WO2016157994A1 - 内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体 - Google Patents

内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2016157994A1
WO2016157994A1 PCT/JP2016/053080 JP2016053080W WO2016157994A1 WO 2016157994 A1 WO2016157994 A1 WO 2016157994A1 JP 2016053080 W JP2016053080 W JP 2016053080W WO 2016157994 A1 WO2016157994 A1 WO 2016157994A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
subject
light irradiation
image
size
Prior art date
Application number
PCT/JP2016/053080
Other languages
English (en)
French (fr)
Inventor
加來 俊彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16771878.2A priority Critical patent/EP3278706A4/en
Publication of WO2016157994A1 publication Critical patent/WO2016157994A1/ja
Priority to US15/690,295 priority patent/US10806336B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present invention relates to measurement of the size of a lesion using an endoscope. More specifically, the present invention relates to an endoscope diagnosis apparatus and a lesion size measurement method that enable a lesion size measurement to be easily performed by an endoscope.
  • An endoscopic diagnostic apparatus is used to observe the inside of the subject.
  • the insertion portion of the endoscope is inserted into the body cavity of the subject, and, for example, white light is irradiated to the subject (observation region) as observation light from the distal end portion thereof,
  • An endoscope image is picked up by receiving the reflected light.
  • the captured endoscopic image is displayed on the display unit, and the endoscopic image is observed by the operator of the endoscopic diagnostic apparatus.
  • a method uses a treatment instrument such as a probe with a scale to measure the size of a lesion.
  • a scaled probe is inserted from the entrance of the forceps opening of the endoscope and protruded from the exit of the forceps opening at the distal end.
  • the tip of the scaled probe is flexible and has a scale for measuring the size.
  • the size of the lesioned part of the subject is measured by pressing and bending such a flexible distal end against the subject and reading the scale on the distal end.
  • Patent Document 1 since a water flow is jetted from two openings at the distal end of an insertion portion of an endoscope to a lesioned part and the distance between the two water streams is equal to the distance between the two openings, the lesioned part It is described that it is determined whether or not is equal to or greater than a treatment reference value.
  • Patent Document 2 a treatment tool having an arm part for setting measurement points is used to set a plurality of measurement points around the lesion part, and the lesion part is calculated by calculation based on the coordinate information of the measurement point. Is described.
  • the endoscope diagnostic apparatus of Patent Document 1 a dedicated endoscope having two openings for outputting two water flows from the distal end portion of the insertion portion is necessary. If this endoscope is not used, the size of the lesioned portion is reduced. There is a problem that it cannot be measured.
  • the endoscope diagnostic apparatus of Patent Document 2 requires a robot arm to measure the size of a lesioned part, and further operates a complicated robot arm to set a plurality of measurement points around the lesioned part. There is a problem that it must be set.
  • An object of the present invention is to eliminate such problems of the prior art, and an endoscope diagnostic apparatus and a lesion size that can easily measure the size of a lesion such as a tumor using an endoscope.
  • An object of the present invention is to provide a measurement method, a program for executing the lesion size measurement method, and a recording medium on which the program is recorded.
  • an endoscope diagnosis apparatus includes an endoscope having a forceps opening, A light irradiating means for projecting light of a regular repeating pattern that can protrude from the forceps opening; From the measurement image, which is an image captured by the endoscope in the state of irradiating light from the light irradiating means, an area where the repetitive pattern is different from the repetitive pattern of the light irradiated by the light irradiating means is detected.
  • An image analysis means for calculating at least one of the length and area of a lesion using the number of repeating patterns in regions having different sizes and the size of a repeating unit in the repeating patterns.
  • a diagnostic device is provided.
  • the light irradiation means emits parallel light.
  • the light irradiating means irradiates the diffused light, and further has a distance detecting means for detecting the distance between the light irradiating means and the subject when the measurement image is captured, It is preferable to detect the size of the repetitive unit in the repetitive pattern on the subject using the distance between the light irradiation means and the subject detected by the distance detecting means and the spread angle of the diffused light.
  • the distance detection unit is configured to capture the measurement image from the position of the light irradiation unit in the measurement image and the position of the light irradiation unit in the image captured with the light irradiation unit in contact with the subject.
  • the distance detection unit detects that the light irradiation unit is brought into contact with the subject from a change in the amount of light emitted from the light irradiation unit.
  • the regular repeating pattern of light irradiated by the light irradiation means is a stripe shape or a lattice shape.
  • the lesion size measuring method of the present invention uses an endoscope having a forceps opening, and the light irradiation means for irradiating the regularly repeated pattern light projected from the forceps opening receives the light of the repetition pattern. Irradiate the specimen, image the subject, In the image obtained by imaging the subject, a region where the repetitive pattern is different from the repetitive pattern of the light irradiated on the subject is detected.
  • a method for detecting a size of a lesion part wherein at least one of the length and area of the lesion part is calculated from the number of repeating patterns in regions where the repeating pattern is different and the size of a repeating unit in the repeating pattern. .
  • the light irradiation means emits parallel light. Further, the light emitted by the light irradiating means is diffused light, and based on the distance between the light irradiating means and the subject and the spread angle of the diffused light when the subject is imaged by irradiating light of a repetitive pattern The size of the repeating unit of the repeating pattern on the subject is preferably detected.
  • light irradiation is performed based on the position of the light irradiation means in the image obtained by irradiating the subject with the light of the repetitive pattern and the position of the irradiation means in the image obtained when the light irradiation means is in contact with the subject. It is preferable to detect the distance between the means and the subject. Further, it is preferable to know that the light irradiation means is in contact with the subject from the change in the amount of light emitted from the light irradiation means. Furthermore, it is preferable that the repeating pattern is a stripe shape or a lattice shape.
  • the program of the present invention includes a step of detecting a region in which the repetitive pattern is different from the repetitive pattern of the irradiated light from an image obtained by irradiating the subject with a regular repetitive pattern. Factoring the number of repeating patterns in areas where the repeating patterns are different; and There is provided a program for causing a computer to execute a step of calculating at least one of a length and an area of a lesion from the number of repeating patterns in regions having different repeating patterns and the size of a repeating unit in the repeated pattern.
  • the recording medium of the present invention is a step of detecting a region where the repetitive pattern is different from the repetitive pattern of the irradiated light, from an image obtained by irradiating the subject with a regular repetitive pattern, Counting the number of repeating patterns in regions where the repeating patterns are different; and A computer on which a program for causing a computer to execute the step of calculating at least one of the length and area of a lesion from the number of repeating patterns in regions where the repeating patterns are different and the size of the repeating unit in the repeating patterns is recorded A readable recording medium is provided.
  • the size of a lesion such as a tumor can be easily measured using an endoscope.
  • FIG. 1 It is a conceptual diagram which shows an example of the endoscope diagnostic apparatus of this invention. It is a block diagram showing the internal structure of the endoscope diagnostic apparatus shown in FIG. It is a conceptual diagram showing the structure of the front-end
  • A) And (B) is a conceptual diagram for demonstrating the size measuring method of the lesioned part of this invention.
  • A) And (B) is a conceptual diagram for demonstrating the size measuring method of the lesioned part of this invention.
  • A) And (B) is a conceptual diagram for demonstrating the size measuring method of the lesioned part of this invention.
  • FIG. 1 conceptually shows an example of an endoscopic diagnostic apparatus of the present invention that implements the method for measuring the size of a lesioned part of the present invention.
  • FIG. 2 is a block diagram showing the internal configuration of the endoscope diagnosis apparatus shown in FIG.
  • the endoscope diagnostic apparatus 10 captures an endoscopic image of a subject (observation region) with a light source device 12 and observation light supplied from the light source device 12.
  • An endoscope 14, a processor device 16 that performs image processing on an endoscope image captured by the endoscope 14, a display device 18 that displays an endoscope image after image processing that is output from the processor device 16, and an input It is comprised with the input device 20 which receives operation.
  • the endoscope diagnostic apparatus 10 is inserted through a forceps hole 30a described later, inserted through a forceps channel 50, protrudes from a forceps port 74, and is applied to a subject. It has a light irradiation probe 60 (one aspect of light irradiation means) that irradiates light with a regular repeating pattern such as a stripe shape or a lattice shape.
  • the light source device 12 includes a light source control unit 22, a laser light source LD, and a duplexer 26.
  • a narrow band light having a constant blue wavelength range (for example, center wavelength ⁇ 10 nm) having a center wavelength of 445 nm is emitted from the laser light source LD.
  • the laser light source LD is a light source that emits excitation light for generating white light (pseudo white light) from a phosphor that will be described later as illumination light, and is a light source control that is controlled by the control unit 68 of the processor device 16 that will be described later.
  • the unit 22 performs on / off (lighting off / on) control and light amount control.
  • the laser light source LD a broad area type InGaN laser diode can be used, and an InGaNAs laser diode, a GaNAs laser diode, or the like can also be used.
  • the white light source for generating white light is not limited to the combination of excitation light and phosphor, and any light source that emits white light may be used.
  • a xenon lamp, a halogen lamp, a white LED (light emitting diode) Etc. can also be used.
  • the wavelength of the laser light emitted from the laser light source LD is not limited to the above example, and laser light having a wavelength that plays the same role can be selected as appropriate.
  • Laser light emitted from the laser light source LD is incident on the optical fiber via a condenser lens (not shown), is demultiplexed into two systems of light by the demultiplexer 26, and is transmitted to the connector portion 32A.
  • the duplexer 26 includes a half mirror, a reflection mirror, and the like.
  • the endoscope 14 includes an illumination optical system that emits two systems (two lights) of illumination light from the distal end surface of the insertion portion that is inserted into the subject, and one system (1) that captures an endoscopic image of the subject. And an imaging optical system of the eye).
  • the endoscope 14 includes an insertion unit 28, an operation unit 30 that performs an operation for bending and observing the distal end of the insertion unit 28, and a connector unit 32A that detachably connects the endoscope 14 and the light source device.
  • a connector portion 32B for detachably connecting the endoscope 14 and the processor device 16 is provided.
