WO2016158597A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2016158597A1
WO2016158597A1 PCT/JP2016/059108 JP2016059108W WO2016158597A1 WO 2016158597 A1 WO2016158597 A1 WO 2016158597A1 JP 2016059108 W JP2016059108 W JP 2016059108W WO 2016158597 A1 WO2016158597 A1 WO 2016158597A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
metal
layer
guide plate
Prior art date
Application number
PCT/JP2016/059108
Other languages
English (en)
French (fr)
Inventor
知浩 福浦
知典 宮本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177030181A priority Critical patent/KR20170130496A/ko
Priority to CN201680018992.8A priority patent/CN107407751A/zh
Publication of WO2016158597A1 publication Critical patent/WO2016158597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device including a metal-based particle assembly layer composed of metal-based particles having a specific shape.
  • the light emitting element is classified into, for example, an organic electroluminescence (EL) element and an inorganic EL element depending on the type of the light emitting material contained therein.
  • EL organic electroluminescence
  • QD quantum dot
  • the QD light emitting device has the following problems. (1) At present, QD has low light absorption efficiency, and therefore, light emission is weak. Therefore, in order to obtain sufficient emission intensity as a display or the like, it is necessary to use a large amount of expensive QD or to increase the emission intensity of an excitation light source such as a blue light source. (2) At present, QD has low heat resistance. Therefore, when the emission intensity of the excitation light source is increased to secure the emission intensity of the display or the like as described above, the QD is likely to be thermally deteriorated by a large amount of heat emitted from the excitation light source.
  • Patent Document 1 proposes a QD light emitting device using a predetermined metal-based particle assembly layer as a light emission enhancing device.
  • the metal-based particle assembly layer exhibiting strong plasmon resonance is included as the light emission enhancing element, the light emission intensity can be greatly improved when applied to, for example, a display. it can. However, there is still room for improvement in the color reproducibility of the applied display.
  • An object of the present invention is to provide a light emitting element capable of exhibiting high light emission efficiency and color reproducibility when applied to a display or the like even when a light emitting material having a relatively low light absorption efficiency is used.
  • Another object of the present invention is to provide a display (image display device) and an illumination device using the light emitting element.
  • the present invention provides a light emitting element, a display, and a lighting device described below.
  • An excitation light source that emits primary light, a light emitting layer that absorbs the primary light and emits secondary light, and a metal-based particle assembly layer,
  • the metal-based particle assembly layer is formed by two-dimensionally arranging 30 or more metal-based particles apart from each other.
  • the average particle diameter of the metal-based particles is in the range of 200 to 1600 nm, and the average height is Within the range of 55 to 500 nm, the aspect ratio defined by the ratio of the average particle diameter to the average height is within the range of 1 to 8, and the average distance between adjacent metal particles is within the range of 1 to 150 nm.
  • a light-emitting element that emits mixed light of a part of the primary light and at least a part of the secondary light.
  • a display comprising the light emitting device according to any one of [1] to [11].
  • An illumination device including the light emitting element according to any one of [1] to [11].
  • a light emitting element capable of exhibiting high light emission efficiency and color reproducibility when applied to a display, and the like are used.
  • a display (image display device) and a lighting device can be provided.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the light emitting element which concerns on this invention.
  • the light emitting element shown by FIG. 1 it is a figure which shows typically the advancing direction of the primary light which injected from the side surface of the light-guide plate.
  • FIG. 1 It is a schematic sectional drawing which shows the laminated body which contains a board
  • FIG. 2 is an AFM image of a metal-based particle assembly layer in Production Example 1.
  • 3 is an absorption spectrum of metal-based particle assembly layers in Production Example 1 and Comparative Production Examples 1 and 2.
  • 3 is a schematic cross-sectional view showing a structure of a light emitting device of Example 1.
  • FIG. 6 is a schematic cross-sectional view showing the structure of a light-emitting element of Comparative Example 1.
  • FIG. It is a schematic sectional drawing which shows the structure of the light emitting element of a background. It is a schematic diagram which shows the measurement system of the emission spectrum of Example 1, the comparative example 1, and a background light emitting element. It is a figure which shows the emission spectrum of Example 1, the comparative example 1, and a background light emitting element.
  • FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to this embodiment.
  • the light emitting element 10 shown in FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to this embodiment.
  • the light emitting element 10 shown in FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to this embodiment.
  • the 1 includes an excitation light source 40 that emits primary light F (edge light type); a light guide plate 50 that is disposed on the side of the excitation light source 40; A light emitting layer 30 that is disposed on the opposite side of the light emitting side and absorbs the primary light F and emits secondary light S; a metal-based particle assembly layer 20 disposed on the back side of the light emitting layer 30;
  • the light deflecting member 60 with a reflecting function is disposed on the front side of the light 50 (the light emitting side of the light emitting element 10).
  • the light deflecting member 60 with a reflecting function, the light guide plate 50, the light emitting layer 30, and the metal-based particle assembly layer 20 are arranged in this order.
  • the light deflecting member 60 with a reflecting function is a light extraction surface, and the extraction light L is emitted.
  • the primary light F incident on the side surface of the light guide plate 50 from the excitation light source 40 in the light emitting element 10 is converted into a surface light source in the light guide plate 50.
  • the primary light F converted into a surface light source by the light guide plate 50 includes two main surfaces of the light guide plate 50, that is, a first main surface 50a on the front side (light emitting side of the light emitting element 10) and a second main surface on the back side.
  • the light can be emitted from any of 50b.
  • the primary light F1 emitted from the first main surface 50a reaches the light deflecting member 60 with a reflecting function, and a part thereof is reflected by the light deflecting member 60 with a reflecting function (F1-1 in FIG. 2).
  • the remaining portion is emitted from the light emitting element 10 as a part of the extracted light L (F1-2 in FIG. 2).
  • At least a part of the reflected primary light F ⁇ b> 1-1 reaches the light emitting layer 30.
  • the light emitting layer 30 that has absorbed the primary light F1-1 emits the secondary light S.
  • the absorption efficiency of the primary light F ⁇ b> 1-1 of the light emitting layer 30 and the light emission of the light emitting layer 30 are enhanced by the metal-based particle assembly layer 20 disposed in the vicinity of the light emitting layer 30.
  • the metal-based particle assembly layer 20 also has a function as a reflector, and reflects light between the metal-based particle assembly layer 20 and the light deflecting member 60 with a reflection function, and a reflection function associated therewith. The emission of the extracted light from the attached light deflecting member 60 side, the emission of the secondary light S from the light emitting layer 30, and the absorption efficiency enhancement and emission enhancement of the light emitting layer 30 by the metal-based particle assembly layer 20 are repeated.
  • the primary light F ⁇ b> 2 emitted from the second main surface 50 b of the light guide plate 50 reaches the light emitting layer 30.
  • the light emitting layer 30 that has absorbed the primary light F2 emits the secondary light S.
  • the absorption efficiency of the primary light F2 is enhanced and the light emission of the light emitting layer 30 is enhanced.
  • the secondary light S is emitted from the layer 30, and the absorption efficiency enhancement and emission enhancement of the light emitting layer 30 by the metal-based particle assembly layer 20 are repeated.
  • the provision of the metal-based particle assembly layer 20 can enhance the absorption efficiency of the primary light by the light emitting layer 30 and can emit light from the light emitting layer 30. Since it can be enhanced, the light emission efficiency of the light emitting element 10 can be improved.
  • the extracted light L is a mixed light of a part of the primary light F and at least a part of the secondary light S, only the secondary light S is extracted. Compared to the case, the color reproducibility is excellent.
  • the excitation light source 40 is capable of emitting primary light F that can be emitted by the light emitting material contained in the light emitting layer 30 to emit secondary light S.
  • the excitation light source 40 includes an excitation light source that can emit ultraviolet light, violet light, blue light, or a mixture of two or more thereof.
  • An excitation light source that can emit primary light F including blue light is preferable.
  • the light guide plate 50 is an optical member used to convert the excitation light source 40 into a surface light source, and a conventionally known one can be used.
  • the light guide plate 50 is a member used as necessary, and may be omitted.
  • the light emitting device according to the present invention preferably includes the light guide plate 50.
  • the excitation light source 40 is converted into a surface light source, and the primary light F can be incident on the light emitting layer 30 having a certain area and spreading two-dimensionally in a planar shape (preferably, the entire surface of the light emitting layer 30).
  • a surface-emitting light-emitting element that emits extracted light L composed of mixed light of primary light F and secondary light S in a planar shape can be obtained.
  • the integrated intensity I2 of the primary light F2 emitted from the second main surface 50b (the main surface on the light emitting layer 30 side) of the light guide plate 50 has the first main surface 50a (the light emitting layer). It is preferable that the primary intensity F1 of the primary light F1 emitted from the main surface on the opposite side of 30 is equal to or higher than the integrated intensity I1. According to the light emitting element 10 satisfying the integrated intensity I2 ⁇ I1, the amount of the primary light F2 incident on the light emitting layer 30 is increased, and accordingly, the light emission amount of the secondary light S and the metal-based particle aggregates are increased. Since the absorption efficiency enhancement and emission enhancement of the light emitting layer 30 by the body layer 20 can be further increased, it is easy to obtain the extracted light L excellent in hue balance (for example, RGB balance in white light).
  • hue balance for example, RGB balance in white light
  • the integrated intensity of the primary light here means an integrated value over the wavelength range of 300 nm to 800 nm of the emission spectrum of the primary light.
  • the integrated intensity I1 is measured using the measurement system shown in FIG. 5 with respect to the center of gravity of the first major surface 50a.
  • a set including only the excitation light source 40 and the light guide plate 50 shown in FIG. Specifically, first, referring to FIG. 5, light emission is performed by driving the light emitting element with a current value X at a constant current.
  • An objective lens 80 (5 times) and a spectroscopic measuring instrument 90 (“MCPD-3000” manufactured by Otsuka Electronics Co., Ltd.) are arranged in this order immediately above the center of gravity of the first main surface 50a, and with respect to the first main surface 50a.
  • the integrated intensity I1 can be obtained by collecting the light emitted from the light emitting element emitting in the vertical direction with the objective lens 80 and then introducing the light into the spectrometer 90 and measuring the emission spectrum of the emitted light.
  • the integrated intensity I2 is measured using the measurement system shown in FIG. 5 with respect to the center of gravity of the second main surface 50b.
  • the light emitting element is caused to emit light by being driven with a constant current at the same current value X as that of measurement of the integrated intensity I1.
  • An objective lens 80 (5 times) and a spectroscopic measuring instrument 90 ("MCPD-3000" manufactured by Otsuka Electronics Co., Ltd.) are arranged in this order immediately above the center of gravity of the second main surface 50b, and with respect to the second main surface 50b.
  • the integrated intensity I2 can be obtained by collecting the light emitted from the light emitting element emitting in the vertical direction with the objective lens 80 and then introducing the light into the spectrometer 90 and measuring the emission spectrum of the emitted light.
  • the balance between the integrated intensity I1 and the integrated intensity I2 mainly depends on the configuration of the light guide plate 50.
  • the integrated intensity I2 ⁇ I1. Can be obtained.
  • the hue of the extracted light L is further considered in consideration of the reflected light from the light deflecting member 60 with a reflecting function. It is preferable to balance. Specifically, referring to FIG. 2, the integrated intensity I1 of the primary light F1 emitted from the first main surface 50a of the light guide plate 50 and the primary light F2 emitted from the second main surface 50b of the light guide plate 50 are described.
  • the integrated intensity I1-1 of the primary light F1-1 that reaches the light deflecting member 60 with a reflecting function and is reflected thereby is expressed by the following formula: I1 ⁇ (I2 + I1-1) Is preferably satisfied.
  • the light emitting element 10 that satisfies the above formula, the amounts of the primary light F2 and F1-1 incident on the light emitting layer 30 are increased, and accordingly, the light emission amount of the secondary light S and the metal-based particles are increased. Since the absorption efficiency enhancement and emission enhancement of the light emitting layer 30 by the aggregate layer 20 can be further increased, it is easy to obtain the extracted light L excellent in hue balance (for example, RGB balance in white light).
  • the integrated intensity of the primary light here also means an integrated value over the wavelength range of 300 nm to 800 nm of the emission spectrum of the primary light.
  • the method of measuring the integrated intensity I1 is as described above.
  • the light emitting element that is a set including only the excitation light source 40, the light guide plate 50, and the light deflecting member 60 with a reflection function in FIG. 2, the second main surface 50b of the light guide plate 50 is used.
  • the emitted light is measured by the measurement system shown in FIG. Specifically, first, referring to FIG. 5, light emission is performed by driving the light emitting element at a constant current value Y.
  • An objective lens 80 (5 times) and a spectroscopic measuring instrument 90 ("MCPD-3000" manufactured by Otsuka Electronics Co., Ltd.) are arranged in this order immediately above the center of gravity of the second main surface 50b, and with respect to the second main surface 50b.
  • the light emitted from the light emitting element that emits in the vertical direction is collected by the objective lens 80 and then introduced into the spectrophotometer 90 to measure the emission spectrum of the emitted light, whereby the integrated intensity I2 + I1-1 can be obtained. .
  • the light deflection member with reflection function 60 is a member that deflects incident light by reflection.
  • a preferred example of the light deflection member 60 with a reflection function is a retroreflection member, which is an optical member having a retroreflection function.
  • the retroreflective function refers to a function of reflecting incident light again in the incident direction.
  • a conventionally known member can be used, and examples thereof include a prism type film (prism film), a capsule lens type film, and an encapsulated lens type film. Among these, a prism film is preferable.
  • the prism film is, for example, a film that is disposed on the backlight side of a liquid crystal display device and is used as a light deflection film for improving the front luminance.
  • a retroreflection phenomenon can be obtained, and the front luminance when the light emitting element 10 is applied to an image display device or a lighting device typified by a liquid crystal display device is obtained. Can be improved.
  • a light deflecting member 60 with a reflecting function is provided on the front side of the light emitting element 10 (in the case of having the light guide plate 50, on the front side with respect to the light guide plate 50), and its reflecting function, preferably the retroreflecting function. Is that light is reflected, preferably retroreflected, between the metal-based particle assembly layer 20 and the light deflecting member 60 with a reflecting function, and the enhanced secondary light S is taken out along with this. It is advantageous when taking out as a part of L.
  • the light-emitting element according to the present invention preferably includes the light deflecting member 60 with a reflecting function, and more preferably includes a retroreflective member.
  • the light deflecting member 60 with a reflecting function may be omitted.
  • An example of the case where the light deflecting member 60 with a reflecting function can be omitted is a case where the integrated intensity I2 is sufficiently larger than the integrated intensity I1.
  • the amount of light emitted from the secondary light S can be sufficiently increased without necessarily reflecting the primary light F1 emitted from the first main surface 50a of the light guide plate 50, and the metal-based particle assembly layer
  • the absorption efficiency enhancement and emission enhancement of the light emitting layer 30 by 20 can be sufficiently obtained.
  • a prism film when used as the light deflecting member 60 with a reflecting function, two prism films may be laminated and used as in a liquid crystal display device.
  • it is usually laminated so that the direction in which the prism of one prism film extends and the direction in which the prism of the other prism film extends are orthogonal to each other.
  • the light can be deflected toward the center of the light emitting surface of the light emitting element 10 and the front luminance at the center can be effectively improved.
  • the effect of reflection, preferably retroreflection an effect of increasing the light emission amount of the secondary light S
  • the prism film is usually arranged so that its prism surface is on the front surface side (outgoing surface side) of the light emitting element 10.
  • the light emitting layer 30 is a layer that includes a light emitting material and absorbs the primary light F and emits the secondary light S.
  • the light emitting material is not particularly limited as long as it can absorb the primary light F and emit the secondary light S.
