supply command unit 2.
  • the power control device 7 generates operation control information for controlling the storage battery 9 for each device control device 8.
  • the power control device 7 generates operation control information reflecting the state information (for example, remaining capacity and SOC) of the storage battery 9 and the content of the power supply and demand adjustment process (for example, LFC) according to the demand.
  • the power control device 7 generates operation control information corresponding to each of all the device control devices 8 at the start of operation. And the electric power control apparatus 7 produces
  • the power control device 7 uses the device control device 8 (hereinafter referred to as “processing device control device”) 8 that has received the status information of the corresponding storage battery 9 as the device control device 8 that generates the operation control information. At this time, the power control device 7 employs the state information received in the past for the storage battery 9 as the state information of the storage battery 9 that could not be received within the period T1.
  • the power control device 7 uses the integrated value of the frequency deviation of the power system 3 to control the operation of the storage battery 9 (hereinafter also referred to as “DR application 1”). 1st LFC operation control information is generated.
  • the power control device 7 uses the index to control a second LFC adjustment process (hereinafter also referred to as “DR application 2”) for controlling the operation of the storage battery 9. Generate motion control information.
  • the index is the same as the index described in the modification of the third embodiment. In the following, it is assumed that each storage battery 9 is assigned to DR applications 1 and 2.
  • the power control device 7 transmits the received demand to the device control device 8.
  • the power control device 7 repeatedly transmits operation control information to the device control device 8 with a time interval. For example, the power control device 7 transmits the operation control information to the processing target device control device 8.
  • the power control device 7 repeatedly transmits the index to the device control device 8 with a time interval.
  • the operation control information transmission interval is longer than the index transmission interval.
  • the device control device 8 uses the power supply / demand adjustment processing corresponding to the demand according to the demand (either the frequency or index of the power system 3 or the operation control information according to the demand). To decide.
  • the device control device 8 controls the operation of the storage battery 9 using the usage information, thereby executing power supply and demand adjustment processing (DR applications 1 and 2) according to demand.
  • the power supply and demand adjustment process according to the demand means a response to the demand (hereinafter also referred to as “response”).
  • the thermal power generator 1 is an example of a generator.
  • the power supply command unit 2 communicates with the power control device 7.
  • the power supply command unit 2 transmits a demand (first LFC request, second LFC request) to the power control device 7.
  • the power system 3 is a system that supplies power to the customer side.
  • the power system 3 transforms the voltage of the generated power output from the thermal power generator 1 to a predetermined voltage by the distribution transformer 5.
  • the electric power system 3 supplies electric power of a predetermined voltage to the customer side.
  • the interconnection line 4 connects the power system 3 and another power system 13.
  • the power control device 7 receives a power company demand (first LFC request, second LFC request) from the power supply command unit 2.
  • the power control device 7 creates operation control information for each of the DR applications 1 and 2.
  • the power control device 7 transmits the received demand to the device control device 8.
  • the power control device 7 repeatedly transmits operation control information to the device control device 8 with a time interval.
  • the power control device 7 repeatedly transmits the index to the device control device 8 with a time interval.
  • the device control device 8 determines usage information used for the power supply and demand adjustment process corresponding to the demand.
  • the device control device 8 controls the operation of the storage battery 9 using the usage information.
  • FIG. 13 is a diagram illustrating an example of the power supply command unit 2, the power control device 7, and a plurality of device control devices 8.
  • the storage battery 9 is built in the device control device 8, but the storage battery 9 may not be built in the device control device 8.
  • the device control device 8 in which the storage battery 9 is built is an example of a power storage device.
  • the device control device 8 controls the operation of the storage battery 9.
  • Device control apparatus 8 includes detection units 801 and 802, communication unit 803, determination unit 804, and control unit 805.
  • the detection unit 801 detects the SOC of the storage battery 9.
  • the SOC of the storage battery 9 is a value in the range from 0 to 1.
  • the SOC of the storage battery 9 represents state information of the storage battery 9.
  • the state information of the storage battery 9 is not limited to the SOC of the storage battery 9 and can be changed as appropriate.
  • the cell temperature, current amount, and voltage of the storage battery 9 may be used for the state information of the storage battery 9.
  • the detection unit 802 detects the frequency of the power system 3.
  • the detection unit 802 may be inside or outside the device control device 8.
  • the control unit 805 detects (receives) the frequency of the power system 3 by receiving the detection result of the detection unit 802.
  • the communication unit 803 is an example of a reception unit, a reception unit, or a transmission / reception unit.
  • the communication unit 803 communicates with the power control device 7.
  • the communication unit 803 receives the demand, the operation control information, and the index from the power control device 7.
  • the communication unit 803 receives a demand transmitted from the power control apparatus 7 using bidirectional communication, for example, MQTT (Message Queuing Telemetry Transport).
  • MQTT Message Queuing Telemetry Transport
  • the communication unit 803 may receive a demand transmitted from the power control apparatus 7 by one-way communication such as broadcast.
  • the communication unit 803 receives an index transmitted from the power control device 7 by one-way communication such as broadcast. Note that the communication unit 803 may receive an index transmitted from the power control apparatus 7 using bidirectional communication, for example, MQTT. The communication unit 803 receives operation control information transmitted from the power control apparatus 7 using bidirectional communication, for example, MQTT.
  • the determination unit 804 determines usage information according to the demand received by the communication unit 803. The control unit 805 controls the charge / discharge operation of the storage battery 9 using the usage information determined by the determination unit 804.
  • the control unit 805 performs an information acquisition operation (transmission / reception processing) for obtaining operation control information from the power control device 7 and a control operation (battery operation control processing) for controlling the charge / discharge operation of the storage battery 9 using the operation control information. Execute.
  • the control unit 805 repeatedly executes the information acquisition operation with a time interval.
  • the control unit 805 repeatedly executes the control operation with a time interval shorter than the time interval of the information acquisition operation. For example, the control unit 805 repeatedly executes the information acquisition operation at a cycle T and repeatedly executes the control operation at a cycle T 1 (where T> T l ).
  • the period T is an example of a predetermined time interval.
  • the control unit 805 is, for example, detection of the frequency of the power system 3, as well as transmission and reception of the index is also repeatedly executed with a period T l.
  • the operation time interval of the information acquisition operation and the operation time interval of the control operation, or both of them may not be constant, and the shortest time among the operation time intervals of the information acquisition operation is the operation time of each control operation. It only needs to be longer than the longest time in the time interval.
  • the equipment control device 8, the storage battery 9, and the load 10 are devices held by each consumer.
  • the apparatus control apparatus 8 and the storage battery 9 may be a PPS or aggregator provided with the power control apparatus 7 and arranged so that it can be used as the load 10 of each consumer.
  • the PPS and the aggregator that are the substantial owners of the device control device 8 and the storage battery 9 can freely control the device control device 8 and the storage battery 9, but the customer also loads by signing a predetermined contract.
  • the device control device 8 and the storage battery 9 can be used for the control of 10.
  • the power control device 7 places N device control devices 8 and N storage batteries 9 under management.
  • the N device control devices 8 and the N storage batteries 9 are devices held by consumers who are supplied with power from the PPS.
  • N is an integer of 2 or more.
  • the power control device 7 includes a communication unit 701, a database 702, a grasping unit 703, and a control unit 704.
  • the grasping unit 703 and the control unit 704 are included in the generation unit 705.
  • the communication unit 701 communicates with each device control device 8, the power supply command unit 2, the communication unit 111b, and the communication unit 112b.
  • the communication unit 701 receives the SOC and ID (Identification) of the storage battery 9 from each device control device 8.
  • the communication unit 701 receives information indicating the power generation amount of the renewable power sources 111 and 112 from the communication units 111b and 112b.
  • the database 702 stores information on each storage battery 9. Further, the database 702 holds a storage battery distribution rate curve used for obtaining the chargeable / dischargeable capacity of the storage battery 9 from the SOC of the storage battery 9 received by the communication unit 701.
  • the database 702 also holds the rated output P (n) of each storage battery 9 used for obtaining the chargeable / dischargeable capacity. As the rated output P (n) of the storage battery 9, the rated output of a power conditioner (AC / DC converter) (not shown) connected to the storage battery 9 is used.
  • 14A and 14B are diagrams showing examples of storage battery distribution rate curves.
  • FIG. 14A is a diagram illustrating an example of a storage battery distribution rate curve 202a during discharging.
  • FIG. 14B is a diagram illustrating an example of a storage battery distribution rate curve 202b during charging.
  • the grasping unit 703 distributes the amount of power shared by the N storage batteries 9 managed by the power control device 7 in order to adjust the amount of power in the power system 3 (hereinafter referred to as “DR1 sharing” “Electric power” to “DR2 shared energy”).
  • DR1 sharing “Electric power” to "DR2 shared energy”
  • Each amount of shared power is an example of the status of the power system.
  • the grasping unit 703 grasps the DR1 shared power amount as follows.
  • the grasping unit 703 uses the storage battery distribution rate curve in the database 702 to charge a storage battery group composed of N storage batteries 9 from the SOC of the N storage batteries 9 (hereinafter simply referred to as “storage battery group”).
  • the dischargeable capacity is derived.
  • the chargeable / dischargeable capacity of the storage battery group is referred to as “adjustable total capacity P ES ”.
  • the grasping unit 703 determines the SOC of the storage battery 9 that could not be received as follows.
  • the grasping unit 703 uses the latest SOC value among SOCs received in the past for the storage battery 9 as the SOC of the storage battery 9 that could not be received.
  • the grasping unit 703 acquires “previous shared power amount information” of the storage battery 9 that has not received the SOC from the control unit 704, and the “previous shared power amount information” and the elapsed time since the previous delivery. Therefore, the SOC of the storage battery 9 that could not receive the SOC may be estimated.
  • the shared power amount information will be described later.
  • the grasping unit 703 is configured by the partial storage batteries 9 instead of the storage battery group configured by the N storage batteries 9.
  • a storage battery group (hereinafter referred to as a “partially storage battery group”) may be used.
  • the grasping unit 703 determines the chargeable / dischargeable capacity of the partial storage battery group that has received the SOC from the SOCs of the partial storage batteries 9.
  • the description of the case where only a part of the SOCs of the N storage batteries 9 can be received for example, by replacing the number “N” of the storage batteries 9 with the number “Na” of the partial storage batteries 9. Do.
  • the grasping unit 703 transmits the adjustable total capacity P ES from the communication unit 701 to the power supply command unit 2. Thereafter, the grasping unit 703 receives DR1 shared power amount information representing the DR1 shared power amount reflecting the adjustable total capacity P ES from the power supply command unit 2 via the communication unit 701. The grasping unit 703 grasps the DR1 shared power amount using the DR1 shared power amount information. In the present embodiment, a DR1 charge / discharge gain line is used as the DR1 shared power amount information.
  • the DR1 charge / discharge gain line has an LFC allocated capacity LFC ES-DR1 that represents the maximum DR1 shared energy, and a maximum value (threshold) ⁇ f max ( ⁇ ⁇ f max ) of the integrated value of the frequency deviation. (Omitted).
  • the “maximum value of the integrated value of the frequency deviation” is used as a threshold value of the integrated value of the deviation amount (frequency deviation) of the system frequency with respect to the reference frequency.
  • the “maximum value of the integrated value of frequency deviation” means “the maximum amount of fluctuation of the integrated value of frequency deviation” that can be handled by the total output LFC ES-DR1 of the N storage batteries 9 that execute the DR application 1.
  • FIG. 15A is a diagram illustrating an example of a DR1 charge / discharge gain line. Details of the DR1 charge / discharge gain line will be described later.
  • the DR1 charge / discharge gain line indicates the relationship between the integrated value of the frequency deviation and the output of the storage battery group (the total output of N storage batteries 9 that execute the DR application 1).
  • the control unit 704 generates DR1 sharing information for each storage battery 9 that executes the DR application 1 so as to satisfy the relationship between the integrated value of the frequency deviation indicated by the DR1 charge / discharge gain line and the output of the storage battery group.
  • the DR1 assignment information is also an example of first LFC operation control information.
  • the control unit 704 based on the SOC of the storage battery 9 that executes the DR application 1 and the DR1 charge / discharge gain line, DR1 sharing information (DR1 sharing coefficient) of each storage battery 9 that executes the DR application 1 K1 and the maximum integrated value of frequency deviation ⁇ f max ) are generated.
  • the control unit 704 transmits the DR1 assignment information from the communication unit 701 to each device control apparatus 8 that executes the DR application 1.
  • the DR1 sharing coefficient K1 increases as the sharing ratio of the storage batteries 9 that execute the DR application 1 increases.
  • the grasping unit 703 grasps the DR2 shared power amount as follows.
  • the grasping unit 703 derives the chargeable / dischargeable capacity (adjustable total capacity P ES ) of the storage battery group using the storage battery distribution rate curve in the database 702.
  • the storage battery distribution rate curve used here is not necessarily the same as the storage battery distribution rate curve used when the DR1 shared power amount is derived.
  • the grasping unit 703 determines the SOC of the storage battery 9 that could not be received as follows.
  • the grasping unit 703 uses the latest SOC value among SOCs received in the past for the storage battery 9 as the SOC of the storage battery 9 that could not be received.
  • the grasping unit 703 acquires “previous shared power amount information” of the storage battery 9 that has not received the SOC from the control unit 704, and the “previous shared power amount information” and the elapsed time since the previous delivery. Therefore, the SOC of the storage battery 9 that could not receive the SOC may be estimated.
  • the grasping unit 703 is configured by the partial storage batteries 9 instead of the storage battery group configured by the N storage batteries 9.
  • a storage battery group (hereinafter referred to as a “partially storage battery group”) may be used.
  • the grasping unit 703 determines the chargeable / dischargeable capacity of the partial storage battery group that has received the SOC from the SOCs of the partial storage batteries 9.
  • the description when only a part of the SOCs of the N storage batteries 9 can be received is performed by, for example, replacing the number “N” of the storage batteries 9 with the number “Nb” of the partial storage batteries 9. .
  • the grasping unit 703 transmits the adjustable total capacity P ES from the communication unit 701 to the power supply command unit 2. Thereafter, the grasping unit 703 receives DR2 shared power amount information representing the DR2 shared power amount reflecting the adjustable total capacity P ES from the power supply command unit 2 via the communication unit 701. The grasping unit 703 grasps the DR2 shared power amount using the DR2 shared power amount information. In the present embodiment, a DR2 charge / discharge gain line is used as the DR2 shared power amount information.
  • the DR2 charge / discharge gain line is the LFC allocated capacity LFC ES-DR2 that represents the maximum amount of DR2 shared energy, and the index maximum value (threshold) i1 max ( ⁇ i1 max, but will be omitted for simplicity) Represents.
  • the “maximum value of the index” is used as a threshold value of the index.
  • “maximum index value” means “maximum fluctuation amount of index” that can be handled by the total output LFC ES-DR2 of the N storage batteries 9 that execute the DR application 2. When the index becomes a value equal to or greater than the maximum value (threshold value) of the index, it is difficult to cope with LFC ES-DR2 .
  • the 15B is a diagram illustrating an example of a DR2 charge / discharge gain line. Details of the DR2 charge / discharge gain line will be described later.
  • the DR2 charge / discharge gain line indicates the relationship between the index and the output of the storage battery group (the total output of N storage batteries 9 that execute the DR application 2).
  • the control unit 704 generates DR2 sharing information of each storage battery 9 that executes the DR application 2 so as to satisfy the relationship between the index indicated by the DR2 charge / discharge gain line and the output of the storage battery group.
  • the DR2 assignment information is also an example of second LFC operation control information.
  • the control unit 704 based on the SOC of the storage battery 9 that executes the DR application 2 and the DR2 charge / discharge gain line, DR2 sharing information (DR2 sharing coefficient) of each storage battery 9 that executes the DR application 2 K2 and the maximum index value i1 max ).
  • the control unit 704 transmits the DR2 assignment information from the communication unit 701 to each device control apparatus 8 that executes the DR application 2.
  • the DR2 sharing coefficient K2 increases as the sharing ratio of the storage batteries 9 that execute the DR application 2 increases.
  • the power supply command unit 2 includes a frequency meter 201, a power flow detection unit 202, a communication unit 203, and a control unit 204.
  • the frequency meter 201 detects the frequency of the power system 3.
  • the tidal current detection unit 202 detects a tidal current on the interconnection line 4.
  • the communication unit 203 communicates with the power control device 7. For example, the communication unit 203 receives the adjustable total capacity P ES from the power control device 7. In addition, the communication unit 203 transmits the DR1 charge / discharge gain line and the DR2 charge / discharge gain line to the power control apparatus 7.
  • the control unit 204 controls the operation of the power supply command unit 2.
  • the control unit 204 transmits various demands to the power control device 7 via the communication unit 203.
  • the control unit 204 generates an index using the detection result of the frequency meter 201 and the detection result of the power flow detection unit 202.
  • the index generation method is the same as the method described in the modification of the third embodiment.
  • the control unit 204 transmits the index from the communication unit 203 to the power control device 7.
  • the control unit 704 receives the index via the communication unit 701
  • the control unit 704 transmits the index from the communication unit 701 to each device control device 8.
  • the control unit 204 generates the DR1 charge / discharge gain line and the DR2 charge / discharge gain line as follows.
  • the control unit 204 calculates an area requirement (AR), which is an output correction amount of the power plant, using the system frequency detected by the frequency meter 201.
  • AR area requirement
  • the control unit 204 derives the LFC capacity using the regional requirement amount AR, the LFC adjustment capacity of the thermal power generator 1 to be controlled, and the adjustable total capacity P ES .
  • the control unit 204 obtains the LFC adjustment capacity of the thermal power generator 1 from a thermal power generator control unit (not shown).
  • the adjustable total capacity P ES is supplied from the communication unit 203 to the control unit 204.
  • the control unit 204 assigns the capacity of the LFC capacity excluding the steep fluctuation component to the thermal power generator 1.
  • the control unit 204 uses a high-pass filter that passes a fluctuation component having a period of 10 seconds or less in the LFC capacity and does not pass a fluctuation component having a period longer than 10 seconds, and then uses the high-pass filter to change the sudden fluctuation component ( Extract the capacity LFC ES-DR1 ).
  • the control unit 204 allocates the LFC capacity to the thermal power generator 1 and the storage battery group according to a preset ratio (default value). Control unit 204 treats the capacity LFC ES-DR1 as LFC assigned capacity LFC ES-DR1.
  • the control unit 204 generates a DR1 charge / discharge gain line (see FIG. 15A) that represents the LFC allocated capacity LFC ES-DR1 and a predetermined maximum value (threshold value) ⁇ f max of the integrated value of the frequency deviation.
  • the control unit 204 transmits the DR1 charge / discharge gain line from the communication unit 202 to the power control device 7.
  • the method for generating the DR2 charge / discharge gain line (DR2 shared energy information) is the same as the method for generating the DR1 charge / discharge gain line (DR1 shared power amount information).
  • FIG. 16 is a flowchart for explaining an operation in which device control apparatus 8 determines use information.
  • the control unit 704 in the power control device 7 receives a demand (demand of the power company) from the power supply command unit 2, the control unit 704 transmits the demand from the communication unit 701 to the device control device 8.
  • the communication unit 803 receives the demand (step S1101)
  • the communication unit 803 outputs the demand to the determination unit 804.
  • time zone information indicating the execution time zone of the DR application requested by the demand is added to each demand.
  • the determination unit 804 determines usage information used in the DR application specified by the demand according to the demand (step S1102).
  • the determining unit 804 determines the first LFC operation control information and the power system 3 frequency as usage information.
  • the determination unit 804 determines the second LFC operation control information and the index as usage information.
  • the determination unit 804 outputs the usage information determination result and the demand (demand with time zone information) to the control unit 805.
  • the control unit 805 Upon receiving the usage information determination result and the demand, the control unit 805 holds the usage information determination result and the demand.
  • the power control device 7 receives and collects the SOC of the storage battery 9 from the device control device 8 in the cycle T1 first LFC .
  • the period T1 first LFC is, for example, 15 minutes.
  • the power control device 7 derives the adjustable total capacity P ES based on the SOC of the storage battery 9.
  • the power control device 7 is not able to receive the SOCs of all the storage batteries 9 in the first LFC in the cycle T1, and the storage battery 9 has not been received as the SOC of the storage battery 9 in the past.
  • the power control device 7 transmits the adjustable total capacity P ES to the power supply command unit 2 at the cycle T m .
  • the period Tm is equal to or longer than the period T1 first LFC , for example, 15 minutes.
  • the power supply command unit 2 uses the LFC allocated capacity LFC ES-DR1 and the maximum integrated value ⁇ f max of the frequency deviation to perform DR1 charging / discharging. Create a gain line. Then, the power supply command unit 2 transmits the DR1 charge / discharge gain line to the power control device 7. (2-6) The power control device 7 calculates the DR1 sharing coefficient K1 according to the latest DR1 charge / discharge gain line received from the power supply command unit 2.
  • the power control device 7 sends the DR1 sharing information (the DR1 sharing coefficient K1 and the integrated value of the frequency deviation) to the device control device 8 (for example, the device control device 8 to be processed) in the cycle T1 first LFC.
  • the maximum value of ⁇ f max ).
  • Each device controller 8 calculates the first local charge / discharge gain line that defines the charge / discharge operation of the storage battery 9 based on the DR1 sharing coefficient K1 and the maximum integrated value ⁇ f max of the frequency deviation. To do.
  • the first local charge / discharge gain line will be described later.
  • Each device control device 8 controls the charge / discharge operation of the storage battery 9 using the first local charge / discharge gain line and the frequency of the power system 3.
  • P ES derivation operation an operation in which the power control device 7 derives the adjustable total capacity P ES based on the SOC of the storage battery 9 that executes the DR application 1 (hereinafter referred to as “P ES derivation operation”) will be described.
  • the adjustable total capacity P ES information such as the rated output P (n) of the storage battery 9 (output value of the power conditioner, storage battery capacity, usable SOC range (for example, a range of 30% to 90%, etc.)) )Is required. Since these pieces of information are basically static information, in the present embodiment, it is assumed that the power control device 7 has already obtained these pieces of information from each device control device 8 in advance.
  • FIG. 17 is a sequence diagram for explaining the P ES derivation operation.
  • the number of device control devices 8 is set to 1 for simplification of description.
  • the communication unit 701 of the power control device 7 transmits an information request for requesting the SOC to each device control device 8 (step S1201).
  • the control unit 805 when receiving the information request for requesting the SOC via the communication unit 803, the control unit 805 causes the detection unit 801 to detect the SOC of the storage battery 9 (step S ⁇ b> 1202). Subsequently, the control unit 805 transmits the SOC detected by the detection unit 801 together with the ID from the communication unit 803 to the power control apparatus 7 (step S1203).
  • the power control apparatus 7 When receiving the SOC to which the ID is added from the device control apparatus 8 (hereinafter referred to as “SOC (n)”), the power control apparatus 7 derives an adjustable total capacity P ES (step S1204). The power control device 7 and each device control device 8 repeat the operations in steps S1201 to S1204 (P ES derivation operation) at the cycle T1 first LFC . Note that the cycle T1 first LFC may be changed in a range that satisfies the demand requirement according to other conditions such as the state of the communication network and the failure state of the storage battery.
  • step S1204 (derivation of the adjustable total capacity P ES ) will be described.
  • the communication unit 701 of the power control device 7 collects SOC (n) from each device control device 8 in the cycle T1 first LFC .
  • the grasping unit 703 As the SOC of the storage battery 9 that could not be received, the latest SOC among the SOCs received in the past of the storage battery 9 is used.
  • the grasping unit 703 may use a predetermined value (for example, a default SOC) as the SOC of the storage battery 9 that could not be received.
  • the grasping unit 703 uses the SOC (n) and the storage battery distribution rate curves 202a and 202b in the database 702 to store the storage battery distribution rate ⁇ discharge (n) during discharging and the storage battery distribution during charging for each storage battery 9.
  • the rate ⁇ charge (n) is derived.
  • the storage battery distribution rate curves 202a and 202b the information shown in FIGS. 14A and 14B, the information related to the execution time required by the DR application 1, the rated output P (n) of the storage battery 9, etc. The curve changed according to the information (output value of the inverter, storage battery capacity) is used.
  • the storage battery group is A curve that is at least a value that can continue charging and discharging is used.
  • the storage battery distribution rate curve is not limited to the one described here, but can be changed as appropriate according to the demand and the DR application.
  • the grasping unit 703 outputs the storage battery distribution rate ⁇ discharge (n) during discharging, the storage battery distribution rate ⁇ charging (n) during charging, and the rated output of each of the N storage batteries 9 in the database 702 in total.
  • PES, discharge and PES, charge are derived using P (n) and the mathematical expressions shown in Equations 1 and 2. Subsequently, the grasping unit 703 employs the smaller one of PES, discharge , PES, and charge as the adjustable total capacity PES .
  • FIG. 18 is a sequence diagram for explaining the DR1 grasping operation.
  • the control unit 204 of the power supply command unit 2 calculates the regional requirement amount AR using the system frequency detected by the frequency meter 201 (step S1701). Subsequently, the control unit 204 collects the LFC adjustment capacity of the thermal power generator 1 from a thermal power generator control unit (not shown) (step S1702). On the other hand, the communication unit 701 of the power control device 7 transmits the latest adjustable total capacity P ES to the power supply command unit 2 (step S1703).
  • the communication unit 203 of the power supply command unit 2 receives the latest adjustable total capacity P ES transmitted from the communication unit 701 of the power control device 7.
  • the communication unit 203 outputs the latest adjustable total capacity P ES to the control unit 204.