  • a water supply connector for connecting the endoscope 14 and the water supply source and an air supply connector for connecting the endoscope 14 and the air supply source are provided on the back surface side of the connector portion 32A in FIG.
  • the endoscope 14 is basically a known electronic endoscope except that it corresponds to the measurement of the size of a lesion portion described later.
  • the insertion portion 28 includes a flexible soft portion 34, a bending portion 36, and an endoscope distal end portion 38.
  • the bending portion 36 is provided between the flexible portion 34 and the endoscope distal end portion 38 and is configured to be bent by a turning operation of an angle knob 40 disposed in the operation portion 30.
  • the bending portion 36 can be bent in an arbitrary direction and an arbitrary angle in accordance with a portion of the subject in which the endoscope 14 is used, and the endoscope distal end portion 38 can be directed to a desired observation portion. it can.
  • an endoscope distal end surface 46 which is the distal end surface of the insertion portion 28 (endoscope distal end portion 38), has two illumination windows 42A and 42B for irradiating the subject with light, and the subject.
  • a system of observation window 44 for imaging reflected light from the light source, a forceps port 74, an air / water supply port 76, and the like are arranged.
  • the observation window 44, the forceps port 74, and the air / water supply port 76 are arranged at the center of the endoscope distal end surface 46.
  • the illumination windows 42A and 42B are arranged on both sides of the observation window 44.
  • the forceps port 74 is an opening serving as an outlet of a treatment tool (probe) such as a forceps or a light irradiation probe 60 described later.
  • the treatment tool is inserted from the forceps hole 30a provided in the operation unit 30, is inserted through the forceps channel 50, protrudes from the forceps port 74 of the endoscope distal end surface 46, and is used for treatment.
  • the air / water supply port 76 is for spraying water and air to clean the observation window 44.
  • the optical fiber 48A is accommodated in the back of the illumination window 42A.
  • the optical fiber 48A is laid on the light source device 12 via the endoscope distal end portion 38 of the insertion portion 28, the bending portion 36 and the flexible portion 34, and the connector portion 32A.
  • a phosphor 54A is disposed at the tip of the optical fiber 48A (on the illumination window 42A side), and an optical system such as a lens 52A is attached to the tip of the phosphor 54A.
  • an optical fiber 48B having an optical system such as a phosphor 54B and a lens 52B at the tip is housed.
  • the phosphors 54A and 54B absorb a part of the blue laser light from the laser light source LD and excite and emit green to yellow, for example, a plurality of types of fluorescent materials (for example, YAG-based fluorescent materials or BAM (BaMgAl 10 O 17 )). A fluorescent substance).
  • fluorescent materials for example, YAG-based fluorescent materials or BAM (BaMgAl 10 O 17 )
  • BAM BaMgAl 10 O 17
  • a fluorescent substance When excitation light for white light observation is irradiated onto the phosphors 54A and 54B, green to yellow excitation emission light (fluorescence) emitted from the phosphors 54A and 54B and the phosphors 54A and 54B are transmitted without being absorbed. Combined with the blue laser light, white light (pseudo white light) is generated.
  • FIG. 4 is a graph showing an emission spectrum obtained by converting the wavelength of blue laser light and blue laser light from a blue laser light source with a phosphor.
  • the blue laser light emitted from the laser light source LD is represented by a bright line having a central wavelength of 445 nm, and the excitation light emitted from the phosphors 54A and 54B by the blue laser light has a spectral intensity whose emission intensity increases in a wavelength range of approximately 450 nm to 700 nm. Intensity distribution.
  • the pseudo white light described above is formed by the combined light of the excitation light and the blue laser light.
  • the white light referred to in the present invention is not limited to one that strictly includes all wavelength components of visible light.
  • the illumination optical systems on the illumination window 42A side and the illumination window 42B side have the same configuration and function, and basically the same illumination light is emitted from the illumination windows 42A and 42B at the same time. Different illumination lights can be irradiated from the illumination windows 42A and 42B. It is not essential to have an illumination optical system that emits two systems of illumination light. For example, an illumination optical system that emits one or four systems of illumination light can realize the same function.
  • An optical system such as an objective lens unit 56 for capturing the image light of the subject is attached to the back of the observation window 44, and a CCD (Charge) for acquiring image information of the subject is attached to the back of the objective lens unit 56.
  • An imaging element 58 such as a coupled device (Image) sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor is attached.
  • the imaging element 58 receives light from the objective lens unit 56 on the imaging surface (light receiving surface), photoelectrically converts the received light, and outputs an imaging signal (analog signal).
  • the R color about 580 nm to 760 nm
  • G color about 450 nm to 630 nm
  • B color having a spectral transmittance that divides the wavelength range of about 370 to 720 nm of visible light into three parts
  • a color filter of about 380 nm to 510 nm is provided, and a plurality of sets of pixels are arranged in a matrix form with a set of three pixels of R, G, and B pixels.
  • the light guided from the light source device 12 by the optical fibers 48A and 48B is irradiated from the endoscope distal end portion 38 toward the subject. Then, the state of the observation region of the subject irradiated with the illumination light is imaged on the imaging surface of the imaging element 58 by the objective lens unit 56, and photoelectrically converted by the imaging element 58 and imaged. From the imaging element 58, an imaging signal (analog signal) of an endoscope image of the imaged subject is output.
  • the imaging signal (analog signal) of the endoscopic image output from the imaging device 58 is input to the A / D converter 64 through the scope cable 62.
  • the A / D converter 64 converts an image signal (analog signal) from the image sensor 58 into an image signal (digital signal).
  • the converted image signal is input to the image processing unit 70 of the processor device 16 via the connector unit 32B.
  • the processor device 16 includes a control unit 68, an image processing unit 70, a storage unit 72, a distance detection unit 78 (one mode of distance detection means), and an image analysis unit 80 (one mode of image analysis means). . Further, the display device 18 and the input device 20 are connected to the control unit 68.
  • the processor device 16 controls the light source control unit 22 of the light source device 12 on the basis of an instruction input from the imaging switch of the endoscope 14 or the input device 20, and the endoscope image input from the endoscope 14.
  • the image signal is subjected to image processing, and the endoscope image after the image processing is output to the display device 18.
  • the processor device 16 may be configured using a computer, for example.
  • the image processing unit 70 performs various preset image processing on the image signal of the endoscope image input from the endoscope 14 and outputs the image signal of the endoscope image after the image processing.
  • the image signal of the endoscope image after the image processing is sent to the control unit 68.
  • the image signal of the endoscope image after the image processing generated by the image processing unit 70 is also supplied to the distance detection unit 78 and the image analysis unit 80.
  • the image processing unit 70 performs lens distortion correction on the endoscopic image at least when measuring the size of the lesioned part. Note that the lens distortion correction may be performed by a known method.
  • the distance detecting unit 78 measures the distance between the light irradiation probe 60 and the subject when measuring the size of a lesioned part to be described later.
  • a light irradiation probe 60 that irradiates light with a regular repeating pattern is used, and the subject is irradiated with light having a regular pattern such as a stripe shape from the light irradiation probe 60.
  • an image for measurement which is an endoscopic image for measuring the size of the lesioned part is captured, and the image analysis unit 80 analyzes the measurement image, thereby measuring the size of the lesioned part.
  • the distance detection unit 78 is a distance between the tip of the light irradiation probe 60 and the subject when the measurement image is captured. Measure.
  • the image analysis unit 80 analyzes the measurement image and calculates at least one of the length and area of the lesion.
  • the distance detector 78 and the image analyzer 80 will be described in detail later.
  • the control unit 68 performs overall control of the endoscope diagnostic apparatus 10 such as display by the display device 18, operation of the light source control unit 22, and image processing by the image processing unit 70. Further, the control unit 68 controls the operation of the light source control unit 22 of the light source device 12 based on an instruction from the imaging switch of the endoscope 14 or the input device 20, or, for example, one (one frame) endoscope
  • the mirror image is controlled to be stored in the storage unit 72 as a unit.
  • the input device 20 is a known input device configured with a keyboard, a mouse, and the like.
  • the display device is also a known display device (display) configured by a liquid crystal display or the like.
  • the endoscope diagnosis apparatus 10 of the present invention includes the light irradiation probe 60 that irradiates light with a regular repetitive pattern.
  • the light irradiation probe 60 is inserted through the forceps hole 30 a of the endoscope 14, inserted through the forceps channel 50, and has a long enough length so that the distal end can protrude from the forceps port 74 of the endoscope distal end surface 46.
  • light having a regular repeating pattern such as a stripe shape is irradiated from the tip.
  • Such a light irradiation probe 60 includes a light source, a flexible long tubular body through which a conducting wire, an optical fiber, and the like are inserted, a filter (mask) for irradiating (projecting) light with a regular repeating pattern, and the like.
  • a filter mask
  • irradiating projected light with a regular repeating pattern
  • Various configurations using can be used.
  • An example of the configuration includes a light source and an electrical system such as a switch that turns the light source on / off, and an optical fiber that passes through the inside of a tubular body for propagating light irradiated by the light source and irradiating the filter.
  • an optical system such as a light source, a filter for irradiating light of a repetitive pattern, and a lens is provided at one end of a long tubular body having solubility, and only a conducting wire is inserted into the tubular body.
  • a configuration in which an electrical system such as a switch is provided at the opposite end of the optical system may also be used.
  • the program of the present invention is a program that causes a computer to carry out the following operations
  • the recording medium of the present invention is a computer-readable recording medium on which the program is recorded.
  • the laser light source LD is turned on with a predetermined light emission amount controlled by the light source control unit 22.
  • Laser light having a central wavelength of 445 nm emitted from the laser light source LD is applied to the phosphors 54A and 54B, and white light is emitted from the phosphors 54A and 54B.
  • White light emitted from the phosphors 54A and 54B is applied to the subject, and the reflected light is received by the image sensor 58 to capture an endoscopic image of the subject.
  • the imaging signal (analog signal) of the endoscopic image output from the imaging element 58 is converted into an image signal (digital signal) by the A / D converter 64, and various image processing is performed by the image processing unit 70.