  • quantum dots (QD) light emitting materials, organic light emitting materials, inorganic materials other than QD light emitting materials A light emitting material or the like is preferably used.
  • the present invention is particularly effective when applied to a light emitting material having a relatively low absorption efficiency of the primary light F, and it is difficult to obtain sufficient light emitting efficiency.
  • a typical example of such a light emitting material is a QD light emitting material. It is.
  • An example of the colored light (secondary light S) of the luminescent material is red light, green light, or a mixed light thereof when the excitation light source 40 emits blue light as the primary light F.
  • the quantum dot light emitting material may be a conventionally known material, for example, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, Nanoparticles made of a semiconductor material such as CdTe, HgS, HgSe, HgTe, GaAs, GaN, GaP, InN, InGaP, InGaN, InAs, InP, InSb, Si, and Ge, and having a diameter of about 1 to 20 nm, preferably about 2 to 10 nm Can be.
  • a semiconductor material such as CdTe, HgS, HgSe, HgTe, GaAs, GaN, GaP, InN, InGaP, InGaN, InAs, InP, InSb, Si, and Ge
  • the quantum dot light-emitting material may have a single-layer structure made of a single semiconductor material, or a core layer (core layer) made of a single semiconductor material may have a coating layer (shell layer) made of a different semiconductor material. It may be a core-shell structure covered with In the latter case, as the semiconductor material constituting the shell layer, a material having a larger band gap energy than that of the semiconductor material constituting the core layer is usually used. In general, the core-shell structure has a higher quantum yield than the single-layer structure.
  • Cd-free quantum dot light emitting material composed of an element other than cadmium (Cd).
  • Quantum dot light-emitting materials particularly Cd-free quantum dot light-emitting materials, currently have problems such as low light absorption efficiency and light emission quantum yield, and poor heat resistance. In this case, high luminous efficiency can be obtained, and this eliminates the need to extremely increase the light emission intensity of the excitation light source 40, thereby suppressing thermal deterioration of the quantum dot light emitting material.
  • Quantum dot light emitting materials are contained in the light emitting layer 30 at least one, usually a plurality.
  • a plurality of quantum dot light emitting materials are arranged in a single film shape, a multilayer film shape, or a particle aggregate film shape (a plurality of quantum dots aggregate to form a layer shape).
  • the light emitting layer 30 including the quantum dot light emitting material may be composed only of the quantum dot light emitting material, and includes other constituent materials (for example, a matrix organic material or an inorganic material that binds the quantum dot light emitting material). May be. In the latter case, the quantum dot luminescent material can be dispersed in a matrix organic material or an inorganic material.
  • the organic light emitting material examples include a light emitting low molecule and a light emitting polymer.
  • Specific examples of the light-emitting small molecule include tris (8-quinolinolato) aluminum complex [tris (8-hydroxyquinoline) aluminum complex; Alq 3 ], bis (benzoquinolinolato) beryllium complex [BeBq] and the like.
  • the light emitting layer 30 containing a light emitting low molecule can be obtained by a dry or wet film forming method such as a spin coating method or a vapor deposition method.
  • the light-emitting polymer include ⁇ -conjugated polymers such as F8BT [poly (9,9-dioctylfluorene-alt-benzothiadiazole)], poly (p-phenylene vinylene), and polyalkylthiophene.
  • the light emitting layer 30 containing a light emitting polymer can be obtained by a wet film forming method using a light emitting polymer-containing liquid, such as a spin coating method.
  • the light emitting layer 30 containing an organic light emitting material may be formed of a monomolecular film in which dye molecules are arranged in a plane, or may be formed by doping dye molecules in a matrix.
  • the light emitting layer 30 made of the monomolecular film can be obtained by a method of removing the solvent after spin-coating the dye molecule-containing liquid.
  • Specific examples of the dye molecules include rhodamine 101, rhodamine 110, rhodamine 560, rhodamine 6G, rhodamine B, rhodamine 640, rhodamine 700 and other rhodamine dyes sold by Exciton, coumarin 503 sold by Exciton, etc. Of coumarin pigments.
  • the light emitting layer 30 formed by doping a dye molecule in a matrix can be obtained by a method of removing a solvent after spin-coating a liquid containing a dye molecule and a matrix material.
  • a transparent polymer such as polyvinyl alcohol or polymethyl methacrylate can be used.
  • Specific examples of the dye molecule can be the same as those in the light emitting layer of 1).
  • the light emitting layer 30 is preferably on the back side (on the opposite side to the light emitting side) from the excitation light source (if the excitation light source is a surface light source, it is a surface light source). More specifically, when the light guide plate 50 is provided, the light guide plate 50 is preferably disposed on the back side of the light guide plate 50. In order to sufficiently obtain the absorption efficiency enhancement and emission enhancement effect of the light-emitting layer 30 by the metal-based particle assembly layer 20, the distance between the metal-based particle assembly layer 20 and the light-emitting layer 30 is preferably as small as possible.
  • the above-described arrangement position of the light emitting layer 30 is extremely advantageous in order to satisfy the constraint on the distance while making the system particle assembly layer 20 function as a reflector.
  • a separate reflector is installed on the back side of the light guide plate 50. Is preferred.
  • the thickness of the light emitting layer 30 can be, for example, 10 nm or more, and further 20 nm or more.
  • the upper limit of the thickness of the light emitting layer 30 is not particularly limited, but is preferably 500 nm, more preferably 400 nm.
  • the metal-based particle assembly layer 20 When the thickness of the light emitting layer 30 is too large, the metal-based particle assembly layer 20 generates a light emitting layer 30 portion that cannot enhance light absorption efficiency and light emission, or the portion increases, and a sufficient light emitting efficiency improvement effect is obtained. May not be possible.
  • the “metal-based particle aggregate” is an aggregate of a plurality of metal-based particles (particles made of a metal-based material). This means that they are two-dimensionally arranged apart from each other.
  • the metal-based particle assembly layer 20 according to the present invention is a layer made of a metal-based particle assembly having a predetermined shape that is particularly advantageous for enhancing light emission of the light-emitting element. That is, in the metal-based particle assembly layer 20, 30 or more metal-based particles are two-dimensionally arranged apart from each other, and the metal-based particles have a predetermined shape (average particle diameter of 200 to 1600 nm, average high particle size). And an average inter-particle distance (1 to 150 nm) within a predetermined range.
  • the intensity of plasmon resonance exhibited by the metal-based particle assembly layer 20 is not a mere sum of localized plasmon resonance exhibited by individual metal-based particles at a specific wavelength, but is more than that. That is, when 30 or more metal particles having a predetermined shape are densely arranged at a predetermined average interparticle distance, the individual metal particles interact with each other to generate strong plasmon resonance. This is considered to be expressed by the interaction between the localized plasmons of the metal-based particles.
  • plasmon peak a plasmon resonance peak
  • the intensity of the plasmon resonance of the plasmon material can be roughly evaluated from the magnitude of the absorbance value at.
  • the absorbance at the maximum wavelength of the plasmon peak on the longest wavelength side in the visible light region is the conventional plasmon material.
  • the absorption spectrum of the metal-based particle assembly layer 20 can be measured by absorptiometry using a sample formed on a glass substrate as a measurement sample. Specifically, the absorption spectrum is measured on the back side of the glass substrate on which the metal-based particle assembly layer 20 is laminated (on the side opposite to the metal-based particle assembly layer) from the direction perpendicular to the substrate surface.
  • An integrating sphere spectrophotometer is used to measure the intensity I 0 of the transmitted light in all directions that is irradiated from the direction perpendicular to the surface of the substrate on which 20 is not laminated and transmitted from the opposite side of the incident surface. It is obtained by measuring.
  • an absorption spectrum measurement may be performed using an objective lens and a spectrophotometer to narrow the measurement field.
  • 2007-139540 discloses that a particle assembly made up of a large number of tabular metal particles independent from each other is used as a fluorescence enhancement element using a localized plasmon resonance phenomenon. Also in the light emission enhancement method, the distance between the metal nanoparticles effective for obtaining an effective light emission enhancement effect and the molecule to be excited is 10 nm or less.
  • the enhancement effect of the light emitting device using the local plasmon resonance phenomenon of the conventional metal nanoparticles or aggregates thereof is not always satisfactory due to the limitation of the range of action of the local plasmon resonance.
  • the light-emitting element has a light-emitting layer having a thickness of several tens of nanometers or more, even if the metal nanoparticles can be arranged close to or in the light-emitting layer, localized plasmons Since the direct enhancement effect by resonance can be obtained only in a part of the light emitting layer, the effect of improving the light emission efficiency was partial.
  • the metal-based particles constituting the metal-based particle assembly layer 20 are particles having a relatively large particle diameter, which is generally considered to have a small light emission enhancement effect.
  • the strong plasmon resonance is caused by the fact that metal particles having a specific shape are arranged at a specific average inter-particle distance.
  • the range of action of the extended plasmon resonance is shown.
  • the range of plasmon resonance which has been conventionally limited to the range of the Forster distance (about 10 nm or less), is extended to, for example, about several hundred nm. Can do.
  • the working range even when the thickness of the light emitting layer 30 is large, the entire light emitting layer can be enhanced at the same time, whereby the light emission efficiency of the light emitting element 10 can be remarkably improved.
  • the light emitting layer has a thickness of, for example, 10 nm or more, further 20 nm or more, and even more. It is possible to augment the whole of 30. Further, for example, the light emitting layer 30 disposed at a position separated by 10 nm, further several tens of nm (for example, 20 nm, 30 nm, or 40 nm), and further several hundred nm or more can be effectively enhanced in light emission.
  • the distance between the light emitting layer 30 and the metal-based particle assembly layer 20 is preferably 100 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • the metal-based particle assembly layer 20 is preferably disposed on the back side of the light emitting layer 30 from the viewpoint of functioning also as a reflector.
  • the metal-based particle assembly layer 20 is preferably disposed adjacent to or in the vicinity of the light emitting layer 30.
  • the metal-based particle assembly layer 20 can be disposed on the front side of the light emitting layer 30, but in this case, it is preferable to separately provide a reflector on the back side of the light emitting layer 30.
  • the metal-based particle assembly layer 20 can exhibit a specific shift in the maximum wavelength of the plasmon peak in the absorption spectrum in the visible light region, depending on the average particle diameter of the metal-based particles and the average distance between the particles. Specifically, the maximum wavelength of the plasmon peak on the longest wavelength side in the visible light region shifts to the short wavelength side (blue shift) as the average particle size of the metal-based particles increases with a constant average interparticle distance. To do. Similarly, when the metal-based particles are relatively large, the average particle diameter of the metal-based particles is kept constant and the average interparticle distance is decreased (when the metal-based particles are arranged more densely), in the visible light region.
  • the maximum wavelength of the plasmon peak on the longest wavelength side is shifted to the short wavelength side.
  • This peculiar phenomenon is the Mie scattering theory generally accepted for plasmon materials [in accordance with this theory, the maximum wavelength of the plasmon peak shifts to the longer wavelength side (red shift) as the particle size increases. ] Is against this.
  • the unique blue shift as described above is also caused by the interaction between localized plasmons of metal-based particles due to the fact that metal-based particles having a specific shape are spaced apart by a specific average inter-particle distance. This is thought to be due to what has occurred.
  • the metal-based particle assembly layer 20 (in a state of being laminated on a glass substrate) has the longest wavelength in the absorption spectrum in the visible light region measured by the absorptiometry according to the shape of the metal-based particles and the average interparticle distance.
  • the plasmon peak on the side can exhibit a maximum wavelength in the wavelength region of, for example, 350 to 550 nm.
  • the metal-based particle assembly layer 20 is typically about 30 to 500 nm (for example, 30 to 250 nm) as compared with the case where the metal-based particles are disposed with a sufficiently long inter-particle distance (for example, 1 ⁇ m). ) Blue shift.
  • This is particularly useful when a quantum dot material or an organic light emitting material that uses ultraviolet light or violet light as an excitation light source and emits light in a blue or near wavelength region thereof.
  • the metal constituting the metal-based particles is a material that exhibits a plasmon peak appearing in the ultraviolet to visible region in the absorption spectrum measurement by an absorptiometry when it is a nanoparticle or an aggregate thereof.
  • metals include noble metals such as gold, silver, copper, platinum, and palladium; other metals such as aluminum and tantalum; alloys containing the noble metal or other metals; the noble metals or other metals.
  • metal compounds containing metal such as metal oxides and metal salts).
  • noble metals such as gold, silver, copper, platinum and palladium are preferable, and silver is more preferable from the viewpoint of low cost and low absorption (small imaginary part of dielectric function at visible light wavelength).
  • the average particle diameter of the metal-based particles is in the range of 200 to 1600 nm. In order to effectively obtain the effect of enhancing the absorption efficiency and light emission of the light emitting layer 30, it is preferably 200 to 1200 nm, more preferably 250 to 500 nm. More preferably, it is in the range of 300 to 500 nm.
  • the average particle diameter of the metal-based particles may be appropriately selected according to the type of light-emitting element to which the metal-based particle assembly layer 20 is applied (such as the type of light-emitting material) and the type of metal constituting the metal-based particle. preferable.
  • the average particle diameter of the metal-based particles means that 10 particles are randomly selected in the SEM observation image from directly above the metal-based particle assembly layer 20 in which the metal-based particles are two-dimensionally arranged. Randomly draw 5 tangent diameters inside (however, any straight line with a tangential diameter can only pass through the inside of the particle image, and one of them is only the inside of the particle and is the longest drawable line)
  • the average value of the ten selected particle sizes when the average value (hereinafter, this average value is also referred to as a tangential diameter average value) is used as the particle size of each particle.
  • the tangent diameter is defined as a perpendicular line connecting the interval (projection image) of a particle between two parallel lines in contact with it (Nikkan Kogyo Shimbun, “Particle Measurement Technology”, 1994, page 5). .
  • the measurement method of the average particle diameter will be described more specifically.
  • the SEM observation image is measured using a scanning electron microscope “JSM-5500” manufactured by JEOL Ltd.
  • the obtained observation image is read at 1280 pixels by 960 pixels by using free image processing software “ImageJ” manufactured by the National Institutes of Health.
  • the average height of the metal-based particles is in the range of 55 to 500 nm, and in order to effectively obtain the effect of enhancing the absorption efficiency and light emission of the light emitting layer 30, it is preferably 55 to 300 nm, more preferably 70 to 150 nm. Is within the range.
  • the average height of the metal-based particles is 10 measurements when 10 particles are randomly selected in the AFM observation image of the metal-based particle assembly layer 20 and the heights of these 10 particles are measured. The average value.
  • the aspect ratio of the metal-based particles is in the range of 1 to 8. In order to effectively obtain the effect of enhancing the absorption efficiency and light emission of the light emitting layer 30, it is preferably 2 to 8, more preferably 2.5 to 8. Is within the range.
  • the aspect ratio of the metal-based particles is defined by the ratio of the average particle diameter to the average height (average particle diameter / average height).
  • the metal-based particles may be spherical, but for the above reasons, the metal particles preferably have a flat shape with an aspect ratio exceeding 1.
  • the metal particles preferably have a smooth curved surface, and more preferably have a flat shape with a smooth curved surface. Some minute irregularities (roughness) may be included, and in this sense, the metal-based particles may be indefinite.
  • the variation in size between the metal-based particles is as small as possible.
  • the distance between the large particles is increased, and it is preferable that the interaction between the large particles is facilitated by filling the space between the small particles.
  • the metal-based particles are arranged such that the average distance (average interparticle distance) between the adjacent metal-based particles is in the range of 1 to 150 nm.
  • the average interparticle distance is preferably in the range of 1 to 100 nm, more preferably 1 to 50 nm, and even more preferably 1 to 20 nm in order to effectively obtain the effect of enhancing the absorption efficiency and light emission of the light emitting layer 30. .
  • the average interparticle distance is less than 1 nm, electron transfer based on the Dexter mechanism occurs between particles, which is disadvantageous in terms of deactivation of localized plasmons.
  • the metal-based particle assembly layer 20 in which the metal-based particles are arranged apart from each other does not exhibit conductivity as the layer.