  • the control unit 204 uses the regional requirement amount AR, the LFC adjustment capacity of the thermal power generator 1, and the latest adjustable total capacity P ES to calculate the LFC capacity. To derive. Subsequently, the control unit 204 allocates a capacity of the LFC capacity excluding the steep fluctuation component to the thermal power generator 1.
  • the control unit 204 determines the ratio of the LFC capacity allocation to the thermal power generator 1 and the ratio of the LFC allocation capacity LFC ES-DR1 in consideration of economics while considering the share of EDC (Economic load dispatching control) components. .
  • the control unit 204 generates a DR1 charge / discharge gain line (see FIG.
  • the DR1 charge / discharge gain line shown in FIG. 15A represents the charge / discharge amount of the storage battery group (storage battery 9 that executes DR application 1) with respect to the integral value ⁇ f of the frequency deviation.
  • DR1 discharge gain line, the magnitude of the LFC quota LFC ES-DR1 within the scope of the "LFC quota LFC ES-DR1 ⁇ adjustable total capacity P ES" (LFC ES-DR1 or LFC ES-DR1 ')
  • the line 400A or the line 400B changes.
  • the control unit 204 transmits the DR1 charge / discharge gain line from the communication unit 203 to the power control apparatus 7 (step S1706).
  • Power controller 7 and dispatching unit 2 the operation of steps S1701 ⁇ S1706 with (DR1 grasping operation), repeated with a period T m.
  • the grasping unit 703 of the power control device 7 receives the DR2 charge / discharge gain line via the communication unit 701, and holds the latest charge / discharge gain line among the DR1 charge / discharge gain lines.
  • FIG. 19 is a sequence diagram for explaining the DR1 sharing operation.
  • the number of device control apparatuses 8 that execute the DR application 1 is set to 1 in order to simplify the description.
  • the control unit 704 of the power control device 7 uses the LFC allocated capacity LFC ES-DR1 indicated by the latest charge / discharge gain line, the latest adjustable total capacity P ES, and the formula shown in Equation 3.
  • the DR1 sharing coefficient K1 is derived (step S1801). Subsequently, the control unit 704 sends DR1 sharing information indicating the DR1 sharing coefficient K1 and the maximum integrated value ⁇ f max of the frequency deviation indicated by the latest DR1 charge / discharge gain line from the communication unit 701 to the DR1. It transmits to the apparatus control apparatus 8 which performs the application 1 (step S1802).
  • the DR1 sharing coefficient K1 is not limited to the value specified by Equation 3. For example, when power supply and demand is tight, a value (for example, 0.97) indicating that the output is forcibly close to the limit may be used as the DR1 sharing coefficient K1.
  • the value indicating that the output is close to the limit is not limited to 0.97 and can be changed as appropriate.
  • the control part 704 does not perform the process of step S1802 about the apparatus control apparatus 8 corresponding to the storage battery 9 which has not received SOC.
  • step S1802. For each storage battery 9 that executes the DR application 1 (storage battery 9 that has received the SOC), the control unit 704 calculates the latest storage battery distribution rate ⁇ discharge (n) at the time of discharge and the storage battery distribution rate at the time of charging. Of ⁇ charge (n), the smaller value is specified as the storage battery distribution rate ⁇ (n). Subsequently, for each storage battery 9 (the storage battery 9 that has received the SOC) that executes the DR application 1, the control unit 704 stores the storage battery distribution rate ⁇ (n) and the rated output P (n) held in the database 702. , Motion-related information representing, is generated.
  • the control unit 704 adds DR1 assignment information to each operation related information. Subsequently, the control unit 704 transmits, from the communication unit 701, the DR1 assignment information to which the operation related information is added, to the device control apparatus 8 corresponding to the operation related information.
  • the DR1 assignment information to which the operation related information is added is also an example of the first LFC operation control information.
  • the control unit 805 receives the DR1 assignment information with operation-related information via the communication unit 803.
  • the control unit 805 derives the local charge / discharge gain coefficient G1 (n) using the DR1 sharing information with operation-related information and the mathematical expression shown in Equation 4 (step S1803).
  • the control unit 805 uses the local charge / discharge gain coefficient G1 (n) and the maximum value ⁇ f max of the integrated value of the frequency deviation shown in the DR1 sharing information with operation-related information as shown in FIG.
  • the first local charge / discharge gain line 800A is derived (step S1804).
  • the integrated value ⁇ f of the frequency deviation passes through the origin 0 in the range of ⁇ f max ⁇ ⁇ f ⁇ ⁇ f max , and the slope is the local charge / discharge gain coefficient G1 (n). It becomes a straight line.
  • the first local charge / discharge gain line 800A is “ ⁇ K1 ⁇ ⁇ (n) ⁇ P (n)” (the minus sign represents discharge) in the range where the integrated value ⁇ f of the frequency deviation is ⁇ f ⁇ f max. ) Constant value.
  • the first local charge / discharge gain line 800A has a constant value of “K1 ⁇ ⁇ (n) ⁇ P (n)” in the range of ⁇ f max ⁇ f.
  • Each device control apparatus 8 that executes the power control apparatus 7 and the DR application 1 repeats the processing of steps S1801 to S1804 in the cycle T1 first LFC .
  • the control unit 805 receives the DR1 assignment information with operation related information via the communication unit 803, and the latest operation related information among the DR1 assignment information with operation related information.
  • the attached DR1 sharing information is retained.
  • DR1 charging / discharging control operation an operation in which the device controller 8 that executes the DR application 1 controls charging / discharging of the storage battery 9 based on the DR1 sharing information with operation-related information and the system frequency (hereinafter referred to as “DR1 charging / discharging control operation”).
  • the control unit 704 of the power control device 7 sends an operation cycle T2 to the device control apparatus 8 that executes the DR application 1 via the communication unit 701.
  • Send DR1 execution interval information indicating -A is, for example, 1 second.
  • FIG. 21 is a sequence diagram for explaining the charge / discharge control operation.
  • the control unit 805 causes the detection unit 802 to detect the system frequency (step S2001). Subsequently, the control unit 805 calculates the integral value ⁇ f of the frequency deviation by subtracting the reference frequency (50 Hz) of the system frequency from the detection result of the detection unit 802 and integrating the subtraction result (step S2002).
  • the control unit 805 calculates the charge amount or the discharge amount of the storage battery 9 that executes the DR application 1 according to the integral value ⁇ f of the frequency deviation and the local charge / discharge gain line (step S2003).
  • step S2003 when the absolute value of the integrated value ⁇ f of the frequency deviation is equal to or less than the maximum value (threshold value) ⁇ f max of the integrated value of the frequency deviation, the control unit 805 adds the frequency deviation to the local charge / discharge gain coefficient G1 (n).
  • the absolute value of the value (G1 (n) ⁇ ⁇ f) multiplied by the integral value ⁇ f is calculated as the adjustment power amount.
  • the control unit 805 determines the sharing coefficient K1, the storage battery distribution rate ⁇ (n), and the rated output P (n). (K1 ⁇ ⁇ (n) ⁇ P (n)) is calculated as the adjustment power amount.
  • K1 ⁇ ⁇ (n) ⁇ P (n) is calculated as the adjustment power amount.
  • the control unit 805 causes the storage battery 9 that executes the DR application 1 to perform the charging operation by the adjusted power amount.
  • the control unit 805 causes the storage battery 9 that executes the DR application 1 to perform a discharging operation by the adjusted power amount (step S2004).
  • Each device control apparatus 8 repeats the processing of steps S2001 to S2004 at a cycle T2-A indicated by the DR1 execution interval information. As a result, the value of the integrated value of the frequency deviation changes every time, and charging / discharging according to G1 (n) ⁇ ⁇ f is executed each time.
  • DR1 sharing information that requires time and two-way communication processing for acquisition is acquired at a cycle longer than the detection cycle of the system frequency while detecting the system frequency that fluctuates according to the power supply and demand balance at cycle T2-A Therefore, the first LFC adjustment process can be handled.
  • the power control apparatus 7 regards the storage battery 9 as the SOC of the storage battery 9 that could not be received. of the SOC received in the past, to derive an adjustable total capacity P ES uses the latest of SOC. (3-3) Subsequently, the power control device 7 transmits the adjustable total capacity P ES to the power supply command unit 2 at the cycle T m .
  • the period Tm is equal to or greater than the period T1 second LFC .
  • the power control device 7 calculates the DR2 sharing coefficient K2 according to the latest DR2 charge / discharge gain line received from the power supply command unit 2. (3-7) Subsequently, the power control device 7 sends the DR2 sharing information (DR2 sharing coefficient K2 and the maximum index value i1) to the device control device 8 (for example, the device control device 8 to be processed) in the cycle T1 second LFC. max ). (3-8) Each device control device 8 calculates a second local charge / discharge gain line that defines the charge / discharge operation of the storage battery 9 based on the DR2 sharing coefficient K2 and the maximum value i1 max of the index. The second local charge / discharge gain line will be described later. (3-9) Each device control device 8 controls the charge / discharge operation of the storage battery 9 using the second local charge / discharge gain line and the received index.
  • FIG. 22 is a sequence diagram for explaining the DR2 grasping operation.
  • the control unit 204 of the power supply command unit 2 uses the system frequency detected by the frequency meter 201 and the tidal current on the interconnection line 4 detected by the tidal current detecting unit 202 to use the regional requirement AR-1 Is calculated (step S2101).
  • the control unit 205 collects the LFC adjustment capacity of the thermal power generator 1 from a thermal power generator control unit (not shown) (step S2102).
  • the communication unit 701 of the power control device 7 transmits the latest adjustable total capacity P ES to the power supply command unit 2 (step S2103).
  • the communication unit 203 of the power supply command unit 2 receives the latest adjustable total capacity P ES transmitted from the communication unit 701 of the power control device 7.
  • the communication unit 203 outputs the latest adjustable total capacity P ES to the control unit 204.
  • the control unit 204 uses the regional requirement amount AR-1, the LFC adjustment capacity of the thermal power generator 1, and the latest adjustable total capacity P ES to calculate the LFC. Deriving capacity. Subsequently, the control unit 204 allocates the capacity of the LFC capacity excluding the steep fluctuation component to the thermal power generator 1.
  • the control unit 204 determines the ratio of the LFC capacity allocation to the thermal power generator 1 and the LFC allocation capacity LFC ES-DR2 in consideration of economics while considering the share of the EDC component.
  • the control unit 204 generates a DR2 charge / discharge gain line (see FIG. 15B) representing the LFC allocated capacity LFC ES-DR2 and the maximum value i1f max of the preset index (step S2105).
  • the DR2 charge / discharge gain line shown in FIG. 15B represents the charge / discharge amount of the storage battery group (storage battery 9 that executes the DR application 2) with respect to the index.
  • LFC allocated capacity LFC ES-DR2 (LFC ES-DR2 or LFC ES-DR2 ') Accordingly, the line 400C or the line 400D changes.
  • the control unit 204 transmits the DR2 charge / discharge gain line to the power control apparatus 7 via the communication unit 203 (step S2106).
  • Power controller 7 and dispatching unit 2 the operation of steps S2101 ⁇ S2106 with (DR2 grasping operation), repeated with a period T m.
  • the grasping unit 703 of the power control device 7 receives the DR2 charge / discharge gain line via the communication unit 701, and holds the latest DR2 charge / discharge gain line among the DR2 charge / discharge gain lines.
  • FIG. 23 is a sequence diagram for explaining the DR2 sharing operation.
  • the number of device control devices 8 that execute the DR application 2 is set to one.
  • the control unit 704 of the power control device 7 uses the LFC allocated capacity LFC ES-DR2 indicated in the latest DR2 charge / discharge gain line, the latest adjustable total capacity P ES, and the formula shown in Equation 5.
  • the DR2 sharing coefficient K2 is derived (step S2201). Subsequently, the control unit 704 sends DR2 sharing information indicating the DR2 sharing coefficient K2 and the maximum value i1 max of the index indicated on the latest DR2 charge / discharge gain line via the communication unit 701 to the DR application 2. It transmits to each apparatus control apparatus 8 to perform (step S2202).
  • the DR2 sharing coefficient K2 is not limited to the value specified by Equation 5. For example, when power supply and demand is tight, a value (for example, 0.97) indicating that the output is forcibly close to the limit may be used as the DR2 sharing coefficient K2. The value indicating the output near the limit is not limited to 0.97 and can be changed as appropriate.
  • the control unit 704 does not execute step S2202 for the device control device 8 corresponding to the storage battery 9 that has not received the SOC.
  • the control unit 704 For each storage battery 9 that executes the DR application 2, the control unit 704 includes, among the storage battery distribution rate ⁇ discharge (n) at the latest discharge derived by the grasping unit 703 and the storage battery distribution rate ⁇ charge (n) at the time of charging , The smaller value is specified as the storage battery distribution ratio ⁇ (n). Subsequently, the control unit 704 generates operation-related information representing the storage battery distribution ratio ⁇ (n) and the rated output P (n) held in the database 702 for each storage battery 9 that executes the DR application 2. To do. Subsequently, the control unit 704 adds DR2 assignment information to each operation related information.
  • the control unit 704 transmits, from the communication unit 701, the DR2 assignment information to which the operation related information is added, to the device control apparatus 8 corresponding to the operation related information.
  • the DR2 assignment information to which the operation related information is added is also an example of the second LFC operation control information.
  • the control unit 805 receives the DR2 sharing information with operation-related information via the communication unit 803.
  • the control unit 805 derives the local charge / discharge gain coefficient G2 (n) using the DR2 sharing information with operation-related information and the mathematical formula shown in Equation 6 (step S2203). Note that the values in Equation 6 are shown in the DR2 assignment information with operation-related information.
  • control unit 805 uses the local charge / discharge gain coefficient G2 (n) and the maximum value i1 max of the index indicated in the DR2 sharing information with operation-related information to perform the second local
  • the charge / discharge gain line 800B is derived (step S2204).
  • the second local charge / discharge gain line 800B shown in FIG. 24 passes through the origin 0 and the slope is a straight line of the local charge / discharge gain coefficient G2 (n) in the range where the index is ⁇ i1 max ⁇ index ⁇ i1 max .
  • the second local charge / discharge gain line 800B has a constant value of “ ⁇ K2 ⁇ ⁇ (n) ⁇ P (n)” (the minus sign represents discharge) in the range of the index ⁇ i1 max .
  • the second local charge / discharge gain line 800B has a constant value of “K2 ⁇ ⁇ (n) ⁇ P (n)” in the range of i1 max ⁇ index.
  • Each device control apparatus 8 that executes the power control apparatus 7 and the DR application 2 repeats the processing of steps S2201 to S2204 at the cycle T1 second LFC .
  • the control unit 805 receives the DR2 sharing information with operation related information via the communication unit 803, and the latest operation related information among the DR2 sharing information with operation related information. Holds DR2 sharing information.
  • DR2 charging / discharging control operation an operation in which the device controller 8 that executes the DR application 2 controls charging / discharging of the storage battery 9 based on the DR2 sharing information with operation-related information and the index.
  • the control unit 704 of the power control device 7 sends an operation cycle T3 to the device control apparatus 8 that executes the DR application 2 via the communication unit 701.
  • the DR2 execution interval information indicating the second LFC is transmitted.
  • the operation cycle T3 second LFC is, for example, 1 second.
  • FIG. 25 is a sequence diagram for explaining the charge / discharge control operation.
  • the communication unit 803 receives the index transmitted by the power control apparatus 7 (step S2401). Subsequently, the control unit 805 calculates a charge amount or a discharge amount of the storage battery 9 that executes the DR application 2 according to the index received by the communication unit 803 and the second local charge / discharge gain line (step S2402).
  • the control unit 805 multiplies the local charge / discharge gain coefficient G2 (n) by the index (G2 (n) ⁇ index ) Is calculated as the adjustment power amount.
  • the control unit 805 multiplies the sharing coefficient K2, the storage battery distribution rate ⁇ (n), and the rated output P (n) (K2 ⁇ ⁇ (n) ⁇ P (n)) is calculated as the adjustment power amount.
  • G2 (n) is determined based on the same concept as described above.
  • the control unit 805 causes the storage battery 9 that executes the DR application 2 to perform the charging operation by the adjusted power amount.
  • the control unit 805 causes the storage battery 9 that executes the DR application 2 to perform the discharging operation by the adjusted power amount (step S2403).
  • Each device control apparatus 8 repeats steps S2401 to S2403 at the cycle T3 second LFC indicated by the DR2 execution interval information.
  • the value of the index changes every time, and charge / discharge according to G2 (n) ⁇ index is executed each time.
  • an index derived by another method by the power supply command unit may be used.
  • Good. for example, an index similar to an LFC signal distributed by PJM, an ISO (Independent System Operator) in the United States, can be considered. That is, the index changes each time in the cycle T3 2nd LFC shorter than the cycle T1 2nd LFC .
  • the generation unit 705 when the generation unit 705 cannot receive any of the SOCs of the storage battery 9 within the period T1 first LFC period, the generation unit 705 corresponds to the storage battery 9 that has received the SOC within the period T1 first LFC period.
  • the communication unit 701 transmits the corresponding DR1 sharing information with operation related information to the device control device 8 corresponding to the storage battery 9 that has received the SOC within the period T1 first LFC period.
  • the DR1 sharing information with operation related information is generated compared to the case where the DR1 sharing information with operation related information is generated.
  • the frequency of doing can be increased.
  • the DR1 sharing information with operation-related information reflects the SOC that can be received within the first LFC period of the cycle T1, so that the received SOC can be used effectively without being wasted.
  • the communication processing amount executed by the communication unit 701 can be reduced as compared with the case where the DR1 assignment information with operation-related information is transmitted to all the device control apparatuses 8 every cycle T1 first LFC period.
  • the device control apparatus corresponds to a battery 9 which can be received SOC in the period T1 the 2LFC period 8 DR2 assignment information with operation related information is generated for.
  • the communication unit 701 transmits the corresponding DR2 sharing information with operation related information to the device control device 8 corresponding to the storage battery 9 that has received the SOC within the period T1 second LFC period. Therefore, for example, only when the SOCs of all the storage batteries 9 can be received within the period T1 2nd LFC period, the DR2 sharing information with operation related information is generated compared to the case where the DR2 sharing information with operation related information is generated.
  • the frequency of doing can be increased.
  • the DR2 sharing information with operation-related information reflects the SOC that can be received within the second LFC period of the cycle T1, so that the received SOC can be used effectively without being wasted.
  • the communication processing amount executed by the communication unit 701 can be reduced as compared with the case where the DR2 sharing information with operation-related information is transmitted to all the device control apparatuses 8 for each cycle T1 second LFC period.
  • the generation unit 705 receives the SOCs of all the storage batteries 9 that execute the DR application 1 within the first LFC period of the cycle T1
  • the generation unit 705 determines the part of the storage batteries 9 based on the SOCs of some of the storage batteries 9. You may generate
  • the communication unit 701 transmits the DR1 sharing information with the operation related information of the part of the storage batteries 9 to the device control device 8 corresponding to the part of the storage batteries 9.
  • the communication unit 701 executes the communication unit 701 as compared with the case where the DR1 sharing information with operation-related information is transmitted to the device control devices 8 corresponding to all the storage batteries 9 that execute the DR application 1.
  • the amount of communication processing can be reduced.
  • the generation unit 705 receives the SOCs of all the storage batteries 9 that execute the DR application 2 within the period T1 2nd LFC period, the generation unit 705 determines the part of the storage batteries 9 based on the SOCs of some of the storage batteries 9. You may produce
  • the communication unit 701 transmits the DR2 sharing information with operation-related information of the partial storage batteries 9 to the device control device 8 corresponding to the partial storage batteries 9. In this case, the communication unit 701 executes the communication unit 701 as compared with the case where the DR2 sharing information with operation-related information is transmitted to the device control devices 8 corresponding to all the storage batteries 9 that execute the DR application 2. The amount of communication processing can be reduced.
  • FIG. 26 is a diagram illustrating the fourth embodiment, the modification example of the fourth embodiment, and a comparative example.
  • FIG. 26A, FIG. 26B, and FIG. 26C correspond to the comparative example, the fourth embodiment, and the modified example of the fourth embodiment.
  • FIG. 26 shows a portion related to the transmission of the SOC of the storage battery 9 and the transmission of the DR1 sharing information with operation-related information.
  • “DR1 sharing information with motion-related information” is referred to as “motion control information”.
  • the number of the device control devices 8 is “4”
  • the four device control devices 8 are indicated by the device control devices 81 to 84, and the power control at the timings 500-1 to 500-4 of the first LFC interval of the cycle T1 .
  • the operation of the device 7 is shown.
  • symbol similar to the said modification of 4th Embodiment and 4th Embodiment is provided.
  • the device control devices 81 to 84 transmit the SOCs 81b to 84b of the corresponding storage battery 9 to the power control device 7 at a cycle T1 first LFC (for example, 15 minutes).
  • T1 first LFC for example, 15 minutes.
  • the power control device 7 receives the SOC of the storage battery 9 from all the device control devices 81 to 84 during the period T1 1st LFC , the power control device 7 operates the device control devices 81 to 84 according to the SOC of the storage battery 9, respectively.
  • Control information 81a to 84a is transmitted.
  • the power control apparatus 7 executes operation control information transmission processing in the cycle T1 first LFC .
  • the device control devices 81 to 84 respectively acquire the operation control information 81a to 84a received from the power control device 7 at the cycle T1 first LFC and the system frequency (frequency deviation integral) acquired at the cycle T2-A (for example, 1 second). Based on (value), charging / discharging of the corresponding storage battery 9 is controlled with period T2-A. For example, in the period 505-1, the following operation is performed.
  • the device control devices 81 to 84 transmit the SOCs 81b-1 to 84b-1 of the corresponding storage battery 9 to the power control device 7, respectively.
  • the power control device 7 receives the SOCs 81b-1 to 84b-1 of the storage battery 9 from the device control devices 81 to 84, and receives the operation control information 81a-2 to 84a- according to the SOC of the storage battery 9 to the device control devices 81 to 84.
  • Send 2 In the period 505-2 following the period 505-1, the device control devices 81 to 84 operate the operation control information 81a-2 to 84a-2, the system frequency (the integrated value of the frequency deviation) acquired in the cycle T2-A, Based on the above, charging / discharging of the corresponding storage battery 9 is controlled in cycle T2-A.
  • the power control device 7 when the power control device 7 cannot receive the SOC of the storage battery 9 from at least one of the device control devices 81 to 84 during the cycle T1 first LFC , the power control device 7 generates the operation control signal. Do not execute processing and distribution processing. Therefore, when a situation in which the SOC of the storage battery 9 cannot be received from at least one of the device control devices 81 to 84 continuously occurs, none of the operation control information is updated. For this reason, there arises a problem that accurate power supply and demand adjustment cannot be executed.
  • the power control device 7 receives the SOC 81b-1 of the storage battery 9 from the device control device 81, and receives the SOC 82b-1 and the SOC 82b-2 of the storage battery 9 from the device control device 82. Then, the power control device 7 transmits operation control information 81a-2 to 82a-2 corresponding to the SOC (latest SOC) of each storage battery 9 to the device control devices 81 to 82. At this time, the power control device 7 does not transmit the operation control information to the device control devices 83 and 84 that have not received the SOC of the storage battery.
  • the device control devices 81 to 82 operate the operation control information 81a-2 and 82a-2, the system frequency (the integrated value of the frequency deviation) acquired in the cycle T2-A, Based on the above, charging / discharging of the corresponding storage battery 9 is controlled in cycle T2-A.
  • the device control devices 83 to 84 update the latest operation control information (in the example shown in FIG. 26B, the operation control information in the operation control information received before the period 505-1. 83a-1, 84a-1) and charging / discharging of the corresponding storage battery 9 is controlled in cycle T2-A based on the system frequency (integrated value of frequency deviation) acquired in cycle T2-A.
  • the fourth embodiment even when a situation in which the SOC of the storage battery 9 cannot be received from at least one of the device control devices 81 to 84 continuously occurs, at least any of the operation control information is Updated. For this reason, compared with a comparative example, it becomes possible to perform the electric power supply-and-demand adjustment with high precision. In addition, the processing amount required to transmit the operation control information can be reduced as compared with the case where the operation control information is always transmitted to each of all the device control apparatuses 81 to 84 under management in the cycle T1 first LFC. .
  • the power control device 7 Based on the SOC of the storage battery 9, operation control information is generated and transmitted for the device control device 8 corresponding to the partial storage battery 9. For example, in the period 505-1, the following operation is performed.
  • the device control devices 81 to 84 transmit the SOC 81b-1 to 84b-1 of the corresponding storage battery 9 to the power control device 7, respectively.
  • the power control device 7 transmits the operation control information 82a-2 to 84a-2 corresponding to the SOCs 82b-1 to 84b-1 of the storage battery 9 to the device control devices 82 to 84 among the device control devices 81 to 84. At this time, the power control device 7 does not transmit the operation control information to the device control device 81.
  • the device control devices 82 to 84 operate the operation control information 82a-2 to 84a-2, the system frequency (the integrated value of the frequency deviation) acquired in the cycle T2-A, Based on the above, charging / discharging of the corresponding storage battery 9 is controlled in cycle T2-A.
  • the device control device 81 updates the latest operation control information (the operation control information 83a-1 in FIG. 26C) among the operation control information received before the period 505-1. Based on the system frequency (integrated value of frequency deviation) acquired at period T2-A, charging / discharging of the corresponding storage battery 9 is controlled at period T2-A.
  • the power control device 7 switches the device control device 8 to which the operation control information is not transmitted for each cycle T1 first LFC, for example, as illustrated in FIG. For this reason, it becomes possible to average the update period of each operation control information.
  • a configuration in which only one of the DR application 1 and the DR application 2 is executed may be used. If the DR application 2 is executed and the DR application 1 is not executed, the detection unit 801 may be omitted.
  • the power supply and demand adjustment process is not limited to LFC and can be changed as appropriate. For example, as power supply / demand adjustment processing, peak cut processing for performing power peak cut or GF (Governor Free) adjustment processing may be used. For example, when the GF adjustment process is employed, “frequency deviation” may be used instead of the “index” and “integrated value of frequency deviation” described above.
  • the control unit 805 determines the discharge power of the storage battery 9 within the range of the power consumption of the load 10 of the consumer. Discharge. Since the load 10 consumes the discharged power of the storage battery 9, the power demand for the power system 3 is reduced. When the discharge (reverse power flow) from the storage battery 9 (on the customer side) to the power system 3 is not prohibited, the control unit 805 may supply the discharge power of the storage battery 9 to the power system 3.
  • control devices A, B, and C, the device control devices D1 and 8, and the power control device 7 may each be realized by a computer.
  • the computer reads and executes the program recorded on the computer-readable recording medium, and executes one of the functions of the control devices A, B, C, the device control devices D1, 8 and the power control device 7.
  • the recording medium is, for example, a CD-ROM (Compact Disk Read Only Memory).
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration. Moreover, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment.