  • An image signal of an endoscopic image after image processing is output.
  • the control unit 68 displays an endoscopic image corresponding to the image signal of the endoscopic image after image processing on the display device 18, and the image signal of the endoscopic image is stored in the storage unit 72 as necessary. Is remembered.
  • the size measurement of the lesioned part is performed as follows. As described above, in the present invention, the size measurement of the lesioned part is performed by the light irradiation probe 60 that irradiates light with a regular repetitive pattern. To do.
  • an operator such as a doctor inserts the light irradiation probe 60 into the forceps hole 30a with the tip on the light irradiation side, and inserts the forceps channel 50, as shown in FIG. As conceptually shown, the distal end portion of the light irradiation probe 60 is projected from the endoscope distal end surface 46.
  • the light irradiation probe 60 irradiates the observation region of the subject H with a regularly repeating pattern of light L (hereinafter also simply referred to as pattern light L). During this time, as described above, an endoscopic image of the subject H is captured and displayed on the display device 18.
  • the endoscope image captured by the endoscope 14 when the size measurement instruction is issued is the size measurement of the lesioned part. Is sent from the image processing unit 70 to the image analysis unit 80 as a measurement image for performing the above.
  • the pattern light L is, for example, stripe-shaped (stripe-shaped) light in which linear (band-shaped) light having a certain width is arranged at regular intervals in a direction orthogonal to the longitudinal direction.
  • the pattern light L on the subject H is almost the same stripe pattern as the pattern light L irradiated by the light irradiation probe 60.
  • the lesioned part t such as a tumor has irregularities on the surface, whether it is a raised type or a flat type.
  • the pattern light L in FIG. 5 has almost the same pattern as the pattern light L irradiated by the light irradiation probe 60 in the region where there is no lesion part t.
  • the disturbance or distortion according to the irregularities on the surface of the lesion part t Etc. occur. That is, the pattern light L of the lesioned part t is different from the pattern light L irradiated by the light irradiation probe 60. Therefore, the lesioned part t can be detected by detecting a region where the pattern light L in the measurement image is different from the pattern light L irradiated by the light irradiation probe 60.
  • the shape (pattern) of the pattern light L irradiated by the light irradiation probe 60 is a stripe shape, and the line width and interval in this stripe are known. That is, the shape of the repeated pattern of the pattern light L irradiated by the light irradiation probe 60 and the size of the repeating unit in the repeated pattern are known. Therefore, the measurement image is analyzed, the region where the pattern light L in the measurement image is different from the pattern light L irradiated by the light irradiation probe 60 is detected, and the number of lines where the pattern light L is different is detected. If counted, the size (length) S of the lesioned part t can be detected.
  • the image analysis unit 80 performs image analysis on the supplied measurement image, and in the measurement image, the pattern light L is different from the pattern light L irradiated by the light irradiation probe 60.
  • the lesioned part t Size S can be calculated.
  • the size S of the lesioned part t is calculated by counting the number of lines of the pattern light L that is different from the pattern light L irradiated by the light irradiation probe 60 in the measurement image without detecting the region. May be.
  • the distance detection unit 78 does not need to perform processing.
  • the distance detector 78 in the case of an endoscope diagnosis apparatus that supports only the light irradiation probe 60 that irradiates the pattern light L of parallel light, it is not necessary to provide the distance detector 78 in the processor device 16.
  • the size S of the lesioned part t can be measured by simple processing.
  • the size of the lesion t that can be measured is limited according to the size of the light irradiation probe 60.
  • the size can be measured corresponding to the lesioned part t of various sizes.
  • the size S of the lesioned part t is measured as follows. Even when the pattern light L is diffused light, the endoscope image at that time is supplied to the image analysis unit 80 as a measurement image in accordance with the size measurement instruction from the operator as described above. Here, when the pattern light L is diffused light, the measurement image is also sent to the distance detection unit 78. Further, after that, images (moving images) captured by the endoscope 14 and processed by the image processing unit 70 are continuously supplied to the distance detection unit 78.
  • the pattern light L irradiated by the light irradiation probe 60 is diffuse light or parallel light can be input by an operator through a GUI (graphical user interface) using the input device 20 and the display device 18. You can do it. However, when the endoscope diagnosis apparatus 10 supports only the light irradiation probe 60 that irradiates the diffused light, or only supports the light irradiation probe 60 that irradiates the parallel light, such an operation is unnecessary. is there.
  • the operator pushes (extends) the light irradiation probe 60 until the tip of the light irradiation probe 60 comes into contact with the subject H as conceptually shown in FIG.
  • the operator After supplying the measurement image to the image analysis unit 80 and the distance detection unit 78 in accordance with the size measurement instruction, the operator performs an operation of pushing the light irradiation probe 60 by display on the display device 18 or voice output. You may be encouraged to do so.
  • the distance detection unit 78 captures the endoscopic image.
  • a known method such as a method of detecting by an input operation using a GUI or the like by an operator can be used.
  • a detection method for detecting that the tip of the light irradiation probe 60 is in contact with the subject H the following method is exemplified as a preferable method.
  • the light irradiation probe 60 irradiates the pattern light L from the tip.
  • the endoscope image captured by the endoscope 14 and processed by the image processing unit 70 is continuously supplied to the distance detection unit 78.
  • the irradiation area of the pattern light L emitted from the light irradiation probe 60 gradually decreases as the light irradiation probe 60 approaches the subject H. Thereafter, when the tip of the light irradiation probe 60 comes into contact with the subject H, the pattern light L is shielded by the subject H, so that the amount of light received by the image sensor 58 decreases rapidly. That is, the brightness of the endoscopic image captured by the endoscope 14 sharply decreases when the tip of the light irradiation probe 60 comes into contact with the subject H. In other words, the image data of the endoscopic image captured by the endoscope 14 changes abruptly when the tip of the light irradiation probe 60 comes into contact with the subject H.
  • the distance detection unit 78 detects the brightness by analyzing the image data of the supplied endoscope image after the measurement image is supplied, and the brightness of the endoscope image suddenly increases. If it decreases, it is determined that the tip of the light irradiation probe 60 is in contact with the subject H, and an endoscope image in that state is captured.
  • the distance detection unit 78 detects the position of the tip of the light irradiation probe 60 in the measurement image and an endoscopic image in a state where the tip of the light irradiation probe 60 is in contact with the subject H (hereinafter, distance detection). To detect.
  • the treatment tool used for the endoscope 14 has flexibility, but has a certain degree of rigidity. Therefore, the treatment tool such as a forceps that is inserted from the forceps hole 30a and protrudes from the forceps port 74 is projected. Is a straight and fixed direction. That is, the light irradiation probe 60 is pushed in from the measurement image conceptually shown in FIG. 7A until the tip abuts against the subject H as in the distance detection image conceptually shown in FIG. In this case, the traveling direction of the light irradiation probe 60 is linear and determined. Further, the treatment tool protruding from the forceps port 74 is captured in an endoscopic image.
  • the position of the distal end portion of the treatment tool on the endoscopic image is uniquely determined.
  • the length of the treatment tool protruding from the forceps port 74 can be uniquely detected from the position of the distal end portion imaged on the endoscopic image.
  • the length of the light irradiation probe 60 protruding from the forceps port 74 when the measurement image is captured is detected from the measurement image shown in FIG. 7A, and further shown in FIG. 7B.
  • the measurement image is subtracted.
  • the distance between the tip of the light irradiation probe 60 and the subject H at the time of imaging can be detected.
  • “Protrusion length in contact state (distance detection image) ⁇ protrusion length during measurement image capture distance between probe tip and subject during measurement image capture” That is, by this subtraction, the optical path length of the pattern light L when the measurement image is captured can be detected.
  • the length of the light irradiation probe 60 protruding from the forceps port 74 is, for example, the position of the distal end portion of the light irradiation probe 60 in the endoscopic image captured by the endoscope 14, and the forceps port 74.
  • An LUT Look Up Table
  • indicating the relationship with the length of the light irradiation probe 60 protruding from the lens, an arithmetic expression, and the like may be created and detected using this.
  • the method for detecting the distance between the light irradiation probe 60 (the tip of the light irradiation probe 60) and the subject H at the time of capturing the measurement image is not limited to the above method. That is, in the present invention, the detection of the distance between the light irradiation probe 60 and the subject H when the measurement image is taken is performed in the endoscope diagnostic apparatus and the treatment tool such as forceps and the subject H. Various known methods for detecting the distance to the can be used.
  • an input unit for the distance between the light irradiation probe 60 and the subject H is provided, and the operator measures the amount of movement from the position where the measurement image is captured until the light irradiation probe 60 contacts the subject H. Then, the distance between the light irradiation probe 60 and the subject H when the distance detector 78 captures the measurement image may be detected from the information on the movement amount input to the input unit.
  • the distance detection unit 78 supplies the image analysis unit 80 with the detection result of the distance between the tip of the light irradiation probe 60 and the subject H when the measurement image is captured.
  • the image analysis unit 80 calculates the size S of the lesioned part t using the measurement image and the distance detection result supplied from the distance detection unit 78.
  • the line width and interval in the striped pattern light L irradiated by the light irradiation probe 60 are known. Further, the spread angle of the pattern light L from the light irradiation probe 60 is also known. Therefore, if the distance between the light irradiation probe 60 and the subject H at the time of taking the measurement image is known, the line width and interval of the pattern light L on the subject H, that is, the repetition of the pattern light L in the repetitive pattern. The unit size can be calculated. After calculating the line width and interval of the pattern light L on the subject H in this way, the image analysis unit 80 performs image analysis on the measurement image in the same manner as when the previous pattern light L is parallel light.
  • the pattern light L in the measurement image detects a region different from the pattern light L irradiated by the light irradiation probe 60, and further counts the number of lines in the region different from the pattern light L, and calculates and calculates the result.
  • the size S of the lesioned part t is calculated from the line width and the line interval. Alternatively, without detecting the region, the size S of the lesioned part t is calculated by counting the number of lines having a shape different from that of the pattern light L irradiated by the light irradiation probe 60 in the pattern light L of the measurement image. May be.