  • the metal-based particle assembly layer 20 includes a multimeter [tester (Europe Packard "E2378A”) pair of tester probes are brought into contact with each other at a distance of 10 to 15 mm.
  • the range setting is "30 M ⁇ ”
  • the resistance value is 30 M ⁇ or more under the measurement conditions. “Overload” is displayed.
  • the metal-based particles are reliably separated from each other, and no conductive substance is interposed between the metal-based particles.
  • the average interparticle distance refers to 30 particles randomly selected in the SEM observation image from directly above the metal-based particle assembly layer 20 in which metal-based particles are two-dimensionally arranged. The average value of the interparticle distances of these 30 particles when the interparticle distance between adjacent particles is obtained.
  • the inter-particle distance between adjacent particles is a value obtained by measuring the distances between all adjacent particles (the distance between the surfaces) and averaging them.
  • the SEM observation image is measured using a scanning electron microscope “JSM-5500” manufactured by JEOL Ltd.
  • the obtained observation image is read at 1280 pixels by 960 pixels by using free image processing software “ImageJ” manufactured by the National Institutes of Health.
  • a random number generation function “RANDBETWEEN” of spreadsheet software “excel” manufactured by Microsoft Corporation is used, and 1 to 1280 to 30 random numbers (x 1 to x 30 ), 1 to 960 to 30 random numbers (y 1 to y 30 ) are obtained respectively.
  • (X 30 , y 30 ) is obtained from 30 random number combinations (x 1 , y 1 ) from the obtained 30 random numbers.
  • 30 sets of coordinate points (x 1 , y 1 ) to (x 30 , y 30 ) are set with the x-coordinate of the random number generated from 1 to 1280 and the y-coordinate of the random number generated from 1 to 960. obtain. Then, for each of a total of 30 particle images including the coordinate point, an interparticle distance between the particle and an adjacent particle is obtained, and then an average particle is obtained as an average value of the interparticle distance between the 30 adjacent particles. Get the distance between. If at least one of the 30 coordinate points that are 30 random number combinations is not included in the particle image, or if two or more coordinate points are included in the same particle, the random number combination is discarded. Then, random number generation is repeated until all 30 coordinate points are included in different particle images.
  • the number of metal particles contained in the metal particle assembly layer 20 is 30 or more, preferably 50 or more.
  • the number of metal particles contained in the metal particle assembly layer 20 is 30 or more, preferably 50 or more.
  • the number of metal-based particles included in the metal-based particle assembly layer 20 may be, for example, 300 or more, or even 17500 or more.
  • the number density of the metal particles in the metal particle assembly layer 20 is preferably 7 particles / ⁇ m 2 or more, and more preferably 15 particles / ⁇ m 2 or more.
  • the metal-based particle assembly layer 20 may be incorporated into the light emitting element 10 as a laminate in which the metal-based particle assembly layer 20 is stacked on a substrate.
  • the light emitting element 10 is obtained by replacing the “metal-based particle assembly layer 20” in FIG.
  • the substrate is usually disposed on the side opposite to the light emitting layer 30 in the metal-based particle assembly layer 20.
  • a forming substrate that can be used in the production method for forming the metal-based particle assembly layer 20 can be used as it is as a substrate constituting the laminate.
  • the light emitting layer 30 and the metal-based particle assembly layer 20 may be incorporated into the light emitting element 10 as an integral member.
  • An example is shown in FIG.
  • the light emitting layer integrated laminate shown in FIG. 3 includes a light emitting layer 30 containing a substrate 70, a metal-based particle assembly layer 20, an insulating layer 25, and a quantum dot light emitting material 35 in this order.
  • Such a laminate can be produced by forming the metal-based particle assembly layer 20 on the substrate 70, forming the insulating layer 25 thereon, and further forming the light emitting layer 30 thereon.
  • the substrate for forming the metal-based particle assembly layer 20 is made of a non-conductive material, particularly when a laminate in which the metal-based particle assembly layer 20 is stacked on the substrate is incorporated in the light emitting element 10. It is preferable to use a substrate. This is because the plasmon resonance effect is reduced when electrons can be transferred between some or all of the metal-based particles via the substrate.
  • non-conductive materials include glass, various inorganic insulating materials (SiO 2 , ZrO 2 , mica, etc.), various resin materials, and the like.
  • the surface of the substrate on which the metal-based particle assembly layer 20 is formed is preferably as smooth as possible.
  • the substrate incorporated in the light-emitting element 10 as a laminate in which the metal-based particle assembly layer 20 is laminated on the substrate or as the light-emitting layer integrated laminate is a light-transmitting or optically transparent substrate. It may be a light-absorbing substrate. However, in order to prevent light emission from the back side of the light emitting element 10, it is preferable to arrange a substrate that also functions as a reflecting plate, that is, a reflecting substrate, on the back side of the metal-based particle assembly layer 20. In this respect, the substrate incorporated in the light emitting element 10 is preferably a reflective substrate. On the other hand, when a transparent or optically transparent substrate is used as the substrate incorporated in the light emitting element 10, it is preferable to further dispose a reflective substrate on the back side thereof.
  • the light emitting element 10 preferably further includes an insulating layer 25 that covers the surface of each metal-based particle on the metal-based particle assembly layer 20.
  • the insulating layer 25 is preferable for ensuring the non-conductivity of the metal-based particle assembly layer 20, and for achieving electrical insulation between the metal-based particle assembly layer 20 and another layer adjacent thereto. However, it is preferable.
  • the material constituting the insulating layer 25 is not particularly limited as long as it has good insulating properties.
  • SiO 2 or Si 3 N 4 etc. can be used.
  • the thickness of the insulating layer 25 is not particularly limited as long as desired insulating properties are ensured. However, as described above, the closer the distance between the light emitting layer 30 and the metal-based particle assembly layer 20 is, the more preferable it is. It is better as the thickness is as low as possible.
  • the maximum emission wavelength of the secondary light from the light emitting layer 30 is equal to or close to the maximum wavelength of the plasmon peak of the metal-based particle assembly layer 20. Thereby, the enhancement effect by plasmon resonance can be enhanced more effectively.
  • the maximum wavelength of the plasmon peak of the metal-based particle assembly layer 20 can be controlled by adjusting the metal species, average particle diameter, average height, aspect ratio, and / or average interparticle distance of the metal-based particles constituting the metal-based particle assembly layer 20. .
  • the metal-based particle assembly layer 20 can be produced, for example, by the following method. (1) A bottom-up method for growing metal-based particles from a small seed on a substrate, (2) A method in which a metal particle having a predetermined shape is coated with a protective layer made of an amphiphilic material having a predetermined thickness and then formed into a film on a substrate by an LB (Langmuir Broadgett) film method, (3) In addition, a method of post-processing a thin film produced by vapor deposition or sputtering, a resist process, an etching process, a casting method using a dispersion liquid in which metal-based particles are dispersed, and the like.
  • International Publication No. 2013/042449 describes a manufacturing method in which metal particles are grown on a substrate by sputtering or the like as an example of the above (1).
  • a dispersion in which metal particles are dispersed is applied on a substrate, and the resulting thin film is changed into a metal particle aggregate layer.
  • a manufacturing method is described. Also in this invention, these manufacturing methods can be used suitably.
  • the metal cation is reduced while the substrate is in contact with the liquid containing the metal cation constituting the metal particle, thereby forming the metal particle aggregate layer on the substrate. The method of doing can also be mentioned.
  • the light emitting element 10 according to the first embodiment can be suitably applied to a display (image display device) or a lighting device.
  • the display and lighting apparatus using the light emitting element 10 according to the first embodiment as a light source can exhibit high light emission efficiency even when a light emitting material having a relatively low light absorption efficiency is used, and color. Excellent reproducibility.
  • one of the preferable configurations of the light emitting element 10 according to the first embodiment is that the light deflecting member 60 with a reflecting function, the light guide plate 50, the light emitting layer 30, and the metal-based particle assembly layer 20 are arranged in this order. (However, as described above, the light deflecting member 60 with a reflecting function and the light guide plate 50 are not essential members).
  • the light emitting element 10 having this configuration is applied to, for example, a liquid crystal display device, the light emitting element 10 is disposed on the back side of the liquid crystal panel so that the light deflecting member 60 with a reflecting function is on the liquid crystal panel side.
  • a liquid crystal panel is an image display element in which polarizing plates are bonded to both surfaces of a liquid crystal cell.
  • the type of the liquid crystal cell is not particularly limited. As described above, in order to prevent light emission from the back side of the light emitting element 10, it is preferable to dispose a reflective substrate on the back side of the metal-based particle assembly layer 20. Of course, the light emitting element 10 according to the first embodiment can also be applied to other displays than the liquid crystal display device.
  • the light emitting element 10 can be used as it is as a lighting device. If the excitation light source 40 is converted into a surface light source by the light guide plate 50, a surface-emitting type illumination device is obtained. Also in the lighting device, a reflective substrate may be arranged on the back side of the metal-based particle assembly layer 20 in order to prevent light emission from the back side of the light emitting element 10.
  • the light deflecting member 60 with a reflecting function can be omitted in the light emitting element 10 included in the display and the illumination device.
  • a light diffusing plate or the like may be disposed instead of the light deflecting member 60 with a reflecting function.
  • the light-emitting element A having the structure shown in FIG. 4 in which the edge light type excitation light source (blue LED) 4 and the light guide plate 5 / reflecting plate 6 are arranged in this order was taken out.
  • the film 3 containing QD absorbs blue light from the excitation light source 4 and emits green light and red light.
  • the first prism film 1 and the second prism film 2 are orthogonal in the direction in which the prisms extend.
  • the first prism film 1 and the second prism film 2 have a retroreflection function.
  • a power supply device (“R6240A” manufactured by ADVANTEST) was connected to the anode side end circuit and cathode side end circuit of the LED of the edge light type excitation light source 4.
  • Example 1 (1) Production of light-emitting element having metal-based particle assembly layer (1-1) Production of metal-based particle assembly layer Silver particles were formed on soda glass substrate 70 under the following conditions using a DC magnetron sputtering apparatus. Was grown very slowly, and a metal-based particle assembly layer was formed on the entire surface of the substrate 70.
  • FIG. 6 is an SEM image when the obtained metal-based particle assembly layer 20 (hereinafter, also referred to as “metal-based particle assembly layer of Production Example 1”) is viewed from directly above.
  • FIG. 6A is an enlarged image on a 10000 times scale
  • FIG. 6B is an enlarged image on a 50000 times scale.
  • FIG. 7 is an AFM image showing the metal-based particle assembly layer 20 of Production Example 1. “VN-8010” manufactured by Keyence Corporation was used for AFM image shooting. The size of the image shown in FIG. 7 is 5 ⁇ m ⁇ 5 ⁇ m.
  • the “average height” of the silver particles constituting the metal-based particle assembly layer 20 of Production Example 1 was determined. Further, from the SEM image, according to the above measurement method, the “average particle size” and “average interparticle distance” of the silver particles constituting the metal-based particle assembly layer 20 of Production Example 1 were determined, and the obtained average particle size The “aspect ratio” (average particle diameter / average height) was calculated from the average height. As a result, the average particle size was 335 nm, the average interparticle distance was 16.7 nm, the average height was 96.2 nm, and the aspect ratio was 3.48.
  • the metal-based particle assembly layers of Comparative Production Example 1 and Comparative Production Example 2 were produced by changing the sputtering time in the direct current magnetron sputtering method.
  • the metal-based particle assembly layer of Comparative Production Example 1 has substantially the same particle shape, aspect ratio, and average interparticle distance as Production Example 1 except that the average height of the metal-based particles is about 10 nm.
  • the metal-based particle assembly layer of Example 2 had substantially the same particle shape, aspect ratio, and average interparticle distance as in Production Example 1 except that the average height of the metal-based particles was about 30 nm.
  • the metal-based particle assembly layers of Comparative Production Example 1 and Comparative Production Example 2 also did not have conductivity.
  • FIG. 8 is an absorption spectrum measured by an absorptiometry of the metal-based particle assembly layers of Production Example 1 and Comparative Production Examples 1 and 2.
  • Non-patent literature K. Lance Kelly, et al., "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment", The Journal of Physical Chemistry B, 2003, 107, 668) As shown in the figure, it is general that the flat silver particles alone have a plasmon peak around 550 nm when the average particle diameter is 200 nm and around 650 nm when the average particle diameter is 300 nm.
  • the average particle diameter of silver particles constituting the metal-based particle assembly layer 20 is about 300 nm (335 nm), in the visible light region. It can be seen that the maximum wavelength of the plasmon peak on the longest wavelength side is shifted to the short wavelength side, around 450 nm. This phenomenon can occur when the silver particles are large particles having the predetermined shape and are arranged very densely at the predetermined average interparticle distance as in Production Example 1. Such a phenomenon is difficult to reasonably interpret only by the presence of plasmon interaction occurring in each particle due to the proximity of the particles. The maximum wavelength of the plasmon peak also depends on the average particle diameter of the metal-based particles.
  • Comparative Production Example 1 and Comparative Production Example 2 since the average particle size is small, it has a plasmon peak on a considerably longer wavelength side than Production Example 1, and the maximum wavelengths thereof are about 510 nm and about 470 nm. Further, in Production Example 1, the absorbance at the maximum wavelength of the plasmon peak on the longest wavelength side in the visible light region is about 1.9, which is extremely higher than Comparative Production Examples 1 and 2, and from this, the metal system of Production Example 1 It can be seen that the particle assembly layer 20 exhibits extremely strong plasmon resonance.
  • the absorption spectrum shown in FIG. 8 is from the back side of the substrate on which the metal-based particle assembly layer is laminated (on the side opposite to the metal-based particle assembly layer) from the direction perpendicular to the substrate surface.
  • a substrate I of the same thickness and material as the above-mentioned substrate having an intensity I of transmitted light in all directions irradiated with incident light in the visible light region and transmitted to the metal-based particle assembly layer side. Irradiate the same incident light from the direction perpendicular to the surface of the non-laminated substrate, and measure the transmitted light intensity I 0 in all directions transmitted from the opposite side of the incident surface using an integrating sphere spectrophotometer. It is obtained by doing.
  • Alq 3 light emitting layer 30 (Alq 3 is a green light emitting material that emits light) having an average thickness of 80 nm is formed on the insulating layer 25 by vacuum deposition, and the light emitting layer having a metal-based particle assembly layer. An integral laminate was obtained.
  • the edge light type excitation light source (blue LED) 4 and the light guide plate 5 used in the above reference example the second prism The film 2 and the first prism film 1 were arranged in this order to obtain the light emitting device of Example 1. Further, the black substrate 100 was placed on the back side of the soda glass substrate 70 in an overlapping manner.
  • a substrate in which an Alq 3 light emitting layer 30 having an average thickness of 80 nm is formed on soda glass is superimposed on an Ag reflector (a substrate in which Ag is deposited on soda glass) 110.
  • Comparative Example 1 having no metal-based particle assembly layer in the same manner as in Example 1 except that the light-emitting layer-integrated laminate having the metal-based particle assembly layer of Example 1 was used. A light emitting device was obtained. Further, the black substrate 100 was placed on the back surface of the Ag reflector 110.
  • the edge light type excitation light source (blue LED) 4 and the light guide plate 5, the second prism film 2, and the first prism film 1 used in the above reference example Were arranged in this order to obtain a background light emitting device.
  • This light emitting element does not have a light emitting layer, and only blue light from the excitation light source 4 is extracted and emitted as light.
  • the light emitting element was made to emit light by being driven at a constant current of 7 mA.
  • a spectrophotometer 90 (“MCPD-3000” manufactured by Otsuka Electronics Co., Ltd.) is directly applied to the first prism film 1 of the light emitting element, and light emission from the light emitting element that is emitted in a direction perpendicular to the first prism film surface The spectrum was measured with a spectrometer 90.
  • FIG. 13 shows emission spectra of the obtained Example 1, Comparative Example 1, and the background light-emitting element.
  • the light emitting element of Example 1 has enhanced light emission particularly in the green to yellow region as compared with the light emitting element of Comparative Example 1.
  • the light emission enhancement factor at a light emission wavelength of 540 nm was 168%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)