Abstract

 制御装置は、複数の電力需給調整装置の一部から受信した該一部の電力需給調整装置の状態情報に基づいて、該一部の電力需給調整装置の動作制御情報を生成する生成部と、動作制御情報を該一部の電力需給調整装置に送信する送信部とを備える。

Description

制御装置、機器制御装置、制御システム、制御方法およびプログラム
 本発明は、電力需給調整装置を制御する制御装置、機器制御装置、制御システム、制御方法およびプログラムに関する。
 電力需給調整を行う手法として、蓄電池等の電力需給調整装置を用いる手法が知られている。
 特許文献1には、複数の蓄電池を用いて電力需給調整を行う電力系統制御システムが記載されている。
 特許文献1に記載の電力系統制御システムでは、階層型需給制御装置が、複数の蓄電池の各々から、各蓄電池の情報(例えば、充電効率や残容量)を受信する。
 階層型需給制御装置は、各蓄電池の情報を集約する。
 階層型需給制御装置は、集約した蓄電池の情報である集約蓄電池情報を上位装置に送信し、その後、上位装置から、集約した蓄電池についての制御情報を受信する。
 階層型需給制御装置は、受信した制御情報と各蓄電池の情報に基づいて各蓄電池の制御情報を生成する。
 階層型需給制御装置は、各蓄電池の制御情報を用いて各蓄電池の充放電を制御する。
特許第5460622号公報
 特許文献1に記載の電力系統制御システムは、電力需給調整装置の一例である蓄電池の数が多くなると、蓄電池との通信処理の量が多くなるという課題がある。この課題は、電力需給調整装置が蓄電池である場合に限らず、電力需給調整装置が蓄電池と異なる装置(例えば、発電装置、電気機器、電気自動車)である場合にも生じる。
 本発明の目的は、上記課題を解決可能な制御装置、機器制御装置、制御システム、制御方法およびプログラムを提供することである。
 本発明の制御装置は、複数の電力需給調整装置を制御する制御装置において、
 前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成部と、
 前記動作制御情報を前記一部の電力需給調整装置に送信する送信部と、を備える。
 本発明の機器制御装置は、電力系統に接続された需給調整装置の動作を制御する機器制御装置であって、
 前記需給調整装置の状態を検出する検出手段と、
 前記検出手段の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信する通信手段と、
 保持している動作制御情報を前記通信手段にて受信された動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する制御手段と、を含む。
 本発明の制御システムは、電力系統に接続された電力需給調整装置の動作を制御する第1制御装置と、前記第1制御装置と通信する第2制御装置と、を含み、
 前記第1制御装置は、
 前記電力需給調整装置に関する状態を検出する検出部と、
 前記検出部で検出された前記電力需給調整装置に関する状態を示す状態情報を、前記第2制御装置に送信し、前記第2制御装置から前記電力需給調整装置の動作を制御する動作制御情報を受信する通信部と、
 保持している動作制御情報を前記通信部にて受信された動作制御情報と置き換え、前記動作制御情報に基づいて、前記電力需給調整装置の動作を制御する制御部と、を含み、
 前記第2制御装置は、
 複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成部と、
 前記動作制御情報を前記一部の電力需給調整装置に送信する送信部と、を含む。
 本発明の制御方法は、前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成し、
 前記動作制御情報を前記一部の電力需給調整装置に送信する方法である。
 または、電力系統に接続された需給調整装置の状態を検出し、
 前記需給調整装置の状態の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信し、
 保持している動作制御情報を受信した動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する方法である。
 本発明のプログラムは、コンピュータに、
 前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成手順と、
 前記動作制御情報を前記一部の電力需給調整装置に送信する送信手順と、を実行させるためのものである。
 または、コンピュータに、
 電力系統に接続された需給調整装置の状態を検出する検出手順と、
 前記需給調整装置の状態の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信する通信手順と、
 保持している動作制御情報を受信した動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する制御手順と、を実行させるためのものである。
 本発明によれば、電力需給調整装置の数が多くなったときの通信処理量の増加を抑制可能になる。
図1は、本発明の第1実施形態の制御装置Aを示した図である。 図2は、制御装置Aの動作を説明するためのフローチャートである。 図3は、本発明の第2実施形態の制御装置Bを示した図である。 図4は、制御装置Bの動作を説明するためのフローチャートである。 図5は、本発明の第3実施形態の制御装置Cを含む電力制御システムを示した図である。 図6は、動作制御情報の一例を示した図である。 図7は、電力需給調整装置Dの送信動作を説明するためのフローチャートである。 図8は、制御装置Cの動作開始時の動作を説明するためのフローチャートである。 図9は、制御装置Cの動作開始時後の動作を説明するためのフローチャートである。 図10は、電力需給調整装置Dが動作制御情報を受信したときの動作を説明するためのフローチャートである。 図11Aは、電力需給調整装置Dが動作制御情報に基づいて蓄電池R2を制御する動作を説明するためのフローチャートである。 図11Bは、機器制御装置D1の他の例を示した図である。 図12は、本発明の第4実施形態を有する電力制御システム1000を示した図である。 図13は、給電指令部2と電力制御装置7と複数の機器制御装置8の一例を示した図である。 図14Aは、放電時の蓄電池分配率曲線202aの一例を表す図である。 図14Bは、充電時の蓄電池分配率曲線202bの一例を表す図である。 図15Aは、DR1充放電利得線の一例を示した図である。 図15Bは、DR2充放電利得線の一例を示した図である。 図16は、機器制御装置8が使用情報を決定する動作を説明するためのフローチャートである。 図17は、PES導出動作を説明するためのシーケンス図である。 図18は、DR1把握動作を説明するためのシーケンス図である。 図19は、DR1分担動作を説明するためのシーケンス図である。 図20は、第1ローカル充放電利得線800Aの一例を示した図である。 図21は、充放電制御動作を説明するためのシーケンス図である。 図22は、DR2把握動作を説明するためのシーケンス図である。 図23は、DR2分担動作を説明するためのシーケンス図である。 図24は、第2ローカル充放電利得線800Bの一例を示した図である。 図25は、充放電制御動作を説明するためのシーケンス図である。 図26は、第4実施形態、第4実施形態の変形例および比較例を示した図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態の制御装置Aを示した図である。
 制御装置Aは、電力の送配電網に接続された複数の電力需給調整装置を制御する。送配電網は、電力系統に含まれる。
 電力需給調整装置は、送配電網における電力の需給バランスを調整する。電力需給調整装置は、例えば、自装置の電力需要(電力消費)と電力供給(例えば放電や発電)を制御して送配電網における電力の需給バランスを調整する。なお、電力需給調整装置は、電力供給量を制御せずに電力需要量を制御することで電力の需給バランスを調整する装置や機器でもよい。
 電力需給調整装置は、例えば、蓄電池、エアコン、電気温水器、ヒートポンプ給湯器、ポンプ、冷凍機である。なお、電力需給調整装置は、蓄電池、エアコン、電気温水器、ヒートポンプ給湯器、ポンプ、冷凍機に限らず適宜変更可能である。例えば、電力需給調整装置には、電気自動車を用いてもよい。
 制御装置Aは、生成部A1と、送信部A2と、を含む。
 生成部A1は、複数の電力需給調整装置の一部から受信した該一部の電力需給調整装置の状態情報に基づいて、該一部の電力需給調整装置の各々の消費電力を指示する消費電力情報を生成する。
 複数の電力需給調整装置の一部とは、例えば、E(Eは2以上の整数)台の電力需給調整装置のうちのF(Fは1以上E未満の整数)台の電力需給調整装置を意味する。
 例えば、生成部A1は、E台の電力需給調整装置から受信したE台の電力需給調整装置の各々の状態情報のうち、受信したF台の電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いてもよい。
 あるいは、生成部A1は、所定期間内にF台の電力需給調整装置の状態情報しか受信しなかった場合、受信したF台の電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いてもよい。
 本実施形態では、生成部A1は、E台の電力需給調整装置から受信したE台の電力需給調整装置の各々の状態情報のうち、受信したF台の電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いる。
 なお、生成部A1が、所定期間内にF台の電力需給調整装置の状態情報しか受信しなかった場合、受信したF台の電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いる詳細な構成については、後述する第2実施形態で説明する。
 消費電力情報は、電力需給調整装置の動作を制御するための動作制御情報の一例である。
 電力需給調整装置が充放電可能な蓄電池である場合、電力需給調整装置の最大消費電力は最大充電電力を意味し、電力需給調整装置の最小消費電力は、最大放電電力を意味する。
 電力需給調整装置の状態情報の一例としては、電力需給調整装置の最大消費電力および最小消費電力が挙げられる。
 生成部A1は、複数の電力需給調整装置を管理下に置いている。
 生成部A1は、例えば、一部の電力需給調整装置の最大消費電力と、該一部の電力需給調整装置の最小消費電力と、に基づいて、該一部の電力需給調整装置の消費電力情報を生成する。
 一例としては、生成部A1は、制御装置Aに割り当てられた割当消費電力を、一部の電力需給調整装置の各々の消費電力が該一部の電力需給調整装置の最大消費電力以下で最小消費電力以上となる範囲内で、該一部の電力需給調整装置に分配する。生成部A1は、一部の電力需給調整装置の各々について、その電力需給調整装置に分配された消費電力を表す消費電力情報を生成する。
 送信部A2は、生成部A1が生成した各消費電力情報を、その消費電力情報に対応する電力需給調整装置に送信する。
 次に、本実施形態の動作を説明する。
 図2は、制御装置Aの動作を説明するためのフローチャートである。
 本実施形態では、複数の電力需給調整装置の各々が、自装置の状態情報(最大消費電力および最小消費電力)を制御装置Aに送信するものとする。
 生成部A1は、各電力需給調整装置から該電力需給調整装置の状態情報を受信する。
 続いて、生成部A1は、複数の電力需給調整装置の状態情報のうち、閾値以下の数の電力需給調整装置(以下、「選択電力需給調整装置」と称す)の状態情報に基づいて、選択電力需給調整装置の消費電力情報を生成する(ステップS201)。
 選択電力需給調整装置は、一部の電力需給調整装置の一例である。閾値が表す数は、複数の電力需給調整装置(生成部A1の管理下にある電力需給調整装置)の数よりも少ない数である。なお、閾値が表す数は、複数の電力需給調整装置の数よりも少ない数であれば任意のタイミングで変更してもよい。閾値は、生成部A1で保持される。
 ステップS201において、生成部A1は、各選択電力需給調整装置の消費電力が、その選択電力需給調整装置の最大消費電力以下であり、その選択電力需給調整装置の最小消費電力以上となる範囲内で、制御装置Aの割当消費電力を各選択電力需給調整装置に分配する。
 続いて、生成部A1は、各選択電力需給調整装置について、分配された消費電力を表す消費電力情報を生成して設定する。
 なお、制御装置Aの割当消費電力が、選択電力需給調整装置の最大消費電力の総和よりも大きい場合、生成部A1は、選択電力需給調整装置の各々の消費電力として、例えば、各々の最大消費電力を表す消費電力情報を生成する。
 続いて、生成部A1は、各選択電力需給調整装置の消費電力情報を送信部A2に出力する。
 送信部A2は、各選択電力需給調整装置の消費電力情報を受け付けると、各消費電力情報を、その消費電力情報に対応する選択電力需給調整装置に送信する(ステップS202)。
 各選択電力需給調整装置は、消費電力情報を受信すると、その消費電力情報で示された消費電力で電力を消費する。このため、選択電力需給調整装置は、消費電力情報にて動作が制御される。
 次に、本実施形態の効果について説明する。
 本実施形態では、生成部A1は、複数の電力需給調整装置の一部から受信した該一部の電力需給調整装置の最大消費電力および最小消費電力に基づいて、該一部の電力需給調整装置の各々の消費電力情報を生成する。送信部A2は、各消費電力情報を、その消費電力情報に対応する電力需給調整装置に送信する。
 このため、送信部A2は、複数の電力需給調整装置の全てに消費電力情報を送信する場合と比べて、消費電力情報の通信処理量を減らすことができる。
 また、本実施形態では、生成部A1は、複数の電力需給調整装置から受信した最大消費電力および最小消費電力のうち、その一部の電力需給調整装置の最大消費電力および最小消費電力に基づいて、該一部の電力需給調整装置の消費電力情報を生成する。
 このため、生成部A1は、主体的に消費電力情報を生成する電力需給調整装置を決定できる。
 次に、本実施形態の変形例を説明する。
 複数の電力需給調整装置の各々は、周期Taで自装置の最大消費電力と最小消費電力を送信してもよい。この場合、生成部A1は、周期Taで、周期Taの期間に受信した複数の電力需給調整装置の最大消費電力と最小消費電力のうち、その一部の電力需給調整装置の最大消費電力と最小消費電力とに基づき、該一部の電力需給調整装置の消費電力情報を生成してもよい。周期Taは、例えば10秒である。なお、周期Taは10秒に限らず適宜変更可能である。
 また、生成部A1は、選択電力需給調整装置の消費電力情報を生成する動作を所定回数(例えば1回)実行すると、選択電力需給調整装置を切り替えてもよい。なお、所定回数は、例えば1回に限らず適宜変更可能である。この場合、一部の電力需給調整装置が選択電力需給調整装置として選択され続けることを防止できる。
 さらに、生成部A1は、選択電力需給調整装置として選択されない期間が長い電力需給調整装置を優先的に選択電力需給調整装置として選択することが望ましい。この場合、各電力需給調整装置が選択電力需給調整装置として選択されるまでの期間のばらつきを低減できる。
 また、生成部A1は、電力需給調整装置の製造番号などの予め設定された固有識別番号に基づいて、公平性を保つように、選択電力需給調整装置として選択されない電力需給調整装置(以下、「対象外電力需給調整装置」とも称す)を、順番に選択してもよい。
 また、生成部A1は、選択電力需給調整装置として選択されない期間の代わりに、または、その期間だけでなく、今までの消費電力量などに基づいて、対象外電力需給調整装置を選択してもよい。例えば、生成部A1は、今までの消費電力量が相対的に多い電力需給調整装置を対象外電力需給調整装置として選択してもよい。
 (第2実施形態)
 図3は、本発明の第2実施形態の制御装置Bを示した図である。図3において、図1に示したものと同一構成のものには同一符号を付与している。
 制御装置Bは、制御装置Aと同様に、電力の送配電網に接続された複数の電力需給調整装置を制御する。制御装置Bは、生成部B1と、送信部A2と、を含む。
 第1実施形態では、生成部A1は、複数の電力需給調整装置の一部の電力需給調整装置の状態情報として、複数の電力需給調整装置から受信した状態情報のうちの一部の電力需給調整装置の状態情報を用いた。
 これに対して、第2実施形態では、所定期間内に複数の電力需給調整装置の少なくともいずれか一つの状態情報を受信しなかった場合、生成部B1は、その所定期間内に受信した電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いる。
 本実施形態でも、電力需給調整装置の状態情報として、電力需給調整装置の最大消費電力および最小消費電力を用いる。
 生成部B1は、生成部A1と同様に、複数の電力需給調整装置を管理下に置いている。例えば、生成部B1は、複数の電力需給調整装置の識別情報を保持している。
 生成部B1は、一部の電力需給調整装置の最大消費電力と、該一部の電力需給調整装置の最小消費電力と、に基づいて、該一部の電力需給調整装置の消費電力情報を生成する。
 生成部B1での消費電力情報の生成手法は、生成部A1での消費電力情報の生成手法と同様である。
 送信部A2は、生成部B1が生成した各消費電力情報を、その消費電力情報に対応する電力需給調整装置に送信する。
 次に、本実施形態の動作を説明する。
 図4は、制御装置Bの動作を説明するためのフローチャートである。
 本実施形態は、複数の電力需給調整装置の各々が、自装置の状態情報(最大消費電力および最小消費電力)を制御装置Bに送信するものとする。また、複数の電力需給調整装置の各々は、自装置の状態情報と自装置の識別情報とを制御装置Aに送信する。
 このとき、通信エラーや電力需給調整装置自体の不具合に起因して、状態情報が制御装置Bに届かない電力需給調整装置が発生する可能性がある。
 生成部B1は、所定期間(例えば10秒)の間に、複数の電力需給調整装置の全ての状態情報を受信しなかった場合、その所定期間内に受信した電力需給調整装置の状態情報を、一部の電力需給調整装置の状態情報として用いる。以下、所定期間内に受信した状態情報に対応する電力需給調整装置を「対象電力需給調整装置」と称す。所定期間は10秒に限らず適宜変更可能である。ここで、生成部B1は、所定期間内に、複数の電力需給調整装置の全ての識別情報を受信しなかった場合、所定期間内に、複数の電力需給調整装置の全ての状態情報を受信しなかったと判定する。
 続いて、生成部B1は、対象電力需給調整装置の状態情報に基づいて、対象電力需給調整装置の消費電力情報を生成する(ステップS401)。
 このとき、生成部B1は、制御装置Bに割り当てられた割当消費電力を、各対象電力需給調整装置の消費電力が、その対象電力需給調整装置の最大消費電力以下であり、最小消費電力以上となる範囲内で、各対象電力需給調整装置に分配する。
 続いて、生成部B1は、各対象電力需給調整装置について、分配された消費電力を表す消費電力情報を生成する。
 なお、制御装置Bの割当消費電力が、対象電力需給調整装置の最大消費電力の総和よりも大きい場合、生成部B1は、例えば、対象電力需給調整装置の各々の消費電力として、各々の最大消費電力を表す消費電力情報を生成する。
 続いて、生成部B1は、各対象電力需給調整装置の消費電力情報を送信部A2に出力する。
 送信部A2は、各対象電力需給調整装置の消費電力情報を受け付けると、各消費電力情報を、その消費電力情報に対応する対象電力需給調整装置に送信する(ステップS402)。
 各対象電力需給調整装置は、消費電力情報を受信すると、その消費電力情報で示された消費電力で電力を消費する。
 次に、本実施形態の効果について説明する。
 本実施形態では、所定期間内に複数の電力需給調整装置の全ての最大消費電力と最小消費電力を受信しなかった場合、生成部B1は、所定期間内に受信した電力需給調整装置の最大消費電力と最小消費電力を、一部の電力需給調整装置の最大消費電力と最小消費電力として用いる。
 このため、所定期間内に複数の電力需給調整装置の全ての最大消費電力と最小消費電力を受信できなかった場合にも、一部の電力需給調整装置の最大消費電力と最小消費電力に基づいて、該一部の電力需給調整装置の消費電力情報を生成可能になる。
 次に、第1および第2本実施形態の変形例を説明する。
 第1および第2本実施形態では、電力需給調整装置の状態情報として、電力需給調整装置の最大消費電力および最小消費電力を用いたが、電力需給調整装置が蓄電池の場合、電力需給調整装置の状態情報として、SOC(State of Charge)を用いてもよい。
 この場合、各電力需給調整装置が同一構成であると仮定すると、第1実施形態の生成部A1や第2実施形態の生成部B1は、以下のように動作する。
 生成部A1は、選択電力需給調整装置のSOCが小さいほど、選択電力需給調整装置に分配する消費電力の値を大きくする。また、生成部B1は、対象電力需給調整装置のSOCが小さいほど、対象電力需給調整装置に分配する消費電力の値を大きくする。
 (第3実施形態)
 図5は、本発明の第3実施形態の制御装置Cを含む電力制御システムを示した図である。
 まず、電力制御システムの概要を説明する。
 電力制御システムは、制御装置Cと、複数の電力需給調整装置Dと、を含む。
 制御装置Cは、電力系統R1に接続された複数の電力需給調整装置Dを制御する。制御装置Cは、複数の電力需給調整装置Dを管理下に置いている。例えば、制御装置Cは、複数の電力需給調整装置Dの識別情報を保持している。電力系統R1は、連系線R3を介して、他の電力系統R4と接続されている。
 電力需給調整装置Dは、電力系統R1における電力の需給バランスを調整する。電力需給調整装置Dは、例えば、蓄電池R2における電力需要(電力消費)と電力供給(例えば放電)を制御することで、電力系統R1における電力の需給バランスを調整する。
 電力需給調整装置Dは、蓄電池R2の充放電可能容量を周期T1(例えば15分)で制御装置Cに送信する。以下、「蓄電池R2の充放電可能容量」を単に「充放電可能量」と称す場合がある。このとき、電力需給調整装置Dは、充放電可能量と共に、自装置の識別情報を制御装置Cに送信する。
 充放電可能容量は、電力需給調整装置Dの状態情報の一例である。充放電可能容量は、例えば、蓄電池R2の保有者が契約等により供出を申し出た蓄電池の容量であってもよく、蓄電池R2のSOCに応じて特定してもよい。
 蓄電池R2のSOCに応じて充放電可能容量を特定する手法としては、例えば、蓄電池R2におけるSOCと充放電可能容量との対応関係を示すテーブルを用いて、SOCから充放電可能容量を特定する手法を用いてもよい。このテーブルは、例えば、電力需給調整装置D内の制御部D1cで保持される。このテーブルには、例えば、SOCが0.5のときに充放電可能容量が最大となり、SOCが0.5から離れるほど充放電可能容量が小さくなる関係を示したテーブルを用いる。
 制御装置Cは、電力需給調整装置Dから充放電可能容量および識別情報を受信した場合、その受信結果を保持する。
 制御装置Cは、動作開始時と、それ以降とで、異なる動作を実行する。
 まず、制御装置Cの動作開始時の動作を説明する。
 動作開始時において、制御装置Cは、管理下にある全ての電力需給調整装置Dから充放電可能容量を受信した場合、各充放電可能容量に基づいて、電力需給調整装置Dごとに、電力需給調整装置Dの動作を制御するための動作制御情報(以下、単に「動作制御情報」と称す)を生成する。ここで、制御装置Cは、管理下にある全ての電力需給調整装置Dの全ての識別情報を充放電可能容量と共に受信した場合、管理下にある全ての電力需給調整装置Dから充放電可能容量を受信したと判定する。
 図6は、動作制御情報の一例を示した図である。
 図6に示した動作制御情報は、電力系統R1における電力の周波数偏差(以下、単に「周波数偏差」とも称す)の積分値と、蓄電池R2における調整電力量(LFC(Load Frequency Control:負荷周波数制御)調整電力量)と、の関係を表す。
 この動作制御情報は、電力需給調整装置DにLFC調整処理を実行させるための動作制御情報である。
 正の値の調整電力量は、蓄電池R2の充電を意味する。負の値の調整電力量は、蓄電池R2の放電を意味する。周波数偏差は、式「電力系統R1の電力の周波数」-「電力系統R1の電力の基準周波数(例えば50Hz)」を用いて算出する。電力系統R1の電力の基準周波数は、機器制御装置D1内の制御部D1cで記憶される。
 制御装置Cは、例えば、蓄電池R2の調整電力量(図6参照)が、蓄電池R2の充放電可能容量以下となるように、動作制御情報を生成する。
 制御装置Cは、各動作制御情報を、対応する電力需給調整装置Dに送信する。
 次に、制御装置Cの動作開始時後の動作を説明する。
 制御装置Cは、動作開始時の動作を行った後、周期T1(例えば15分)で以下の動作を実行する。
 制御装置Cは、複数の電力需給調整装置Dの充放電可能容量のうち、一部の電力需給調整装置(以下、「処理対象の電力需給調整装置」と称す)Dの充放電可能容量に基づいて、処理対象の電力需給調整装置Dの動作制御情報を生成する。
 例えば、制御装置Cは、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できなかった場合、その周期T1の間に受信できた電力需給調整装置Dからの充放電可能容量を、処理対象の電力需給調整装置Dからの充放電可能容量として用いる。ここで、制御装置Cは、周期T1の間に、管理下にある全ての電力需給調整装置Dの識別情報を充放電可能容量と共に受信しなかった場合、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できなかったと判定する。
 なお、制御装置Cは、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できた場合、動作開始時と同様の動作を行う。
 ここで、制御装置Cが、処理対象の電力需給調整装置Dの充放電可能容量に基づいて、処理対象の電力需給調整装置Dの動作制御情報を生成する動作について説明する。
 まず、制御装置Cは、処理対象の電力需給調整装置D以外の電力需給調整装置(以下、「処理対象外の電力需給調整装置」と称す)Dの充放電可能容量を決定する。
 本実施形態では、制御装置Cは、過去に受信した処理対象外の電力需給調整装置Dの充放電可能容量の中で最も新しい充放電可能容量を、その時の処理対象外の電力需給調整装置Dの充放電可能容量として用いる。
 制御装置Cは、処理対象外の電力需給調整装置Dの過去の充放電可能容量を再利用することにより、全ての電力需給調整装置Dの充放電可能容量を認識する。
 なお、制御装置Cは、処理対象外の電力需給調整装置Dの充放電可能容量として、予め設定された値(例えばデフォルト値)を用いてもよい。
 制御装置Cは、全ての電力需給調整装置Dの充放電可能容量を認識すると、動作開始時における動作制御情報の生成手法と同様な手法で、電力需給調整装置Dごとに動作制御情報を生成する。
 制御装置Cは、電力需給調整装置Dごとに動作制御情報を生成すると、処理対象の電力需給調整装置Dに、その処理対象の電力需給調整装置Dの動作制御情報を送信する。このとき、制御装置Cは、処理対象外の電力需給調整装置Dには動作制御情報を送信しない。よって、処理対象外の電力需給調整装置Dに動作制御情報を送信する場合と比べて、制御装置Cにおける動作制御情報の通信処理量を少なくできる。
 なお、上述した制御装置Cが実行する動作制御情報の生成手法は、後述する生成部C1にて実行される。
 電力需給調整装置D(例えば、後述する制御部D1c)は、動作制御情報を受信すると、その動作制御情報を保持する。電力需給調整装置D(例えば、制御部D1c)は、動作制御情報を受信したとき、それ以前に受信した動作制御情報を保持している場合は、その保持している動作制御情報を、新たに受信した動作制御情報に置き換える。この置き換えは、「上書き保存」や「置き換え保持」を意味する。
 電力需給調整装置Dは、新たに受信した動作制御情報を保持すると、周期T1よりも短い周期T2で、電力系統R1の電力の周波数を検出する。周期T1は、例えば数分~十数分(15分等)である。周期T2は、例えば0.5秒~1秒である。