  • the arrangement direction of the lines is not essential and may be a horizontal direction, a vertical direction, or an oblique direction.
  • the light irradiation probe 60 is rotated about the longitudinal direction to change the line arrangement direction of the pattern light L on the subject H to a horizontal direction or an oblique direction.
  • the size S of the lesioned part t in the desired direction can be measured.
  • the present invention it is possible to measure not only the size of the lesioned part t in the line arrangement direction in the stripe pattern light L but also the size of various lesioned parts t.
  • the number of pixels of the image sensor 58 corresponding to the size S in the measurement image can be found from the measurement image.
  • the length on the subject H corresponding to the number of pixels in the measurement image can also be found from the number of pixels corresponding to the size S in the measurement image and the length of the size S obtained as a measurement result. .
  • the measurement image for example, in the longitudinal direction of the pattern light L, the number of pixels in the region where the pattern light L is different from the pattern light L irradiated by the probe is counted.
  • the size of the lesioned part t in the longitudinal direction of the line of the pattern light L may be measured from the number and the length on the subject H corresponding to the number of pixels.
  • the number of pixels in the arrangement direction and the longitudinal direction of the pattern light L line in the measurement image is counted over the entire lesioned part t, and the counted number of pixels and the object H corresponding to the number of pixels are counted.
  • the area of the lesioned part t may be measured using the length of
  • the size S of the lesioned part t measured by the image analysis unit 80 is supplied to the control unit 68.
  • the control unit 68 displays the measurement result of the size S of the lesioned part t on the display device 18 and stores (records) it in the storage unit 72, for example.
  • the measurement result of the size S of the lesioned part t is preferably stored in association with a corresponding endoscopic image such as an endoscopic image at the time when size measurement is instructed.
  • a warning may be issued by display on the display device 18 or audio output.
  • the light irradiation probe 60 emits striped light as the pattern light L.
  • the pattern light L may have various shapes (as long as it has a regular repeating pattern). (Picture) is available.
  • the light irradiation probe 60 may irradiate, as the pattern light L, lattice-shaped light formed by arranging lines in two orthogonal directions. Thereby, the size of the lesioned part t can be measured in two orthogonal directions by performing the same processing as in the above-described example with respect to the arrangement direction of the two lines.
  • the endoscope diagnosis apparatus As described above, the endoscope diagnosis apparatus, the lesion size measuring method, the program, and the recording medium of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and does not depart from the gist of the present invention. Of course, various improvements and changes may be made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

内視鏡を用いて、病変部のサイズを容易に検出することが可能な内視鏡診断装置、病変部のサイズ検出方法、プログラムおよび記録媒体を提供する。被検体に規則的な繰り返しパターンの光を照射して内視鏡画像を撮像し、内視鏡画像から照射した光とは繰り返しパターンが異なっている領域を検出して、繰り返しパターンが異なっている領域における繰り返しパターンの数と、繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を検出することにより、この課題を解決する。

Description

内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体
 本発明は、内視鏡を用いた病変部のサイズ測定に関する。詳しくは、内視鏡によって容易に病変部のサイズ測定を行うことを可能にする内視鏡診断装置および病変部のサイズ測定方法に関する。
 被検体内を観察するために、内視鏡診断装置が用いられている。被検体内の観察を行う場合、内視鏡の挿入部が被検体の体腔内に挿入されて、その先端部から、例えば、観察光として白色光が被検体(被観察領域)に照射され、その反射光を受光して内視鏡画像が撮像される。撮像された内視鏡画像は表示部に表示され、内視鏡診断装置の操作者により、内視鏡画像の観察が行われる。
 近年では、被検体内で撮像された内視鏡画像を見て、腫瘍等の病変部の有無を確認するだけでなく、あるサイズ(大きさ)を超える腫瘍は切除し、それ以下のサイズの腫瘍は温存して様子を見るなどの目的から、病変部のサイズを測定したいという要求がある。
 病変部のサイズを測定するために、スケール付きプローブ等の処置具を利用する方法が知られている。この方法では、内視鏡の鉗子口の入口からスケール付きプローブを挿入して先端部の鉗子口の出口から突出させる。スケール付きプローブの先端部は、柔軟性を有し、かつ、サイズを測定するための目盛りが刻まれている。このような柔軟性のある先端部を被検体に押し当てて折り曲げ、先端部に刻まれた目盛りを読み取ることにより、被検体の病変部のサイズを測定する。
 しかし、この方法では、病変部のサイズを測定するためだけに、スケール付きプローブを内視鏡の鉗子口に挿入する必要があるため、その操作に時間がかかるだけでなく、作業が繁雑で面倒であった。また、スケール付きプローブの先端部を被検体に押し当てて折り曲げて測定するため、測定精度が低く、部位によっては、先端部を被検体に押し当てることが難しいなど、測定しづらい場合があった。
 また、内視鏡を用いた病変部のサイズの測定方法は、各種の方法が提案されている。
 例えば、特許文献1には、内視鏡の挿入部の先端部の2つ開口から病変部に水流を噴射し、2つの水流間の距離が2つの開口間の距離と等しいことから、病変部が処置基準値以上であるか否かを判定することが記載されている。
 また、特許文献2には、測定点を設定するためのアーム部を有する処置具を用いて、病変部の周囲に複数の測定点を設定し、測定点の座標情報に基づき、演算により病変部の大きさを求めることが記載されている。
特開2011-183000号公報 特開2008-245838号公報
 特許文献1の内視鏡診断装置では、挿入部の先端部から2つの水流を出力する2つの開口を備える専用の内視鏡が必要であり、この内視鏡でなければ病変部のサイズを測定することができないという問題がある。
 また、特許文献2の内視鏡診断装置では、病変部のサイズを測定するために、ロボットアームが必要であり、さらに、煩雑なロボットアームを操作して病変部の周囲に複数の測定点を設定しなければならないという問題がある。
 本発明の目的は、このような従来技術の問題点を解消することにあり、内視鏡を用いて容易に腫瘍等の病変部のサイズを測定できる、内視鏡診断装置および病変部のサイズ測定方法、この病変部のサイズ測定方法を実施するプログラムおよびプログラムが記録された記録媒体を提供することにある。
 このような目的を達成するために、本発明の内視鏡診断装置は、鉗子口を有する内視鏡と、
 鉗子口から突出可能な、規則的な繰り返しパターンの光を照射する光照射手段と、
 光照射手段から光を照射した状態で内視鏡が撮像した画像である測定用画像から、光照射手段が照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出して、繰り返しパターンが異なっている領域における繰り返しパターンの数および繰り返しパターンにおける繰り返し単位の大きさを用いて、病変部の長さおよび面積の少なくとも一方を算出する画像解析手段とを有することを特徴とする内視鏡診断装置を提供する。
 このような内視鏡診断装置において、光照射手段が平行光を照射するのが好ましい。
 また、光照射手段が拡散光を照射するものであり、さらに、測定用画像を撮像した際における、光照射手段と被検体との距離を検出する距離検出手段を有し、画像解析手段は、記距離検出手段が検出した光照射手段と被検体との距離、および、拡散光の広がり角を用いて、被検体上における繰り返しパターンにおける繰り返し単位の大きさを検出するのは好ましい。