Abstract

 1次光を発する励起光源と該1次光を吸収して2次光を発する発光層と金属系粒子集合体層とを含み、金属系粒子集合体層は、30個以上の金属系粒子が互いに離間して二次元的に配置されてなり、金属系粒子の平均粒径が200~1600nmの範囲内、平均高さが55~500nmの範囲内、平均高さに対する平均粒径の比で定義されるアスペクト比が1~8の範囲内、隣り合う金属系粒子間の平均距離が1~150nmの範囲内であり、1次光の一部と2次光の少なくとも一部との混合光を出射する発光素子、並びにこれを用いたディスプレイ及び照明装置である。

Description

発光素子
 本発明は、発光素子に関し、より詳しくは、特定の形状を有する金属系粒子で構成される金属系粒子集合体層を含む発光素子に関する。
 発光素子は、それに含まれる発光材料の種類に応じて、例えば有機エレクトロルミネッセンス(EL)素子、無機EL素子などに分類される。近年では、量子ドット(以下、「QD」ともいう。)発光材料を用いた発光素子(QD発光素子)も注目されるようになっている。これは、発光素子をディスプレイ(画像表示装置)などに適用したとき、無機発光材料などを用いた従来の発光素子と比較して、色再現性に優れるためである。
 しかしながら現状、QD発光素子は、次のような問題を有している。
(1)現状においてQDは光吸収効率が低く、従って発光が弱い。そのため、ディスプレイなどとして十分な発光強度を得るためには、高価なQDを多量に使用するか、又は青色光源などの励起光源の発光強度を高める必要がある。
(2)現状においてQDは耐熱性が低い。そのため、上記のように励起光源の発光強度を高めてディスプレイなどの発光強度を確保する場合、QDは励起光源から放出される多量の熱によって熱劣化を生じやすい。
 特開2013-093317号公報(特許文献1)には、所定の金属系粒子集合体層を発光増強素子として利用したQD発光素子が提案されている。
特開2013-093317号公報
 特許文献1に記載のQD発光素子によれば、強いプラズモン共鳴を示す金属系粒子集合体層を発光増強素子として含むため、例えばディスプレイなどに適用したときに、その発光強度を大きく改善することができる。しかし、適用したディスプレイなどの色再現性にはなお改善の余地があった。
 本発明の目的は、光吸収効率の比較的低い発光材料を用いる場合であっても、ディスプレイなどに適用したときに高い発光効率及び色再現性を示すことができる発光素子を提供することにある。本発明の他の目的は、当該発光素子を用いたディスプレイ(画像表示装置)及び照明装置を提供することにある。
 本発明は、以下に示す発光素子、ディスプレイ及び照明装置を提供する。
 [1] 1次光を発する励起光源と、前記1次光を吸収して2次光を発する発光層と、金属系粒子集合体層と、を含み、
 前記金属系粒子集合体層は、30個以上の金属系粒子が互いに離間して二次元的に配置されてなり、前記金属系粒子の平均粒径が200~1600nmの範囲内、平均高さが55~500nmの範囲内、前記平均高さに対する前記平均粒径の比で定義されるアスペクト比が1~8の範囲内、隣り合う金属系粒子間の平均距離が1~150nmの範囲内であり、
 前記1次光の一部と前記2次光の少なくとも一部との混合光を出射する、発光素子。
 [2] 前記発光層に入射される前記1次光が面状である、[1]に記載の発光素子。
 [3] 導光板をさらに含み、
 前記1次光は、前記導光板を介して前記発光層に入射される、[2]に記載の発光素子。
 [4] 前記導光板、前記発光層及び前記金属系粒子集合体層をこの順に含む、[3]に記載の発光素子。
 [5] 前記導光板における前記発光層とは反対側の主面から出射する1次光F1の積分強度をI1、前記導光板における前記発光層側の主面から出射する1次光F2の積分強度をI2とするとき、下記式:
 I2≧I1
を充足する、[3]又は[4]に記載の発光素子。
 [6] 反射機能付き光偏向部材をさらに含む、[1]~[5]のいずれかに記載の発光素子。
 [7] 前記反射機能付き光偏向部材、前記導光板、前記発光層及び前記金属系粒子集合体層をこの順に含む、[6]に記載の発光素子。
 [8] 前記導光板における前記発光層とは反対側の主面から出射する1次光F1の積分強度をI1、前記導光板における前記発光層側の主面から出射する1次光F2の積分強度をI2、前記1次光F1のうち、前記反射機能付き光偏向部材に到達し、それによって反射される1次光F1-1の積分強度をI1-1とするとき、下記式:
 I1≦(I2+I1-1)
を充足する、[7]に記載の発光素子。
 [9] 前記発光層が量子ドット(QD)発光材料を含む、[1]~[8]のいずれかに記載の発光素子。
 [10] 前記量子ドット(QD)発光材料は、カドミウム以外の元素で構成される、[9]に記載の発光素子。
 [11] 前記発光層は、厚みが500nm以下である、[1]~[10]のいずれかに記載の発光素子。
 [12] [1]~[11]のいずれかに記載の発光素子を含む、ディスプレイ。
 [13] [1]~[11]のいずれかに記載の発光素子を含む、照明装置。
 本発明によれば、光吸収効率の比較的低い発光材料を用いる場合であっても、ディスプレイなどに適用したときに高い発光効率及び色再現性を示すことができる発光素子、並びにこれを用いたディスプレイ(画像表示装置)及び照明装置を提供することができる。
本発明に係る発光素子の一例を示す概略断面図である。 図1に示される発光素子において、導光板の側面から入射した1次光の進行方向を模式的に示す図である。 基板、金属系粒子集合体層及び発光層をこの順に含む積層体を示す概略断面図である。 参考例において市販のタブレット型端末から取り出した発光素子Aの構造を示す概略断面図である。 発光スペクトルの測定系を示す模式図である。 製造例1の金属系粒子集合体層を直上から見たときのSEM画像(10000倍及び50000倍スケール)である。 製造例1の金属系粒子集合体層のAFM画像である。 製造例1及び比較製造例1~2の金属系粒子集合体層の吸光スペクトルである。 実施例1の発光素子の構造を示す概略断面図である。 比較例1の発光素子の構造を示す概略断面図である。 バックグラウンドの発光素子の構造を示す概略断面図である。 実施例1、比較例1、及びバックグラウンドの発光素子の発光スペクトルの測定系を示す模式図である。 実施例1、比較例1、及びバックグラウンドの発光素子の発光スペクトルを示す図である。
 以下、実施の形態を示して、本発明をより詳細に説明する。
 <第1の実施形態:発光素子>
 図1は、本実施形態に係る発光素子の一例を示す概略断面図である。図1に示される発光素子10は、1次光Fを発する励起光源40(エッジライト型);励起光源40の側方に配置される導光板50;導光板50の背面側(発光素子10の光出射側とは反対側)に配置され、1次光Fを吸収して2次光Sを発する発光層30;発光層30の背面側に配置される金属系粒子集合体層20;導光板50の前面側(発光素子10の光出射側)に配置される反射機能付き光偏向部材60を含む。発光素子10において、反射機能付き光偏向部材60、導光板50、発光層30及び金属系粒子集合体層20はこの順に配置されている。発光素子10は、反射機能付き光偏向部材60側が光取り出し面となっており、取り出し光Lを出射する。
 図2に示されるように、発光素子10において励起光源40から導光板50の側面に入射された1次光Fは、導光板50内で面光源化される。導光板50によって面光源化された1次光Fは、導光板50の2つの主面、すなわち前面側(発光素子10の光出射側)の第1主面50a及び背面側の第2主面50bのいずれからも出射し得る。
 このうち、第1主面50aから出射した1次光F1は反射機能付き光偏向部材60に到達し、その一部が反射機能付き光偏向部材60によって反射される(図2におけるF1-1)が、残りの部分は取り出し光Lの一部として発光素子10から出射される(図2におけるF1-2)。反射された1次光F1-1は、その少なくとも一部が発光層30に到達する。1次光F1-1を吸収した発光層30は、2次光Sを出射する。この際、発光層30の近傍に配置されている金属系粒子集合体層20によって発光層30の1次光F1-1の吸収効率の増強及び発光層30の発光の増強がなされる。金属系粒子集合体層20は反射板としての機能も有しており、金属系粒子集合体層20と反射機能付き光偏向部材60との間での光の反射、並びにこれに伴う、反射機能付き光偏向部材60側からの取り出し光の出射、発光層30からの2次光Sの出射、及び金属系粒子集合体層20による発光層30の吸収効率増強と発光増強が繰り返しなされる。
 一方、導光板50の第2主面50bから出射した1次光F2は発光層30に到達する。1次光F2を吸収した発光層30は、2次光Sを出射する。この際、上記と同様に、1次光F2の吸収効率の増強及び発光層30の発光の増強がなされる。また上記と同様、金属系粒子集合体層20と反射機能付き光偏向部材60との間での光の反射、並びにこれに伴う、反射機能付き光偏向部材60側からの取り出し光の出射、発光層30からの2次光Sの出射、及び金属系粒子集合体層20による発光層30の吸収効率増強と発光増強が繰り返しなされる。
 このように本実施形態に係る発光素子によれば、金属系粒子集合体層20を備えることによって、発光層30による1次光の吸収効率を増強させることができるとともに、発光層30の発光を増強させることができるので、発光素子10の発光効率を向上させることができる。また、本実施形態に係る発光素子は、その取り出し光Lが1次光Fの一部と2次光Sの少なくとも一部との混合光であるので、2次光Sのみを取り出し光とする場合に比べて色再現性に優れている。
 (1)励起光源及び導光板
 励起光源40としては、発光層30に含まれる発光材料が吸収して2次光Sを発することができるような1次光Fを出射することができるものであれば特に制限されず、例えば、紫外光、紫色光、青色光、又はこれらの2以上の混合光を出射できる励起光源を挙げることができる。好ましくは、青色光を含む1次光Fを出射できる励起光源である。
 導光板50は、励起光源40を面光源化するために用いられる光学部材であり、従来公知のものを使用することができる。導光板50を設ける場合、励起光源40から出射された1次光Fは、導光板50を介して発光層30に入射する。本発明において導光板50は必要に応じて用いられる部材であり、省略することもできる。ただし、本発明に係る発光素子は、導光板50を含むことが好ましい。これにより、励起光源40を面光源化し、ある面積を有して二次元的に広がる発光層30に対して1次光Fを面状(好ましくは、発光層30の全面)に入射できるので、1次光Fと2次光Sとの混合光からなる取り出し光Lを面状に出射する面発光の発光素子を得ることができる。
 図2を参照して、発光素子10は、導光板50の第2主面50b(発光層30側の主面)から出射する1次光F2の積分強度I2が第1主面50a(発光層30とは反対側の主面)から出射する1次光F1の積分強度I1以上となるものであることが好ましい。積分強度I2≧I1を充足する発光素子10によれば、発光層30に入射される1次光F2の量が大きくなり、これに伴って、2次光Sの発光量、並びに金属系粒子集合体層20による発光層30の吸収効率増強及び発光増強をより大きくすることができるので、色相バランス(例えば、白色光におけるRGBバランス)に優れた取り出し光Lが得られやすくなる。
 なお、ここでいう1次光の積分強度とは、その1次光の発光スペクトルの300nmから800nmの波長域にわたる積分値を意味する。積分強度I1は、第1主面50aの重心について図5に記載の測定系を用いて測定する。測定の際、発光素子としては、図2に記載の励起光源40及び導光板50のみからなるセットを用いる。具体的にはまず、図5を参照して、発光素子を電流値Xで定電流駆動させることにより発光させる。第1主面50aの重心の直上に対物レンズ80(5倍)及び分光測定器90(大塚電子社製の「MCPD-3000」)をこの順に配置しておき、第1主面50aに対して垂直方向に出射する発光素子からの発光を対物レンズ80で集光した後、分光測定器90に導入して、当該発光の発光スペクトルを測定することにより、積分強度I1を得ることができる。一方、積分強度I2は、第2主面50bの重心について図5に記載の測定系を用いて測定する。積分強度I1と同じく、測定の際、発光素子としては、図2に記載の励起光源40及び導光板50のみからなるセットを用いる。具体的にはまず、図5を参照して、発光素子を、積分強度I1の測定と同じ電流値Xで定電流駆動させることにより発光させる。第2主面50bの重心の直上に対物レンズ80(5倍)及び分光測定器90(大塚電子社製の「MCPD-3000」)をこの順に配置しておき、第2主面50bに対して垂直方向に出射する発光素子からの発光を対物レンズ80で集光した後、分光測定器90に導入して、当該発光の発光スペクトルを測定することにより、積分強度I2を得ることができる。積分強度I1と積分強度I2とのバランスは、主に導光板50の構成に依存しており、裏面(第2主面50b)から出射しやすい導光板50を用いることにより、積分強度I2≧I1を充足する発光素子10を得ることができる。
 発光素子10が導光板50の前面側に配置される反射機能付き光偏向部材60をさらに含む場合には、反射機能付き光偏向部材60からの反射光をさらに考慮して、取り出し光Lの色相バランスを図ることが好ましい。具体的には、図2を参照して、導光板50の第1主面50aから出射する1次光F1の積分強度I1、導光板50の第2主面50bから出射する1次光F2の積分強度I2、及び、1次光F1のうち、反射機能付き光偏向部材60に到達し、それによって反射される1次光F1-1の積分強度I1-1は、下記式:
 I1≦(I2+I1-1)
を充足することが好ましい。当該式を充足する発光素子10によれば、発光層30に入射される1次光F2及びF1-1の量が大きくなり、これに伴って、2次光Sの発光量、並びに金属系粒子集合体層20による発光層30の吸収効率増強及び発光増強をより大きくすることができるので、色相バランス(例えば、白色光におけるRGBバランス)に優れた取り出し光Lが得られやすくなる。