 電力需給調整装置D(例えば、制御部D1c)は、式「電力系統R1の電力の周波数」-「電力系統R1の電力の基準周波数」を用いて周波数偏差を算出する。続いて、電力需給調整装置D(例えば、制御部D1c)は、周波数偏差の積分値を算出する。
 電力需給調整装置D(例えば、制御部D1c)は、保持している動作制御情報(図6参照)を用いて、周波数偏差の積分値に対応する調整電力量(以下、「対応調整電力量」と称す)を特定する。
 電力需給調整装置Dは、対応調整電力量で蓄電池R2の充電や放電を制御する。この制御にてLFC調整処理が実行される。
 なお、電力需給調整装置D(例えば、制御部D1c)は、充放電可能容量を送信せずに、事前に設定された周期T1が経過すると、電力需給調整装置D(例えば、制御部D1c)で保存されている過去の動作制御情報と周波数偏差の積分値とに基づいて、周期T2で蓄電池R2の動作を制御する。ここで、電力需給調整装置D(例えば、制御部D1c)が充放電可能容量を送信しない状況としては、電力需給調整装置D(例えば、制御部D1c)が意図的に充放電可能容量を送信しない状況と、一部の障害により意図に反して充放電可能容量を送信しない(できない)状況とがある。
 また、電力需給調整装置D(例えば、制御部D1c)は、充放電可能容量を送信したが、その充放電可能容量が制御装置Cに届かず、事前に設定された周期T1を経過しても新たな動作制御情報を受信しない場合、電力需給調整装置D(例えば、制御部D1c)で保存された過去の動作制御情報と周波数偏差の積分値とに基づいて、周期T2で蓄電池R2の動作を制御する。
 なお、電力系統R1の状態(周波数)の検出動作は、後述する検出部D1bにて実行される。また、動作制御情報と電力系統R1での周波数偏差の積分値とに基づいて蓄電池R2の動作を制御する動作は、制御部D1cにて実行される。
 次に、電力制御システムの詳細を説明する。
 まず、制御装置Cについて説明する。
 制御装置Cは、生成部C1と通信部C2とを含む。
 通信部C2は、送信部の一例である。通信部C2は、各電力需給調整装置Dと通信する。例えば、通信部C2は、電力需給調整装置Dから充放電可能容量を受信する。また、通信部C2は、電力需給調整装置Dに動作制御信号を送信する。
 生成部C1は、電力需給調整装置Dの充放電可能容量に基づいて、電力需給調整装置Dの動作制御情報を生成する。この動作制御情報の生成手法は、上述した制御装置Cが動作制御情報を生成する手法と同様である。
 次に、電力需給調整装置Dについて説明する。
 電力需給調整装置Dは、機器制御装置D1と蓄電池R2とを含む。電力需給調整装置Dは、例えば、蓄電装置としても機能する。機器制御装置D1は、制御装置の一例である。機器制御装置D1は、通信部D1aと検出部D1bと制御部D1cとを含む。
 通信部D1aは、通信手段の一例である。通信部D1aは、制御装置Cと通信する。例えば、通信部D1aは、蓄電池R2の充放電可能容量を識別情報と共に制御装置Cに送信する。また、通信部D1aは、制御装置Cから動作制御情報を受信する。制御装置Cは、外部装置の一例である。
 検出部D1bは、検出手段の一例である。検出部D1bは、電力系統R1の電力の周波数(系統周波数)を検出する。
 制御部D1cは、制御手段の一例である。制御部D1cは、機器制御装置D1および蓄電池R2を制御する。例えば、制御部D1cは、検出部D1bの検出結果を用いて周波数偏差の積分値を算出する。
 また、制御部D1cは、動作制御情報と周波数偏差の積分値とに基づいて、蓄電池R2の動作(充電や放電)を制御する。この蓄電池R2の動作を制御する手法は、上述した電力需給調整装置Dが蓄電池R2の動作を制御する手法と同様である。
 次に、本実施形態の動作を説明する。
 まず、電力需給調整装置Dが充放電可能容量を送信する動作を説明する。
 図7は、電力需給調整装置Dが充放電可能容量を送信する動作を説明するためのフローチャートである。
 電力需給調整装置Dでは、制御部D1cが、蓄電池R2のSOCを検出する(ステップS701)。
 続いて、制御部D1cは、蓄電池R2におけるSOCと充放電可能容量との対応関係を示すテーブルを用いて、SOCから充放電可能容量を特定する(ステップS702)。なお、このテーブルは、制御部D1cで予め保持されているとする。
 続いて、制御部D1cは、充放電可能容量を自装置の識別情報と共に通信部D1aから制御装置C2に送信する(ステップS703)。
 制御部D1cは、ステップS701~S703の一連の動作を周期T1で繰り返す。
 次に、制御装置Cの動作開始時の動作を説明する。
 図8は、制御装置Cの動作開始時の動作を説明するためのフローチャートである。
 制御装置Cにおいて、通信部C2は、各電力需給調整装置Dから充放電可能容量および識別情報を受信すると、それら充放電可能容量および識別情報を生成部C1に出力する。
 生成部C1は、制御装置Cの管理下にある全ての電力需給調整装置Dの充放電可能容量を受信すると、各充放電可能容量に基づいて、電力需給調整装置Dごとに動作制御情報を生成する(ステップS801)。ここで、生成部C1は、制御装置Cの管理下にある全ての電力需給調整装置Dの識別情報を受信した場合、制御装置Cの管理下にある全ての電力需給調整装置Dの充放電可能容量を受信したと判定する。
 この動作制御情報は、周波数偏差の積分値と、電力需給調整装置D内の蓄電池R2での調整電力量と、の関係を表す(図6参照)。
 ステップS801において、生成部C1は、電力需給調整装置Dごとに、電力需給調整装置D内の蓄電池R2の調整電力量(図6参照)の絶対値が、その蓄電池R2の充放電可能容量以下となるように、動作制御情報を生成する。
 さらに、生成部C1は、充放電可能容量が大きい電力需給調整装置Dほど、動作制御情報において調整電力量の絶対値の最大値を大きくする。
 さらに、生成部C1は、制御装置Cが受け持つ電力調整量(例えば、電力会社から委任された電力調整量や、電力市場で落札した電力調整量)に関する調整量情報に応じて動作制御情報を変更する。例えば、生成部C1は、ある周波数偏差の積分値における各蓄電池R2の調整電力量(図6参照)の総量が、その周波数偏差の積分値に対して制御装置Cが受け持つ電力調整量と一致するように、電力需給調整装置Dごとに動作制御情報を生成する。
 続いて、生成部C1は、各電力需給調整装置Dに、その電力需給調整装置Dに対応する動作制御情報を送信する処理を、通信部C2に実行させる(ステップS802)。
 次に、制御装置Cの動作開始時後の動作を説明する。
 図9は、制御装置Cの動作開始時後の動作を説明するためのフローチャートである。
 生成部C1は、上述した動作開始時の動作を実行した後に周期T1で以下に示す動作開始時後の動作を実行する。
 生成部C1は、今回の周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できなかった場合、今回の周期T1の間に受信できた電力需給調整装置Dの充放電可能容量を、処理対象の充放電可能容量として決定する(ステップS901)。ここで、生成部C1は、今回の周期T1の間に管理下の全ての電力需給調整装置Dの識別情報を充放電可能容量と共に受信できなかった場合、今回の周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できなかったと判定する。
 なお、生成部C1は、今回の周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できた場合、動作開始時と同様に動作する。
 続いて、生成部C1は、過去に受信した処理対象外の電力需給調整装置Dの充放電可能容量の中で最も新しい充放電可能容量を、その時の処理対象外の電力需給調整装置Dの充放電可能容量として決定する(ステップS902)。なお、処理対象外の電力需給調整装置Dは、処理対象の電力需給調整装置D以外の電力需給調整装置Dである。
 ステップS901とステップS902において、生成部C1は、全ての電力需給調整装置Dの充放電可能容量を認識する。
 生成部C1は、全ての電力需給調整装置Dの充放電可能容量を認識すると、動作開始時における動作制御情報の生成手法と同様の手法(ステップS801参照)で、電力需給調整装置Dごとに動作制御情報を生成する(ステップS903)。
 なお、生成部C1は、処理対象外の電力需給調整装置Dの充放電可能容量を用いることなく、処理対象の電力需給調整装置Dの充放電可能容量を用いて、それぞれの動作制御情報を生成してもよい。
 この場合、生成部C1は、処理対象の電力需給調整装置Dごとに、処理対象の電力需給調整装置D内の蓄電池R2での調整電力量(図6参照)の絶対値が、その蓄電池R2の充放電可能容量以下になるように、動作制御情報を生成する。
 さらに、生成部C1は、充放電可能容量が大きい処理対象の電力需給調整装置Dほど、動作制御情報において調整電力量の絶対値の最大値を大きくする。
 さらに、生成部C1は、制御装置Cが受け持つ電力調整量に関する調整量情報に応じて動作制御情報を変更する。例えば、生成部C1は、ある周波数偏差の積分値における各処理対象の電力需給調整装置D内の蓄電池R2での調整電力量(図6参照)の総量が、その周波数偏差の積分値に対して制御装置Cが受け持つ電力調整量と一致するように、処理対象の電力需給調整装置Dごとに動作制御情報を生成する。
 続いて、生成部C1は、処理対象の電力需給調整装置Dに、その処理対象の電力需給調整装置Dに対応する動作制御情報を送信する処理を、通信部C2に実行させる(ステップS904)。
 次に、電力需給調整装置Dが動作制御情報を受信したときの動作を説明する。
 図10は、電力需給調整装置Dが動作制御情報を受信したときの動作を説明するためのフローチャートである。
 通信部D1aは、動作制御情報を受信すると(ステップS1001)、その動作制御情報を制御部D1cに出力する。
 制御部D1cは、動作制御情報を受信すると、過去に受信済みの動作制御情報を保持しているか否かを判断する(ステップS1002)。
 制御部D1cは、過去に受信済みの動作制御情報を保持している場合、過去に受信済みの動作制御情報を今回受信した動作制御情報に置き換える(ステップS1003)。制御部D1cは、ステップS1003を実行することで、過去に受信済みの動作制御情報を削除し、今回受信した動作制御情報を保持する。
 一方、制御部D1cは、過去に受信済みの動作制御情報を保持していない場合、今回受信した動作制御情報を保持する(ステップS1004)。
 次に、電力需給調整装置Dが動作制御情報に基づいて蓄電池R2を制御する動作について説明する。
 図11Aは、電力需給調整装置Dが動作制御情報に基づいて蓄電池R2を制御する動作を説明するためのフローチャートである。
 電力需給調整装置D内の機器制御装置D1は、周期T2で以下に示す動作を繰り返す。
 検出部D1bは、電力系統R1の電力の周波数を検出する(ステップS1101)。続いて、検出部D1bは、電力系統R1の電力の周波数を制御部D1cに出力する。
 制御部D1cは、電力系統R1の電力の周波数を受信すると、式「電力系統R1の電力の周波数」-「電力系統R1の電力の基準周波数」を用いて周波数偏差を算出する。続いて、制御部D1cは、周波数偏差の積分値を算出する(ステップS1102)。
 続いて、制御部D1cは、保持している動作制御情報(図6参照)を用いて、周波数偏差の積分値に対応する調整電力量(対応調整電力量)を特定する(ステップS1103)。
 続いて、制御部D1cは、対応調整電力量で蓄電池R2の充電や放電を制御する(ステップS1104)。
 次に、本実施形態の効果を説明する。
 生成部C1は、周期T1で、処理対象の電力需給調整装置Dに対して、周波数偏差の積分値と処理対象の電力需給調整装置D内の蓄電池R2での調整電力量との関係を表す動作制御情報を、その蓄電池R2のSOCに応じた充放電可能容量に基づいて生成する。通信部C2は、周期T1で、処理対象の電力需給調整装置Dに、その動作制御情報を送信する。
 このため、最新の充放電可能容量が生成部C1に届いた処理対象の電力需給調整装置Dは、最新の充放電可能容量に応じた動作制御情報と、周波数偏差の積分値と、に基づいて、周期T2で、蓄電池R2の動作を制御可能になる。動作制御情報は、最新の充放電可能容量に対応しているため、高い精度で蓄電池R2の動作を制御可能になる。
 一方、最新の充放電可能容量が生成部C1に通知されていない処理対象外の電力需給調整装置Dは、過去に受信済みの動作制御情報と、周波数偏差の積分値と、に基づいて、周期T2で、蓄電池R2の動作を制御する。この場合、蓄電池R2のSOCの変化は、周波数偏差の積分値の変化ほど速くないため、過去に受信済みの動作制御情報を用いても、ある程度の精度で蓄電池R2の動作を制御可能になる。
 次に、本実施形態の変形例を説明する。
 制御装置Cの動作開始時後において、生成部C1は、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できた場合、動作開始時の動作と同様の動作を行う。
 これに対して、生成部C1及び通信部C2は、以下のように動作してもよい。
 生成部C1は、制御装置Cの動作開始時後、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できた場合、そのうちの一部の充放電可能容量に基づいて、該一部の電力需給調整装置Dの動作制御情報を生成する。
 通信部C2は、該一部以外の電力需給調整装置Dに動作制御情報を送信することなく、該一部の電力需給調整装置Dに動作制御情報を送信する。
 例えば、生成部C1は、周期T1の間に全ての電力需給調整装置Dから充放電可能容量を受信できた場合、全ての電力需給調整装置Dのうち、所定の閾値以下の数の電力需給調整装置Dを処理対象の電力需給調整装置Dとして決定してもよい。
 この場合、生成部C1は、処理対象外の電力需給調整装置Dの充放電可能容量として、今回の周期T1内で受信した充放電可能容量を用いてもよく、過去に受信した処理対象外の電力需給調整装置Dの充放電可能容量の中で最新の充放電可能容量を用いてもよい。
 この場合、各周期T1において、常に、全ての電力需給調整装置Dから充放電可能容量を受信できる場合にも、通信部C2による動作制御情報の通信処理量を少なくすることができる。
 また、この場合、処理対象外の電力需給調整装置Dの制御部D1cは、充放電可能容量を送信してから、事前に設定されている周期T1が経過しても、新たな動作制御情報を受信できない。この場合、処理対象外の電力需給調整装置Dの制御部D1cは、制御部D1cで保存されている過去の動作制御情報と周波数偏差の積分値とに基づいて、周期T2で蓄電池R2の動作を制御する。
 本実施形態(変形例を含む)では、電力需給調整装置Dは、動作制御情報と周波数偏差の積分値とに基づいて蓄電池R2を制御したが、周波数偏差の積分値の代わりに、周波数偏差と連系線R3の潮流に基づいて決定される指標を用いてもよい。この場合、動作制御情報としては、指標と、処理対象の電力需給調整装置D内の蓄電池R2における調整電力量と、の関係を表す動作制御情報を用いる。例えば、図6に示した周波数偏差の積分値の欄が指標の欄となる。指標は、調整電力量に関する指標の一例である。
 指標は、周期T2で、所定の装置(例えば、給電指令部または制御装置C)にて生成される。
 指標は、例えば、以下のようにして決定する。
(A)電力が連系線R3を介して電力系統R1から他の電力系統R4に供給されている場合:
 連系線R3を介して電力系統R1から他の電力系統R4に供給されている電力に、所定の係数(正の値)を乗算する。この乗算結果と周波数偏差との加算値の積分値を、指標として決定する。なお、加算値は、周波数偏差を連系線R3での潮流にて補正した補正周波数偏差を意味する。
(B)電力が連系線R3を介して他の電力系統R4から電力系統R1に供給されている場合:
 連系線R3を介して他の電力系統R4から電力系統R1に供給されている電力に、上述した所定の係数を乗算する。この乗算結果を周波数偏差から減算した値の積分値を、指標として決定する。なお、減算値は、周波数偏差を連系線R3での潮流で補正した補正周波数偏差を意味する。
 所定の装置は、指標を周期T2で生成するごとに、その指標を、片方向通信または双方向通信(例えば、1対Nの双方向通信)を用いて、各電力需給調整装置Dに送信する。
 各電力需給調整装置Dにおいて、通信部D1aは、その指標を片方向通信または双方向通信(例えば、1対Nの双方向通信)を用いて受信して把握する。通信部D1aは、受信した指標を制御部D1cに出力する。この場合、通信部D1aは把握手段を兼ねる。
 なお、通信部D1aと異なる通信部が、指標を片方向通信または双方向通信(例えば、1対Nの双方向通信)を用いて受信することで把握してもよい。
 図11Bは、通信部D1aと異なる通信部D1dが指標を片方向通信または双方向通信(例えば、1対Nの双方向通信)を用いて受信して把握する機器制御装置D1の例を示した図である。図11Bにおいて、図5に示したものと同一構成のものには同一符号を付与している。通信部D1dは、把握手段の一例である。
 制御部D1cは、周期T2で、以下に示す動作を繰り返す。
 制御部D1cは、通信部D1aから指標を受信すると、保持している動作制御情報を用いて、指標に対応する調整電力量(対応調整電力量)を特定する。
 続いて、制御部D1cは、対応調整電力量で蓄電池R2の充電や放電を制御する。
 指標は、電力系統R1を調べても入手できない情報である。機器制御装置D1は、所定の装置から送信された指標を受信することで、電力系統R1を調べても入手できない指標を受け取ることが可能になる。
 また、指標には、連系線R3の潮流が反映されている。このため、電力系統全体の需給調整量に対応する情報の精度は、周波数偏差の積分値よりも指標の方が高い。したがって、精度のよい電力需給調整を行うことが可能になる。
 制御部D1cは、動作制御情報を周期T1(15分)で受信し、指標を周期T2(0.5~1秒)で受信し、受信した動作制御情報を用いて、指標に対応する調整電力で蓄電池R2を充放電する。
 このとき、指標をA、動作制御情報をBとすると、電力需給調整装置Dは、以下のようにT2の間隔でAを受信し、T1の間隔になると、AとBとを受信する。
 A,A,A・・・・A,A,A+B,A,A,・・・・A,A,A+B
 指標(A)は、動作制御情報(B)に比べると情報量が少ないため、周期T2という短い間隔で各電力需給調整装置に送信することができる。
 本実施形態(変形例を含む)では、蓄電池R2の代わりに、電力需要量を調整することで電力の需給バランスを調整するための装置や機器(例えば、エアコン、電気温水器、ヒートポンプ給湯器、ポンプ、冷凍機、電気自動車)を用いてもよい。この場合、充放電可能容量の代わりに、電力消費可能容量を用いればよい。
 また、本実施形態(変形例を含む)では、蓄電池R2の代わりに、太陽光発電機や風力発電機などの出力抑制機能を備えた再生可能エネルギー源を用いてもよい。この場合、充放電可能容量の代わりに、最大発電可能容量の推定値を用いればよい。
 (第4実施形態)
 図12は、本発明の第4実施形態を採用した電力制御システム1000を示した図である。
 電力制御システム1000は、火力発電機1と、給電指令部2と、電力系統3と、連系線4と、配電用変圧器5と、電力線6と、電力制御装置7と、複数の機器制御装置8と、複数の蓄電池9と、複数の負荷10と、を含む。電力制御装置7は、制御装置の一例である。
 火力発電機1、給電指令部2、電力系統3、連系線4、配電用変圧器5および電力線6は、電力会社で保有される装置である。
 電力制御装置7は、PPS(Power Producer and Supplier:特定規模電気事業者)で保有される装置である。電力制御装置7はアグリゲータで保有されてもよい。
 機器制御装置8、蓄電池9および負荷10は、各需要家で保有される装置である。各需要家は、一般家庭でもよく、ビル等の建物でもよい。
 火力発電機1、配電用変圧器5および電力線6は、電力系統3に含まれる。電力系統3には、再生可能電源(太陽光発電機)111及び再生可能電源(風力発電機)112が接続されている。
 図12では、1つの再生可能電源111および1つの再生可能電源112を示しているが、実際には、複数の再生可能電源111および複数の再生可能電源112が電力系統3に接続されている。
 検出部111aは、再生可能電源111の発電量を検出する。通信部111bは、検出部111aの検出結果を、電力制御装置7に通知する。検出部111a及び通信部111bは、再生可能電源111ごとに設けられる。
 検出部112aは、再生可能電源112の発電量を検出する。通信部112bは、検出部112aの検出結果を、電力制御装置7に通知する。検出部112a及び通信部112bは、再生可能電源112ごとに設けられる。
 蓄電池9は、電力需給調整装置の一例である。蓄電池9は、電力系統3に接続されている。負荷10は、例えば家電機器である。
 まず、電力制御システム1000が有する機能の概要について説明する。
 電力会社側の給電指令部2は、電力需給調整処理の要求(デマンド)を、PPS側の電力制御装置7に送信する。
 PPS側の電力制御装置7は、給電指令部2から電力会社のデマンドを受け付ける。
 電力制御装置7は、蓄電池9を制御するための動作制御情報を機器制御装置8ごとに生成する。このとき、電力制御装置7は、蓄電池9の状態情報(例えば、残り容量やSOC)と、デマンドに応じた電力需給調整処理(例えばLFC)の内容と、を反映した動作制御情報を生成する。
 本実施形態では、電力制御装置7は、動作開始時においては、全ての機器制御装置8毎に対応する動作制御情報をそれぞれ生成する。
 そして、電力制御装置7は、動作開始後において、周期T1内に、全ての蓄電池9の状態情報を受信できなかった場合、機器制御装置8の一部について動作制御情報を生成する。電力制御装置7は、対応する蓄電池9の状態情報を受信した機器制御装置(以下、「処理対象の機器制御装置」と称す)8を、動作制御情報を生成する機器制御装置8とする。
 この際、電力制御装置7は、周期T1内に受信できなかった蓄電池9の状態情報として、その蓄電池9について過去に受信した状態情報を採用する。
 デマンドが「第1LFC要求」である場合、電力制御装置7は、電力系統3の周波数偏差の積分値を用いて、蓄電池9の動作を制御する第1LFC調整処理(以下、「DRアプリ1」とも称す)を実行するための第1LFC動作制御情報を生成する。
 デマンドが「第2LFC要求」である場合、電力制御装置7は、指標を用いて蓄電池9の動作を制御する第2LFC調整処理(以下、「DRアプリ2」とも称す)を実行するための第2LFC動作制御情報を生成する。ここで、指標は、第3実施形態の変形例で説明した指標と同様である。
 以下では、各蓄電池9は、DRアプリ1~2に割り当てられているものとする。
 電力制御装置7は、受け付けたデマンドを機器制御装置8に送信する。
 電力制御装置7は、機器制御装置8に対して、動作制御情報を、時間間隔をあけて繰り返し送信する。
 例えば、電力制御装置7は、処理対象の機器制御装置8に動作制御情報を送信する。
 電力制御装置7は、機器制御装置8に対して、指標を、時間間隔をあけて繰り返し送信する。
 動作制御情報の送信間隔は、指標の送信間隔よりも長い。
 機器制御装置8は、デマンドを受信すると、そのデマンドに応じて、そのデマンドに対応する電力需給調整処理に用いる使用情報(電力系統3の周波数と指標のいずれと、デマンドに応じた動作制御情報)を決定する。
 機器制御装置8は、使用情報を用いて蓄電池9の動作を制御することで、デマンドに応じた電力需給調整処理(DRアプリ1~2)を実行する。デマンドに応じた電力需給調整処理は、デマンドに対する応答(以下、「レスポンス」とも称す)を意味する。
 次に、電力制御システム1000の構成について説明する。
 火力発電機1は、発電機の一例である。給電指令部2は、電力制御装置7と通信する。給電指令部2は、デマンド(第1LFC要求、第2LFC要求)を電力制御装置7に送信する。電力系統3は、電力を需要家側へ供給するシステムである。電力系統3は、火力発電機1から出力された発電電力の電圧を配電用変圧器5で所定電圧に変圧する。電力系統3は、所定電圧の電力を需要家側へ供給する。
 連系線4は、電力系統3と他の電力系統13とを接続する。
 電力制御装置7は、給電指令部2から電力会社のデマンド(第1LFC要求、第2LFC要求)を受信する。
 電力制御装置7は、DRアプリ1~2の各々について動作制御情報を作成する。
 電力制御装置7は、受け付けたデマンドを機器制御装置8に送信する。電力制御装置7は、機器制御装置8に対して、動作制御情報を、時間間隔をあけて繰り返し送信する。電力制御装置7は、機器制御装置8に対して、指標を、時間間隔をあけて繰り返し送信する。
 機器制御装置8は、電力制御装置7から受信したデマンドに応じて、そのデマンドに対応する電力需給調整処理に用いる使用情報を決定する。機器制御装置8は、使用情報を用いて蓄電池9の動作を制御する。
 図13は、給電指令部2と電力制御装置7と複数の機器制御装置8の一例を示した図である。図13において、図12に示したものと同一構成のものには同一符号を付与している。図13では、通信ネットワーク12を省略して示している。図13では、機器制御装置8に蓄電池9が内蔵されているが、機器制御装置8には蓄電池9が内蔵されていなくてもよい。蓄電池9が内蔵された機器制御装置8は、蓄電装置の一例となる。
 まず、機器制御装置8について説明する。
 機器制御装置8は、蓄電池9の動作を制御する。機器制御装置8は、検出部801および802と、通信部803と、決定部804と、制御部805と、を含む。
 検出部801は、蓄電池9のSOCを検出する。蓄電池9のSOCは、0~1までの範囲内の値となる。蓄電池9のSOCは、蓄電池9の状態情報を表す。蓄電池9の状態情報は、蓄電池9のSOCに限らず、適宜変更可能である。例えば、蓄電池9の状態情報には、蓄電池9のセル温度、電流量や電圧を用いてもよい。
 検出部802は、電力系統3の周波数を検出する。検出部802は、機器制御装置8の内部にあってもよく、外部にあってもよい。検出部802が機器制御装置8の外部にある場合、制御部805は、検出部802の検出結果を受け付けることで電力系統3の周波数を検出(受信)する。
 通信部803は、受付部、受信部または送受信部の一例である。通信部803は、電力制御装置7と通信する。
 通信部803は、電力制御装置7から、デマンドと動作制御情報と指標を受信する。
 例えば、通信部803は、電力制御装置7から双方向通信、例えば、MQTT(Message Queuing Telemetry Transport)を用いて送信されたデマンドを受信する。なお、通信部803は、電力制御装置7からブロードキャスト等の片方向通信で送信されたデマンドを受信してもよい。
 通信部803は、電力制御装置7からブロードキャスト等の片方向通信で送信された指標を受信する。なお、通信部803は、電力制御装置7から双方向通信、例えば、MQTTを用いて送信された指標を受信してもよい。
 通信部803は、電力制御装置7から双方向通信、例えばMQTTを用いて送信された動作制御情報を受信する。
 決定部804は、通信部803が受信したデマンドにしたがって使用情報を決定する。
 制御部805は、決定部804が決定した使用情報を用いて、蓄電池9の充放電動作を制御する。
 制御部805は、電力制御装置7から動作制御情報を得る情報入手動作(送受信処理)と、動作制御情報を用いて蓄電池9の充放電動作を制御する制御動作(電池動作制御処理)と、を実行する。
 制御部805は、情報入手動作を、時間間隔をあけて繰り返し実行する。
 制御部805は、情報入手動作の時間間隔よりも短い時間間隔をあけて制御動作を繰り返し実行する。
 例えば、制御部805は、情報入手動作を周期Tで繰り返し実行し、制御動作を周期Tl(ただし、T>Tl)で繰り返し実行する。周期Tは、所定時間間隔の一例である。また、制御部805は、例えば、電力系統3の周波数の検出、並びに指標の送信及び受信も周期Tlで繰り返し実行する。
 なお、情報入手動作の動作時間間隔および制御動作の動作時間間隔、または両者のいずれかは一定でなくてもよく、情報入手動作の各動作時間間隔のうちの最短時間が、制御動作の各動作時間間隔のうちの最長時間よりも長ければよい。
 機器制御装置8、蓄電池9および負荷10は、各需要家で保有される装置である。なお、機器制御装置8及び蓄電池9は、電力制御装置7を備えるPPSやアグリゲータが保有し、それを各需要家の負荷10として利用できるように配置したものでもよい。この場合、機器制御装置8及び蓄電池9の実質的な所有者であるPPSやアグリゲータは機器制御装置8や蓄電池9を自由に制御可能であるが、所定の契約を結ぶことで、需要家も負荷10の制御などに機器制御装置8や蓄電池9を利用することができる。
 次に、電力制御装置7について説明する。
 電力制御装置7は、N台の機器制御装置8およびN個の蓄電池9を管理下に置いている。例えば、N台の機器制御装置8およびN個の蓄電池9は、PPSから電力が供給される需要家で保有される装置である。ここで、Nは2以上の整数である。電力制御装置7は、通信部701と、データベース702と、把握部703と、制御部704と、を含む。把握部703及び制御部704は、生成部705に含まれる。
 通信部701は、各機器制御装置8、給電指令部2、通信部111bおよび通信部112bと通信する。例えば、通信部701は、各機器制御装置8から蓄電池9のSOCおよびID(Identification)を受信する。また、通信部701は、通信部111bおよび112bから再生可能電源111および112の発電量を示す情報を受信する。
 データベース702は、各蓄電池9の情報を格納する。
 また、データベース702は、通信部701が受信した蓄電池9のSOCから蓄電池9の充放電可能容量を求めるために用いる蓄電池分配率曲線を保持する。また、データベース702は、充放電可能容量を求めるために用いる各蓄電池9の定格出力P(n)も保持する。蓄電池9の定格出力P(n)としては、蓄電池9に接続された不図示のパワーコンディショナー(AC/DCコンバータ)の定格出力を用いる。
 図14A、14Bは、蓄電池分配率曲線の一例を示した図である。図14Aは、放電時の蓄電池分配率曲線202aの一例を表す図である。図14Bは、充電時の蓄電池分配率曲線202bの一例を表す図である。
 把握部703は、DRアプリ1~2の各々について、電力系統3における電力量を調整するために電力制御装置7の管理下にあるN個の蓄電池9で分担する電力量(以下、「DR1分担電力量」~「DR2分担電力量」と称す)を把握する。各分担電力量は、電力系統の状況の一例である。
 把握部703は、以下のようにDR1分担電力量を把握する。
 把握部703は、データベース702内の蓄電池分配率曲線を用いて、N個の蓄電池9のSOCからN個の蓄電池9にて構成される蓄電池群(以下、単に「蓄電池群」と称す)の充放電可能容量を導出する。以下、蓄電池群の充放電可能容量を「調整可能総容量PES」と称す。
 ここで、N個の蓄電池9のうちの一部のSOCしか受信できなかった場合、把握部703は、受信できなかった蓄電池9のSOCを以下のように決定する。把握部703は、受信できなかった蓄電池9のSOCとして、その蓄電池9について過去に受信したSOCの中で最新のSOCの値を用いる。
 なお、把握部703は、制御部704から、SOCを受信できなかった蓄電池9の“前回の分担電力量情報”を取得し、“前回の分担電力量情報”と前回の配信時からの経過時間から、SOCを受信できなかった蓄電池9のSOCを推定してもよい。分担電力量情報については後述する。
 また、N個の蓄電池9の一部のSOCしか受信できなかった場合、把握部703は、N個の蓄電池9にて構成される蓄電池群の代わりに、該一部の蓄電池9にて構成される蓄電池群(以下、「一部蓄電池群」と称す)を用いてもよい。この場合、把握部703は、SOCを受信できた一部蓄電池群の充放電可能容量を、該一部の蓄電池9のSOCから決定する。以下では、N個の蓄電池9の一部のSOCしか受信できなかった場合の説明を、例えば、蓄電池9の数「N個」を、その一部の蓄電池9の数「N-a」に読み替えることで行う。
 把握部703は、調整可能総容量PESを通信部701から給電指令部2に送信する。その後、把握部703は、調整可能総容量PESが反映されたDR1分担電力量を表すDR1分担電力量情報を、給電指令部2から通信部701を介して受信する。把握部703は、DR1分担電力量情報を用いてDR1分担電力量を把握する。
 本実施形態では、DR1分担電力量情報として、DR1充放電利得線を用いる。DR1充放電利得線は、DR1最大分担電力量を表すLFC割り当て容量LFCES-DR1と、周波数偏差の積分値の最大値(閾値)Δfmax(±Δfmaxがあるが、以後簡単のため±を省略する)と、を表す。
 “周波数偏差の積分値の最大値”は、系統周波数の基準周波数に対するずれ量(周波数偏差)の積分値の閾値として用いる。
 また“周波数偏差の積分値の最大値”は、DRアプリ1を実行するN個の蓄電池9の総出力LFCES-DR1で対応できる“周波数偏差の積分値の最大の振れ量”を意味する。周波数偏差の積分値が、周波数偏差の積分値の最大値(閾値)以上の値になった場合、LFCES-DR1による対応が困難になる。
 図15Aは、DR1充放電利得線の一例を示した図である。DR1充放電利得線の詳細については後述する。
 DR1充放電利得線は、周波数偏差の積分値と、蓄電池群の出力(DRアプリ1を実行するN個の蓄電池9の総出力)と、の関係を示す。
 制御部704は、DR1充放電利得線が示す周波数偏差の積分値と蓄電池群の出力との関係を満たすように、DRアプリ1を実行する各蓄電池9のDR1分担情報を生成する。DR1分担情報は、第1LFC動作制御情報の一例でもある。
 本実施形態では、制御部704は、DRアプリ1を実行する蓄電池9のSOCと、DR1充放電利得線と、に基づいて、DRアプリ1を実行する各蓄電池9のDR1分担情報(DR1分担係数K1と周波数偏差の積分値の最大値Δfmax)を生成する。制御部704は、DR1分担情報を、通信部701からDRアプリ1を実行する各機器制御装置8に送信する。DR1分担係数K1は、DRアプリ1を実行する蓄電池9の分担割合が高くなるほど大きな値となる。
 把握部703は、以下のようにDR2分担電力量を把握する。
 把握部703は、データベース702内の蓄電池分配率曲線を用いて、蓄電池群の充放電可能容量(調整可能総容量PES)を導出する。ここで用いる蓄電池分配率曲線は、DR1分担電力量を導出する際に用いた蓄電池分配率曲線と必ずしも同じでなくてよい。
 ここで、N個の蓄電池9の一部のSOCしか受信できなかった場合、把握部703は、受信できなかった蓄電池9のSOCを以下のように決定する。把握部703は、受信できなかった蓄電池9のSOCとして、その蓄電池9について過去に受信したSOCの中で最新のSOCの値を用いる。
 なお、把握部703は、制御部704から、SOCを受信できなかった蓄電池9の“前回の分担電力量情報”を取得し、“前回の分担電力量情報”と前回の配信時からの経過時間から、SOCを受信できなかった蓄電池9のSOCを推定してもよい。
 また、N個の蓄電池9の一部のSOCしか受信できなかった場合、把握部703は、N個の蓄電池9にて構成される蓄電池群の代わりに、該一部の蓄電池9にて構成される蓄電池群(以下、「一部蓄電池群」と称す)を用いてもよい。この場合、把握部703は、SOCを受信できた一部蓄電池群の充放電可能容量を、該一部の蓄電池9のSOCから決定する。以下、N個の蓄電池9の一部のSOCしか受信できなかった場合の説明を、例えば、蓄電池9の数「N個」を、その一部の蓄電池9の数「N-b」に読み替えることで行う。
 把握部703は、調整可能総容量PESを通信部701から給電指令部2に送信する。その後、把握部703は、調整可能総容量PESが反映されたDR2分担電力量を表すDR2分担電力量情報を、給電指令部2から通信部701を介して受信する。把握部703は、DR2分担電力量情報を用いてDR2分担電力量を把握する。
 本実施形態では、DR2分担電力量情報として、DR2充放電利得線を用いる。DR2充放電利得線は、DR2最大分担電力量を表すLFC割り当て容量LFCES-DR2と、指標の最大値(閾値)i1max(±i1maxがあるが、以後簡単のため±を省略する)と、を表す。
 “指標の最大値”は、指標の閾値として用いられる。
 また、“指標の最大値”は、DRアプリ2を実行するN個の蓄電池9の総出力LFCES-DR2で対応できる“指標の最大の振れ量”を意味する。指標が、指標の最大値(閾値)以上の値になった場合、LFCES-DR2による対応が困難になる。
 図15Bは、DR2充放電利得線の一例を示した図である。DR2充放電利得線の詳細については後述する。
 DR2充放電利得線は、指標と、蓄電池群の出力(DRアプリ2を実行するN個の蓄電池9の総出力)と、の関係を示す。
 制御部704は、DR2充放電利得線が示す指標と蓄電池群の出力との関係を満たすように、DRアプリ2を実行する各蓄電池9のDR2分担情報を生成する。DR2分担情報は、第2LFC動作制御情報の一例でもある。
 本実施形態では、制御部704は、DRアプリ2を実行する蓄電池9のSOCと、DR2充放電利得線と、に基づいて、DRアプリ2を実行する各蓄電池9のDR2分担情報(DR2分担係数K2と指標の最大値i1max)を生成する。制御部704は、DR2分担情報を通信部701から、DRアプリ2を実行する各機器制御装置8に送信する。DR2分担係数K2は、DRアプリ2を実行する蓄電池9の分担割合が高くなるほど大きな値となる。
 次に、給電指令部2について説明する。
 給電指令部2は、周波数計201と、潮流検出部202と、通信部203と、制御部204と、を含む。
 周波数計201は、電力系統3の周波数を検出する。
 潮流検出部202は、連系線4での潮流を検出する。
 通信部203は、電力制御装置7と通信する。
 例えば、通信部203は、電力制御装置7から調整可能総容量PESを受信する。また、通信部203は、DR1充放電利得線およびDR2充放電利得線を電力制御装置7に送信する。
 制御部204は、給電指令部2の動作を制御する。
 例えば、制御部204は、通信部203を介して電力制御装置7に種々のデマンドを送信する。
 また、制御部204は、周波数計201の検出結果と潮流検出部202の検出結果を用いて指標を生成する。指標の生成手法は、第3実施形態の変形例で説明した手法と同様である。制御部204は、指標を通信部203から電力制御装置7に送信する。電力制御装置7では、制御部704は、通信部701を介して指標を受信すると、指標を通信部701から各機器制御装置8へ送信する。
 また、制御部204は、以下のようにして、DR1充放電利得線およびDR2充放電利得線を生成する。
 まず、DR1充放電利得線(DR1分担電力量情報)の生成手法について説明する。
 制御部204は、周波数計201で検出された系統周波数を用いて、発電所の出力補正量である地域要求量(Area Requirement:AR)を計算する。制御部204は、地域要求量ARと、制御対象となる火力発電機1のLFC調整容量と、調整可能総容量PESと、を用いて、LFC容量を導出する。制御部204は、火力発電機1のLFC調整容量を不図示の火力発電機制御部から入手する、調整可能総容量PESは、通信部203から制御部204に供給される。
 制御部204は、火力発電機1に、LFC容量のうち、急な変動成分を除いた容量を割り当てる。制御部203は、蓄電池群に、残りのLFC容量LFCES-DR1(ただし、LFCES-DR1<=PES)を割り当てる。例えば、制御部204は、LFC容量のうち、周期が10秒以下の変動成分を通過させ、周期が10秒よりも長い変動成分を通過させないハイパスフィルタを用いて、LFC容量から急な変動成分(容量LFCES-DR1)を抽出する。
 もしくは、制御部204は、火力発電機1と蓄電池群とに、予め設定した比率(既定値)に従ってLFC容量を割り振る。
 制御部204は、容量LFCES-DR1をLFC割り当て容量LFCES-DR1として扱う。
 制御部204は、LFC割り当て容量LFCES-DR1と、予め定められた周波数偏差の積分値の最大値(閾値)Δfmaxと、を表すDR1充放電利得線(図15A参照)を生成する。
 制御部204は、DR1充放電利得線を、通信部202から電力制御装置7に送信する。
 次に、DR2充放電利得線(DR2分担電力量情報)の生成手法について説明する。
 DR2充放電利得線(DR2分担電力量情報)の生成手法は、DR1充放電利得線(DR1分担電力量情報)の生成手法と同様である。
 次に、動作を説明する。
 [1]機器制御装置8が使用情報を決定する動作
 図16は、機器制御装置8が使用情報を決定する動作を説明するためのフローチャートである。
 電力制御装置7内の制御部704は、給電指令部2からデマンド(電力会社のデマンド)を受信すると、そのデマンドを通信部701から機器制御装置8に送信する。
 機器制御装置8において、通信部803は、デマンドを受信すると(ステップS1101)、そのデマンドを決定部804に出力する。
 なお、各デマンドには、デマンドが要求するDRアプリの実行時間帯を示す時間帯情報が付加されている。
 決定部804は、デマンドを受け付けると、該デマンドに応じて、該デマンドにて特定されるDRアプリで使用する使用情報を決定する(ステップS1102)。
 ステップS1102において、デマンドが「第1LFC要求」である場合、決定部804は、第1LFC動作制御情報と電力系統3周波数とを使用情報として決定する。デマンドが「第2LFC要求」である場合、決定部804は、第2LFC動作制御情報と指標とを使用情報として決定する。
 決定部804は、使用情報の決定結果と、デマンド(時間帯情報付きデマンド)と、を制御部805に出力する。
 制御部805は、使用情報の決定結果とデマンドとを受け付けると、使用情報の決定結果とデマンドと保持する。
 [2]DRアプリ1(第1LFC調整処理)の実行動作
 まず、DRアプリ1の実行動作の概要を説明する。
 (2-1)電力制御装置7は、周期T1第1LFCで、蓄電池9のSOCを機器制御装置8から受け付けて収集する。周期T1第1LFCは、例えば、15分である。
 (2-2)電力制御装置7は、蓄電池9のSOCを収集するごとに、蓄電池9のSOCに基づいて調整可能総容量PESを導出する。
 ここで、電力制御装置7は、動作開始時後においては、周期T1第1LFC内に全ての蓄電池9のSOCを受信できなかった場合、受信できなかった蓄電池9のSOCとして、その蓄電池9について過去に受信したSOCのうち、最新のSOCを採用して調整可能総容量PESを導出する。
 (2-3)続いて、電力制御装置7は、周期Tmで、給電指令部2へ調整可能総容量PESを送信する。周期Tmは、周期T1第1LFC以上であり、例えば15分である。
 (2-4)給電指令部2は、調整可能総容量PESを受信するごとに、蓄電池群に対する第1LFC割り当て容量LFCES-DR1(LFCES-DR1<=PES)を計算する。
 (2-5)給電指令部2は、第1LFC割り当て容量LFCES-DR1を計算するごとに、LFC割り当て容量LFCES-DR1と周波数偏差の積分値の最大値Δfmaxとを用いてDR1充放電利得線を作成する。そして、給電指令部2は、電力制御装置7へDR1充放電利得線を送信する。
 (2-6)電力制御装置7は、給電指令部2から受信した最新のDR1充放電利得線に従ってDR1分担係数K1を計算する。
 (2-7)続いて、電力制御装置7は、周期T1第1LFCで、機器制御装置8(例えば、処理対象の機器制御装置8)へDR1分担情報(DR1分担係数K1と周波数偏差の積分値の最大値Δfmax)を送信する。
 (2-8)各機器制御装置8は、DR1分担係数K1と周波数偏差の積分値の最大値Δfmaxとに基づいて、蓄電池9の充放電動作を規定する第1ローカル充放電利得線を計算する。第1ローカル充放電利得線については後述する。
 (2-9)各機器制御装置8は、第1ローカル充放電利得線と電力系統3の周波数とを用いて、蓄電池9の充放電動作を制御する。
 次に、DRアプリ1(第1LFC調整処理)の実行動作の詳細について説明する。
 まず、電力制御装置7が、DRアプリ1を実行する蓄電池9のSOCに基づいて調整可能総容量PESを導出する動作(以下、「PES導出動作」と称す)を説明する。
 調整可能総容量PESの導出には、蓄電池9の定格出力P(n)等の情報(パワーコンディショナの出力値、蓄電池容量、使用可能なSOC範囲(例えば30%~90%の範囲等))が必要となる。これらの情報は基本的に静的な情報であるため、本実施形態では、予め電力制御装置7が各機器制御装置8からこれらの情報を入手済みであるとする。
 図17は、PES導出動作を説明するためのシーケンス図である。図17では、説明の簡略化のため、機器制御装置8の数を1としている。
 電力制御装置7の通信部701は、各機器制御装置8にSOCを要求する旨の情報要求を送信する(ステップS1201)。
 各機器制御装置8において、制御部805は、通信部803を介してSOCを要求する旨の情報要求を受信すると、検出部801に蓄電池9のSOCを検出させる(ステップS1202)。
 続いて、制御部805は、検出部801が検出したSOCをIDと共に、通信部803から電力制御装置7に送信する(ステップS1203)。以下、IDは、「1」から「N」の通し番号(n)であると仮定して説明する。
 電力制御装置7は、機器制御装置8からIDが付加されたSOC(以下、「SOC(n)」と称す)を受信すると、調整可能総容量PESを導出する(ステップS1204)。
 電力制御装置7と各機器制御装置8は、ステップS1201~S1204の動作(PES導出動作)を、周期T1第1LFCで繰り返す。なお、周期T1第1LFCは、通信ネットワークの状況や蓄電池の故障状況等の他の状況に応じて、デマンドの要求条件を満足する範囲で、変更してもよい。
 次に、ステップS1204(調整可能総容量PESの導出)について説明する。
 電力制御装置7の通信部701は、各機器制御装置8から周期T1第1LFCでSOC(n)を収集する。
 ここで、把握部703は、周期T1第1LFCの間に、全ての機器制御装置8のうちの少なくとも1台の機器制御装置8からSOC(n)を通信部701が受信できなかった場合、その受信できなかった蓄電池9のSOCとして、その蓄電池9の過去に受信したSOCのうち最新のSOCを用いる。なお、過去に受信したSOCが存在しない場合、把握部703は、受信できなかった蓄電池9のSOCとして、所定値(例えば、デフォルトのSOC)を用いてもよい。
 続いて、把握部703は、SOC(n)とデータベース702内の蓄電池分配率曲線202aおよび202bを用いて、蓄電池9ごとに、放電時の蓄電池分配率α放電(n)および充電時の蓄電池分配率α充電(n)を導出する。
 本実施形態では、例えば、蓄電池分配率曲線202a、202bとして、図14A、14Bに示したものを、DRアプリ1が必要とする実行時間に関係する情報と蓄電池9の定格出力P(n)等の情報(パワーコンディショナの出力値、蓄電池容量)に応じて変更した曲線を用いる。
 例えば、以下で述べる処理により導出される調整可能総容量PESの値が、周期T1第1LFC(今回の場合は、DRアプリ1が必要とする実行時間と等しい)の期間中は、蓄電池群が少なくとも充放電を継続できる値となる、曲線を用いる。なお、蓄電池分配率曲線は、今回説明したものに限らずデマンドおよびDRアプリに応じて適宜変更可能である。
 続いて、把握部703は、放電時の蓄電池分配率α放電(n)と、充電時の蓄電池分配率α充電(n)と、データベース702内の、総数N個の蓄電池9の各々の定格出力P(n)と、数1および数2に示した数式と、を用いてPES,放電とPES,充電とを導出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 続いて、把握部703は、PES,放電とPES,充電とのうち、値の小さい方を、調整可能総容量PESとして採用する。
 次に、電力制御装置7が給電指令部2と通信してDR1充放電利得線を把握する動作(以下、「DR1把握動作」と称す)を説明する。
 図18は、DR1把握動作を説明するためのシーケンス図である。
 給電指令部2の制御部204は、周波数計201で検出された系統周波数を用いて、地域要求量ARを計算する(ステップS1701)。
 続いて、制御部204は、不図示の火力発電機制御部から火力発電機1のLFC調整容量を収集する(ステップS1702)。
 一方、電力制御装置7の通信部701は、最新の調整可能総容量PESを、給電指令部2に送信する(ステップS1703)。
 給電指令部2の通信部203は、電力制御装置7の通信部701から送信された最新の調整可能総容量PESを受信する。通信部203は、その最新の調整可能総容量PESを制御部204に出力する。
 制御部204は、最新の調整可能総容量PESを受け付けると、地域要求量ARと、火力発電機1のLFC調整容量と、最新の調整可能総容量PESと、を用いて、LFC容量を導出する。続いて、制御部204は、火力発電機1に対して、LFC容量のうち急な変動成分を除いた容量を割り当てる。続いて、制御部204は、DRアプリ1を実行する蓄電池群に対して、残りのLFC容量LFCES-DR1(但し、LFCES-DR1<=PES)を、LFC割り当て容量LFCES-DR1として割り当てる(ステップS1704)。
 制御部204は、EDC(Economic load dispatching control)成分の受け持ち分も考慮しながら、経済性も考慮して、火力発電機1に対するLFC容量の割り当てと、LFC割り当て容量LFCES-DR1の比率を決める。
 続いて、制御部204は、LFC割り当て容量LFCES-DR1と、予め設定された周波数偏差の積分値の最大値Δfmaxと、を表すDR1充放電利得線(図15A参照)を生成する(ステップS1705)。
 図15Aに示したDR1充放電利得線は、周波数偏差の積分値Δfに対する蓄電池群(DRアプリ1を実行する蓄電池9)の充放電量を表している。DR1充放電利得線は、「LFC割り当て容量LFCES-DR1<=調整可能総容量PES」の範囲内におけるLFC割り当て容量LFCES-DR1の大小(LFCES-DR1やLFCES-DR1’)に応じて、線400Aになったり線400Bになったりと変化する。
 続いて、制御部204は、DR1充放電利得線を通信部203から電力制御装置7に送信する(ステップS1706)。
 電力制御装置7及び給電指令部2は、ステップS1701~S1706の動作(DR1把握動作)を、周期Tmで繰り返す。
 なお、電力制御装置7の把握部703は、通信部701を介してDR2充放電利得線を受信し、DR1充放電利得線のうち、最新の充放電利得線を保持する。
 次に、DR1分担情報の生成、DR1分担情報の各機器制御装置8に対する送信、各機器制御装置8がDR1分担情報に基づいて蓄電池9の動作を制御するためのローカル充放電利得線を導出する動作(以下、「DR1分担動作」と称す)を説明する。
 図19は、DR1分担動作を説明するためのシーケンス図である。図19では、説明を簡略化するため、DRアプリ1を実行する機器制御装置8の数を1としている。
 電力制御装置7の制御部704は、最新の充放電利得線で示されたLFC割り当て容量LFCES-DR1と、最新の調整可能総容量PESと、数3に示した数式と、を用いて、DR1分担係数K1を導出する(ステップS1801)。
Figure JPOXMLDOC01-appb-M000003
 続いて、制御部704は、DR1分担係数K1と、最新のDR1充放電利得線で示された周波数偏差の積分値の最大値Δfmaxと、を示すDR1分担情報を、通信部701から、DRアプリ1を実行する機器制御装置8に送信する(ステップS1802)。なお、DR1分担係数K1は、数3で特定される値に限らない。例えば、電力需給の逼迫時には、強制的に限界に近い出力とすることを示す値(例えば0.97)を、DR1分担係数K1として用いてもよい。限界に近い出力とすることを示す値は、0.97に限らず適宜変更可能である。
 ここで、制御部704は、SOCを受信していない蓄電池9に対応する機器制御装置8について、ステップS1802の処理を実行しない。
 本実施形態では、ステップS1802において以下の処理を実行する。
 制御部704は、DRアプリ1を実行する蓄電池9(SOCを受信した蓄電池9)ごとに、把握部703が導出した最新の放電時の蓄電池分配率α放電(n)および充電時の蓄電池分配率α充電(n)のうち、小さい値の方を蓄電池分配率α(n)として特定する。
 続いて、制御部704は、DRアプリ1を実行する蓄電池9(SOCを受信した蓄電池9)ごとに、蓄電池分配率α(n)と、データベース702で保持されている定格出力P(n)と、を表す動作関連情報を生成する。
 続いて、制御部704は、各動作関連情報にDR1分担情報を付加する。
 続いて、制御部704は、動作関連情報に対応する機器制御装置8に、動作関連情報が付加されたDR1分担情報を、通信部701から送信する。動作関連情報が付加されたDR1分担情報は、第1LFC動作制御情報の一例でもある。
 DRアプリ1を実行する機器制御装置8において、制御部805は、通信部803を介して動作関連情報付きDR1分担情報を受信する。
 制御部805は、動作関連情報付きDR1分担情報と、数4に示す数式と、を用いて、ローカル充放電利得係数G1(n)を導出する(ステップS1803)。
Figure JPOXMLDOC01-appb-M000004
 なお、数4の数式内の値は、動作関連情報付きDR1分担情報に示されている。
 続いて、制御部805は、ローカル充放電利得係数G1(n)と、動作関連情報付きDR1分担情報に示された周波数偏差の積分値の最大値Δfmaxと、を用いて、図20に示した第1ローカル充放電利得線800Aを導出する(ステップS1804)。
 図20に示した第1ローカル充放電利得線800Aは、周波数偏差の積分値Δfが-Δfmax≦Δf≦Δfmaxの範囲において、原点0を通り、傾きがローカル充放電利得係数G1(n)の直線となる。また、第1ローカル充放電利得線800Aは、周波数偏差の積分値ΔfがΔf<-Δfmaxの範囲において、「-K1・α(n)・P(n)」(マイナスの符号は放電を表す)の一定値となる。また、第1ローカル充放電利得線800Aは、Δfmax<Δfの範囲において、「K1・α(n)・P(n)」の一定値となる。
 電力制御装置7およびDRアプリ1を実行する各機器制御装置8は、ステップS1801~S1804の処理を周期T1第1LFCで繰り返す。
 DRアプリ1を実行する各機器制御装置8において、制御部805は、通信部803を介して動作関連情報付きDR1分担情報を受信し、動作関連情報付きDR1分担情報のうち、最新の動作関連情報付きDR1分担情報を保持する。
 次に、DRアプリ1を実行する機器制御装置8が動作関連情報付きDR1分担情報と系統周波数とに基づいて蓄電池9の充放電を制御する動作(以下、「DR1充放電制御動作」と称す)を説明する。
 なお、電力制御装置7の制御部704は、時間帯情報に示されたDRアプリ1の開始時刻になると、通信部701を介して、DRアプリ1を実行する機器制御装置8に、動作周期T2-Aを示すDR1実行間隔情報を送信する。動作周期T2-Aは、例えば1秒である。DRアプリ1を実行する機器制御装置8の制御部805は、通信部803を介してDR1実行間隔情報を受信すると、DR2実行間隔情報を保持する。
 図21は、充放電制御動作を説明するためのシーケンス図である。
 DRアプリ1を実行する機器制御装置8において、制御部805は、検出部802に系統周波数を検出させる(ステップS2001)。
 続いて、制御部805は、検出部802の検出結果から系統周波数の基準周波数(50Hz)を減算し、その減算結果を積分することで、周波数偏差の積分値Δfを算出する(ステップS2002)。
 続いて、制御部805は、周波数偏差の積分値Δf及びローカル充放電利得線に従って、DRアプリ1を実行する蓄電池9の充電量または放電量を算出する(ステップS2003)。
 ステップS2003において、周波数偏差の積分値Δfの絶対値が周波数偏差の積分値の最大値(閾値)Δfmax以下である場合、制御部805は、ローカル充放電利得係数G1(n)に周波数偏差の積分値Δfを乗算した値(G1(n)・Δf)の絶対値を、調整電力量として算出する。
 一方、周波数偏差の積分値Δfの絶対値が周波数偏差の積分値の最大値Δfmaxよりも大きい場合、制御部805は、分担係数K1と蓄電池分配率α(n)と定格出力P(n)とを互いに乗算した値(K1・α(n)・P(n))を、調整電力量として算出する。
 ここでは、図20において充電側と放電側でG1(n)の傾きが同じである点対称の例を示したが、実際には、点対称でない場合も想定される。その場合も、上述した場合と同じような考え方でG1(n)を決定する。
 続いて、制御部805は、周波数偏差の積分値Δfが正の値である場合、DRアプリ1を実行する蓄電池9に調整電力量だけ充電動作を実行させる。また、制御部805は、周波数偏差の積分値Δfが負の値である場合、DRアプリ1を実行する蓄電池9に調整電力量だけ放電動作を実行させる(ステップS2004)。
 各機器制御装置8は、ステップS2001~S2004の処理を、DR1実行間隔情報で示された周期T2-Aで繰り返す。その結果、毎回、周波数偏差の積分値の値は変化することになり、その都度、G1(n)・Δfに応じた充放電が実行される。
 このため、周波数偏差の積分値は周期T2-A(=1秒)でその都度変化するが、周期T1第1LFC(=15分)が経過するまで同じDR1分担情報を用いて、蓄電池9の充放電動作が行われる。
 したがって、DRアプリ1(第1LFC調整処理)において、機器制御装置8は、周期T1第1LFC(=15分)でDR1分担情報を受信し、周期T1第1LFCよりも短い周期T2-Aで系統周波数を検出し、周期T2-AでDR1分担情報と系統周波数に基づいて蓄電池9の充放電動作を行う。上述したように、電力需給バランスに応じて変動する系統周波数を周期T2-Aで検出しつつ、取得に時間および双方向通信処理を要するDR1分担情報を系統周波数の検出周期よりも長い周期で取得するため、第1LFC調整処理に対応することができる。
 [3]DRアプリ2(第2LFC調整処理)の実行動作
 まず、DRアプリ2の実行動作の概要を説明する。
 (3-1)電力制御装置7が、周期T1第2LFCで、蓄電池9のSOCを機器制御装置8から受け付け、蓄電池9のSOCを収集する。周期T1第2LFCは、例えば15分である。
 (3-2)電力制御装置7は、蓄電池9のSOCを収集するごとに、蓄電池9のSOCに基づいて調整可能総容量PESを導出する。
 ここで、電力制御装置7は、動作開始時後においては、周期T1第2LFC内に、全ての蓄電池9のSOCを受信できなかった場合、受信できなかった蓄電池9のSOCとして、その蓄電池9について過去に受信したSOCのうち、最新のSOCを採用して調整可能総容量PESを導出する。
 (3-3)続いて、電力制御装置7は、周期Tmで、給電指令部2へ調整可能総容量PESを送信する。周期Tmは周期T1第2LFC以上である。
 (3-4)給電指令部2は、調整可能総容量PESを受信するごとに、蓄電池群に対するLFC割り当て容量LFCES-DR2(LFCES-DR2<=PES)を計算する。
 (3-5)給電指令部2は、LFC割り当て容量LFCES-DR2を計算するごとに、周波数偏差を連系線4における潮流で補正した補正周波数偏差の積分値である指標の最大値i1maxと、LFC割り当て容量LFCES-DR2と、を用いてDR2充放電利得線を作成する。そして、給電指令部2は、電力制御装置7へDR2充放電利得線を送信する。
 (3-6)電力制御装置7は、給電指令部2から受信した最新のDR2充放電利得線に従って、DR2分担係数K2を計算する。
 (3-7)続いて、電力制御装置7は、周期T1第2LFCで、機器制御装置8(例えば、処理対象の機器制御装置8)へDR2分担情報(DR2分担係数K2と指標の最大値i1max)を送信する。
 (3-8)各機器制御装置8は、DR2分担係数K2と指標の最大値i1maxとに基づいて、蓄電池9の充放電動作を規定する第2ローカル充放電利得線を計算する。第2ローカル充放電利得線については後述する。
 (3-9)各機器制御装置8は、第2ローカル充放電利得線と、受信した指標と、を用いて、蓄電池9の充放電動作を制御する。
 次に、DRアプリ2(第2LFC調整処理)の実行動作の詳細を説明する。
 まず、電力制御装置7が、DRアプリ2を実行する蓄電池9のSOCに基づいて調整可能総容量PESを導出する動作を説明する。
 このPES導出動作の説明は、上述したDRアプリ1におけるPES導出動作の説明を、以下のように読み替えればよい。
 「周期T1第1LFC」を「周期T1第2LFC」に読み替える。
 「DRアプリ1」を「DRアプリ2」に読み替える。
 次に、電力制御装置7が給電指令部2と通信してDR3充放電利得線を把握する動作(以下、「DR3把握動作」と称す)を説明する。
 図22は、DR2把握動作を説明するためのシーケンス図である。
 給電指令部2の制御部204は、周波数計201にて検出された系統周波数と、潮流検出部202にて検出された連系線4での潮流と、を用いて、地域要求量AR-1を計算する(ステップS2101)。
 続いて、制御部205は、不図示の火力発電機制御部から火力発電機1のLFC調整容量を収集する(ステップS2102)。
 一方、電力制御装置7の通信部701は、最新の調整可能総容量PESを、給電指令部2に送信する(ステップS2103)。
 給電指令部2の通信部203は、電力制御装置7の通信部701から送信された最新の調整可能総容量PESを受信する。通信部203は、その最新の調整可能総容量PESを制御部204に出力する。
 制御部204は、最新の調整可能総容量PESを受け付けると、地域要求量AR-1と、火力発電機1のLFC調整容量と、最新の調整可能総容量PESと、を用いて、LFC容量を導出する。続いて、制御部204は、火力発電機1に対して、LFC容量のうち、急な変動成分を除いた容量を割り当てる。続いて、制御部204は、DRアプリ2を実行する蓄電池群に対して、残りのLFC容量LFCES-DR2(但し、LFCES-DR2<=PES)を、LFC割り当て容量LFCES-DR2として割り当てる(ステップS2104)。
 制御部204は、EDC成分の受け持ち分も考慮しながら、経済性も考慮して、火力発電機1に対するLFC容量の割り当てと、LFC割り当て容量LFCES-DR2の比率を決める。
 続いて、制御部204は、LFC割り当て容量LFCES-DR2と、予め設定された指標の最大値i1fmaxと、を表すDR2充放電利得線(図15B参照)を生成する(ステップS2105)。
 図15Bに示すDR2充放電利得線は、指標に対する蓄電池群(DRアプリ2を実行する蓄電池9)の充放電量を表している。DR2充放電利得線は、「LFC割り当て容量LFCES-DR2<=調整可能総容量PES」の範囲内において、LFC割り当て容量LFCES-DR2の大小(LFCES-DR2やLFCES-DR2’)に応じて、線400Cになったり線400Dになったりと変化する。
 続いて、制御部204は、DR2充放電利得線を、通信部203を介して電力制御装置7に送信する(ステップS2106)。
 電力制御装置7及び給電指令部2は、ステップS2101~S2106の動作(DR2把握動作)を、周期Tmで繰り返す。
 なお、電力制御装置7の把握部703は、通信部701を介してDR2充放電利得線を受信し、DR2充放電利得線のうち、最新のDR2充放電利得線を保持する。
 次に、DR2分担情報の生成、DR2分担情報の各機器制御装置8に対する送信、各機器制御装置8がDR2分担情報に基づいて蓄電池9の動作を制御するための第2ローカル充放電利得線を導出する動作(以下、「DR2分担動作」と称す)を説明する。
 図23は、DR2分担動作を説明するためのシーケンス図である。図23では、説明を簡略化するため、DRアプリ2を実行する機器制御装置8の数を1としている。
 電力制御装置7の制御部704は、最新のDR2充放電利得線に示されたLFC割り当て容量LFCES-DR2と、最新の調整可能総容量PESと、数5に示した数式と、を用いて、DR2分担係数K2を導出する(ステップS2201)。
Figure JPOXMLDOC01-appb-M000005
 続いて、制御部704は、DR2分担係数K2と、最新のDR2充放電利得線に示された指標の最大値i1maxと、を示すDR2分担情報を、通信部701を介してDRアプリ2を実行する各機器制御装置8に送信する(ステップS2202)。なお、DR2分担係数K2は、数5にて特定する値に限らない。例えば、電力需給の逼迫時には、強制的に限界に近い出力とすることを示す値(例えば0.97)を、DR2分担係数K2として用いてもよい。限界に近い出力を示す値は、0.97に限らず適宜変更可能である。
 ここで、制御部704は、SOCを受信していない蓄電池9に対応する機器制御装置8については、ステップS2202を実行しない。
 本実施形態では、ステップS2202において以下の処理を実行する。
 制御部704は、DRアプリ2を実行する蓄電池9ごとに、把握部703が導出した最新の放電時の蓄電池分配率α放電(n)および充電時の蓄電池分配率α充電(n)のうち、小さい方の値を蓄電池分配率α(n)として特定する。
 続いて、制御部704は、DRアプリ2を実行する蓄電池9ごとに、蓄電池分配率α(n)と、データベース702に保持されている定格出力P(n)と、を表す動作関連情報を生成する。
 続いて、制御部704は、各動作関連情報にDR2分担情報を付加する。
 続いて、制御部704は、動作関連情報に対応する機器制御装置8に、動作関連情報が付加されたDR2分担情報を、通信部701から送信する。動作関連情報が付加されたDR2分担情報は、第2LFC動作制御情報の一例でもある。
 DRアプリ2を実行する各機器制御装置8において、制御部805は、通信部803を介して動作関連情報付きDR2分担情報を受信する。
 制御部805は、動作関連情報付きDR2分担情報と、数6に示した数式と、を用いて、ローカル充放電利得係数G2(n)を導出する(ステップS2203)。
Figure JPOXMLDOC01-appb-M000006
 なお、数6の数式内の値は、動作関連情報付きDR2分担情報に示されている。
 続いて、制御部805は、ローカル充放電利得係数G2(n)と、動作関連情報付きDR2分担情報に示された指標の最大値i1maxと、を用いて、図24に示した第2ローカル充放電利得線800Bを導出する(ステップS2204)。
 図24に示した第2ローカル充放電利得線800Bは、指標が-i1max≦指標≦i1maxの範囲において、原点0を通り、傾きがローカル充放電利得係数G2(n)の直線となる。また、第2ローカル充放電利得線800Bは、指標<-i1maxの範囲において、「-K2・α(n)・P(n)」(マイナスの符号は放電を表す)の一定値となる。また、第2ローカル充放電利得線800Bは、i1max<指標の範囲において、「K2・α(n)・P(n)」の一定値となる。
 電力制御装置7およびDRアプリ2を実行する各機器制御装置8は、ステップS2201~S2204の処理を周期T1第2LFCで繰り返す。
 DRアプリ2を実行する各機器制御装置8において、制御部805は、通信部803を介して動作関連情報付きDR2分担情報を受信し、動作関連情報付きDR2分担情報のうち、最新の動作関連情報付きDR2分担情報を保持する。
 次に、DRアプリ2を実行する機器制御装置8が動作関連情報付きDR2分担情報と指標とに基づいて蓄電池9の充放電を制御する動作(以下、「DR2充放電制御動作」と称す)を説明する。
 なお、電力制御装置7の制御部704は、時間帯情報に示されたDRアプリ2の開始時刻になると、通信部701を介して、DRアプリ2を実行する機器制御装置8に、動作周期T3第2LFCを示したDR2実行間隔情報を送信する。動作周期T3第2LFCは、例えば1秒である。DRアプリ2を実行する機器制御装置8の制御部805は、通信部803を介してDR2実行間隔情報を受信すると、DR2実行間隔情報を保持する。
 図25は、充放電制御動作を説明するためのシーケンス図である。
 DRアプリ2を実行する機器制御装置8において、通信部803は、電力制御装置7が送信した指標を受信する(ステップS2401)。
 続いて、制御部805は、通信部803が受信した指標と第2ローカル充放電利得線とに従って、DRアプリ2を実行する蓄電池9の充電量または放電量を算出する(ステップS2402)。
 ステップS2402において、指標の絶対値が指標の最大値(閾値)i1max以下である場合、制御部805は、ローカル充放電利得係数G2(n)に指標を乗算した値(G2(n)・指標)の絶対値を、調整電力量として算出する。
 一方、指標の絶対値が指標の最大値i1maxよりも大きい場合、制御部805は、分担係数K2と蓄電池分配率α(n)と定格出力P(n)とを互いに乗算した値(K2・α(n)・P(n))を、調整電力量として算出する。
 ここでは、図24において充電側と放電側でG2(n)の傾きが同じである点対称な例を示したが、実際には、点対称でない場合も想定される。その場合も、上述した場合と同じような考え方でG2(n)を決定する。
 続いて、制御部805は、指標が正の値である場合、DRアプリ2を実行する蓄電池9に調整電力量だけ充電動作を実行させる。また、制御部805は、指標が負の値である場合、DRアプリ2を実行する蓄電池9に調整電力量だけ放電動作を実行させる(ステップS2403)。
 各機器制御装置8は、ステップS2401~S2403を、DR2実行間隔情報で示された周期T3第2LFCで繰り返す。その結果、毎回指標の値は変化していることになり、その都度、G2(n)・指標に応じた充放電が実行される。
 なお、本実施形態では、指標を導出する例も示したが、指標は、本実施形態で示した手法で導出したものに限らず、給電指令部により別の手法で導出した指標を用いてもよい。例えば、米国のISO(Independent System Operator)であるPJMが配信しているLFC信号等と類似の指標が考えられる。
 つまり、指標は、周期T1第2LFCよりも短い周期T3第2LFCでその都度変化するが、周期T1第2LFC(=15分)が経過するまでは、同じDR2分担情報を用いて蓄電池9の充放電動作が行われる。
 このため、DRアプリ2(第2LFC調整処理)において、機器制御装置8は、周期T1第2LFC(=15分)でDR2分担情報を受信し、周期T1第2LFCよりも短い周期T3第2LFCで指標を受信し、周期T3第2LFCでDR2分担情報と指標に基づいて蓄電池9の充放電動作を行う。上述したように、電力需給バランスに応じて変動する指標を周期T3第2LFCで受信しつつ、取得に時間および双方向通信処理を要するDR2分担情報を指標の受信周期よりも長い周期で取得するため、第2LFC調整処理についても対応することができる。
 次に、本実施形態の効果を説明する。
 本実施形態によれば、生成部705は、周期T1第1LFC期間内で蓄電池9のSOCのいずれかを受信できなかった場合、その周期T1第1LFC期間内でSOCを受信できた蓄電池9に対応する機器制御装置8について、動作関連情報付きDR1分担情報を生成する。そして、通信部701は、その周期T1第1LFC期間内でSOCを受信できた蓄電池9に対応する機器制御装置8に、対応する動作関連情報付きDR1分担情報を送信する。
 このため、例えば、周期T1第1LFC期間内に全ての蓄電池9のSOCを受信できた場合にのみ、動作関連情報付きDR1分担情報を生成する場合と比べて、動作関連情報付きDR1分担情報を生成する頻度を高くすることができる。動作関連情報付きDR1分担情報には、周期T1第1LFC期間内に受信できたSOCが反映されるため、受信できたSOCを無駄にすることなく有効に使用することが可能になる。
 また、周期T1第1LFC期間ごとに、全ての機器制御装置8に動作関連情報付きDR1分担情報を送信する場合と比べて、通信部701で実行する通信処理量を少なくすることができる。
 また、生成部705は、周期T1第2LFC期間内でいずれかの蓄電池9のSOCを受信できなかった場合、その周期T1第2LFC期間内でSOCを受信できた蓄電池9に対応する機器制御装置8について、動作関連情報付きDR2分担情報を生成する。そして、通信部701は、その周期T1第2LFC期間内でSOCを受信できた蓄電池9に対応する機器制御装置8に、対応する動作関連情報付きDR2分担情報を送信する。
 このため、例えば、周期T1第2LFC期間内に全ての蓄電池9のSOCを受信できた場合にのみ、動作関連情報付きDR2分担情報を生成する場合と比べて、動作関連情報付きDR2分担情報を生成する頻度を高くすることができる。動作関連情報付きDR2分担情報には、周期T1第2LFC期間内に受信できたSOCが反映されるため、受信できたSOCを無駄にすることなく有効に使用することが可能になる。
 また、周期T1第2LFC期間ごとに、全ての機器制御装置8に動作関連情報付きDR2分担情報を送信する場合に比べて、通信部701で実行する通信処理量を少なくすることができる。
 次に、本実施形態の変形例を説明する。
 また、生成部705は、周期T1第1LFC期間内に、DRアプリ1を実行する全ての蓄電池9のSOCを受信できた場合、そのうちの一部の蓄電池9のSOCに基づいて、該一部の蓄電池9の動作関連情報付きDR1分担情報を生成してもよい。この場合、通信部701は、該一部の蓄電池9の動作関連情報付きDR1分担情報を、該一部の蓄電池9に対応する機器制御装置8に送信する。
 この場合、通信部701が、DRアプリ1を実行する全ての蓄電池9の各々に対応する機器制御装置8に、動作関連情報付きDR1分担情報を送信する場合と比べて、通信部701で実行する通信処理量を少なくすることができる。
 また、生成部705は、周期T1第2LFC期間内に、DRアプリ2を実行する全ての蓄電池9のSOCを受信できた場合、そのうちの一部の蓄電池9のSOCに基づいて、該一部の蓄電池9の動作関連情報付きDR2分担情報を生成してもよい。この場合、通信部701は、該一部の蓄電池9の動作関連情報付きDR2分担情報を、該一部の蓄電池9に対応する機器制御装置8に送信する。
 この場合、通信部701が、DRアプリ2を実行する全ての蓄電池9の各々に対応する機器制御装置8に、動作関連情報付きDR2分担情報を送信する場合と比べて、通信部701で実行する通信処理量を少なくすることができる。
 図26は、第4実施形態、第4実施形態の上記変形例および比較例を示した図である。図26(a)、図26(b)、図26(c)は、比較例、第4実施形態、第4実施形態の上記変形例に対応する。
 なお、図26は、蓄電池9のSOCの送信、および、動作関連情報付きDR1分担情報の送信に関する部分を示している。以下では、「動作関連情報付きDR1分担情報」を「動作制御情報」と称す。
 図26では、機器制御装置8の数を「4」とし、4台の機器制御装置8を機器制御装置81~84で示し、周期T1第1LFC間隔のタイミング500-1~500-4における電力制御装置7の動作を示している。また、説明を簡略化するため、比較例の構成においても、第4実施形態、第4実施形態の上記変形例と同様の符号を付与している。
 まず、図26(a)に示した比較例について説明する。
 機器制御装置81~84は、それぞれ、周期T1第1LFC(例えば15分)で、対応する蓄電池9のSOC81b~84bを電力制御装置7に送信する。
 電力制御装置7は、周期T1第1LFCの間に、全ての機器制御装置81~84から蓄電池9のSOCを受信した場合、機器制御装置81~84に、それぞれ、蓄電池9のSOCに応じた動作制御情報81a~84aを送信する。電力制御装置7は、周期T1第1LFCで、動作制御情報の送信処理を実行する。
 機器制御装置81~84は、それぞれ、周期T1第1LFCで電力制御装置7から受信した動作制御情報81a~84aと、周期T2-A(例えは1秒)で取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。
 例えば、期間505-1では、以下のような動作が実行される。
 機器制御装置81~84は、それぞれ、対応する蓄電池9のSOC81b-1~84b-1を電力制御装置7に送信する。
 電力制御装置7は、機器制御装置81~84から蓄電池9のSOC81b-1~84b-1を受信し、機器制御装置81~84に蓄電池9のSOCに応じた動作制御情報81a-2~84a-2を送信する。
 期間505-1に続く期間505-2において、機器制御装置81~84は、動作制御情報81a-2~84a-2と、周期T2-Aで取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。
 しかしながら、この比較例では、電力制御装置7は、周期T1第1LFCの間に、機器制御装置81~84のうち、少なくともいずれか1つから蓄電池9のSOCを受信できない場合、動作制御信号の生成処理および配信処理を実行しない。
 よって、機器制御装置81~84のうち、少なくともいずれか1つから蓄電池9のSOCを受信できない状況が連続して発生すると、いずれの動作制御情報も更新されなくなる。このため、精度のよい電力需給調整を実行できなくなる問題が生じる。
 一方、第4実施形態(図26(b)参照)において、電力制御装置7は、周期T1第1LFCの間に蓄電池9のSOCのいずれかを受信できないと、その周期T1第1LFC内でSOCを受信できた蓄電池9に対応する機器制御装置8について、動作制御情報を生成して送信する。
 例えば、期間505-1では、以下のような動作が実行される。
 機器制御装置81は、対応する蓄電池9のSOC81b-1を電力制御装置7に送信する。また、機器制御装置82は、対応する蓄電池9のSOC82b-1とSOC82b-2を電力制御装置7に送信する。
 電力制御装置7は、機器制御装置81から蓄電池9のSOC81b-1を受信し、機器制御装置82から蓄電池9のSOC82b-1とSOC82b-2を受信する。そして、電力制御装置7は、機器制御装置81~82に、それぞれの蓄電池9のSOC(最新のSOC)に応じた動作制御情報81a-2~82a-2を送信する。このとき、電力制御装置7は、蓄電池のSOCを受信していない機器制御装置83および84には、動作制御情報を送信しない。
 期間505-1に続く期間505-2において、機器制御装置81~82は、動作制御情報81a-2、82a-2と、周期T2-Aで取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。一方、機器制御装置83~84は、期間505-2において、期間505-1よりも前に受信した動作制御情報の中で最新の動作制御情報(図26(b)に示す例では動作制御情報83a-1、84a-1)と、周期T2-Aで取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。
 このため、第4実施形態によれば、機器制御装置81~84のうち、少なくともいずれか1つから蓄電池9のSOCを受信できない状況が連続して発生しても、少なくともいずれの動作制御情報は更新される。このため、比較例と比べて、精度のよい電力需給調整を実行することが可能になる。
 また、周期T1第1LFCで、管理下にある全ての機器制御装置81~84の各々に必ず動作制御情報を送信する場合と比べて、動作制御情報の送信に要する処理量を少なくすることができる。
 また、図26(a)に示した比較例では、機器制御装置8の数が多くなると、電力制御装置7と機器制御装置8との通信処理量が多くなるという問題が生じる。
 一方、第4実施形態の変形例(図26(c)参照)では、周期T1第1LFCの間に、全ての蓄電池9のSOCを受信できた場合、電力制御装置7は、そのうちの一部の蓄電池9のSOCに基づいて、該一部の蓄電池9に対応する機器制御装置8について、動作制御情報を生成して送信する。
 例えば、期間505-1では、以下のような動作が実行される。
 機器制御装置81~84は、それぞれ対応する蓄電池9のSOC81b-1~84b-1を電力制御装置7に送信する。
 電力制御装置7は、機器制御装置81~84のうち、機器制御装置82~84に、蓄電池9のSOC82b-1~84b-1に応じた動作制御情報82a-2~84a-2を送信する。このとき、電力制御装置7は、機器制御装置81には動作制御情報を送信しない。
 期間505-1に続く期間505-2において、機器制御装置82~84は、動作制御情報82a-2~84a-2と、周期T2-Aで取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。一方、機器制御装置81は、期間505-2において、期間505-1よりも前に受信した動作制御情報の中で最新の動作制御情報(図26(c)では動作制御情報83a-1)と、周期T2-Aで取得した系統周波数(周波数偏差の積分値)と、に基づいて、周期T2-Aで、対応する蓄電池9の充放電を制御する。
 このため、第4実施形態の変形例によれば、機器制御装置8の数が多くなっても、比較例と比べて、電力制御装置7と機器制御装置8との通信処理量を少なくすることができる。
 なお、第4実施形態の変形例では、電力制御装置7は、例えば図26(c)に示したように、動作制御情報が送信されない機器制御装置8を周期T1第1LFCごとに切り替える。このため、個々の動作制御情報の更新期間を平均化することが可能になる。
 また、他の変形例としては、DRアプリ1とDRアプリ2のいずれかのみを実行する構成を用いてもよい。なお、DRアプリ2を実行し、DRアプリ1を実行しない場合、検出部801は省略してもよい。
 電力需給調整処理は、LFCに限らず適宜変更可能である。例えば、電力需給調整処理として、電力のピークカットを実行するピークカット処理やGF(Governor Free:ガバナフリー)調整処理を用いてもよい。例えば、GF調整処理を採用する場合、上述した「指標」や「周波数偏差の積分値」の代わりに「周波数偏差」を用いればよい。
 また、蓄電池9(需要家側)から電力系統3に対する放電(逆潮流)が禁止されている場合、制御部805は、蓄電池9の放電電力を需要家の負荷10の電力消費量の範囲内で放電させる。負荷10が蓄電池9の放電電力を消費することで、電力系統3に対する電力需要が減少する。
 蓄電池9(需要家側)から電力系統3に対する放電(逆潮流)が禁止されていない場合、制御部805は、蓄電池9の放電電力を電力系統3へ供給してもよい。
 上記実施形態において、制御装置A、B、C、機器制御装置D1、8、電力制御装置7は、それぞれコンピュータで実現してもよい。この場合、コンピュータは、コンピュータで読み取り可能な記録媒体に記録されたプログラムを読込み実行して、制御装置A、B、C、機器制御装置D1、8、電力制御装置7のいずれかの機能を実行する。記録媒体は、例えば、CD-ROM(Compact Disk Read Only Memory)である。記録媒体は、CD-ROMに限らず適宜変更可能である。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 また、本願発明について実施形態を参照して説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2015年 3月30日に出願された特願2015-068856号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 A、B、C  制御装置
 A1、B1、C1  生成部
 A2  送信部
 C2  通信部
 D  電力需給調整装置
 D1  機器制御装置
 D1a  通信部
 D1b  検出部
 D1c  制御部
 R1  電力系統
 R2  蓄電池
 R3  連系線
 R4  他の電力系統
 1000  電力制御システム
 1  火力発電所
 2  給電指令部
 201  周波数計
 202  潮流検出部
 203  通信部
 204  制御部
 3  電力系統
 4  連系線
 5  配電用変圧器
 6  電力線
 7  電力制御装置
 701  通信部
 702  データベース
 703  把握部
 704  制御部
 705  生成部
 8  機器制御装置
 801、802  検出部
 803  通信部
 804  決定部
 805  制御部
 9  蓄電池
 10  負荷
 111  再生可能電源(太陽光発電機)
 112  再生可能電源(風力発電機)

Claims (24)

  1.  複数の電力需給調整装置を制御する制御装置において、
     前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成部と、
     前記動作制御情報を前記一部の電力需給調整装置に送信する送信部とを備える制御装置。
  2.  前記生成部は、前記所定期間内に受信した前記一部の前記電力需給調整装置の状態情報に基づいて、当該一部の電力需給調整装置の動作制御情報を生成する請求項1に記載の制御装置。
  3.  前記生成部は、前記所定期間内に前記複数の電力需給調整装置の状態情報を受信しなかった場合、前記所定期間内に受信した一部の前記電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する請求項2に記載の制御装置。
  4.  前記生成部は、前記所定期間の間隔で前記動作制御情報を生成する動作を繰り返し実行する請求項1から3のいずれか一項に記載の制御装置。
  5.  前記生成部は、受信した前記複数の電力需給調整装置の状態情報のうち前記一部の電力需給調整装置の状態情報に基づいて前記動作制御情報を生成する、請求項1から4のいずれか一項に記載の制御装置。
  6.  前記生成部は、前記動作を所定回数実行すると、前記一部の電力需給調整装置とは異なる電力需給調整装置の状態情報に基づいて当該異なる電力需給調整装置の動作制御情報を、前記一部の電力需給調整装置の動作制御情報の代わりに生成する、請求項5に記載の制御装置。
  7.  前記生成部は、前記動作を所定回数実行すると、前記一部の電力需給調整装置として選択されていない電力需給調整装置を、前記一部の電力需給調整装置として選択する、請求項5または6に記載の制御装置。
  8.  前記生成部は、前記電力需給調整装置に関する固有識別番号に基づいて、前記一部の電力需給調整装置を選択する、請求項5から7のいずれか一項に記載の制御装置。
  9.  前記生成部は、前記複数の電力需給調整装置のうち前記一部の電力需給調整装置とは異なる電力需給調整装置から前記所定期間よりも前に受信した前記状態情報と、前記所定期間内に受信した前記状態情報と、に基づいて、前記一部の電力需給調整装置の前記動作制御情報を生成する、請求項1から8のいずれか一項に記載の制御装置。
  10.  前記一部の電力需給調整装置の動作制御情報は、前記一部の電力需給調整装置の動作と、前記制御装置が受け持つ電力調整量に関する調整量情報と、の関係を特定する情報である、請求項1から9のいずれか1項に記載の制御装置。
  11.  前記生成部は、前記一部の電力需給調整装置における前記調整量情報の入手周期よりも長い周期で、前記動作制御情報を生成する請求項10に記載の制御装置。
  12.  前記送信部は、前記生成部が前記動作制御情報を生成するごとに、前記動作制御情報を前記一部の電力需給調整装置に送信する、請求項1から11のいずれか一項に記載の制御装置。
  13.  前記生成部は、動作開始時に前記複数の需給制御装置の状態情報に基づいて動作制御情報を生成し、
     動作開始時後の前記所定期間内に受信した一部の前記電力需給調整装置の状態情報に基づいて、当該一部の電力需給調整装置の動作制御情報を生成する請求項1から12のいずれか一項に記載の制御装置。
  14.  電力系統に接続された需給調整装置の動作を制御する機器制御装置であって、
     前記需給調整装置の状態を検出する検出手段と、
     前記検出手段の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信する通信手段と、
     保持している動作制御情報を前記通信手段にて受信された動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する制御手段と、を含む機器制御装置。
  15.  双方向通信または片方向通信によって送信された調節電力量に関する指標を受信する受信手段を備え、
     前記制御手段は、置き換え後の前記動作制御情報と前記指標とに基づいて前記需給調整装置の動作を制御する請求項8に記載の機器制御装置。
  16.  電力系統の状態を検出する検出部を備え、
     前記制御手段は、置き換え後の前記動作制御情報と前記電力系統の状態とに基づいて前記需給調整装置の動作を制御する請求項8に記載の機器制御装置。
  17.  所定の期間において前記動作制御情報を受信しなかった場合、前記制御手段は、前記保持している動作制御情報と前記指標とに基づいて、前記需給調整装置の動作を制御する請求項9に記載の機器制御装置。
  18.  前記通信手段は、前記動作制御情報を受信する間隔より短い間隔で前記指標を受信し、所定の間隔ごとに前記指標と前記動作制御情報とを受信する請求項9に記載の機器制御装置。
  19.  所定の期間において前記動作制御情報を受信しなかった場合、前記制御手段は、前記保持している動作制御情報と前記電力系統の状態とに基づいて前記需給調整装置の動作を制御する請求項10に記載の機器制御装置。
  20.  電力系統に接続された電力需給調整装置の動作を制御する第1制御装置と、前記第1制御装置と通信する第2制御装置と、を含み、
     前記第1制御装置は、
     前記電力需給調整装置に関する状態を検出する検出部と、
     前記検出部で検出された前記電力需給調整装置に関する状態を示す状態情報を、前記第2制御装置に送信し、前記第2制御装置から前記電力需給調整装置の動作を制御する動作制御情報を受信する通信部と、
     保持している動作制御情報を前記通信部にて受信された動作制御情報と置き換え、前記動作制御情報に基づいて、前記電力需給調整装置の動作を制御する制御部と、を含み、
     前記第2制御装置は、
     複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成部と、
     前記動作制御情報を前記一部の電力需給調整装置に送信する送信部と、を含む制御システム。
  21.  前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成し、
     前記動作制御情報を前記一部の電力需給調整装置に送信する制御方法。
  22.  電力系統に接続された需給調整装置の状態を検出し、
     前記需給調整装置の状態の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信し、
     保持している動作制御情報を受信した動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する制御方法。
  23.  コンピュータに、
     前記複数の電力需給調整装置の一部から受信した前記一部の電力需給調整装置の状態情報に基づいて、前記一部の電力需給調整装置の動作制御情報を生成する生成手順と、
     前記動作制御情報を前記一部の電力需給調整装置に送信する送信手順と、を実行させるためのプログラム。
  24.  コンピュータに、
     電力系統に接続された需給調整装置の状態を検出する検出手順と、
     前記需給調整装置の状態の検出結果を外部装置に送信し、当該外部装置から前記需給調整装置の動作を制御する動作制御情報を受信する通信手順と、
     保持している動作制御情報を受信した動作制御情報と置き換え、置き換え後の前記動作制御情報に基づいて、前記需給調整装置の動作を制御する制御手順と、を実行させるためのプログラム。
PCT/JP2016/060018 2015-03-30 2016-03-29 制御装置、機器制御装置、制御システム、制御方法およびプログラム WO2016158900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/562,701 US20180062389A1 (en) 2015-03-30 2016-03-29 Control device, apparatus control device, control system, control method, and program
JP2017509998A JPWO2016158900A1 (ja) 2015-03-30 2016-03-29 制御装置、機器制御装置、制御システム、制御方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-068856 2015-03-30
JP2015068856 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158900A1 true WO2016158900A1 (ja) 2016-10-06

Family

ID=57005110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060018 WO2016158900A1 (ja) 2015-03-30 2016-03-29 制御装置、機器制御装置、制御システム、制御方法およびプログラム

Country Status (3)

Country Link
US (1) US20180062389A1 (ja)
JP (1) JPWO2016158900A1 (ja)
WO (1) WO2016158900A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131229A1 (ja) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム
JP2019201453A (ja) * 2018-05-14 2019-11-21 東京電力ホールディングス株式会社 電力供給システムおよび電力管理方法
WO2023228749A1 (ja) * 2022-05-26 2023-11-30 株式会社日立製作所 電力調整装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074629A1 (fr) * 2017-12-05 2019-06-07 Orange Procede de gestion de la consommation electrique d'un dispositif electronique.
CN114303295A (zh) * 2019-08-30 2022-04-08 维斯塔斯风力系统集团公司 来自发电厂的利用电力存储单元的频率支持

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025179A (ja) * 1999-07-07 2001-01-26 Sanyo Electric Co Ltd 電力制御装置
JP2006353079A (ja) * 2005-05-17 2006-12-28 Tokyo Institute Of Technology 通信回線を利用した電力系統安定化システム
WO2013031394A1 (ja) * 2011-09-02 2013-03-07 日本電気株式会社 電池制御システム、電池制御装置、電池制御方法、および記録媒体
WO2014049670A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 蓄電池制御装置、蓄電池管理システムおよび蓄電システム
JP5633871B1 (ja) * 2013-02-08 2014-12-03 日本電気株式会社 電池制御装置、電池制御支援装置、電池制御システム、電池制御方法、電池制御支援方法、および記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025179A (ja) * 1999-07-07 2001-01-26 Sanyo Electric Co Ltd 電力制御装置
JP2006353079A (ja) * 2005-05-17 2006-12-28 Tokyo Institute Of Technology 通信回線を利用した電力系統安定化システム
WO2013031394A1 (ja) * 2011-09-02 2013-03-07 日本電気株式会社 電池制御システム、電池制御装置、電池制御方法、および記録媒体
WO2014049670A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 蓄電池制御装置、蓄電池管理システムおよび蓄電システム
JP5633871B1 (ja) * 2013-02-08 2014-12-03 日本電気株式会社 電池制御装置、電池制御支援装置、電池制御システム、電池制御方法、電池制御支援方法、および記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131229A1 (ja) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム
JP2019118203A (ja) * 2017-12-27 2019-07-18 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム
JP7117546B2 (ja) 2017-12-27 2022-08-15 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法
JP2019201453A (ja) * 2018-05-14 2019-11-21 東京電力ホールディングス株式会社 電力供給システムおよび電力管理方法
WO2023228749A1 (ja) * 2022-05-26 2023-11-30 株式会社日立製作所 電力調整装置

Also Published As

Publication number Publication date
JPWO2016158900A1 (ja) 2018-01-25
US20180062389A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2016158899A1 (ja) 制御装置、機器制御装置、制御システム、制御方法およびプログラム
WO2016158900A1 (ja) 制御装置、機器制御装置、制御システム、制御方法およびプログラム
EP2824789B1 (en) Frequency control method
JP6544356B2 (ja) 制御装置、蓄電装置、制御支援装置、制御方法、制御支援方法および記録媒体
WO2016063739A1 (ja) 制御装置、蓄電装置、制御方法および記録媒体
JP5856666B2 (ja) 電力需給制御装置及び電力需給制御方法
JP6564264B2 (ja) 電力管理システム及び電力管理方法
JP6298465B2 (ja) 電力管理装置、電力管理システム、サーバ、電力管理方法、プログラム
US8571720B2 (en) Supply-demand balance controller
JP6097592B2 (ja) 地域内電力需給制御システム
EP2985857A1 (en) Storage battery management system and storage battery management method
JP6332276B2 (ja) 電力需給調整装置、電力システム、および電力需給調整方法
JP2013240154A (ja) 電力需給調整装置及びその方法
WO2016017424A1 (ja) 制御装置、機器制御装置、通知方法および記録媒体
JPWO2017149618A1 (ja) 制御装置、発電制御装置、制御方法、システム、及び、プログラム
JP5917292B2 (ja) 電力管理装置、電力管理システム、及び電力管理方法
JP7117546B2 (ja) 電力制御装置、電力制御方法
JP6010682B2 (ja) 電力需給制御装置及び電力需給制御方法
JP2020048370A (ja) 電力管理方法および電力管理システム
JP2015186361A (ja) 電力調整制御装置及び電力調整制御方法
JP6008988B2 (ja) 電力需要調整システムおよび電力需要調整方法
WO2016043243A1 (ja) 電力管理システム及び電力管理方法
JP6827205B2 (ja) 群管理システム、電力制御装置、蓄電システム
JP7003509B2 (ja) 処理装置、制御装置、pcs、処理方法、制御方法及びプログラム
JP2015095922A (ja) エネルギー管理装置およびエネルギー管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509998

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772781

Country of ref document: EP

Kind code of ref document: A1