 また、距離検出手段は、測定用画像における光照射手段の位置と、光照射手段を被検体に当接した状態で撮像した画像における光照射手段の位置とから、測定用画像を撮像した際における光照射手段と被検体との距離を検出するのが好ましい。
 また、距離検出手段は、光照射手段からの照射光の光量の変化から、光照射手段が被検体に当接されたことを検出するのが好ましい。
 さらに、光照射手段が照射する光の規則的な繰り返しパターンが、ストライプ状もしくは格子状であるのが好ましい。
 また、本発明の病変部のサイズ測定方法は、鉗子口を有する内視鏡を用い、鉗子口から突出された規則的な繰り返しパターンの光を照射する光照射手段によって、繰り返しパターンの光を被検体に照射して、被検体を撮像し、
 被検体を撮像した画像において、被検体に照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出し、
 繰り返しパターンが異なっている領域における繰り返しパターンの数と繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出することを特徴とする病変部のサイズ検出方法を提供する。
 このような本発明の病変部のサイズ測定方法において、光照射手段が平行光を照射するのが好ましい。
 また、光照射手段が照射する光が拡散光であり、繰り返しパターンの光を照射して被検体を撮像した際における光照射手段と被検体との距離、および、拡散光の広がり角に基づいて、被検体上における繰り返しパターンの繰り返し単位の大きさを検出するのが好ましい。
 また、繰り返しパターンの光を照射して被検体を撮像した画像における光照射手段の位置と、光照射手段が被検体に当接された状態で撮像した画像における照射手段の位置とから、光照射手段と被検体との距離を検出するのが好ましい。
 また、光照射手段からの照射光の光量の変化から、光照射手段が被検体に当接されたことを知見するのが好ましい。
 さらに、繰り返しパターンがストライプ状もしくは格子状であるのが好ましい。
 また、本発明のプログラムは、規則的な繰り返しパターンを照射して被検体を撮像した画像から、照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出するステップ、
 繰り返しパターンが異なっている領域における繰り返しパターンの数を係数するステップ、および、
 繰り返しパターンが異なっている領域における繰り返しパターンの数と、り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出するステップ、をコンピュータに実行させるプログラムを提供する。
 さらに、本発明の記録媒体は、規則的な繰り返しパターンを照射して被検体を撮像した画像から、照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出するステップ、
 繰り返しパターンが異なっている領域における繰り返しパターンの数を計数するステップ、および、
 繰り返しパターンが異なっている領域における繰り返しパターンの数と、繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出するステップ、をコンピュータに実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。
 本発明によれば、内視鏡を用いて、腫瘍等の病変部のサイズを容易に測定することができる。
本発明の内視鏡診断装置の一例を示す概念図である。 図1に示す内視鏡診断装置の内部構成を表すブロック図である。 内視鏡の先端部の構成を表す概念図である。 青色レーザ光源からの青色レーザ光及び青色レーザ光が蛍光体により波長変換された発光スペクトルを示すグラフである。 (A)および(B)は、本発明の病変部のサイズ測定方法を説明するための概念図である。 (A)および(B)は、本発明の病変部のサイズ測定方法を説明するための概念図である。 (A)および(B)は、本発明の病変部のサイズ測定方法を説明するための概念図である。
 以下、本発明の内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体について、添付の図面に示される好適実施例を基に、詳細に説明する。
 図1に、本発明の病変部のサイズ測定方法を実施する、本発明の内視鏡診断装置の一例を概念的に示す。また、図2に、図1に示す内視鏡診断装置の内部構成をブロック図で示す。
 図1および図2に示されるように、内視鏡診断装置10は、光源装置12と、光源装置12から供給された観察光によって被検体(被観察領域)の内視鏡画像を撮像する内視鏡14と、内視鏡14で撮像された内視鏡画像を画像処理するプロセッサ装置16と、プロセッサ装置16から出力される画像処理後の内視鏡画像を表示する表示装置18と、入力操作を受け付ける入力装置20とによって構成されている。
 また、図1および図2には示していないが、内視鏡診断装置10は、後述する鉗子孔30aから挿入され、鉗子チャンネル50を挿通して、鉗子口74から突出されて、被検体にストライプ状や格子状等の規則的な繰り返しパターンの光を照射する、光照射プローブ60(光照射手段の一態様)を有する。
 図2に示すように、光源装置12は、光源制御部22と、レーザ光源LDと、分波器26とによって構成されている。
 図示例の光源装置12においては、レーザ光源LDから、中心波長が445nmである、青色の一定の波長範囲(例えば、中心波長±10nm)の狭帯域光が発せられる。レーザ光源LDは、照明光として、後述する蛍光体から白色光(疑似白色光)を発生させるための励起光を発する光源であって、後述するプロセッサ装置16の制御部68によって制御される光源制御部22によりオンオフ(点灯消灯)制御および光量制御が行われる。
 レーザ光源LDとしては、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオード等を用いることもできる。
 なお、白色光を発生するための白色光光源は、励起光および蛍光体の組合せに限定されず、白色光を発するものであればよく、例えば、キセノンランプ、ハロゲンランプ、白色LED(発光ダイオード)などを利用することもできる。また、レーザ光源LDから発せられるレーザ光の波長は上記例に限定されず、同様の役割を果たす波長のレーザ光を適宜選択することができる。
 レーザ光源LDから発せられるレーザ光は、集光レンズ(図示省略)を介して光ファイバに入射され、分波器26によって2系統の光に分波されてコネクタ部32Aに伝送される。分波器26は、ハーフミラー、反射ミラー等によって構成される。
 内視鏡14は、被検体内に挿入される挿入部の先端面から2系統(2灯)の照明光を出射する照明光学系と、被検体の内視鏡画像を撮像する1系統(1眼)の撮像光学系とを有する、電子内視鏡である。
 内視鏡14は、挿入部28と、挿入部28の先端の湾曲操作や観察のための操作を行う操作部30と、内視鏡14と光源装置とを着脱自在に接続するコネクタ部32Aと、内視鏡14とプロセッサ装置16とを着脱自在に接続するコネクタ部32Bとを備えている。
 コネクタ部32Aの図1の裏面側には、内視鏡14と送水源とを接続する送水コネクタ、および、内視鏡14と送気源とを接続する送気コネクタが設けられる。
 内視鏡14は、後述する病変部のサイズ測定に対応する以外は、基本的に、公知の電子内視鏡である。
 挿入部28は、可撓性を持つ軟性部34と、湾曲部36と、内視鏡先端部38とから構成されている。
 湾曲部36は、軟性部34と内視鏡先端部38との間に設けられ、操作部30に配置されたアングルノブ40の回動操作により湾曲自在に構成されている。この湾曲部36は、内視鏡14が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部38を、所望の観察部位に向けることができる。
 図3に示すように、挿入部28(内視鏡先端部38)の先端面である内視鏡先端面46には、被検体に光を照射する2系統の照明窓42A、42B、被検体からの反射光を撮像する1系統の観察窓44、鉗子口74、送気・送水口76等が配置されている。
 観察窓44、鉗子口74、送気・送水口76は、内視鏡先端面46の中央部に配置されている。照明窓42A、42Bは、観察窓44を挟んでその両脇側に配置されている。
 鉗子口74は、鉗子や後述する光照射プローブ60等の処置具(プローブ)の出口となる開口である。処置具は、操作部30に設けられた鉗子孔30aから挿入され、鉗子チャンネル50を挿通して、内視鏡先端面46の鉗子口74から突出して、処置に供される。
 送気・送水口76は、水および空気を噴射して、観察窓44を洗浄するものである。
 照明窓42Aの奥には、光ファイバ48Aが収納されている。光ファイバ48Aは、挿入部28の内視鏡先端部38、湾曲部36および軟性部34、および、コネクタ部32Aを介して、光源装置12に敷設されている。光ファイバ48Aの先端部(照明窓42A側)の先には蛍光体54Aが配置され、さらに蛍光体54Aの先にレンズ52A等の光学系が取り付けられている。同様に、照明窓42Bの奥には、先端部に蛍光体54Bおよびレンズ52B等の光学系を有する光ファイバ48Bが収納されている。
 蛍光体54A、54Bは、レーザ光源LDからの青色レーザ光の一部を吸収して緑色~黄色に励起発光する複数種の蛍光物質(例えばYAG系蛍光物質、或いはBAM(BaMgAl1017)等の蛍光物質)を含んで構成される。白色光観察用の励起光が蛍光体54A、54Bに照射されると、蛍光体54A、54Bから発せられる緑色~黄色の励起発光光(蛍光)と、蛍光体54A、54Bにより吸収されず透過した青色レーザ光とが合わされて、白色光(疑似白色光)が生成される。
 図4は、青色レーザ光源からの青色レーザ光及び青色レーザ光が蛍光体により波長変換された発光スペクトルを示すグラフである。レーザ光源LDから発せられる青色レーザ光は、中心波長445nmの輝線で表され、青色レーザ光による蛍光体54A、54Bからの励起発光光は、概ね450nm~700nmの波長範囲で発光強度が増大する分光強度分布となる。この励起発光光と青色レーザ光との合波光によって、上述した疑似白色光が形成される。
 ここで、本発明でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えば、上述した疑似白色光を始めとして、基準色であるR(赤)、G(緑)、B(青)等、特定の波長帯の光を含むものであればよい。つまり、本発明のいう白色光には、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含まれるものとする。
 照明窓42A側および照明窓42B側の照明光学系は同等の構成および作用のものであって、照明窓42A、42Bからは、基本的に同時に同等の照明光が照射される。なお、照明窓42A、42Bからそれぞれ異なる照明光を照射させることもできる。また、2系統の照明光を出射する照明光学系を有することは必須ではなく、例えば、1系統や4系統の照明光を出射する照明光学系でも同等の機能を実現することができる。
 観察窓44の奥には、被検体の像光を取り込むための対物レンズユニット56等の光学系が取り付けられ、さらに対物レンズユニット56の奥には、被検体の画像情報を取得するCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子58が取り付けられている。
 撮像素子58は、対物レンズユニット56からの光を撮像面(受光面)で受光し、受光した光を光電変換して撮像信号(アナログ信号)を出力する。撮像素子58の撮像面には、可視光の約370~720nmの波長範囲を3分割する分光透過率を有する、R色(約580nm~760nm)、G色(約450nm~630nm)、B色(約380nm~510nm)のカラーフィルタが設けられ、R画素、G画素、B画素の3色の画素を1組として、複数組の画素がマトリクス状に配列されている。
 光源装置12から光ファイバ48A、48Bによって導光された光は、内視鏡先端部38から被検体に向けて照射される。そして、照明光が照射された被検体の被観察領域の様子が対物レンズユニット56により撮像素子58の撮像面上に結像され、撮像素子58により光電変換されて撮像される。撮像素子58からは、撮像された被検体の内視鏡画像の撮像信号(アナログ信号)が出力される。
 撮像素子58から出力される内視鏡画像の撮像信号(アナログ信号)は、スコープケーブル62を通じてA/D変換器64に入力される。A/D変換器64は、撮像素子58からの撮像信号(アナログ信号)を画像信号(デジタル信号)に変換する。変換後の画像信号は、コネクタ部32Bを介してプロセッサ装置16の画像処理部70に入力される。