 なお、ここでいう1次光の積分強度もまた、その1次光の発光スペクトルの300nmから800nmの波長域にわたる積分値を意味する。積分強度I1の測定方法は上記のとおりである。積分強度I2+I1-1の測定にあたってはまず、図2中の励起光源40、導光板50及び反射機能付き光偏向部材60のみからなるセットである発光素子について、導光板50の第2主面50bから出射する光を、図5に記載の測定系で測定する。具体的にはまず、図5を参照して、発光素子を電流値Yで定電流駆動させることにより発光させる。第2主面50bの重心の直上に対物レンズ80(5倍)及び分光測定器90(大塚電子社製の「MCPD-3000」)をこの順に配置しておき、第2主面50bに対して垂直方向に出射する発光素子からの発光を対物レンズ80で集光した後、分光測定器90に導入して、当該発光の発光スペクトルを測定することにより、積分強度I2+I1-1を得ることができる。裏面(第2主面50b)から出射しやすい導光板50を用いたり、反射機能付き光偏向部材60の反射機能を発現する部分の形状(例えば、プリズムフィルムのプリズム形状)の調整によって反射機能付き光偏向部材60の光反射性を高めたりすることにより、上記式を充足する発光素子10を得ることができる。積分強度I1及び積分強度I2+I1-1の測定において、測定条件を同じにするために、積分強度I1を測定する際の上述の電流値Xと、積分強度I2+I1-1を測定する際の電流値Yとを同じ値にする。
 (2)反射機能付き光偏向部材
 反射機能付き光偏向部材60は、入射光を反射によって偏向させる部材をいう。反射機能付き光偏向部材60の好ましい一例は再帰反射部材であり、これは再帰反射機能を有する光学部材である。再帰反射機能とは、入射した光を再び入射方向へ反射させる機能をいう。再帰反射部材としては従来公知のものを用いることができ、例えばプリズム型のフィルム(プリズムフィルム)、カプセルレンズ型のフィルム、封入レンズ型のフィルムなどを挙げることができる。中でも、プリズムフィルムが好適である。プリズムフィルムは、例えば液晶表示装置のバックライト側に配置され、正面輝度を改善するための光偏向フィルムとして使用されるフィルムである。プリズムフィルムを反射機能付き光偏向部材60として用いることにより、再帰反射現象を得ることができるとともに、発光素子10を液晶表示装置に代表される画像表示装置や照明装置に適用したときの正面輝度を向上させることができる。
 反射機能付き光偏向部材60、好ましくは再帰反射部材を発光素子10の前面側(導光板50を有する場合は、導光板50よりも前面側)に設けて、その反射機能、好ましくは再帰反射機能を利用することは、金属系粒子集合体層20と反射機能付き光偏向部材60との間で光を反射、好ましくは再帰反射させ、これに伴って、増強された2次光Sを取り出し光Lの一部として取り出すうえで有利である。この点で、本発明に係る発光素子は反射機能付き光偏向部材60を含むことが好ましく、再帰反射部材を含むことがより好ましいが、反射機能付き光偏向部材60を省略できることもある。反射機能付き光偏向部材60を省略できる場合の一例は、積分強度I2が積分強度I1よりも十分に大きい場合である。この場合、導光板50の第1主面50aから出射する1次光F1を必ずしも反射させずとも、2次光Sの発光量を十分に大きくすることができ、また、金属系粒子集合体層20による発光層30の吸収効率増強及び発光増強を十分に得ることができる。
 例えば反射機能付き光偏向部材60としてプリズムフィルムを用いる場合、液晶表示装置などでもよくされているように、プリズムフィルムを2枚積層して用いてもよい。この場合は通常、一方のプリズムフィルムが有するプリズムの延びる方向と、他方のプリズムフィルムが有するプリズムの延びる方向とが直交するように積層される。これにより、発光素子10の光出射面における中心に向けて光を偏向して当該中心での正面輝度を効果的に向上させることができる。また、反射、好ましくは再帰反射による効果(2次光Sの発光量の増大効果)を発光層30の全面(発光素子10の光出射面全面)にわたって得ることができる。プリズムフィルムは通常、そのプリズム面が発光素子10の前面側(出射面側)となるように配置される。
 (3)発光層
 発光層30は、発光材料を含み、1次光Fを吸収して2次光Sを出射する層である。発光材料は、1次光Fを吸収して2次光Sを出射することができるものである限り特に制限されないが、例えば量子ドット(QD)発光材料、有機発光材料、QD発光材料以外の無機発光材料などが好適に用いられる。中でも、本発明は、1次光Fの吸収効率が比較的低く、十分な発光効率が得られにくい発光材料に適用する場合にとりわけ有効であり、そのような発光材料の代表例はQD発光材料である。発光材料の発色光(2次光S)の一例は、励起光源40が1次光Fとして青色光を発する場合における、赤色光もしくは緑色光、又はこれらの混合光である。
 量子ドット発光材料は従来公知のものであってよく、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、GaAs、GaN、GaP、InN、InGaP、InGaN、InAs、InP、InSb、Si、Geなどの半導体材料からなる直径1~20nm程度、好ましくは2~10nm程度のナノ粒子であることができる。
 量子ドット発光材料は、単一の半導体材料からなる単層構造であってもよいし、単一の半導体材料からなる核粒子(コア層)の表面が、異なる半導体材料からなる被覆層(シェル層)によって被覆されたコアシェル構造であってもよい。後者の場合、シェル層を構成する半導体材料としては通常、コア層を構成する半導体材料よりもバンドギャップエネルギーが大きいものを用いる。一般に、コアシェル構造の方が単層構造よりも量子収率が高い。
 中でも、環境規制の観点から、カドミウム(Cd)以外の元素で構成される、Cdフリーの量子ドット発光材料を用いることが望ましい。量子ドット発光材料、とりわけCdフリーの量子ドット発光材料は現状、光吸収効率及び発光量子収率が低い、耐熱性に劣るなどの課題を有しているが、本発明に係る発光素子10によれば、高い発光効率を得ることができ、またこれにより、励起光源40の発光強度を極度に高める必要がなくなるので、量子ドット発光材料の熱劣化を抑制することができる。
 量子ドット発光材料は、発光層30に少なくとも1個、通常は複数個含有される。発光層30において複数個の量子ドット発光材料は、単一膜状に、又は多層膜状に、又は粒子凝集体膜状(複数の量子ドットが凝集して層形状を形成したもの)に配列され得る。量子ドット発光材料を含む発光層30は、量子ドット発光材料のみから構成されていてもよく、他の構成材料(例えば、量子ドット発光材料を結着するマトリクス有機材料又は無機材料など)を含んでいてもよい。後者の場合において、量子ドット発光材料は、マトリクス有機材料又は無機材料中に分散させることができる。
 有機発光材料としては、発光性低分子、発光性高分子を挙げることができる。発光性低分子の具体例は、トリス(8-キノリノラト)アルミニウム錯体〔トリス(8-ヒドロキシキノリン)アルミニウム錯体;Alq3〕、ビス(ベンゾキノリノラト)ベリリウム錯体〔BeBq〕などを含む。発光性低分子を含む発光層30は、スピンコート法、蒸着法などのドライ又はウェット成膜法によって得ることができる。
 発光性高分子の具体例は、F8BT〔ポリ(9,9-ジオクチルフルオレン-alt-ベンゾチアジアゾール)〕、ポリ(p-フェニレンビニレン)、ポリアルキルチオフェンのようなπ共役系高分子などを含む。発光性高分子を含む発光層30は、例えばスピンコート法など、発光性高分子含有液を用いたウェット成膜法によって得ることができる。
 有機発光材料を含む発光層30は、色素分子を平面状に配置した単分子膜からなるもの、又はマトリックス中に色素分子をドープしてなるものであってもよい。上記単分子膜からなる発光層30は、色素分子含有液をスピンコートした後、溶媒を除去する方法により得ることができる。色素分子の具体例は、Exciton社から販売されているローダミン101、ローダミン110、ローダミン560、ローダミン6G、ローダミンB、ローダミン640、ローダミン700等のローダミン系色素、Exciton社から販売されているクマリン503等のクマリン系色素を含む。
 マトリックス中に色素分子をドープしてなる発光層30は、色素分子及びマトリックス材料を含有する液をスピンコートした後、溶媒を除去する方法により得ることができる。マトリックス材料としては、ポリビニルアルコール、ポリメタクリル酸メチルのような透明高分子を用いることができる。色素分子の具体例は1)の発光層と同様であることができる。
 発光層30は、図1に示されるように、好ましくは励起光源(励起光源が面光源化されている場合には、面光源化された光源)よりも背面側(光出射側とは反対側)に配置され、より具体的には、導光板50を有する場合、好ましくは導光板50よりも背面側に配置される。金属系粒子集合体層20による発光層30の吸収効率増強及び発光増強効果を十分に得るためには、金属系粒子集合体層20と発光層30との距離はできるだけ小さいことが好ましいところ、金属系粒子集合体層20を反射板としても機能させつつ、当該距離の制約を満たすために、発光層30の上記配置位置は極めて有利である。なお、発光層30と金属系粒子集合体層20の両方を導光板50の前面側に配置することも可能であるが、この場合、導光板50の背面側に別途、反射板を設置することが好ましい。
 発光層30の厚みは、例えば10nm以上、さらには20nm以上であることができる。発光層30の厚みの上限は特に制限されないが、好ましくは500nmであり、より好ましくは400nmである。発光層30の厚みがあまりに大きいと、金属系粒子集合体層20によって光吸収効率及び発光を増強できない発光層30部分が生じるか、又は当該部分が多くなり、発光効率向上効果を十分に得ることができないことがある。
 (4)金属系粒子集合体層
 本明細書において「金属系粒子集合体」とは、複数の金属系粒子(金属系材料からなる粒子)の集合体であって、これら複数の金属系粒子が互いに離間して二次元的に配置されているものをいう。本発明に係る金属系粒子集合体層20は、発光素子の発光増強に特に有利な所定形状の金属系粒子集合体からなる層である。すなわち、金属系粒子集合体層20は、30個以上の金属系粒子が互いに離間して二次元的に配置されており、該金属系粒子が所定の形状(平均粒径200~1600nm、平均高さ55~500nm及びアスペクト比1~8)を有し、かつ所定範囲内の平均粒子間距離(1~150nm)で配置されている。
 金属系粒子集合体層20は強いプラズモン共鳴を示すため、これを発光層30に隣接して、又は近傍に配置することにより、発光層30の光吸収効率及び発光を効果的に増強させることができ、これにより発光素子10の発光効率を向上させることができる。金属系粒子集合体層20が示すプラズモン共鳴の強さは、特定波長における個々の金属系粒子が示す局在プラズモン共鳴の単なる総和ではなく、それ以上の強さである。すなわち、30個以上の所定形状の金属系粒子が所定の平均粒子間距離で密に配置されることにより、個々の金属系粒子が相互作用して強いプラズモン共鳴が発現する。これは、金属系粒子の局在プラズモン間の相互作用により発現したものと考えられる。
 一般的に、プラズモン材料は、吸光光度法で吸光スペクトルを測定したとき、紫外~可視領域におけるピークとしてプラズモン共鳴ピーク(以下、「プラズモンピーク」ともいう。)が観測され、このプラズモンピークの極大波長における吸光度値の大小から、そのプラズモン材料のプラズモン共鳴の強さを略式に評価することができる。ガラス基板上に形成された本発明に係る金属系粒子集合体層20は、吸光スペクトルを測定したとき、可視光領域において最も長波長側にあるプラズモンピークの極大波長における吸光度が、従来のプラズモン材料と比較して有意に高い値を示し得る。
 金属系粒子集合体層20の吸光スペクトルは、ガラス基板上に形成したものを測定サンプルとして、吸光光度法によって測定することができる。具体的には、吸光スペクトルは、金属系粒子集合体層20が積層されたガラス基板の裏面側(金属系粒子集合体層とは反対側)であって、基板面に垂直な方向から紫外~可視光領域の入射光を照射し、金属系粒子集合体側に透過した全方向における透過光の強度Iと、該測定サンプルの基板と同じ厚み及び材質の基板であって、金属系粒子集合体層20が積層されていない基板の面に垂直な方向から先と同じ入射光を照射し、入射面の反対側から透過した全方向における透過光の強度I0を、それぞれ積分球分光光度計を用いて測定することにより得られる。このとき、吸光スペクトルの縦軸である吸光度は、下記式:
 吸光度=-log10(I/I0
で表される。吸光スペクトルは、一般の分光光度計を用いて測定することができる。
 また、可視光領域において最も長波長側にあるプラズモンピークの極大波長やその吸光度を測定するにあたっては、対物レンズと分光光度計を用い、測定視野を絞って吸光スペクトル測定を行ってもよい。
 従来のプラズモン材料(金属ナノ粒子又はその集合体)の局在プラズモン共鳴現象を利用した発光増強においては、局在プラズモン共鳴の作用範囲が金属ナノ粒子表面から10nm以下と極めて狭い範囲内に限定されるという問題があった。これは、金属ナノ粒子と励起される分子との距離を大きくしていくと、局在プラズモン共鳴が有効に影響しなくなることによって発光増強効果は徐々に弱まり、フェルスター機構のエネルギー移動が発現する範囲(1nm~10nm)を超えると、発光増強効果をほとんど得ることができなかったためである。例えば特開2007-139540号公報には、互いに独立する多数の平板状金属粒子からなる粒子集合体を、局在プラズモン共鳴現象を利用して蛍光増強素子として用いることが開示されているが、この発光増強方法においても、効果的な発光増強効果を得るために有効な金属ナノ粒子と励起される分子との間の距離は10nm以下とされている。
 従って、従来の金属ナノ粒子又はその集合体の局在プラズモン共鳴現象を利用した発光素子の増強効果は、局在プラズモン共鳴の作用範囲の制限のために、必ずしも十分満足のいくものではなかった。例えば、発光素子が厚み数十nm又はそれ以上の発光層を有している場合には、仮に金属ナノ粒子を発光層に近接、あるいは内在させて配置することができたとしても、局在プラズモン共鳴による直接的な増強効果は、発光層の一部でしか得ることができないため、発光効率向上効果は部分的なものであった。
 これに対して、本発明に係る金属系粒子集合体層20は、これを構成する金属系粒子が、一般に発光増強効果が小さくなると考えられている比較的大粒径の粒子であるにもかかわらず(特開2007-139540号公報の段落0010~0011参照)、特定の形状を有する金属系粒子が特定の平均粒子間距離で離間して配置されていることに起因して、強いプラズモン共鳴を示すとともに、伸長されたプラズモン共鳴の作用範囲(プラズモンによる増強効果の及ぶ範囲)を示す。本発明に係る金属系粒子集合体層20によれば、従来では概ねフェルスター距離の範囲内(約10nm以下)に限定されていたプラズモン共鳴の作用範囲を、例えば数百nm程度まで伸長することができる。この作用範囲の伸長によって、発光層30の厚みが大きい場合であっても発光層全体を同時に増強させることが可能になり、これにより発光素子10の発光効率を顕著に向上させることができる。
 金属系粒子集合体層20は、強いプラズモン共鳴を示し、さらにはプラズモン共鳴の作用範囲が伸長されているため、例えば、10nm以上、さらには20nm以上、なおさらにはそれ以上の厚みを有する発光層30の全体を増強させることが可能である。また、例えば10nm、さらには数十nm(例えば20nm、30nm又は40nm)、なおさらには数百nm以上離れた位置に配置された発光層30をも効果的に発光増強させることができる。
 なお、プラズモンによる増強効果は、その性質上、発光層30と金属系粒子集合体層20との距離が大きくなるほど小さくなる傾向にあることから、当該距離は小さいほど好ましい。発光層30と金属系粒子集合体層20との距離は、好ましくは100nm以下であり、より好ましくは20nm以下であり、さらに好ましくは10nm以下である。
 金属系粒子集合体層20は、反射板としても機能させる観点から、発光層30の背面側に配置することが好ましい。また、プラズモンによる増強効果を効果的に得るために、金属系粒子集合体層20は、発光層30に隣接して、又はその近傍に配置することが好ましい。例えば金属系粒子集合体層20を発光層30の前面側に配置することも可能であるが、この場合、発光層30の背面側に別途、反射板を設置することが好ましい。
 また、金属系粒子集合体層20は、可視光領域における吸光スペクトルにおいて、金属系粒子の平均粒径及び平均粒子間距離に依存して、プラズモンピークの極大波長が特異なシフトを示し得る。具体的には、平均粒子間距離を一定にして金属系粒子の平均粒径を大きくするに従い、可視光領域において最も長波長側にあるプラズモンピークの極大波長が短波長側にシフト(ブルーシフト)する。同様に、金属系粒子が比較的大型である場合において、金属系粒子の平均粒径を一定にして平均粒子間距離を小さくするに従い(金属系粒子をより密に配置すると)、可視光領域において最も長波長側にあるプラズモンピークの極大波長が短波長側にシフトする。この特異な現象は、プラズモン材料に関して一般的に認められているミー散乱理論〔この理論に従えば、粒径が大きくなるとプラズモンピークの極大波長は長波長側にシフト(レッドシフト)する。〕に反するものである。
 上記のような特異なブルーシフトもまた、特定の形状を有する金属系粒子が特定の平均粒子間距離で離間して配置されていることに伴い、金属系粒子の局在プラズモン間の相互作用が生じていることによるものと考えられる。金属系粒子集合体層20(ガラス基板上に積層した状態)は、金属系粒子の形状や平均粒子間距離に応じて、吸光光度法によって測定される可視光領域における吸光スペクトルにおいて、最も長波長側にあるプラズモンピークが、例えば350~550nmの波長領域に極大波長を示し得る。また、金属系粒子集合体層20は、金属系粒子が十分に長い粒子間距離(例えば1μm)を置いて配置される場合と比較して、典型的には30~500nm程度(例えば30~250nm)のブルーシフトを生じ得る。
 このような、従来のものと比べてプラズモンピークの極大波長がブルーシフトしている金属系粒子集合体層20、例えば青色又はその近傍波長領域にプラズモンピークを有する金属系粒子集合体層20は、励起光源に紫外光又は紫色光を用い、青色又はその近傍波長領域の発光を生じる量子ドット材料や有機発光材料を用いる場合にとりわけ有用である。
 次に、金属系粒子集合体層20の具体的構成についてより詳細に説明する。
 金属系粒子を構成する金属は、ナノ粒子又はその集合体としたときに、吸光光度法による吸光スペクトル測定において紫外~可視領域に現れるプラズモンピークを示す材料である。このような金属としては、例えば、金、銀、銅、白金、パラジウムのような貴金属;アルミニウム、タンタルのような他の金属;該貴金属又は他の金属を含有する合金;該貴金属又は他の金属を含む金属化合物(金属酸化物や金属塩など)を挙げることができる。中でも、金、銀、銅、白金、パラジウム等の貴金属が好ましく、安価で吸収が小さい(可視光波長において誘電関数の虚部が小さい)という観点からは銀であることがより好ましい。
 金属系粒子の平均粒径は、200~1600nmの範囲内であり、発光層30の吸収効率及び発光を増強させる効果を効果的に得るために、好ましくは200~1200nm、より好ましくは250~500nm、さらに好ましくは300~500nmの範囲内である。金属系粒子の平均粒径は、金属系粒子集合体層20を適用する発光素子の種類(発光材料の種類など)や金属系粒子を構成する金属の種類に応じて適切に選択されることが好ましい。
 金属系粒子の平均粒径とは、二次元的に金属系粒子が配置された金属系粒子集合体層20の直上からのSEM観察画像において、無作為に粒子を10個選択し、各粒子像内に無作為に接線径を5本引き(ただし、接線径となる直線はいずれも粒子像内部のみを通ることができ、このうち1本は粒子内部のみ通り、最も長く引ける直線であるものとする)、その平均値(以下、この平均値を接線径平均値ともいう。)を各粒子の粒径としたときの、選択した10個の粒径の平均値である。接線径とは、粒子の輪郭(投影像)をこれに接する2本の平行線で挟んだときの間隔(日刊工業新聞社 「粒子計測技術」,1994,第5頁)を結ぶ垂線と定義する。
 平均粒径の測定方法についてより具体的に説明すると、まずSEM観察画像は、日本電子株式会社製の走査型電子顕微鏡「JSM-5500」を用いて測定する。次いで、得られた観察画像を、アメリカ国立衛生研究所製のフリー画像処理ソフト「ImageJ」を用いて横1280ピクセル×縦960ピクセルで読み込む。次に、Microsoft社製の表計算ソフト「excel」の乱数発生関数「RANDBETWEEN」を用いて、1~1280から10個の乱数(x1、x2、x3、x4、x5、x6、x7、x8、x9、x10)、1~960から10個の乱数(y1、y2、y3、y4、y5、y6、y7、y8、y9、y10)をそれぞれ得る。得られた各10個の乱数から10組の乱数組み合わせ(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)、(x5,y5)、(x6,y6)、(x7,y7)、(x8,y8)、(x9,y9)及び(x10,y10)を得る。1~1280から発生させた乱数の数値をx座標、1~960から発生させた乱数の数値をy座標として、10組の座標点(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)、(x5,y5)、(x6,y6)、(x7,y7)、(x8,y8)、(x9,y9)及び(x10,y10)を得る。そして、当該座標点を含む合計10個の粒子像のそれぞれについて上記の接線径平均値を得、次いで当該10個の接線径平均値の平均値として平均粒径を得る。10組の乱数組み合わせである10個の座標点の少なくともいずれか1つが粒子像内に含まれない場合、あるいは同一粒子内に2つ以上の座標点が含まれる場合には、この乱数組み合わせを破棄し、10個の座標点がすべて異なる粒子像内に含まれるまで乱数発生を繰り返す。
 金属系粒子の平均高さは、55~500nmの範囲内であり、発光層30の吸収効率及び発光を増強させる効果を効果的に得るために、好ましくは55~300nm、より好ましくは70~150nmの範囲内である。金属系粒子の平均高さとは、金属系粒子集合体層20のAFM観察画像において、無作為に粒子を10個選択し、これら10個の粒子の高さを測定したときの、10個の測定値の平均値である。
 金属系粒子のアスペクト比は1~8の範囲内であり、発光層30の吸収効率及び発光を増強させる効果を効果的に得るために、好ましくは2~8、より好ましくは2.5~8の範囲内である。金属系粒子のアスペクト比は、上記平均高さに対する上記平均粒径の比(平均粒径/平均高さ)で定義される。金属系粒子は真球状であってもよいが、上記理由から、アスペクト比が1を超える扁平形状を有していることが好ましい。
 金属系粒子は、効果の高いプラズモンを励起する観点から、その表面が滑らかな曲面からなることが好ましく、とりわけ表面が滑らかな曲面からなる扁平形状を有していることがより好ましいが、表面に微小な凹凸(粗さ)を幾分含んでいてもよく、このような意味において金属系粒子は不定形であってもよい。
 金属系粒子集合体層20の面内におけるプラズモン共鳴の強さの均一性に鑑み、金属系粒子間のサイズのバラツキはできるだけ小さいことが好ましい。ただし、粒径に多少バラツキが生じたとしても、大型粒子間の距離が大きくなることは好ましくなく、その間を小型の粒子が埋めることで大型粒子間の相互作用を発現しやすくすることが好ましい。
 金属系粒子集合体層20において金属系粒子は、その隣り合う金属系粒子との平均距離(平均粒子間距離)が1~150nmの範囲内となるように配置される。このように金属系粒子を密に配置することにより、強いプラズモン共鳴及びプラズモン共鳴の作用範囲の伸長などの効果を実現することができる。平均粒子間距離は、発光層30の吸収効率及び発光を増強させる効果を効果的に得るために、好ましくは1~100nm、より好ましくは1~50nm、さらに好ましくは1~20nmの範囲内である。平均粒子間距離が1nm未満であると、粒子間でデクスター機構に基づく電子移動が生じ、局在プラズモンの失活の点で不利となる。
 金属系粒子が互いに離間して配置されている金属系粒子集合体層20は、当該層として導電性を示さないものであり、具体的には、金属系粒子集合体層20にマルチメーター〔テスター(ヒューレット・パッカード社製「E2378A」)〕の一対のテスタープローブを10~15mm離して接触させたとき、レンジ設定「30MΩ」のときに、当該測定条件にて抵抗値が30MΩ以上である結果、「オーバーロード」と表示される。一部もしくは全ての金属系粒子間で電子の授受が可能であると、プラズモンピークは先鋭さを失い、バルク金属の吸光スペクトルに近づき、また高いプラズモン共鳴が得られない。従って、金属系粒子間は確実に離間されており、金属系粒子間には導電性物質が介在されないことが好ましい。
 平均粒子間距離とは、二次元的に金属系粒子が配置された金属系粒子集合体層20の直上からのSEM観察画像において、無作為に粒子を30個選択し、選択したそれぞれの粒子について、隣り合う粒子との粒子間距離を求めたときの、これら30個の粒子の粒子間距離の平均値である。隣り合う粒子との粒子間距離とは、すべての隣り合う粒子との距離(表面同士間の距離である)をそれぞれ測定し、これらを平均した値である。
 平均粒子間距離の測定方法についてより具体的に説明すると、まずSEM観察画像は、日本電子株式会社製の走査型電子顕微鏡「JSM-5500」を用いて測定する。次いで、得られた観察画像を、アメリカ国立衛生研究所製のフリー画像処理ソフト「ImageJ」を用いて横1280ピクセル×縦960ピクセルで読み込む。次に、Microsoft社製の表計算ソフト「excel」の乱数発生関数「RANDBETWEEN」を用いて、1~1280から30個の乱数(x1~x30)、1~960から30個の乱数(y1~y30)をそれぞれ得る。得られた各30個の乱数から30組の乱数組み合わせ(x1,y1)から(x30,y30)を得る。1~1280から発生させた乱数の数値をx座標、1~960から発生させた乱数の数値をy座標として、30組の座標点(x1,y1)~(x30,y30)を得る。そして、当該座標点を含む合計30個の粒子像のそれぞれについて、当該粒子と隣り合う粒子との粒子間距離を得、次いで当該30個の隣り合う粒子との粒子間距離の平均値として平均粒子間距離を得る。30組の乱数組み合わせである30個の座標点の少なくともいずれか1つが粒子像内に含まれない場合、あるいは同一粒子内に2つ以上の座標点が含まれる場合には、この乱数組み合わせを破棄し、30個の座標点がすべて異なる粒子像内に含まれるまで乱数発生を繰り返す。
 金属系粒子集合体層20に含まれる金属系粒子の数は30個以上であり、好ましくは50個以上である。金属系粒子を30個以上含む粒子集合体を形成することにより、金属系粒子の局在プラズモン間の相互作用によって強いプラズモン共鳴及びプラズモン共鳴の作用範囲の伸長が発現する。
 発光素子10の一般的な素子面積に照らせば、金属系粒子集合体層20に含まれる金属系粒子の数は、例えば300個以上、さらには17500個以上となり得る。金属系粒子集合体層20における金属系粒子の数密度は、7個/μm2以上であることが好ましく、15個/μm2以上であることがより好ましい。
 金属系粒子集合体層20は、基板上に金属系粒子集合体層20が積層された積層体として、発光素子10に組み込まれてもよい。この場合、発光素子10は、図1における「金属系粒子集合体層20」を上記積層体に置き換えたものとなる。基板は通常、金属系粒子集合体層20における発光層30とは反対側に配置される。金属系粒子集合体層20を形成するために製法上用いることができる形成用基板を、上記積層体を構成する基板としてそのまま用いることもできる。
 また、発光層30と金属系粒子集合体層20とは、一体的な部材として発光素子10に組み込まれてもよい。その例を図3に示す。図3に示される発光層一体型積層体は、基板70、金属系粒子集合体層20、絶縁層25、及び量子ドット発光材料35を含有する発光層30をこの順に含むものである。かかる積層体は、基板70上に金属系粒子集合体層20を形成した後、その上に絶縁層25を形成し、さらにその上に発光層30を形成することにより作製することができる。
 上記金属系粒子集合体層20を形成するための基板は、とりわけこの基板上に金属系粒子集合体層20が積層された積層体を発光素子10に組み込む場合には、非導電性材料からなる基板を用いることが好ましい。これは、基板を介して一部もしくは全ての金属系粒子間で電子の授受が可能であると、プラズモン共鳴効果が低減するためである。非導電性材料としては、ガラス、各種無機絶縁材料(SiO2、ZrO2、マイカ等)、各種樹脂材料等を挙げることができる。金属系粒子集合体層20が形成される基板の表面は、できるだけ平滑であることが好ましい。
 基板上に金属系粒子集合体層20が積層された積層体として、又は上記発光層一体型積層体として発光素子10に組み込まれる基板は、透光性を有する、あるいは光学的に透明な基板であってもよいし、光吸収性の基板であってもよい。ただし、発光素子10の背面側からの光出射を防止するためには、金属系粒子集合体層20の背面側に反射板としても機能する基板、すなわち反射基板を配置することが好ましい。この点で、発光素子10に組み込まれる上記基板は、反射基板であることが好ましい。一方、発光素子10に組み込まれる基板として透光性を有する、あるいは光学的に透明な基板を用いる場合には、その背面側にさらに反射基板を配置することが好ましい。
 図3に示されるように、発光素子10は、金属系粒子集合体層20上に、各金属系粒子の表面を覆う絶縁層25をさらに含むことが好ましい。絶縁層25は、金属系粒子集合体層20の非導電性を担保するうえで好ましく、また、金属系粒子集合体層20とこれに隣り合う他の層との間の電気的絶縁を図るうえでも好ましい。金属系粒子集合体層20をキャップする絶縁層25を設けることにより、金属系粒子集合体層20とこれに隣り合う他の層との間の電気的絶縁を図ることができるため、金属系粒子集合体層20を構成する金属系粒子に電子が直接移動し金属消光することを防止することができる。
 絶縁層25を構成する材料としては、良好な絶縁性を有するものであれば特に制限されず、例えば、スピンオングラス(SOG;例えば有機シロキサン材料を含有するもの)のほか、SiO2やSi34等を用いることができる。絶縁層25の厚みは、所望の絶縁性が確保される限り特に制限はないが、上述のように発光層30と金属系粒子集合体層20との距離は近いほど好ましいことから、所望の絶縁性が確保される範囲で薄いほどよい。
 発光層30からの2次光の極大発光波長は、金属系粒子集合体層20のプラズモンピークの極大波長と一致するか又は近いことが好ましい。これにより、プラズモン共鳴による増強効果をより効果的に高めることができる。金属系粒子集合体層20のプラズモンピークの極大波長は、これを構成する金属系粒子の金属種、平均粒径、平均高さ、アスペクト比及び/又は平均粒子間距離の調整により制御可能である。
 金属系粒子集合体層20は、例えば次のような方法によって作製することができる。
 (1)基板上において微小な種(seed)から金属系粒子を成長させていくボトムアップ法、
 (2)所定の形状を有する金属系粒子を所定の厚みを有する両親媒性材料からなる保護層で被覆した後、LB(Langmuir Blodgett)膜法により、これを基板上にフィルム化する方法、
 (3)その他、蒸着又はスパッタリングにより作製した薄膜を後処理する方法、レジスト加工、エッチング加工、金属系粒子が分散された分散液を用いたキャスト法など。
 例えば国際公開第2013/042449号には、上記(1)の一例として、スパッタンリング等により金属系粒子を基板上に成長させる製造方法が記載されている。また例えば国際公開第2014/045852号には、上記(3)の一例として、金属系粒子が分散された分散液を基板上に塗布し、得られた薄膜を金属系粒子集合体層へ形態変化させる製造方法が記載されている。本発明においても、これらの製造方法を好適に用いることができる。また、上記(1)の他の例として、金属系粒子を構成する金属カチオンを含む液体に基板を接触させた状態で金属カチオンを還元し、これにより金属系粒子集合体層を基板上に形成する方法を挙げることもできる。
 <第2の実施形態:発光素子を含むディスプレイ及び照明装置>
 上記第1の実施形態に係る発光素子10は、ディスプレイ(画像表示装置)や照明装置に好適に適用することができる。上記第1の実施形態に係る発光素子10を光源とするディスプレイ及び照明装置は、光吸収効率の比較的低い発光材料を用いる場合であっても、高い発光効率を示すことができ、また、色再現性にも優れている。
 上述のように、上記第1の実施形態に係る発光素子10の好ましい構成の1つは、反射機能付き光偏向部材60、導光板50、発光層30及び金属系粒子集合体層20をこの順に含む(ただし上述のように、反射機能付き光偏向部材60、導光板50は必須の部材ではない。)。この構成の発光素子10を例えば液晶表示装置に適用する場合、発光素子10は、反射機能付き光偏向部材60が液晶パネル側となるように液晶パネルの背面側に配置される。液晶パネルは、液晶セルの両面に偏光板を貼合してなる画像表示素子である。液晶セルのタイプは特に制限されない。上述のように、発光素子10の背面側からの光出射を防止するために、金属系粒子集合体層20の背面側に反射基板を配置することが好ましい。勿論、上記第1の実施形態に係る発光素子10は、液晶表示装置以外の他のディスプレイにも適用することができる。
 上記第1の実施形態に係る発光素子10は、そのまま照明装置として用いることができる。導光板50により励起光源40を面光源化すれば、面発光タイプの照明装置となる。照明装置においても、発光素子10の背面側からの光出射を防止するために、金属系粒子集合体層20の背面側に反射基板を配置してもよい。
 例えば上述のように、積分強度I2が積分強度I1よりも十分に大きい場合には、ディスプレイ及び照明装置に含まれる発光素子10において反射機能付き光偏向部材60を省略することができる。この場合、反射機能付き光偏向部材60の代わりに光拡散板などを配置してもよい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 <参考例>
 市販のタブレット型端末(アマゾン社製のモデル番号「C9R6QM」)を分解し、第1プリズムフィルム1/第2プリズムフィルム2/QDを含有するフィルム(QD発光材料を含有する発光層に相当)3/エッジライト型の励起光源(青色LED)4及び導光板5/反射板6がこの順に配置された図4に示される構造の発光素子Aを取り出した。QDを含有するフィルム3は、励起光源4からの青色光を吸収して、緑色光及び赤色光を発する。第1プリズムフィルム1と第2プリズムフィルム2とは、プリズムの延びる方向が直交している。第1プリズムフィルム1及び第2プリズムフィルム2は、再帰反射機能を有するものである。次いで、取り出した発光素子Aについて、エッジライト型の励起光源4のLEDのアノード側端回路、カソード側端回路に電源装置(ADVANTEST社製の「R6240A」)を接続した。
 <実施例1>
 (1)金属系粒子集合体層を有する発光素子の作製
 (1-1)金属系粒子集合体層の作製
 直流マグネトロンスパッタリング装置を用いて、下記の条件で、ソーダガラス基板70上に、銀粒子を極めてゆっくりと成長させ、基板70の表面の全面に金属系粒子集合体層を形成した。
 使用ガス:アルゴン、
 チャンバ内圧力(スパッタガス圧):10Pa、
 基板・ターゲット間距離:100mm、
 スパッタ電力:4W、
 平均粒径成長速度(平均粒径/スパッタ時間):0.9nm/分、
 平均高さ成長速度(=平均堆積速度=平均高さ/スパッタ時間):0.25nm/分、
 基板温度:300℃、
 基板サイズ及び形状:一辺が5cmの正方形。
 図6は、得られた金属系粒子集合体層20(以下、「製造例1の金属系粒子集合体層」ともいう。)を直上から見たときのSEM画像である。図6(a)は10000倍スケールの拡大像であり、図6(b)は50000倍スケールの拡大像である。また図7は、製造例1の金属系粒子集合体層20を示すAFM画像である。AFM像撮影にはキーエンス社製「VN-8010」を用いた。図7に示される画像のサイズは5μm×5μmである。
 AFM画像から、製造例1の金属系粒子集合体層20を構成する銀粒子の「平均高さ」を求めた。また、SEM画像から、上記の測定方法に従って、製造例1の金属系粒子集合体層20を構成する銀粒子の「平均粒径」及び「平均粒子間距離」を求め、得られた平均粒径及び平均高さから「アスペクト比」(平均粒径/平均高さ)を算出した。その結果、平均粒径は335nm、平均粒子間距離は16.7nm、平均高さは96.2nm、アスペクト比は3.48であった。テスター〔マルチメーター(ヒューレット・パッカード社製「E2378A」)〕を用いた上述の方法により、製造例1の金属系粒子集合体層20の導電性の有無を確認したところ、上述の測定条件にて抵抗値が30MΩ以上である結果、「オーバーロード」と表示された。製造例1の金属系粒子集合体層20は、導電性を有していないことが確認された。
 また、製造例1の比較対象として、直流マグネトロンスパッタリング法におけるスパッタ時間を変更することにより、比較製造例1及び比較製造例2の金属系粒子集合体層を作製した。比較製造例1の金属系粒子集合体層は、金属系粒子の平均高さが約10nmであること以外は製造例1と略同じ粒子形状、アスペクト比及び平均粒子間距離を有し、比較製造例2の金属系粒子集合体層は、金属系粒子の平均高さが約30nmであること以外は製造例1と略同じ粒子形状、アスペクト比及び平均粒子間距離を有するものであった。比較製造例1及び比較製造例2の金属系粒子集合体層も導電性を有していなかった。
 図8は、製造例1及び比較製造例1~2の金属系粒子集合体層の吸光光度法により測定された吸光スペクトルである。非特許文献(K. Lance Kelly, et al., "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment", The Journal of Physical Chemistry B, 2003, 107, 668)に示されているように、扁平形状の銀粒子は、それ単独で、平均粒径が200nmのとき約550nm付近に、平均粒径が300nmのときは650nm付近にプラズモンピークを持つことが一般的である。
 一方、製造例1の金属系粒子集合体層20は、これを構成する銀粒子の平均粒径が約300nm(335nm)であるにもかかわらず、図8に示されるように、可視光領域において最も長波長側にあるプラズモンピークの極大波長は約450nm付近と、短波長側にシフトしていることがわかる。この現象は、製造例1のように、銀粒子が上記所定の形状を有する大型の粒子であり、かつ上記所定の平均粒子間距離で極めて密に配置されている場合に発現し得る。このような現象は、粒子間が近接することにより、それぞれの粒子中に生起したプラズモンによる相互作用の存在によってしか合理的に解釈することは困難である。プラズモンピークの極大波長は金属系粒子の平均粒径にも依存する。例えば、比較製造例1及び比較製造例2では、平均粒径が小さいために製造例1と比較してかなり長波長側にプラズモンピークを有しており、その極大波長は、それぞれ約510nm、約470nmである。また製造例1では、可視光領域において最も長波長側にあるプラズモンピークの極大波長における吸光度が約1.9と、比較製造例1及び2に比べて極めて高く、これより製造例1の金属系粒子集合体層20は、極めて強いプラズモン共鳴を示すことがわかる。
 なお、図8に示される吸光スペクトルは、金属系粒子集合体層が積層された基板の裏面(金属系粒子集合体層とは反対側)側であって、基板面に垂直な方向から紫外~可視光領域の入射光を照射し、金属系粒子集合体層側に透過した全方向における透過光の強度Iと、上記基板と同じ厚み、材質の基板であって、金属系粒子集合体層が積層されていない基板の面に垂直な方向から先と同じ入射光を照射し、入射面の反対側から透過した全方向における透過光の強度I0を、それぞれ積分球分光光度計を用いて測定することによって得られたものである。縦軸の吸光度は、下記式:
 吸光度=-log10(I/I0
で表される。
 (1-2)金属系粒子集合体層を有する発光素子の作製
 上記(1)で作製した製造例1に係るソーダガラス基板70上の金属系粒子集合体層20の上に、SOG(スピンオングラス)溶液をスピンコートして、平均厚み30nmの絶縁層25を積層した。SOG溶液には、有機系SOG材料である東京応化工業株式会社製「OCD T-7 5500T」をエタノールで希釈したものを用いた。「平均厚み」とは、金属系粒子集合体層上に形成するときと同じ条件で(同じ面積に、同じ組成の塗布液を同じ塗布量で)、ソーダガラス基板70上に直接スピンコートしたときの、任意の5点における厚みの平均値である。次に、絶縁層25上に真空蒸着によって、平均厚み80nmのAlq3発光層30(Alq3は発光が緑色の発光材料である。)を形成して、金属系粒子集合体層を有する発光層一体型積層体を得た。
 次に、図9に示されるように、上で得られた発光層一体型積層体上に、上記参考例で用いたエッジライト型の励起光源(青色LED)4及び導光板5、第2プリズムフィルム2、及び第1プリズムフィルム1をこの順に配置して、実施例1の発光素子を得た。また、ソーダガラス基板70の裏面側に黒色基板100を重ねて置いた。
 また、図10に示されるように、Ag反射板(Agをソーダガラス上に蒸着成膜した基板)110の上に平均厚み80nmのAlq3発光層30をソーダガラス上に成膜した基板を重ねたものを、実施例1の金属系粒子集合体層を有する発光層一体型積層体の代わりに用いたこと以外は実施例1と同様にして、金属系粒子集合体層を有しない比較例1の発光素子を得た。また、Ag反射板110の裏面に黒色基板100を重ねて置いた。
 さらに、図11に示されるように、黒色基板100上に、上記参考例で用いたエッジライト型の励起光源(青色LED)4及び導光板5、第2プリズムフィルム2、及び第1プリズムフィルム1をこの順に配置して、バックグラウンドの発光素子を得た。この発光素子は発光層を有しておらず、励起光源4からの青色光のみを取り出し光として出射するものである。
 (2)発光素子の発光増強の評価
 図12を参照して、発光素子を7mAで定電流駆動させることにより発光させた。発光素子の第1プリズムフィルム1上に分光測定器90(大塚電子社製の「MCPD-3000」)を直接当て、第1プリズムフィルム面に対して垂直方向に出射する発光素子からの発光の発光スペクトルを分光測定器90により測定した。得られた実施例1、比較例1、及びバックグラウンドの発光素子の発光スペクトルを図13に示す。
 図13に示されるとおり、実施例1の発光素子は、比較例1の発光素子に比べて、特に緑色~黄色領域において発光が増強されている。発光波長540nmにおける発光増強倍率(実施例1の発光強度/比較例1の発光強度×100)は、168%であった。
 1 第1プリズムフィルム、2 第2プリズムフィルム、3 QDEF、4 励起光源、5 導光板、6 反射板、10 発光素子、20 金属系粒子集合体層、25 絶縁層、30 発光層、35 量子ドット発光材料、40 励起光源、50 導光板、50a 導光板の第1主面、50b 導光板の第2主面、60 反射機能付き光偏向部材、70 基板、80 対物レンズ、90 分光測定器、100 黒色基板、110 Ag反射板、F 1次光、F1 導光板の第1主面から出射する1次光、F2 導光板の第2主面から出射する1次光、S 2次光、L 取り出し光。