 プロセッサ装置16は、制御部68と、画像処理部70と、記憶部72と、距離検出部78(距離検出手段の一態様)と、画像解析部80(画像解析手段の一態様)とを有する。また、制御部68には、表示装置18および入力装置20が接続されている。プロセッサ装置16は、内視鏡14の撮像スイッチや入力装置20から入力される指示に基づき、光源装置12の光源制御部22を制御するとともに、内視鏡14から入力される内視鏡画像の画像信号を画像処理し、画像処理後の内視鏡画像を表示装置18に出力する。
 プロセッサ装置16は、例えば、コンピュータを利用して構成すればよい。
 画像処理部70は、内視鏡14から入力される内視鏡画像の画像信号に対してあらかじめ設定された各種の画像処理を施し、画像処理後の内視鏡画像の画像信号を出力する。画像処理後の内視鏡画像の画像信号は、制御部68に送られる。
 また、後述する病変部のサイズ測定を行う場合には、画像処理部70が生成した画像処理後の内視鏡画像の画像信号は、距離検出部78および画像解析部80にも供給される。
 ここで、内視鏡14は、超広角レンズを用いているので、レンズに起因して内視鏡画像が歪む。そのため、画像処理部70は、少なくとも病変部のサイズ測定を行う際には、内視鏡画像に対してレンズの歪み補正行うのが好ましい。なお、レンズの歪み補正は、公知の方法で行えばよい。
 距離検出部78は、後述する病変部のサイズ測定を行う際に、光照射プローブ60と被検体との距離を測定するものである。
 後に詳述するが、本発明においては、規則的な繰り返しパターンの光を照射する光照射プローブ60を用い、光照射プローブ60から被検体にストライプ状などの規則的なパターンの光を照射して、病変部のサイズを測定するための内視鏡画像である測定用画像を撮像し、画像解析部80において、この測定用画像を解析することにより、病変部のサイズを測定する。
 距離検出部78は、光照射プローブ60が規則的なパターンの光として拡散光を照射するものである場合に、測定用画像を撮像した際における光照射プローブ60の先端と、被検体との距離を測定する。
 画像解析部80は、この測定用画像を解析して、病変部の長さおよび面積の少なくとも一方を算出するものである。
 距離検出部78および画像解析部80に関しては、後に詳述する。
 制御部68は、表示装置18による表示、光源制御部22の動作、画像処理部70による画像処理など、内視鏡診断装置10の全体の制御を行うものである。また、制御部68は、内視鏡14の撮像スイッチや入力装置20からの指示に基づいて、光源装置12の光源制御部22の動作を制御したり、例えば1枚(1フレーム)の内視鏡画像を単位として記憶部72に記憶するように制御したりする。
 入力装置20は、キーボードやマウス等で構成される、公知の入力装置である。表示装置も液晶ディスプレイ等で構成される、公知の表示装置(ディスプレイ)である。
 前述のように、本発明の内視鏡診断装置10は、規則的な繰り返しパターンの光を照射する光照射プローブ60を有する。
 光照射プローブ60は、内視鏡14の鉗子孔30aから挿入され、鉗子チャンネル50を挿通して、先端部を内視鏡先端面46の鉗子口74から突出できる十分な長さを有する長尺なもので、先端部からストライプ状などの規則的な繰り返しパターンの光を照射するものである。
 このような光照射プローブ60は、光源、導線や光ファイバ等を挿通する可撓性を有する長尺な管状体、規則的な繰り返しパターンの光を照射(投影)するためのフィルタ(マスク)等を用いた、各種の構成が利用可能である。
 一例として、可撓性を有する長尺な管状体と、管状体の一方の端部に設けられるレンズおよび繰り返しパターンの光を照射するためのフィルタ等と、管状体の他方の端部に設けられる光源および光源をon/offするスイッチ等の電気系と、光源が照射した光を伝播してフィルタに照射するための管状体の内部を挿通する光ファイバと、を有する構成が例示される。
 また、可溶性を有する長尺な管状体の一方の端部に光源、繰り返しパターンの光を照射するためのフィルタ、レンズ等の光学系を設け、管状体内には導線のみを挿通して、管状体の光学系の逆側の端部にスイッチ等の電気系を設けた構成でもよい。
 以下、内視鏡診断装置10の作用を説明することにより、本発明の内視鏡診断装置および病変部のサイズ測定方法を詳細に説明する。
 本発明のプログラムは、以下の作用をコンピュータに実施させるプログラムであり、また、本発明の記録媒体は、このプログラムが記録されたコンピュータが読み取り可能な記録媒体である。
 まず、内視鏡画像を撮像する場合の動作を説明する。
 通常の内視鏡画像の撮像時には、光源制御部22の制御により、レーザ光源LDが予め設定された一定の発光量で点灯される。レーザ光源LDから発せられる中心波長445nmのレーザ光が蛍光体54A、54Bに照射され、蛍光体54A、54Bから白色光が発せられる。蛍光体54A、54Bから発せられる白色光は被検体に照射され、その反射光が撮像素子58で受光されて被検体の内視鏡画像が撮像される。
 撮像素子58から出力される内視鏡画像の撮像信号(アナログ信号)は、A/D変換器64により画像信号(デジタル信号)に変換され、画像処理部70により各種の画像処理が施され、画像処理後の内視鏡画像の画像信号が出力される。そして、制御部68により、画像処理後の内視鏡画像の画像信号に対応する内視鏡画像が表示装置18上に表示され、必要に応じて、内視鏡画像の画像信号が記憶部72に記憶される。
 内視鏡診断装置10において、病変部のサイズ測定は、以下のように行う
 前述のように、本発明において、病変部のサイズ測定は、規則的な繰り返しパターンの光を照射する光照射プローブ60を用いて行う。
 病変部のサイズ測定を行う場合には、医師等の操作者が光照射側の先端にして光照射プローブ60を鉗子孔30aに挿入し、鉗子チャンネル50を挿通させて、図5(A)に概念的に示すように、光照射プローブ60の先端部を内視鏡先端面46から突出させる。さらに、光照射プローブ60から被検体Hの被観察領域に、規則的な繰り返しパターンの光L(以下、単にパターン光Lとも言う)を照射する。
 この間には、前述のように、被検体Hの内視鏡画像が撮像され、表示装置18に表示されている。
 この時点で、操作者がスイッチやモード切り換え等でサイズ測定の指示を出すと、サイズ測定を行う指示を出された時点で内視鏡14が撮像した内視鏡画像が、病変部のサイズ測定を行うための測定用画像として、画像処理部70から画像解析部80に送られる。
 本例においては、パターン光Lは、一例として、一定幅の線状(帯状)の光を、長手方向と直交する方向に一定間隔で配列してなる、ストライプ状(縞状)の光である。
 図6(A)に概念的に示すように、被検体Hに腫瘍等の病変部tが無い場合には、被検体Hの表面は、比較的、平坦である。従って、被検体H上におけるパターン光Lは、光照射プローブ60が照射したパターン光Lと殆ど同じストライプ状のパターンとなる。
 一方、腫瘍等の病変部tは、隆起タイプでも平坦タイプでも、表面に凹凸を有する。そのため、被検体Hの被観察領域に腫瘍等の病変部tがある場合には、図6(B)に概念的に示すように、測定用画像(内視鏡画像)では、被検体H上におけるパターン光Lは、病変部tが無い領域は光照射プローブ60が照射したパターン光Lと殆ど同様のパターンとなるが、病変部tでは、病変部tの表面の凹凸に応じた乱れや歪み等が生じる。すなわち、病変部tのパターン光Lは、光照射プローブ60が照射したパターン光Lとは異なる。
 従って、測定用画像におけるパターン光Lが、光照射プローブ60が照射するパターン光Lとは異なる領域を検出することで、病変部tを検出できる。
 光照射プローブ60が照射するパターン光Lの形状(絵柄)がストライプ状であること、および、このストライプにおける線の幅および間隔は、既知である。すなわち、光照射プローブ60が照射するパターン光Lの繰り返しパターンの形状、および、繰り返しパターンにおける繰り返し単位の大きさは、既知である。
 従って、測定用画像を解析して、測定用画像におけるパターン光Lが、光照射プローブ60が照射するパターン光Lとは異なっている領域を検出し、パターン光Lが異なっている線の数を計数すれば、病変部tのサイズ(長さ)Sを検出できる。
 ここで、光照射プローブ60が照射するパターン光Lが平行光である場合には、被検体上におけるパターン光Lのストライプの線の幅および間隔は、光照射プローブ60が照射するパターン光Lの線の幅および間隔と同一である。
 従って、この場合には、画像解析部80は、供給された測定用画像を画像解析して、測定用画像において、光照射プローブ60が照射するパターン光Lとはパターン光Lが異なっている領域を検出し、さらに、パターン光Lが異なっている領域における線の数を計数して、計数結果と、光照射プローブ60が照射するパターン光Lの線幅および線の間隔とから、病変部tのサイズSを算出できる。
 あるいは、領域の検出を行わず、測定用画像において、光照射プローブ60が照射するパターン光Lとは異なっているパターン光Lの線の数を計数して、病変部tのサイズSを算出してもよい。
 以上のように、光照射プローブ60が照射するパターン光Lが平行光である場合には、距離検出部78は処理を行う必要はない。あるいは、平行光のパターン光Lを照射する光照射プローブ60のみに対応する内視鏡診断装置の場合には、プロセッサ装置16に距離検出部78を設ける必要はない。
 すなわち、光照射プローブ60が照射するパターン光Lが平行光である場合には、簡易な処理で病変部tのサイズSを測定できる。その半面、測定可能な病変部tのサイズが、光照射プローブ60の大きさに応じて、制限される。
 これに対し、光照射プローブ60が照射するパターン光Lを図5(A)に示すような拡散光とすることにより、様々なサイズの病変部tに対応して、サイズを測定できる。
 光照射プローブ60が照射するパターン光Lが拡散光である場合には、以下のようにして、病変部tのサイズSを測定する。
 パターン光Lが拡散光である場合にも、先と同様、操作者によるサイズ測定の指示に応じて、その時点の内視鏡画像が、測定用画像として画像解析部80に供給される。ここで、パターン光Lが拡散光である場合には、測定用画像は、距離検出部78にも送られる。
 また、これ以降は、内視鏡14が撮像して画像処理部70が処理した画像(動画)は、連続的に距離検出部78に供給される。
 なお、光照射プローブ60が照射するパターン光Lが拡散光であるか平行光であるかは、入力装置20および表示装置18を用いたGUI(graphical user interface)等によって、操作者が入力できるようにすればよい。
 但し、内視鏡診断装置10が拡散光を照射する光照射プローブ60のみに対応する場合、あるいは、平行光を照射する光照射プローブ60のみに対応する場合は、このような操作は、不要である。
 操作者は、サイズ測定を指示した後、図5(B)に概念的に示すように、光照射プローブ60の先端が被検体Hに当接するまで、光照射プローブ60を押し込む(延ばす)。
 サイズ測定の指示に応じて測定用画像を画像解析部80および距離検出部78に供給した後、表示装置18への表示や音声出力等によって、操作者に、光照射プローブ60を押し込む操作を行うように促してもよい。
 図5(B)に示すように、光照射プローブ60の先端が被検体Hに当接したら、その内視鏡画像を、距離検出部78が取り込む。
 光照射プローブ60の先端が被検体Hに当接している状態であることの検出は、例えば、操作者によるGUI等を用いた入力操作によって検出する方法等、公知の方法が利用可能である。
 ここで、光照射プローブ60の先端が被検体Hに当接している状態であることを検出する検出方法としては、好ましい方法として、以下の方法が例示される。
 図5(A)に示されるように、光照射プローブ60は、先端部からパターン光Lを照射する。また、測定用画像を取得した後は、内視鏡14が撮像して画像処理部70が処理した内視鏡画像は、連続的に距離検出部78に供給される。
 ここで、光照射プローブ60から照射されるパターン光Lは、光照射プローブ60が被検体Hに近付くにしたがって、漸次、照射領域が小さくなる。その後、光照射プローブ60の先端部が被検体Hに当接すると、被検体Hによってパターン光Lが遮光されるため、撮像素子58が受光する光量は急激に低下する。
 すなわち、内視鏡14が撮像する内視鏡画像の明るさは、光照射プローブ60の先端部が被検体Hに当接した時点で、急激に低下する。言い換えれば、内視鏡14が撮像する内視鏡画像の画像データは、光照射プローブ60の先端部が被検体Hに当接した時点で、急激に変動する。