Claims (13)

  1.  1次光を発する励起光源と、前記1次光を吸収して2次光を発する発光層と、金属系粒子集合体層と、を含み、
     前記金属系粒子集合体層は、30個以上の金属系粒子が互いに離間して二次元的に配置されてなり、前記金属系粒子の平均粒径が200~1600nmの範囲内、平均高さが55~500nmの範囲内、前記平均高さに対する前記平均粒径の比で定義されるアスペクト比が1~8の範囲内、隣り合う金属系粒子間の平均距離が1~150nmの範囲内であり、
     前記1次光の一部と前記2次光の少なくとも一部との混合光を出射する、発光素子。
  2.  前記発光層に入射される前記1次光が面状である、請求項1に記載の発光素子。
  3.  導光板をさらに含み、
     前記1次光は、前記導光板を介して前記発光層に入射される、請求項2に記載の発光素子。
  4.  前記導光板、前記発光層及び前記金属系粒子集合体層をこの順に含む、請求項3に記載の発光素子。
  5.  前記導光板における前記発光層とは反対側の主面から出射する1次光F1の積分強度をI1、前記導光板における前記発光層側の主面から出射する1次光F2の積分強度をI2とするとき、下記式:
     I2≧I1
    を充足する、請求項3又は4に記載の発光素子。
  6.  反射機能付き光偏向部材をさらに含む、請求項1~5のいずれか1項に記載の発光素子。
  7.  前記反射機能付き光偏向部材、前記導光板、前記発光層及び前記金属系粒子集合体層をこの順に含む、請求項6に記載の発光素子。
  8.  前記導光板における前記発光層とは反対側の主面から出射する1次光F1の積分強度をI1、前記導光板における前記発光層側の主面から出射する1次光F2の積分強度をI2、前記1次光F1のうち、前記反射機能付き光偏向部材に到達し、それによって反射される1次光F1-1の積分強度をI1-1とするとき、下記式:
     I1≦(I2+I1-1)
    を充足する、請求項7に記載の発光素子。
  9.  前記発光層が量子ドット発光材料を含む、請求項1~8のいずれか1項に記載の発光素子。
  10.  前記量子ドット発光材料は、カドミウム以外の元素で構成される、請求項9に記載の発光素子。
  11.  前記発光層は、厚みが500nm以下である、請求項1~10のいずれか1項に記載の発光素子。
  12.  請求項1~11のいずれか1項に記載の発光素子を含む、ディスプレイ。
  13.  請求項1~11のいずれか1項に記載の発光素子を含む、照明装置。
PCT/JP2016/059108 2015-03-27 2016-03-23 発光素子 WO2016158597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177030181A KR20170130496A (ko) 2015-03-27 2016-03-23 발광 소자
CN201680018992.8A CN107407751A (zh) 2015-03-27 2016-03-23 发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066319A JP2016186875A (ja) 2015-03-27 2015-03-27 発光素子
JP2015-066319 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158597A1 true WO2016158597A1 (ja) 2016-10-06

Family

ID=57005060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059108 WO2016158597A1 (ja) 2015-03-27 2016-03-23 発光素子

Country Status (5)

Country Link
JP (1) JP2016186875A (ja)
KR (1) KR20170130496A (ja)
CN (1) CN107407751A (ja)
TW (1) TW201640957A (ja)
WO (1) WO2016158597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099119A (zh) * 2020-09-28 2020-12-18 深圳市隆利科技股份有限公司 用于背光模组的反射层制备工艺及背光模组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056443A1 (ja) 2016-09-26 2018-03-29 三菱電機株式会社 静電容量検出装置及び画像読取装置
JP7443889B2 (ja) * 2020-03-31 2024-03-06 住友金属鉱山株式会社 赤外線遮蔽膜形成用分散液
CN118202478A (zh) * 2021-11-12 2024-06-14 索尼集团公司 发光器件和图像显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005098A (ja) * 2005-06-23 2007-01-11 Seiko Instruments Inc 蛍光体フィルム、それを用いた照明装置ならびに表示装置
JP2011221376A (ja) * 2010-04-13 2011-11-04 Dainippon Printing Co Ltd 色補正機能を有するプリズムシート及び面光源装置
WO2013042449A1 (ja) * 2011-09-22 2013-03-28 住友化学株式会社 金属系粒子集合体の製造方法
JP2013093317A (ja) * 2011-10-03 2013-05-16 Sumitomo Chemical Co Ltd 量子ドット発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979932B2 (ja) * 2011-03-31 2016-08-31 住友化学株式会社 有機エレクトロルミネッセンス素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005098A (ja) * 2005-06-23 2007-01-11 Seiko Instruments Inc 蛍光体フィルム、それを用いた照明装置ならびに表示装置
JP2011221376A (ja) * 2010-04-13 2011-11-04 Dainippon Printing Co Ltd 色補正機能を有するプリズムシート及び面光源装置
WO2013042449A1 (ja) * 2011-09-22 2013-03-28 住友化学株式会社 金属系粒子集合体の製造方法
JP2013093317A (ja) * 2011-10-03 2013-05-16 Sumitomo Chemical Co Ltd 量子ドット発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099119A (zh) * 2020-09-28 2020-12-18 深圳市隆利科技股份有限公司 用于背光模组的反射层制备工艺及背光模组

Also Published As

Publication number Publication date
JP2016186875A (ja) 2016-10-27
TW201640957A (zh) 2016-11-16
KR20170130496A (ko) 2017-11-28
CN107407751A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US9401497B2 (en) Metal-based particle assembly
US10379267B2 (en) Metal-based particle assembly
KR101182462B1 (ko) 고효율 유기발광소자 및 이의 제조 방법
KR102060939B1 (ko) 유기 일렉트로 루미네선스 소자 및 전자 기기
EP2693845A1 (en) Metal particle assembly
US9257662B2 (en) Quantum dot light-emitting device
EP3745818B1 (en) Organic electroluminescent element
US9693424B2 (en) Metal-based particle assembly
WO2016158597A1 (ja) 発光素子
JP2011150821A (ja) エレクトロルミネッセンス素子
WO2019028243A1 (en) PHOSPHORESCENT TRANSMITTERS AND EXTRINSIC METHOD FOR INCREASING STABILITY
JP7004613B2 (ja) 有機エレクトロルミネッセンス素子
JP7004614B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030181

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16772478

Country of ref document: EP

Kind code of ref document: A1