 これを利用して、距離検出部78は、測定用画像が供給された後、供給される内視鏡画像の画像データを解析して明るさを検出し、内視鏡画像の明るさが急激に低下したら、光照射プローブ60の先端が被検体Hに当接した状態になったと判断して、その状態の内視鏡画像を取り込む。
 次いで、距離検出部78は、測定用画像における光照射プローブ60の先端部の位置と、光照射プローブ60の先端が被検体Hに当接している状態の内視鏡画像(以下、距離検出用画像とも言う)における光照射プローブ60の先端部の位置とから、測定用画像を撮像した際における、光照射プローブ60の先端部と被検体H(被検体Hの被観察領域)との距離を検出する。
 周知のように、内視鏡14に用いられる処置具は、可撓性は有するものの、ある程度の剛性を有するので、鉗子孔30aから挿入され鉗子口74から突出される鉗子等の処置具の突出は、直線的で決まった方向になる。すなわち、図7(A)に概念的に示す測定用画像から、図7(B)に概念的に示す距離検出用画像のように、先端が被検体Hに当接するまで光照射プローブ60を押し込んだ場合における、光照射プローブ60の進行方向は、直線的で決まった方向になる。
 また、鉗子口74から突出した処置具は、内視鏡画像に撮像される。ここで、鉗子口74からの処置具の突出量が多いほど、内視鏡画像に撮像される処置具は長くなる。従って、図7(A)および図7(B)に示すように、測定用画像よりも距離検出用画像の方が、撮像される光照射プローブ60を長さは長くなる。
 加えて、鉗子口74と撮像素子58との位置関係は、固定である。
 従って、処置具を、どの程度の長さ鉗子口74から突出させたら、内視鏡画像上で処置具の先端部が何処に位置するかは、一義的に決まる。言い換えれば、鉗子口74から突出する処置具の長さは、内視鏡画像上に撮像されている先端部の位置から、一義的に検出することができる。
 これを用いて、図7(A)に示す測定用画像から、測定用画像を撮像した際における鉗子口74から突出する光照射プローブ60の長さ検出し、さらに、図7(B)に示す距離検出用画像から、光照射プローブ60の先端部を被検体Hに当接した状態における、鉗子口74から突出する光照射プローブ60の長さを検出して、減算することにより、測定用画像の撮像時における光照射プローブ60の先端部と被検体Hとの距離を検出できる。
 『当接状態(距離検出用画像)における突出長-測定用画像撮像時における突出長
          =測定用画像撮像時におけるプローブの先端部と被検体との距離』
 すなわち、この減算によって、測定用画像を撮像した際におけるパターン光Lの光路長を検出できる。
 距離検出部78において、鉗子口74から突出する光照射プローブ60の長さは、一例として、内視鏡14が撮像した内視鏡画像における光照射プローブ60の先端部の位置と、鉗子口74から突出する光照射プローブ60の長さとの関係を示すLUT(ルックアップテーブル)や演算式等を作成しておき、これを用いて検出すればよい。
 なお、測定用画像を撮像した時点における、光照射プローブ60(光照射プローブ60の先端部)と被検体Hとの距離の検出方法は、以上の方法に限定はされない。
 すなわち、本発明においては、測定用画像を撮像した際における光照射プローブ60と被検体Hとの距離の検出は、内視鏡診断装置において行われている、鉗子等の処置具と被検体Hとの距離の公知の検出方法が、各種、利用可能である。
 また、光照射プローブ60と被検体Hとの距離の入力手段を設けておき、測定用画像を撮像した位置から、光照射プローブ60が被検体Hに当接するまでの移動量を操作者が測定して、入力手段に入力した移動量の情報から、距離検出部78が測定用画像を撮像した際における光照射プローブ60と被検体Hとの距離を検出してもよい。
 距離検出部78は、測定用画像を撮像した時点における光照射プローブ60の先端と被検体Hとの距離の検出結果を、画像解析部80に供給する。
 画像解析部80は、測定用画像と、距離検出部78から供給された距離の検出結果を用いて、病変部tのサイズSを算出する。
 光照射プローブ60が照射するストライプ状のパターン光Lにおける線の幅および間隔は、既知である。また、光照射プローブ60からのパターン光Lの広がり角も、既知である。従って、測定用画像を撮像した時点における光照射プローブ60と被検体Hとの距離が分かれば、被検体H上におけるパターン光Lの線の幅および間隔、すなわち、パターン光Lの繰り返しパターンにおける繰り返し単位の大きさを算出できる。
 画像解析部80は、このようにして、被検体H上におけるパターン光Lの線の幅および間隔を算出したら、先のパターン光Lが平行光である場合と同様、測定用画像を画像解析して、測定用画像におけるパターン光Lが、光照射プローブ60が照射するパターン光Lとは異なる領域を検出し、さらに、パターン光Lが異なる領域の線の数を計数して、計数結果と算出した線幅および線の間隔とから、病変部tのサイズSを算出する。
 あるいは、領域の検出を行わず、測定用画像のパターン光Lにおいて、光照射プローブ60が照射するパターン光Lとは形状が異なる線の数を計数して、病変部tのサイズSを算出してもよい。
 図6(A)および図6(B)には、図中横方向に線が配列するようにストライプ状のパターン光Lを照射した状態を示している。
 しかしながら、本発明においては、線の配列方向については本質的ではなく、横方向でも、縦方向でも、斜め方向でも構わない。例えば、線の配列が縦方向の場合は、光照射プローブ60を長手方向を軸として回転することで、被検体H上におけるパターン光Lの線の配列方向を横方向や斜め方向に変更して、病変部tの所望の方向におけるサイズSを測定できる。
 本発明においては、ストライプ状のパターン光Lにおける線の配列方向の病変部tのサイズのみならず、各種の病変部tのサイズを測定可能である。
 例えば、測定用画像から、測定用画像でのサイズSに対応する撮像素子58の画素数は、知見できる。また、この測定用画像でのサイズSに対応する画素数と、測定結果として得られたサイズSの長さとから、測定用画像における画素数に対応する被検体H上での長さも、知見できる。これを利用して、測定用画像において、例えば、パターン光Lの線の長手方向で、パターン光Lが、プローブが照射したパターン光Lとは異なっている領域の画素数を計数し、この画素数と、画素数に対応する被検体H上での長さとから、パターン光Lの線の長手方向の病変部tのサイズを測定してもよい。
 また、病変部tの全域に渡って、測定用画像におけるパターン光Lの線の配列方向と長手方向との画素数を計数して、計数した画素数と、画素数に対応する被検体H上での長さとを用いて、病変部tの面積を測定してもよい。
 画像解析部80が測定した病変部tのサイズSは、制御部68に供給される。
 制御部68は、病変部tのサイズSの測定結果を、表示装置18に表示し、また、例えば記憶部72に記憶(記録)する。病変部tのサイズSの測定結果は、例えばサイズ測定が指示された時点の内視鏡画像など、対応する内視鏡画像と対応付けして記憶するのが好ましい。
 また、病変部tのサイズSが、予め設定された閾値を超えた場合には、表示装置18への表示や音声出力等によって、警告を発するようにしてもよい。
 以上の例は、光照射プローブ60が、パターン光Lとしてストライプ状の光を照射してるが、本発明において、パターン光Lは、規則的な繰り返しパターンを有するものであれば、各種の形状(絵柄)が利用可能である。
 例えば、光照射プローブ60が、パターン光Lとして、直交する2方向の線を配列してなる格子状の光を照射するものであってもよい。これにより、2方向の線の配列方向に対して、前述の例と同様の処理を行うことにより、直交する2方向で病変部tのサイズを測定できる。
 以上、本発明の内視鏡診断装置,病変部のサイズ測定方法、プログラムおよび記録媒体について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
 内視鏡を用いた各種の診断に好適に利用可能である。
 10 内視鏡診断装置
 12 光源装置
 14 内視鏡
 16 プロセッサ装置
 18 表示装置
 20 入力装置
 22 光源制御部
 26 分波器
 28 挿入部
 30 操作部
 30a 鉗子孔
 32A、32B コネクタ部
 34 軟性部
 36 湾曲部
 38 先端部
 40 アングルノブ
 42A、42B 照明窓
 44 観察窓
 46 先端面
 48A、48B 光ファイバ
 50 送気・送水チャンネル
 52A、52B レンズ
 54A、54B 蛍光体
 56 対物レンズユニット
 58 撮像素子
 60 光照射プローブ
 62 スコープケーブル
 64 A/D変換器
 68 制御部
 70 画像処理部
 72 記憶部
 74 鉗子口
 76 送気・送水口
 78 距離検出部
 80 画像解析部
 LD レーザ光源

Claims (14)

  1.  鉗子口を有する内視鏡と、
     前記鉗子口から突出可能な、規則的な繰り返しパターンの光を照射する光照射手段と、
     前記光照射手段から光を照射した状態で前記内視鏡が撮像した画像である測定用画像から、前記光照射手段が照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出して、前記繰り返しパターンが異なっている領域における繰り返しパターンの数および前記繰り返しパターンにおける繰り返し単位の大きさを用いて、病変部の長さおよび面積の少なくとも一方を算出する画像解析手段とを有することを特徴とする内視鏡診断装置。
  2.  前記光照射手段が平行光を照射する請求項1に記載の内視鏡診断装置。
  3.  前記光照射手段が拡散光を照射するものであり、
     さらに、前記測定用画像を撮像した際における、前記光照射手段と被検体との距離を検出する距離検出手段を有し、
     前記画像解析手段は、前記距離検出手段が検出した前記光照射手段と被検体との距離、および、前記拡散光の広がり角を用いて、前記被検体上における繰り返しパターンにおける繰り返し単位の大きさを検出する請求項1に記載の内視鏡診断装置。
  4.  前記距離検出手段は、前記測定用画像における光照射手段の位置と、前記光照射手段を被検体に当接した状態で撮像した画像における光照射手段の位置とから、前記測定用画像を撮像した際における前記光照射手段と被検体との距離を検出する請求項3に記載の内視鏡診断装置。
  5.  前記距離検出手段は、前記光照射手段からの照射光の光量の変化から、前記光照射手段が被検体に当接されたことを検出する請求項4に記載の内視鏡診断装置。
  6.  前記光照射手段が照射する光の規則的な繰り返しパターンが、ストライプ状もしくは格子状である請求項1~5のいずれか1項に記載の内視鏡診断装置。
  7.  鉗子口を有する内視鏡を用い、前記鉗子口から突出された規則的な繰り返しパターンの光を照射する光照射手段によって、前記繰り返しパターンの光を被検体に照射して、被検体を撮像し、
     前記被検体を撮像した画像において、前記被検体に照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出し、
     前記繰り返しパターンが異なっている領域における前記繰り返しパターンの数と繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出することを特徴とする病変部のサイズ検出方法。
  8.  前記光照射手段が平行光を照射する請求項7に記載の病変部のサイズ検出方法。
  9.  前記光照射手段が照射する光が拡散光であり、前記繰り返しパターンの光を照射して被検体を撮像した際における前記光照射手段と被検体との距離、および、前記拡散光の広がり角に基づいて、前記被検体上における繰り返しパターンの繰り返し単位の大きさを検出する請求項7に記載の病変部のサイズ検出方法。
  10.  前記繰り返しパターンの光を照射して被検体を撮像した画像における光照射手段の位置と、前記光照射手段が被検体に当接された状態で撮像した画像における照射手段の位置とから、前記光照射手段と被検体との距離を検出する請求項9に記載の病変部のサイズ検出方法。
  11.  前記光照射手段からの照射光の光量の変化から、前記光照射手段が被検体に当接されたことを知見する請求項10に記載の病変部のサイズ検出方法。
  12.  前記繰り返しパターンがストライプ状もしくは格子状である請求項7~11のいずれか1項に記載の病変部のサイズ検出方法。
  13.  規則的な繰り返しパターンを照射して被検体を撮像した画像から、前記照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出するステップ、
     前記繰り返しパターンが異なっている領域における繰り返しパターンの数を係数するステップ、および、
     前記繰り返しパターンが異なっている領域における繰り返しパターンの数と、前記繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出するステップ、をコンピュータに実行させるプログラム。
  14.  規則的な繰り返しパターンを照射して被検体を撮像した画像から、前記照射した光の繰り返しパターンとは繰り返しパターンが異なっている領域を検出するステップ、
     前記繰り返しパターンが異なっている領域における繰り返しパターンの数を計数するステップ、および、
     前記繰り返しパターンが異なっている領域における繰り返しパターンの数と、前記繰り返しパターンにおける繰り返し単位の大きさとから、病変部の長さおよび面積の少なくとも一方を算出するステップ、をコンピュータに実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒体。
PCT/JP2016/053080 2015-03-31 2016-02-02 内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体 WO2016157994A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16771878.2A EP3278706A4 (en) 2015-03-31 2016-02-02 Endoscopic diagnostic device, method for measuring size of lesion site, program, and recording medium
US15/690,295 US10806336B2 (en) 2015-03-31 2017-08-30 Endoscopic diagnosis apparatus, lesion portion size measurement method, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070703A JP6442344B2 (ja) 2015-03-31 2015-03-31 内視鏡診断装置、プログラムおよび記録媒体
JP2015-070703 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/690,295 Continuation US10806336B2 (en) 2015-03-31 2017-08-30 Endoscopic diagnosis apparatus, lesion portion size measurement method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2016157994A1 true WO2016157994A1 (ja) 2016-10-06

Family

ID=57004921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053080 WO2016157994A1 (ja) 2015-03-31 2016-02-02 内視鏡診断装置、病変部のサイズ測定方法、プログラムおよび記録媒体

Country Status (4)

Country Link
US (1) US10806336B2 (ja)
EP (1) EP3278706A4 (ja)
JP (1) JP6442344B2 (ja)
WO (1) WO2016157994A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142411A1 (en) * 2017-02-04 2018-08-09 Vessi Medical Ltd. Cryotherapy device flow control
US11040452B2 (en) * 2018-05-29 2021-06-22 Abb Schweiz Ag Depth sensing robotic hand-eye camera using structured light
WO2020080450A1 (ja) * 2018-10-18 2020-04-23 カイロス株式会社 内視鏡装置および内視鏡システム
WO2021132153A1 (ja) * 2019-12-26 2021-07-01 富士フイルム株式会社 内視鏡及び内視鏡システム
CN113040707A (zh) * 2020-12-02 2021-06-29 泰州国安医疗用品有限公司 人体组织病变参数解析平台及方法
WO2022187404A1 (en) * 2021-03-03 2022-09-09 Boston Scientific Scimed, Inc. Scope modifications to enhance scene depth inference
JPWO2022230563A1 (ja) * 2021-04-28 2022-11-03

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867230A (ja) * 1981-10-15 1983-04-21 オリンパス光学工業株式会社 内視鏡
JPS5971736A (ja) * 1982-07-30 1984-04-23 オリンパス光学工業株式会社 内視鏡用測長装置
JPS63148227A (ja) * 1986-12-12 1988-06-21 Toshiba Corp 内視鏡装置
JPH03295532A (ja) * 1990-04-16 1991-12-26 Toshiba Corp 形状計測内視鏡装置
JP2009240621A (ja) * 2008-03-31 2009-10-22 Hoya Corp 内視鏡装置
JP2010276540A (ja) * 2009-05-29 2010-12-09 Nikke Kikai Seisakusho:Kk 生体組織表面解析装置、生体組織表面解析プログラム、および生体組織表面解析方法
JP2013257166A (ja) * 2012-06-11 2013-12-26 Morita Mfg Co Ltd 歯科用光計測装置及び歯科用光計測診断器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100272318A1 (en) * 2005-05-13 2010-10-28 G.I. View Ltd Endoscopic measurement techniques
JP5024785B2 (ja) 2007-03-29 2012-09-12 オリンパスメディカルシステムズ株式会社 内視鏡装置に搭載されるアームシステム
JP5468942B2 (ja) 2010-03-09 2014-04-09 オリンパスメディカルシステムズ株式会社 内視鏡装置
US9113822B2 (en) * 2011-10-27 2015-08-25 Covidien Lp Collimated beam metrology systems for in-situ surgical applications
WO2013096766A2 (en) * 2011-12-21 2013-06-27 Shachaf Catherine M System for imaging lesions aligning tissue surfaces
US9351643B2 (en) * 2013-03-12 2016-05-31 Covidien Lp Systems and methods for optical measurement for in-situ surgical applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867230A (ja) * 1981-10-15 1983-04-21 オリンパス光学工業株式会社 内視鏡
JPS5971736A (ja) * 1982-07-30 1984-04-23 オリンパス光学工業株式会社 内視鏡用測長装置
JPS63148227A (ja) * 1986-12-12 1988-06-21 Toshiba Corp 内視鏡装置
JPH03295532A (ja) * 1990-04-16 1991-12-26 Toshiba Corp 形状計測内視鏡装置
JP2009240621A (ja) * 2008-03-31 2009-10-22 Hoya Corp 内視鏡装置
JP2010276540A (ja) * 2009-05-29 2010-12-09 Nikke Kikai Seisakusho:Kk 生体組織表面解析装置、生体組織表面解析プログラム、および生体組織表面解析方法
JP2013257166A (ja) * 2012-06-11 2013-12-26 Morita Mfg Co Ltd 歯科用光計測装置及び歯科用光計測診断器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278706A4 *

Also Published As

Publication number Publication date
US20170360286A1 (en) 2017-12-21
JP6442344B2 (ja) 2018-12-19
EP3278706A4 (en) 2018-05-02
EP3278706A1 (en) 2018-02-07
JP2016189859A (ja) 2016-11-10
US10806336B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
JP6442344B2 (ja) 内視鏡診断装置、プログラムおよび記録媒体
JP5309120B2 (ja) 内視鏡装置
JP5405445B2 (ja) 内視鏡装置
US7702139B2 (en) Apparatus for caries detection
JP5887350B2 (ja) 内視鏡システム及びその作動方法
US9307910B2 (en) Optical measurement apparatus and endoscope system
JP6022106B2 (ja) 内視鏡システム
US9907493B2 (en) Endoscope system processor device, endoscope system, operation method for endoscope system processor device, and operation method for endoscope system
JP5222934B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP2012016545A (ja) 内視鏡装置
JP2013005830A (ja) 内視鏡システム、プロセッサ装置及び撮影距離測定方法
JP5752423B2 (ja) 分光計測システムおよび分光計測システムの作動方法
US10813541B2 (en) Endoscopic diagnosis apparatus, image processing method, program, and recording medium
US20170354315A1 (en) Endoscopic diagnosis apparatus, image processing method, program, and recording medium
WO2015025595A1 (ja) 内視鏡システム及び作動方法
JP6401098B2 (ja) 内視鏡診断装置および内視鏡診断装置の作動方法
JP5639289B2 (ja) 走査型内視鏡装置
US20150032010A1 (en) Optical measurement device
WO2015186691A1 (ja) 内視鏡システム、光学測定装置および特性値演算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771878

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016771878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE