WO2016157918A1 - 装置 - Google Patents
装置 Download PDFInfo
- Publication number
- WO2016157918A1 WO2016157918A1 PCT/JP2016/050034 JP2016050034W WO2016157918A1 WO 2016157918 A1 WO2016157918 A1 WO 2016157918A1 JP 2016050034 W JP2016050034 W JP 2016050034W WO 2016157918 A1 WO2016157918 A1 WO 2016157918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- frequency band
- terminal device
- signal
- base station
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 157
- 238000012545 processing Methods 0.000 claims description 133
- 238000000034 method Methods 0.000 claims description 41
- 238000004891 communication Methods 0.000 description 126
- 238000010586 diagram Methods 0.000 description 40
- 230000006870 function Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 19
- 230000011664 signaling Effects 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 11
- 230000001413 cellular effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 230000010267 cellular communication Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 206010042135 Stomatitis necrotising Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000008585 noma Diseases 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- COCLLEMEIJQBAG-UHFFFAOYSA-N 8-methylnonyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)=C COCLLEMEIJQBAG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000023402 cell communication Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
Definitions
- This disclosure relates to an apparatus.
- Non-Orthogonal Multiple Access is a radio access technology (RAT) for 5th generation (5G) mobile communication systems following LTE (Long Term Evolution) / LTE-A (Advanced). Attention has been paid.
- OFDMA Orthogonal Frequency-Division Multiple Access
- SC-FDMA Single-Carrier Frequency-Division Multiple Access
- radio resources for example, resource blocks
- OFDMA Orthogonal Frequency-Division Multiple Access
- SC-FDMA Single-Carrier Frequency-Division Multiple Access
- radio resources for example, resource blocks
- These schemes may be referred to as orthogonal multiple access.
- non-orthogonal multiple access radio resources are allocated to users redundantly.
- user signals interfere with each other, but a signal for each user is extracted by a highly accurate decoding process on the receiving side.
- Non-orthogonal multiple access can theoretically achieve higher cell communication capacity than orthogonal multiple access.
- SPC Superposition Coding multiplexing / multiple access.
- SPC is a method of multiplexing signals to which different powers are allocated on radio resources having a frequency and time that overlap at least partially.
- interference cancellation Interference Cancellation
- / or iterative detection is performed for reception / decoding of signals multiplexed on the same radio resource.
- Patent Documents 1 and 2 disclose a technique for setting an amplitude (or power) that enables appropriate demodulation / decoding as a technique equivalent to SPC or SPC.
- Patent Document 3 discloses a technique for enhancing SIC (Successive Interference Cancellation) for receiving multiplexed signals.
- the terminal device When a plurality of layers are multiplexed in the same radio resource for non-orthogonal multiple access, the terminal device needs to know a layer in which a signal to the terminal device is transmitted. However, deciding which layer to transmit the signal to the terminal device every time a signal is transmitted may increase the burden from the viewpoint of processing of the base station. Further, notifying the terminal device of which layer the signal to the terminal device is transmitted to may increase the burden in terms of radio resource consumption. That is, the burden associated with non-orthogonal multiple access scheduling can be increased.
- a frequency band to which non-orthogonal multiple access is applied and at least one layer among a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access to the terminal apparatus comprising: a selection unit that selects as a band and a layer used for transmission, and a notification unit that notifies the terminal device of the frequency band and the at least one layer.
- the processor includes a frequency band to which the non-orthogonal multiple access is applied, and at least one layer among a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access. Is selected as a band and a layer used for transmission to a terminal device, and the frequency device and at least one layer are notified to the terminal device.
- the frequency information to which the non-orthogonal multiple access is applied the band information indicating the frequency band selected as the band used for transmission to the terminal device, and the non-orthogonal multiple access Layer information indicating at least one layer selected as a layer used for transmission to the terminal device, and at least one of a plurality of layers multiplexed in the frequency band for Are provided, and a reception processing unit that decodes a signal transmitted in the at least one layer in the frequency band.
- FIG. 6 is a sequence diagram showing an example of a schematic flow of overall processing according to the same embodiment. It is a sequence diagram which shows an example of the schematic flow of a process of the terminal device which concerns on the same embodiment. It is explanatory drawing for demonstrating a general frame structure. It is explanatory drawing for demonstrating an example of the frame structure which concerns on a modification. It is explanatory drawing for demonstrating the 1st example of the signal transmitted by each layer by the base station in a modification. It is explanatory drawing for demonstrating the 2nd example of the signal transmitted by each layer by the base station in a modification.
- FIGS. 1 and 2 are explanatory diagrams for explaining an example of processing in a transmission device that supports SPC.
- each bitstream eg, transport block
- user A user A
- user B user B
- user C is processed.
- some processing eg, as shown in FIG. 2
- CRC Cyclic Redundancy Check
- FEC Forward Error Correction
- layer mapping For example, layer mapping, power allocation, precoding, SPC multiplexing, resource element mapping, IDFT (Inverse Discrete Fourier Transform) / IFFT (Inverse Fast Fourier Transform), CP (Cyclic Prefix) insertion, and digital to analog and RF (Radio) Conversion to Frequency) is performed.
- IDFT Inverse Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- CP Cyclic Prefix
- power is allocated to the signals of user A, user B, and user C, and in SPC multiplexing, the signals of user A, user B, and user C are multiplexed.
- FIG. 3 is an explanatory diagram for explaining an example of processing in the receiving device that performs interference cancellation.
- conversion from RF and analog to digital CP removal (removal), DFT (Discrete Fourier Transform) / FFT (Fast Fourier Transform), joint interference removal, equalization and decoding are performed. Is called.
- bit streams for example, transport blocks
- the index of the cell to which the target user u is connected is represented by i, and the number of transmission antennas of the base station corresponding to the cell is represented by N TX, i .
- Each of the transmit antennas may be referred to as a transmit antenna port.
- the transmission signal from cell i to user u can be represented in vector form as follows:
- N SS, u is the number of spatial transmission streams for user u.
- N SS, u is a positive integer less than N TX, i .
- the vector x i, u is a spatial stream signal to the user u.
- Each element of this vector basically corresponds to a digital modulation symbol such as PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation).
- the matrix W i, u is a precoding matrix for the user u. Elements in this matrix are basically complex numbers, but may be real numbers.
- Matrix P i, u is a power allocation coefficient matrix for user u in cell i.
- each element is preferably a positive real number.
- this matrix may be a diagonal matrix (that is, a matrix in which other than the diagonal component is 0) as follows.
- the scalar value P i, u may be used instead of the matrix P i, u .
- the cell i includes not only the user u but also other users v, and the signals s i, v of the other users v are also transmitted using the same radio resource. These signals are multiplexed by SPC. Signal s i from cell i after multiplexing is expressed as follows.
- U i is a set of users multiplexed in cell i.
- a transmission signal s j is generated in a cell j (cell serving as an interference source for the user u) other than the serving cell of the user u. On the user side, such a signal is received as interference.
- Received signal r u of the user u may be expressed as follows.
- the matrix H u, i is the channel response matrix for cell i and user u.
- Each element of the matrix H u, i is basically a complex number.
- the vector n u is noise included in the received signal r u of the user u.
- the noise includes thermal noise and interference from other systems.
- the average power of noise is expressed as follows.
- Received signal r u as follows, can be represented by the desired signal and other signals.
- the first term on the right side is the desired signal of the user u
- the second term is the interference in the serving cell i of the user u (intra-cell interference, multi-user interference or multi-access)
- the third term is interference from cells other than the cell i (called inter-cell interference).
- the received signal can be expressed as follows.
- orthogonal multiple access there is no intra-cell interference, and signals of other users v are not multiplexed in the same radio resource in other cells j.
- the transmission signal transmitted by the user u in the cell i can be expressed in a vector format as follows.
- the number of transmission antennas is the number of user transmission antennas N TX, u .
- the matrix P i, u which is the power allocation coefficient matrix for user u in cell i, may be a diagonal matrix as in the downlink case.
- the user's signal and another user's signal are not multiplexed in the user, so the received signal of the base station of cell i can be expressed as: .
- the base station needs to decode all signals from multiple users in the cell. It should also be noted that the channel response matrix varies from user to user.
- the received signal can be expressed as follows.
- the first term on the right side is the desired signal of the user u
- the second term is the interference in the serving cell i of the user u (referred to as intra-cell interference, multi-user interference or multi-access interference, etc.)
- the third term is interference from cells other than cell i (called inter-cell interference).
- the received signal can be expressed as follows.
- orthogonal multiple access there is no intra-cell interference, and signals of other users v are not multiplexed in the same radio resource in other cells j.
- FIG. 4 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
- the system 1 includes a base station 100, a terminal device 200, and a terminal device 300.
- each of terminal device 200 and terminal device 300 is also called a user.
- terminal device 200 and one terminal device 300 are shown here for easier understanding, but the system 1 naturally includes a plurality of terminal devices 200 and / or a plurality of terminals.
- An apparatus 300 may be included.
- Base station 100 is a base station of a cellular system (or mobile communication system).
- the base station 100 performs wireless communication with a terminal device (for example, each of the terminal device 200 and the terminal device 300) located in the cell 101 of the base station 100.
- a terminal device for example, each of the terminal device 200 and the terminal device 300 located in the cell 101 of the base station 100.
- the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the base station 100 supports non-orthogonal multiple access (NOMA).
- NOMA non-orthogonal multiple access
- Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
- the terminal device 200 performs wireless communication with a base station (for example, the base station 100) of the cellular system.
- a base station for example, the base station 100
- the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- the terminal device 200 supports non-orthogonal multiple access (NOMA).
- NOMA non-orthogonal multiple access
- the terminal device 200 can perform interference removal (for example, remove signals to other terminal devices as interference signals).
- the interference removal is, for example, SIC (Successive Interference Cancellation) or PIC (Parallel Interference Cancellation).
- Terminal device 300 The terminal device 300 can communicate in a cellular system (or mobile communication system).
- the terminal device 300 performs wireless communication with a base station (for example, the base station 100) of the cellular system.
- the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- the terminal device 300 does not support non-orthogonal multiple access (NOMA).
- NOMA non-orthogonal multiple access
- the terminal device 200 cannot perform interference removal (for example, removing signals to other terminal devices as interference signals). Therefore, in this specification, the terminal device 300 is also called a legacy terminal.
- the base station 100 performs wireless communication with the terminal device using one or more frequency bands.
- the base station 100 supports carrier aggregation (Carrier Aggregation: CA), and each of the one or more frequency bands is a component carrier (Component Carrier: CC).
- CA Carrier Aggregation
- CC component carrier
- FIG. 5 is an explanatory diagram for explaining an example of a frequency band used by the base station 100. Referring to FIG. 5, CC31 and CC33 are shown. For example, the base station 100 performs wireless communication with the terminal device using the CC 31 and the CC 33.
- Non-orthogonal multiple access In particular, in the embodiment of the present disclosure, as described above, the base station 100 and the terminal device 200 support non-orthogonal multiple access (NOMA).
- NOMA non-orthogonal multiple access
- the non-orthogonal multiple access wireless communication is performed in the downlink. That is, the base station 100 transmits a signal in each of a plurality of layers multiplexed in the frequency band.
- the terminal device 200 decodes a signal transmitted in at least one of the plurality of layers multiplexed in the frequency band.
- the terminal device 200 can remove, as interference, a signal transmitted in another layer among the plurality of layers as interference cancellation.
- the non-orthogonal multiple access is a non-orthogonal multiple access using power allocation. More specifically, for example, the non-orthogonal multiple access is non-orthogonal multiple access using SPC (Superposition Coding) (ie, SPC-NOMA).
- SPC Superposition Coding
- SPC-NOMA Superposition Coding
- FIG. 6 is an explanatory diagram for explaining an example of the non-orthogonal multiple access.
- CC31 and CC33 are shown as in FIG.
- non-orthogonal multiple access using SPC is applied to CC33, and layer 1 and layer 2 are multiplexed in CC33.
- Base station 100 allocates higher power to layer 1 and allocates lower power to layer 2.
- the base station 100 transmits a signal to the terminal device 200 in the layer 2 in the CC 33, and transmits a signal to another terminal device (for example, the other terminal device 200 or the terminal device 300) in the layer 1 in the CC 33.
- Send In this case, the terminal device 200 removes the signal transmitted in layer 1 from the received signal as interference, and decodes the signal transmitted in layer 2.
- the non-orthogonal multiple access wireless communication may be performed on the uplink.
- FIG. 7 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
- the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
- Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
- the wireless communication unit 120 transmits and receives signals.
- the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the network communication unit 130 transmits and receives information.
- the network communication unit 130 transmits information to other nodes and receives information from other nodes.
- the other nodes include other base stations and core network nodes.
- Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
- Processing unit 150 provides various functions of the base station 100.
- the processing unit 150 includes a selection unit 151, a notification unit 153, a transmission processing unit 155, and a reception processing unit 157.
- the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
- the operations of the selection unit 151, the notification unit 153, the transmission processing unit 155, and the reception processing unit 157 will be described in detail later.
- FIG. 8 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
- the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
- Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
- the wireless communication unit 220 transmits and receives signals.
- the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
- the processing unit 240 provides various functions of the terminal device 200.
- the processing unit 240 includes an information acquisition unit 241, a notification unit 243, a transmission processing unit 245, and a reception processing unit 247.
- the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
- the base station 100 includes a frequency band to which non-orthogonal multiple access is applied and a plurality of multiplexed in the frequency band for the non-orthogonal multiple access. At least one of these layers is selected as a band and a layer used for transmission to the terminal device 200. Then, the base station 100 (notification unit 153) notifies the terminal device 200 of the frequency band and the at least one layer.
- the base station 100 and the terminal device 200 support carrier aggregation (CA), and the frequency band is a component carrier (CC) for CA.
- the frequency band is CC33.
- Non-orthogonal multiple access and layer For example, the non-orthogonal multiple access is a non-orthogonal multiple access using power allocation.
- the multiple layers are multiple layers that are multiplexed in the frequency band using power allocation.
- the non-orthogonal multiple access is a non-orthogonal multiple access using SPC.
- the at least one layer is one of the plurality of layers. That is, the base station 100 (selection unit 151) selects the frequency band and one of the plurality of layers as a band and a layer used for transmission to the terminal device 200.
- the base station 100 selects the frequency band as a secondary component carrier (SCC) used for transmission to the terminal device 200, and the terminal device in the SCC The at least one layer is selected as a layer used for transmission to 200.
- the base station 100 selects a CC to be added as an SCC and a layer used for transmission in the SCC when the terminal device 200 adds an SCC.
- the frequency band may be a CC dedicated to SCC (that is, a CC that is not used as a primary component carrier (PCC) but is used only as an SCC).
- CC dedicated to SCC
- PCC primary component carrier
- the base station 100 selects the frequency band as the handover destination band of the terminal apparatus 200, and transmits the terminal apparatus 200 to the terminal apparatus 200 in the handover destination band.
- the at least one layer may be selected as a layer used for transmission.
- the base station 100 (selection unit 151) may select a handover destination CC that is a PCC and a layer used for transmission in the PCC when the terminal device 200 is handed over.
- the base station 100 selects the CC 33 and the layer 2 as a band and a layer used for transmission to the terminal device 200. .
- the base station 100 selects the CC 33 and the layer 1 as a band and a layer used for transmission to the terminal device 200.
- the base station 100 uses the frequency band and at least the above-mentioned frequency band by signaling to the terminal device 200 (for example, RRC (Radio Resource Control) signaling).
- RRC Radio Resource Control
- One layer is notified to the terminal device 200. That is, the base station 100 (notification unit 153) notifies the frequency band and the at least one layer in a signaling message (for example, an RRC message) to the terminal device 200.
- the signaling message is an RRC connection reconfiguration message.
- the notification unit 153 generates a signaling message including band information (information indicating the frequency band) and layer information (information indicating the at least one layer). Then, the transmission processing unit 155 performs transmission processing of the signaling message.
- the base station 100 uses the frequency in the MAC (Media Access Control) control element to the terminal device 200.
- the bandwidth and the at least one layer may be notified.
- the MAC control element may be for SCC activation.
- the notification unit 153 may generate a MAC control element including band information (information indicating the frequency band) and layer information (information indicating the at least one layer). Then, the transmission processing unit 155 may perform transmission processing of the MAC control element.
- the terminal device 200 acquires the band information (information indicating the frequency band) and the layer information (information indicating the at least one layer). .
- the terminal device 200 receives the signaling message (or the MAC control element) including the band information and the layer information. Then, the terminal device 200 (information acquisition unit 241) acquires the band information and the layer information.
- the terminal device 200 notifies the base station 100 of capability information indicating that the terminal device 200 supports the non-orthogonal multiple access. Specifically, for example, the terminal device 200 (notification unit 243) notifies the base station 100 of the capability information in a signaling message (for example, an RRC message).
- a signaling message for example, an RRC message.
- the signaling message is a UE capability information message.
- the notification unit 243 generates the signaling message. Then, the transmission processing unit 155 performs transmission processing of the signaling message.
- the base station 100 can know the terminal device that supports the non-orthogonal multiple access.
- the base station 100 selects the frequency band and the at least one layer as a band and a layer used for transmission to the terminal device 200, and the frequency band and the at least one layer are the terminal device. 200 is notified.
- the layer used by the terminal device 200 is not selected every time a signal is transmitted to the terminal device 200 (that is, every time scheduling is performed). Therefore, the processing load on the base station 100 can be reduced.
- the layer used by the terminal device 200 is not notified to the terminal device 200 every time a signal is transmitted to the terminal device 200 (that is, every time scheduling is performed), but at the start of use of the frequency band. Since it is only necessary to notify the terminal device 200, the burden of consumption of radio resources can be reduced.
- the base station 100 determines the frequency band and the layer to which the maximum power is allocated among the plurality of layers as the terminal device 300. That is, it selects as a band and a layer used for transmission to (that is, a terminal device that does not support the non-orthogonal multiple access).
- the base station 100 (notification unit 153) notifies the terminal device 300 of the frequency band.
- the base station 100 selects the frequency band as the SCC used for transmission to the terminal device 300, and the terminal device in the SCC As the layer used for transmission to 300, the layer to which the maximum power is allocated is selected.
- the base station 100 when adding an SCC of the terminal device 300, adds a CC to be added as an SCC and a layer used for transmission in the SCC (a layer to which maximum power is allocated). select.
- the base station 100 selects the frequency band as the handover destination band of the terminal device 300, and transmits the terminal device 300 to the terminal device 300 in the relevant handover destination band.
- the layer used for transmission the layer to which the maximum power is allocated may be selected.
- the base station 100 (selection unit 151) allocates a handover destination CC, which is a primer component carrier (PCC), and a layer (maximum power allocation) used for transmission in the PCC when the terminal device 300 is handed over. Layer) may be selected.
- a handover destination CC which is a primer component carrier (PCC)
- PCC primer component carrier
- Layer maximum power allocation
- the base station 100 selects the CC 33 and the layer 1 as a band and a layer used for transmission to the terminal device 300. .
- the base station 100 notifies the terminal device 300 of the frequency band. Note that the base station 100 (notification unit 153) does not notify the terminal device 300 of the layer to which the maximum power is allocated. This is because the terminal device 300 that is a legacy terminal cannot know the layer and does not need to know the layer.
- the base station 100 notifies the terminal device 300 of the frequency band by signaling (for example, RRC signaling) to the terminal device 300. That is, the base station 100 (notification unit 153) notifies the frequency band in a signaling message (for example, an RRC message) to the terminal device 300.
- a signaling message for example, an RRC message
- the signaling message is an RRC connection reconfiguration message.
- the notification unit 153 generates a signaling message including band information (information indicating the frequency band). Then, the transmission processing unit 155 performs transmission processing of the signaling message.
- the base station 100 notifies the frequency band in the MAC control element to the terminal device 300.
- the MAC control element may be for SCC activation.
- the notification unit 153 may generate a MAC control element including band information (information indicating the frequency band). Then, the transmission processing unit 155 may perform transmission processing of the MAC control element.
- the terminal device 300 acquires the band information (information indicating the frequency band).
- the terminal device 300 receives the signaling message (or the MAC control element) including the band information. Then, the terminal device 300 acquires the band information.
- the base station 100 selects the frequency band and the layer to which the maximum power is allocated as a band and a layer used for transmission to the terminal device 300, and The terminal device 300 is notified of the frequency band.
- the legacy terminal terminal device 300
- the legacy terminal can perform wireless communication even in a frequency band to which non-orthogonal multiple access is applied. More specifically, for example, even if a signal of another layer (that is, an interference signal) is included in the received signal, higher power is allocated to the signal to the legacy terminal (terminal device 300). Therefore, the legacy terminal can decode the signal to itself (for example, without performing interference cancellation).
- the base station 100 uses the terminal device 200 (or another terminal device 200 (not shown)) instead of the terminal device 300 for the frequency band and the layer to which the maximum power is allocated. May be selected as the band and layer used for transmission to
- the base station 100 transmits a signal in the frequency band. More specifically, base station 100 (transmission processing unit 155) transmits a signal in each of the plurality of layers in the frequency band.
- the base station 100 transmits a signal to the terminal device 200 in the at least one layer (a layer used for transmission to the terminal device 200) in the frequency band.
- the base station 100 transmits a signal to the terminal device 300 in the layer to which the maximum power is allocated in the frequency band.
- the base station 100 transmits a signal to the terminal device 200 in the layer 2 and transmits a signal to the terminal device 300 in the layer 1 in the CC 33.
- the transmission processing unit 155 transmits a signal to the terminal device
- the transmission processing unit 155 performs transmission processing for transmitting a signal to the terminal device”.
- the transmission processing here includes, for example, digital processing of the physical layer.
- the terminal device 200 (information acquisition unit 241) includes the band information (information indicating the frequency band) and the layer information (information indicating the at least one layer). And get. Then, the terminal device 200 (reception processing unit 247) decodes a signal transmitted in the at least one layer (that is, a layer used for transmission to the terminal device 200) in the frequency band.
- the at least one layer (that is, a layer used for transmission to the terminal device 200) is one of the plurality of layers.
- the one layer is a layer to which the maximum power is allocated among the plurality of layers.
- the terminal device 200 decodes a signal transmitted in the one layer from a received signal (that is, a multiplexed signal).
- the one layer is a layer different from the layer to which the maximum power is allocated among the plurality of layers.
- the terminal device 200 generates, as an interference replica signal, a signal transmitted in another layer (for example, a layer to which power greater than the one layer is assigned), and receives the interference replica signal from the received signal. Remove. And the terminal device 200 decodes the signal transmitted by said one layer from the received signal after removal.
- the base station 100 transmits a signal to the terminal device 200 in the layer 2 in the CC 33.
- the terminal device 200 generates a signal transmitted in the layer 1 in the CC 33 as an interference replica signal, and removes the interference replica signal from the reception signal of the CC 33.
- the terminal device 200 decodes the signal transmitted by layer 2 in CC33 from the received signal after removal.
- the terminal device 300 acquires the band information (information indicating the frequency band). Then, the terminal device 300 decodes a signal transmitted in the frequency band (actually, a signal transmitted in the layer to which the maximum power is allocated). Note that the terminal device 200 is a legacy terminal (a terminal device that does not support the non-orthogonal multiple access), and decodes a signal without being aware of the layer.
- the base station 100 transmission processing unit 155) transmits a physical data channel signal in each of the plurality of layers in the frequency band. Send.
- the physical data channel is a channel used for transmitting data signals (and control signals). Therefore, the signal of the physical data channel is a data signal (and a control signal).
- the physical data channel is PDSCH (Physical Downlink Shared Channel).
- PDSCH Physical Downlink Shared Channel
- the physical data channel is not limited to this example, and may have other names in future standards.
- data signals are multiplexed, and the base station 100 can transmit more data signals.
- (D-2) Physical Control Channel Signal For example, the base station 100 (transmission processing unit 155) transmits a physical control channel signal in the frequency band.
- the physical control channel is a channel used for transmitting control signals. Therefore, the signal of the physical data channel is a control signal. More specifically, for example, the control signal is a signal of downlink control information (DCI).
- DCI downlink control information
- the physical control channel is a PDCCH (Physical Downlink Control Channel).
- PDCCH Physical Downlink Control Channel
- the physical control channel is not limited to this example, and may have other names in future standards.
- the base station 100 transmits the signal of the physical control channel in one of the plurality of layers in the frequency band.
- the signal of the physical control channel includes a scheduling information signal for each of the plurality of layers. This can be referred to as cross-layer scheduling.
- the one layer among the plurality of layers is a layer to which the maximum transmission power is allocated among the plurality of layers.
- FIG.9 and FIG.10 the example of the signal transmitted by each layer by the base station 100 is demonstrated.
- FIG. 9 is an explanatory diagram for describing a first example of signals transmitted in each layer by the base station 100.
- layer 1 and layer 2 of CC 33 are shown.
- the first to third symbols in the subframe are symbols in which PDCCH is arranged in layer 1 and are null symbols in layer 2. That is, in the first to third symbols, base station 100 transmits a PDCCH signal in layer 1 and does not transmit any signal in layer 2. Thereby, the communication quality of layer 1 can be improved.
- the PDCCH signal transmitted in layer 1 includes both layer 1 and layer 2 scheduling information signals.
- the fourth to fourteenth symbols in the subframe are symbols in which PDSCH is arranged in both layer 1 and layer 2. That is, base station 100 transmits PDSCH signals in both layer 1 and layer 2 in the 4th to 14th symbols.
- FIG. 10 is an explanatory diagram for explaining a second example of signals transmitted by the base station 100 in each layer.
- layer 1 and layer 2 of CC 33 are shown.
- the first to third symbols in the subframe are not null symbols in Layer 2 but are symbols in which PDSCH is arranged. That is, in the first to third symbols, base station 100 transmits a PDCCH signal in layer 1 and transmits a PDSCH signal in layer 2. Thereby, the base station 100 can transmit more data signals.
- the base station 100 transmits the signal of the physical control channel without multiplexing in the frequency band instead of transmitting the signal of the physical control channel in the one layer in the frequency band. May be.
- the scheduling information can be easily acquired by the terminal device 200. More specifically, for example, the terminal device 200 can obtain scheduling information without interference cancellation regardless of the layer used for transmission to the terminal device 200.
- the base station 100 may transmit a signal of a physical control channel in each of the plurality of layers in the frequency band.
- transmission processing unit 155 may transmit a signal of a physical control channel in each of the plurality of layers in the frequency band.
- FIG. 11 is an explanatory diagram for describing a third example of a signal transmitted in each layer by the base station 100.
- layer 1 and layer 2 of CC 33 are shown.
- the first to third symbols in the subframe are symbols in which PDCCH is arranged in both layer 1 and layer 2. That is, base station 100 transmits a PDCCH signal in both layer 1 and layer 2 in the first to third symbols.
- the PDCCH signal transmitted in layer 1 includes a layer 1 scheduling information signal
- the PDCCH signal transmitted in layer 2 includes a layer 2 scheduling information signal.
- the fourth to fourteenth symbols in the subframe are symbols in which PDSCH is arranged in both layer 1 and layer 2. That is, base station 100 transmits PDSCH signals in both layer 1 and layer 2 in the 4th to 14th symbols.
- scheduling information can be further simplified.
- the base station 100 does not have to transmit a signal of the physical control channel in the frequency band. Instead, the base station 100 (transmission processing unit 155) may transmit a physical control channel signal in another frequency band, and the signal may include a scheduling information signal for each of the plurality of layers. That is, cross carrier scheduling may be performed.
- the base station 100 transmission processing unit 155) may transmit a physical control channel signal in another frequency band, and the signal may include a scheduling information signal for each of the plurality of layers. That is, cross carrier scheduling may be performed.
- examples of signals transmitted in each layer by the base station 100 will be described with reference to FIG.
- FIG. 12 is an explanatory diagram for describing a fourth example of signals transmitted in each layer by the base station 100.
- CC31 and CC33 are shown, and further, layer 1 and layer 2 of CC33 are shown.
- PDCCH is not arranged in either layer 1 or layer 2 in CC33. Instead, the PDCCH is arranged in the CC 31, and the scheduling information of the layer 1 and layer 2 of the CC 33 is transmitted on the PDCCH. That is, the base station 100 transmits a PDCCH signal in the first to third symbols of the CC 31, and the signal includes CC 1 layer 1 and layer 2 scheduling information signals.
- all symbols in the subframe are symbols in which PDSCH is arranged in both layer 1 and layer 2. That is, the base station 100 transmits PDSCH signals in both layer 1 and layer 2 in all symbols.
- the base station 100 transmits other signals in the frequency band.
- the other signals include a synchronization signal.
- the synchronization signal includes a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
- the other signal includes a signal of a physical broadcast channel (PBCH).
- PBCH physical broadcast channel
- the base station 100 transmits the other signal in one of the plurality of layers in the frequency band.
- transmission processing unit 155 transmits the other signal in one of the plurality of layers in the frequency band.
- FIG. 13 is an explanatory diagram for explaining a fifth example of signals transmitted in each layer by the base station 100.
- layer 1 and layer 2 of CC 33 are shown.
- the base station 100 transmits PSS, SSS, and PBCH signals in the layer 1 in the CC 33.
- base station 100 does not transmit any of PSS, SSS, and PBCH signals in layer 2.
- the base station 100 does not transmit any signals in layer 2 in the radio resources for PSS and SSS and the radio resources for PBCH.
- the communication quality of layer 1 can be improved. More specifically, for example, the quality of PSS and SSS and PBCH can be improved.
- FIG. 14 is an explanatory diagram for explaining a sixth example of a signal transmitted in each layer by the base station 100.
- layer 1 and layer 2 of CC 33 are shown.
- the base station 100 transmits a PDSCH signal in layer 2 in the radio resource for PSS and SSS and the radio resource for PBCH. Thereby, the base station 100 can transmit more data signals.
- the base station 100 may transmit the other signal without multiplexing in the frequency band, instead of transmitting the other signal in the one layer in the frequency band. .
- the base station 100 (transmission processing unit 155) causes the other signal (for example, a synchronization signal and / or a PBCH signal) in each of the plurality of layers in the frequency band. May be sent. Thereby, for example, a layer can be handled as an independent CC.
- the other signal for example, a synchronization signal and / or a PBCH signal
- FIG. 15 is an explanatory diagram for explaining an example of the bandwidth for each layer.
- CC31 and CC33 are shown.
- the entire CC 33 is used in the layer 1 of the CC 33
- the partial band 35 that is a part of the CC 33 is used in the layer 2 of the CC 33.
- Each of the plurality of layers may be handled in the same manner as a component carrier. For example, system information may be transmitted in each of the plurality of layers. Further, for example, each of the plurality of layers may be activated or deactivated for the terminal device 200.
- the base station 100 (selection unit 151) reselects another layer of the plurality of layers as a layer used for transmission to the terminal device 200. Then, the base station 100 (notification unit 153) notifies the terminal device 200 of the other layers. That is, the base station 100 changes only the layer without changing the frequency band (for example, CC), and notifies the terminal device 200 of the changed layer.
- layer reselection (layer change) can be said to be a handover between layers.
- the terminal device 200 uses the layer 2 of CC33.
- the base station 100 reselects the layer 1 of the CC 33 as a layer used for transmission to the terminal device 200. Then, the base station 100 notifies the terminal device 200 of layer 1.
- the base station 100 reselects the other layer based on the measurement result by the terminal device 200. More specifically, for example, when the communication quality of the terminal device 200 deteriorates, the base station 100 assigns a layer to which higher power is allocated as a layer used for transmission to the terminal device 200 (for example, FIG. Reselect CC3 layer 1) shown in FIG. On the other hand, for example, when the communication quality of the terminal device 200 is improved, the base station 100 is a layer to which lower power is allocated as a layer used for transmission to the terminal device 200 (for example, as illustrated in FIG. 6). Reselect layer 3) of CC3.
- the terminal device 200 can flexibly use the layer.
- FIG. 16 is a sequence diagram illustrating an example of a schematic flow of overall processing according to an embodiment of the present disclosure.
- the base station 100 transmits a UE capability inquiry message to the terminal device 200 (S401).
- the terminal device 200 transmits a UE capability information message (S403).
- the UE capability information message includes capability information indicating that the terminal device 200 supports non-orthogonal multiple access (NOMA). For example, as described above, the terminal device 200 notifies the base station 100 of the capability information.
- NOMA non-orthogonal multiple access
- the base station 100 transmits, to the terminal device 200, a CC to which the non-orthogonal multiple access is applied and at least one layer among a plurality of layers multiplexed in the CC for the non-orthogonal multiple access.
- a band and a layer used for transmission are selected (S405).
- the base station 100 transmits an RRC connection reconfiguration message to the terminal device 200 (S407).
- the RRC connection reconfiguration message includes band information indicating the CC and layer information indicating the at least one layer. For example, in this way, the base station 100 notifies the terminal device 200 of the CC and the at least one layer.
- the terminal device 200 acquires the band information and the layer information, and transmits an RRC connection reconfiguration complete message to the base station 100 (S409).
- the base station 100 transmits a PDCCH signal in the CC (S411). For example, in the CC, the base station 100 transmits a PDCCH signal in one of the plurality of layers.
- the terminal device 200 acquires downlink control information (DCI) by decoding the PDCCH signal (S413).
- the downlink control information includes scheduling information.
- the scheduling information is scheduling information of the at least one layer of the CC.
- the base station 100 transmits a PDSCH signal in each of the plurality of layers in the CC (S415). For example, the base station 100 transmits a signal to the terminal device 200 in the at least one layer in the CC.
- the terminal device 200 decodes a signal transmitted in the at least one layer in the CC (S417). Then, the terminal device 200 transmits ACK (Acknowledgement) / NACK (Negative Acknowledgement) to the base station 100 (S419).
- ACK Acknowledgement
- NACK Negative Acknowledgement
- FIG. 17 is a sequence diagram illustrating an example of a schematic flow of processing in the terminal device 200 according to the embodiment of the present disclosure. This processing corresponds to steps S413 and S417 shown in FIG. The above process may be performed for each subframe.
- the terminal device 200 acquires DCI (S431).
- radio resources are allocated to the terminal device 200 (S433: YES)
- the terminal device 200 if the layer used for transmission to the terminal device 200 is a layer to which the maximum power can be allocated (S435: YES), the terminal device 200 (reception processing unit 247) decodes a signal transmitted in the layer (S437). Then, the process ends.
- the terminal device 200 performs at least the above while removing interference.
- a signal transmitted in one layer is decoded (S439).
- the terminal device 200 (reception processing unit 247) generates a signal transmitted in another layer as an interference replica signal as the interference cancellation, and removes the interference replica signal from the CC received power. Then, the process ends.
- non-orthogonal multiple access for example, SPC-NOMA
- the DCI may include information (for example, bits) indicating whether or not the non-orthogonal multiple access is applied, and the terminal device 200 (for example, immediately after step S433) You may determine the presence or absence of application. If the non-orthogonal multiple access is applied, the process may proceed to step S435. If the non-orthogonal multiple access is not applied, the process may proceed to step S437.
- the plurality of layers include a first layer having a first time frame length, and a second layer having a time frame length smaller than the first length. And a second layer having a length of. That is, the time frame length differs between at least two of the plurality of layers. Thereby, for example, the latency may be shorter.
- Time frame (a) Example of time frame
- the time frame is a cycle of radio resource allocation. More specifically, for example, the time frame is a subframe.
- the first length is the same as the time frame length of other frequency bands to which the non-orthogonal multiple access is not applied, and the second length is the other length. Less than the length of the time frame of the frequency band. That is, the time frame of the first layer is the same length as the normal time frame, and the time frame of the second layer is shorter than the normal time frame.
- the first length is an integer multiple of the second length.
- each symbol included in the time frame of the first layer has the same length as each symbol included in the time frame of the second layer.
- FIGS. 18 and 19 an example of a time frame will be described with reference to FIGS. 18 and 19.
- FIG. 18 is an explanatory diagram for explaining a general frame structure.
- a radio frame is shown.
- the radio frame has a length of 10 ms and includes 10 subframes.
- each subframe has a length of 1 ms and includes 14 symbols.
- FIG. 19 is an explanatory diagram for explaining an example of a frame configuration according to the modification.
- layer 1 and layer 2 of CC 33 are shown.
- layer 1 has the general frame structure described with reference to FIG. That is, the layer 1 radio frame has a length of 10 ms and includes 10 subframes.
- a layer 1 subframe has a length of 1 ms and includes 14 symbols.
- the layer 2 has a frame structure different from a general frame structure. Specifically, the layer 2 radio frame has a length of 10 ms and includes 20 subframes. Also, the layer 2 subframe has a length of 0.5 ms and includes 7 symbols.
- CC 31 (not shown) different from CC 33 has the general frame structure described with reference to FIG. That is, the length of the layer 1 subframe is the same as the length of the CC31 subframe.
- the radio resource of layer 2 becomes shorter in the time direction.
- a pair of two resource blocks arranged in the time direction is assigned, but for layer 2, only one resource block is assigned in the time direction.
- the time frame length differs between layers.
- a unit of radio resources to be allocated for at least one layer is reduced.
- the allocated radio resource becomes a single resource block from a pair of resource blocks. Therefore, radio resources can be allocated to more terminal devices within a certain time. As a result, the latency can be shorter.
- the radio frame may include 10 subframes regardless of the length of the subframe. Specifically, when the length of the subframe is 0.5 ms, the length of the radio frame may be 5 ms.
- the base station 100 transmits a signal of data having a lower real-time property in the first frequency band in the frequency band, and the real-time property is higher A data signal is transmitted in the second layer.
- the base station 100 transmits a data signal with lower real-time property in layer 1 and transmits a data signal with higher real-time property in layer 2 in CC 33.
- the data with higher real-time property is audio data or video data.
- the base station 100 may determine the real-time property of the data based on QCI (QoS Class Identifier).
- QCI QoS Class Identifier
- the QCI may be a QCI of a bearer corresponding to the data.
- the QCI may be associated with features of QoS (Quality of Service) as follows.
- the base station 100 may determine that the real-time property of data is high when the resource type associated with the QCI is GBR (Guaranteed Bit Rate).
- GBR Guard Bit Rate
- the base station 100 performs real-time data processing. May be determined to be high.
- the base station 100 determines that the packet delay amount (Packet Delay Budget) associated with the QCI is equal to or less than a predetermined value (or less than a predetermined value) (that is, the delay request is severe). It may be determined that the real time property of the data is high.
- the base station 100 performs data transfer when the packet error loss rate associated with the QCI is equal to or higher than a predetermined value (or exceeds a predetermined value) (that is, a certain amount of packet loss is allowed). It may be determined that the real-time property is high. As a fifth example, the base station 100 may determine that the real-time property of data is high when the QCI is a predetermined QCI. Such determination of real-time property can facilitate selection of a frequency band and / or a layer.
- the base station 100 transmits a signal of information having a larger size on the first layer and transmitting a signal of information having a smaller size in the frequency band. You may transmit in the said 2nd layer.
- the information having a larger size may be data having a larger size
- the information having a smaller size may be control information or data having a smaller size.
- the base station 100 transmits a data signal for which higher throughput is required in the frequency band in the first layer, and transmits a data signal for which lower throughput is required in the second layer. You may send it with Thereby, the throughput can be increased for data that requires a higher throughput.
- (B) Control Channel Signal For example, also in the modification, the base station 100 (transmission processing unit 155) transmits a physical control channel signal in the frequency band.
- the base station 100 transmits the physical control channel in one of the plurality of layers in the frequency band.
- the above signal is transmitted.
- the signal of the physical control channel includes a signal of scheduling information for each of the plurality of layers.
- the one layer among the plurality of layers is a layer to which the maximum transmission power is allocated among the plurality of layers.
- FIG. 20 is an explanatory diagram for describing a first example of a signal transmitted in each layer by the base station 100 in the modified example.
- layer 1 and layer 2 of CC 33 are shown.
- the length of the layer 2 subframe ie, the length of each of the layer 1 first and second subframes
- the first to third symbols in the subframe are symbols on which PDCCH is arranged
- the first to third symbols in the first subframe are The null symbol. That is, the base station 100 transmits a PDCCH signal in the first to third symbols in the subframe in the layer 1, and in the first to third symbols in the first subframe in the layer 2. Neither signal is transmitted.
- the PDCCH signal transmitted in layer 1 includes both layer 1 and layer 2 scheduling information signals.
- a PDCCH signal transmitted in layer 1 includes a scheduling information signal of two subframes in layer 2.
- the 4th to 14th symbols in the subframe are symbols on which PDSCH is arranged
- the 4th to 7th symbols in the first subframe and the All symbols in two subframes are symbols in which PDSCH is arranged. That is, the base station 100 transmits the PDSCH signal in the 4th to 14th symbols in the subframe in the layer 1, and in the layer 2 the 4th to 7th symbols in the first subframe.
- PDSCH signals are transmitted in all symbols of two subframes.
- FIG. 21 is an explanatory diagram for describing a second example of a signal transmitted in each layer by the base station 100 in the modified example.
- layer 1 and layer 2 of CC 33 are shown.
- the first to third symbols in the first subframe are not null symbols but symbols in which PDSCH is arranged. That is, the base station 100 transmits a PDCCH signal in the first to third symbols of the subframe in layer 1, and in layer 2, the PDSCH signal is transmitted in the first to third symbols of the first subframe. Send a signal. Thereby, the base station 100 can transmit more data signals.
- the base station 100 transmits the signal of the physical control channel without multiplexing in the frequency band instead of transmitting the signal of the physical control channel in the one layer in the frequency band. May be.
- the scheduling information can be easily acquired by the terminal device 200. More specifically, for example, the terminal device 200 can obtain scheduling information without interference cancellation regardless of the layer used for transmission to the terminal device 200.
- the base station 100 (transmission processing unit 155) may transmit the signal of the physical control channel in each of the plurality of layers in the frequency band.
- transmission processing unit 155 may transmit the signal of the physical control channel in each of the plurality of layers in the frequency band.
- FIG. 22 is an explanatory diagram for describing a third example of signals transmitted in each layer by the base station 100 in the modification.
- layer 1 and layer 2 of CC 33 are shown.
- the length of the layer 2 subframe ie, the length of each of the layer 1 first and second subframes
- the first to third symbols of each of the layer 1 subframe, the layer 2 first subframe, and the layer 2 second subframe are symbols in which the PDCCH is arranged.
- the base station 100 transmits a PDCCH signal in the first to third symbols in the subframe in the layer 1, and in the layer 2, the first to third symbols in the first subframe, and In the first to third symbols in the second subframe, a PDCCH signal is transmitted.
- the PDCCH signal transmitted in layer 1 includes a layer 1 scheduling information signal.
- the PDCCH signal transmitted in the first subframe in layer 2 includes the scheduling information signal in the first subframe, and the PDCCH signal transmitted in the second subframe in layer 2 is the second subframe. Includes scheduling information signals for subframes.
- the 4th to 14th symbols in the subframe are symbols in which PDSCH is arranged.
- These symbols are symbols in which PDSCH is arranged. That is, the base station 100 transmits the PDSCH signal in the 4th to 14th symbols in the subframe in the layer 1, and in the layer 2, the base station 100 transmits 4 in each of the first subframe and the second subframe. In the seventh to seventh symbols, a PDSCH signal is transmitted.
- scheduling information can be further simplified.
- the base station 100 may transmit a physical control channel signal in each of the plurality of layers in the frequency band.
- the third example is the same as the second example.
- the base station 100 (transmission processing unit 155) uses the physical control channel in one time frame of the plurality of time frames in the second layer (that is, a layer having a shorter time frame). May be transmitted.
- the signal of the physical control channel transmitted in the one time frame includes a scheduling information signal for each of the plurality of time frames. This can be referred to as cross frame scheduling.
- cross frame scheduling an example of a signal transmitted in each layer by the base station 100 will be described.
- FIG. 23 is an explanatory diagram for describing a fourth example of a signal transmitted in each layer by the base station 100 in the modified example.
- layer 1 and layer 2 of CC 33 are shown.
- the first to third symbols of each of the second subframes of layer 2 are symbols in which PDSCH is arranged instead of PDCCH. That is, in layer 2, base station 100 transmits a PDSCH signal instead of PDCCH in the first to third symbols of the second subframe.
- the PDCCH signal transmitted in the first subframe at layer 2 includes not only the scheduling information signal of the first subframe but also the scheduling information signal of the second subframe.
- the base station 100 can transmit more data signals.
- the base station 100 does not have to transmit a signal of the physical control channel in the frequency band. Instead, the base station 100 (transmission processing unit 155) may transmit a physical control channel signal in another frequency band, and the signal may include a scheduling information signal for each of the plurality of layers. That is, cross carrier scheduling may be performed.
- the base station 100 transmission processing unit 155 may transmit a physical control channel signal in another frequency band, and the signal may include a scheduling information signal for each of the plurality of layers. That is, cross carrier scheduling may be performed.
- FIG. 24 is an explanatory diagram for describing a fifth example of signals transmitted in each layer by the base station 100 in the modification.
- CC31 and CC33 are shown, and further, layer 1 and layer 2 of CC33 are shown.
- the length of the CC33 layer 2 subframe ie, the length of each of the layer 2 first subframe and the second subframe
- the length of the CC33 layer 1 subframe is the same as the length of the CC31 subframe.
- PDCCH is not arranged in either layer 1 or layer 2 in CC33.
- the PDCCH is arranged in the CC 31, and the scheduling information of the layer 1 and layer 2 of the CC 33 is transmitted on the PDCCH. That is, the base station 100 transmits a PDCCH signal in the first to third symbols of the CC 31, and the signal includes CC 1 layer 1 and layer 2 scheduling information signals. Note that in CC33, all symbols in the layer 1 subframe and all symbols in the first subframe and the second subframe in layer 2 are symbols in which the PDSCH is arranged. That is, the base station 100 transmits PDSCH signals in both layer 1 and layer 2 in all symbols.
- the base station 100 also transmits other signals (for example, a synchronization signal and / or a PBCH signal) in the frequency band.
- other signals for example, a synchronization signal and / or a PBCH signal.
- the base station 100 may change the time frame length of the second layer.
- the base station 100 may dynamically or semi-statically change the length of the second layer time frame.
- the base station 100 may also change the length of the time frame of another layer among the plurality of layers.
- an example of changing the length of the time frame will be described with reference to FIG.
- FIG. 25 is an explanatory diagram for explaining an example of changing the length of a time frame.
- two radio frames (Radio Frame) are shown.
- the first radio frame includes 20 subframes each having a length of 0.5 ms.
- the base station 100 changes the length of the subframe from 0.5 ms to 1 ms after the end of the first radio frame. Therefore, the second radio frame includes 10 subframes each having a length of 1 ms.
- the latency means, for example, the time (delay time) required for a round trip from the transmission of data by the transmission device to the reception of ACK / NACK by the transmission device.
- latency is the time required for a round trip to completion of transmission / reception of one transport block (TB), or the time required for a round trip to completion of transmission / reception of one packet (for example, an IP packet) of an upper layer. It may mean. For example, since the real-time property may not be ensured when the latency becomes long, it is desired that such latency be shortened in the cellular system.
- the base station 100 transmits a signal in the first frequency band and the second frequency band, and the time frame of the second frequency band is more than the time frame of the first frequency band. short.
- the length of the time frame in the first frequency band is the first length
- the length of the time frame in the second frequency band is a second length that is smaller than the first length. That's it. That is, the length of the time frame differs between frequency bands. Thereby, for example, the latency can be further shortened.
- each of the first frequency band and the second frequency band is a component carrier.
- the base station 100 may also use a frequency band (for example, a component carrier) other than the first frequency band and the second frequency band.
- a frequency band for example, a component carrier
- Time frame (a) Example of time frame
- the time frame is a cycle of radio resource allocation. More specifically, for example, the time frame is a subframe.
- (B) Length of time frame For example, the time frame of the first frequency band has the same length as the normal time frame, and the time frame of the second frequency band is longer than the normal time frame. short.
- the first length (the length of the time frame in the first frequency band) is an integer multiple of the second length (the length of the time frame in the second frequency band).
- each symbol included in the time frame of the first frequency band has the same length as each symbol included in the time frame of the second frequency band.
- FIG. 26 is an explanatory diagram for explaining an example of a frame configuration according to another embodiment.
- CC31 and CC33 are shown.
- the CC 31 has the general frame structure described with reference to FIG. That is, the CC31 radio frame has a length of 10 ms and includes 10 subframes.
- the CC31 subframe has a length of 1 ms and includes 14 symbols.
- the CC 33 has a frame structure different from a general frame structure. Specifically, the CC33 radio frame has a length of 10 ms and includes 20 subframes.
- the CC33 subframe has a length of 0.5 ms and includes 7 symbols.
- the lengths of subframes (radio resource allocation cycles) differ between CC31 and CC33.
- wireless resource of CC33 becomes shorter in a time direction.
- a pair of two resource blocks arranged in the time direction is assigned, but for CC33, only one resource block is assigned in the time direction.
- the length of the time frame differs between frequency bands (for example, CC).
- CC frequency bands
- the unit of radio resources allocated for at least one frequency band is reduced.
- the allocated radio resource becomes a single resource block from a pair of resource blocks. Therefore, radio resources can be allocated to more terminal devices within a certain time. As a result, the latency can be shorter.
- the base station 100 transmits a data signal having lower real-time property in the first frequency band, and in the second frequency band.
- the data signal with higher real-time property is transmitted.
- the base station 100 transmits a data signal with lower real-time property in the CC 31, and transmits a data signal with higher real-time property in the CC 33.
- the data with higher real-time property is audio data or video data.
- the base station 100 may determine the real-time property of the data based on the QCI.
- the QCI may be a QCI of a bearer corresponding to the data. The description about this point is the same as the description in the above-described modification. Therefore, the overlapping description is omitted here.
- the base station 100 transmits a signal of information having a larger size in the first frequency band, and the size is larger in the second frequency band. Smaller information signals may be transmitted.
- the information having a larger size may be data having a larger size
- the information having a smaller size may be control information or data having a smaller size.
- the base station 100 transmits a data signal that requires higher throughput in the first frequency band, and transmits a data signal that requires lower throughput in the second frequency band. You may send it. Thereby, the throughput can be increased for data that requires a higher throughput.
- the base station 100 may change the length of the time frame of the second frequency band.
- the base station 100 may change the time frame length of the second frequency band dynamically or semi-statically.
- the base station 100 may also change the length of the time frame of another frequency band (for example, the first frequency band).
- the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
- the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
- the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
- Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
- RRHs Remote Radio Heads
- the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
- the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
- MTC Machine Type Communication
- M2M Machine To Machine
- at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- FIG. 27 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
- Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
- the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 27, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 27 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
- the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
- the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
- the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
- the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
- the controller 821 may communicate with the core network node or other eNB via the network interface 823.
- the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
- the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
- the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
- the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
- the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
- the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
- Various signal processing of Packet Data Convergence Protocol
- Packet Data Convergence Protocol is executed.
- the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
- the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
- the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
- the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
- the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 27, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example.
- the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 27, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
- 27 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
- the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
- the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the radio communication unit 120 described with reference to FIG. 7 may be implemented in the radio communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
- the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
- FIG. 28 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
- Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
- the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 28, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 28 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
- the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- the wireless communication interface 855 may typically include a BB processor 856 and the like.
- the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 27 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
- the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
- 28 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
- the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 may be a communication module for communication on the high-speed line.
- the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 may typically include an RF circuit 864 and the like.
- the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 28, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 28 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
- the eNB 830 illustrated in FIG. 28 one or more components (selection unit 151, notification unit 153, transmission processing unit 155, and / or reception processing unit 157) included in the processing unit 150 described with reference to FIG.
- the wireless communication interface 855 and / or the wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
- the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
- the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 120 described with reference to FIG. 7 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
- the antenna unit 110 may be mounted on the antenna 840.
- the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
- FIG. 29 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
- the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
- One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
- the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
- the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
- the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
- the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
- the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 908 converts sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
- the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts an audio signal output from the smartphone 900 into audio.
- the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
- the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
- the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
- the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 29 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
- the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
- a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
- Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
- Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
- the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 29 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
- the smartphone 900 may include an antenna 916 for each wireless communication method.
- the antenna switch 915 may be omitted from the configuration of the smartphone 900.
- the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
- the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 29 via a power supply line partially shown by a broken line in the drawing.
- the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
- one or more components included in the processing unit 240 described with reference to FIG. ) May be implemented in the wireless communication interface 912.
- the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
- the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
- the antenna unit 210 may be mounted on the antenna 916.
- FIG. 30 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
- the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
- the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
- the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
- the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
- the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
- the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
- the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
- the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
- the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
- the speaker 931 outputs the navigation function or the audio of the content to be played back.
- the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
- the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
- the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
- the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 30 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
- the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
- a BB processor 934 and an RF circuit 935 may be included for each communication method.
- Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
- Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
- the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. Note that FIG. 30 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
- the car navigation device 920 may include an antenna 937 for each wireless communication method.
- the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
- the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 30 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
- one or more components included in the processing unit 240 described with reference to FIG. Unit 247) may be implemented in the wireless communication interface 933.
- at least some of these components may be implemented in the processor 921.
- the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
- the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
- the antenna unit 210 may be mounted on the antenna 937.
- the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device that includes the one or more components (the information acquisition unit 241, the notification unit 243, the transmission processing unit 245, and / or the reception processing unit 247).
- the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
- the base station 100 includes at least one of a frequency band to which non-orthogonal multiple access is applied and a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access.
- a selection unit 151 that selects one layer as a band and a layer used for transmission to the terminal device 200; and a notification unit 153 that notifies the terminal device 200 of the frequency band and the at least one layer. .
- the terminal device 200 is a frequency band to which non-orthogonal multiple access is applied, and indicates the frequency band selected as a band used for transmission to the terminal device Band information and at least one of a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access, the layer selected as a layer used for transmission to the terminal device
- An information acquisition unit 241 that acquires layer information indicating at least one layer
- a reception processing unit 247 that decodes a signal transmitted in the at least one layer in the frequency band.
- non-orthogonal multiple access using power allocation (more specifically, non-orthogonal multiple access using SPC) has been described as an example of non-orthogonal multiple access, the present disclosure is not limited to such an example.
- IDMA and SCMA may be applied as non-orthogonal multiple access.
- the embodiments have been described based on the LTE / LTE-A technology, the present disclosure is not limited to such examples.
- channels for example, PDCCH, PDSCH, and / or BMCH
- other channels channels with other names
- processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
- the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
- a processor for example, a CPU, a DSP, or the like
- a device of the present specification for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device
- a computer program for causing the device to function as a component for example, a selection unit, a notification unit, a transmission processing unit, a reception processing unit, and / or an information acquisition unit
- the processor operates the component of the device Can also be created.
- a recording medium on which the computer program is recorded may be provided.
- An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program
- a module for a terminal device may also be provided.
- a method including the operation of the components of the device for example, a selection unit, a notification unit, a transmission processing unit, a reception processing unit, and / or an information acquisition unit is also included in the technology according to the present disclosure.
- a frequency band to which non-orthogonal multiple access is applied and at least one of a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access are used for transmission to the terminal device
- a selection unit for selecting as a band and a layer are used for transmission to the terminal device
- a device comprising: (2)
- the non-orthogonal multiple access is a non-orthogonal multiple access using power allocation;
- the plurality of layers are a plurality of layers multiplexed in the frequency band using power allocation.
- the device according to (2), wherein the non-orthogonal multiple access is a non-orthogonal multiple access using SPC (Superposition Coding).
- the selection unit is a band used for transmitting the frequency band and a layer to which the maximum power is allocated among the plurality of layers to other terminal apparatuses that do not support the non-orthogonal multiple access. And select as a layer, The notifying unit notifies the other terminal device of the frequency band; The apparatus according to (2) or (3).
- the frequency band is a component carrier
- the selection unit selects the frequency band as a secondary component carrier used for transmission to the terminal device, and selects the at least one layer as a layer used for transmission to the terminal device in the secondary component carrier To The apparatus according to any one of (1) to (5).
- the selection unit selects the frequency band as a handover destination band of the terminal apparatus, and selects the at least one layer as a layer used for transmission to the terminal apparatus in the band of the handover destination; The device according to any one of (1) to (5).
- the selection unit reselects another layer of the plurality of layers as a layer used for transmission to the terminal device, The notification unit notifies the terminal device of the other layer;
- the apparatus according to any one of (1) to (7).
- the apparatus according to any one of (1) to (8), wherein the at least one layer is one of the plurality of layers.
- the transmission processing unit transmits a signal of a physical control channel in one of the plurality of layers or without multiplexing in the frequency band.
- the signal of the physical control channel includes a signal of scheduling information for each of the plurality of layers.
- the plurality of layers include a first layer having a first time frame length and a second layer having a second time frame length smaller than the first length.
- the time frame is a subframe.
- a frequency band to which non-orthogonal multiple access is applied and at least one of a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access are used for transmission to the terminal device Selecting as band and layer; Notifying the terminal device of the frequency band and the at least one layer; Including methods.
- a frequency band to which non-orthogonal multiple access is applied, and band information indicating the frequency band selected as a band used for transmission to a terminal device, and multiplexing in the frequency band for the non-orthogonal multiple access An acquisition unit that acquires at least one layer of a plurality of layers to be converted, and layer information indicating the at least one layer selected as a layer used for transmission to the terminal device; A reception processing unit for decoding a signal transmitted in the at least one layer in the frequency band; A device comprising: (20) The apparatus according to (19), further including a notification unit that notifies the base station of capability information indicating that the terminal apparatus supports the non-orthogonal multiple access.
- the apparatus according to any one of (1) to (17), wherein the apparatus is a base station, a base station apparatus for the base station, or a module for the base station apparatus.
- a frequency band to which non-orthogonal multiple access is applied and at least one of a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access are used for transmission to the terminal device Selecting as band and layer; Notifying the terminal device of the frequency band and the at least one layer; A program that causes a processor to execute.
- a frequency band to which non-orthogonal multiple access is applied and at least one of a plurality of layers multiplexed in the frequency band for the non-orthogonal multiple access are used for transmission to the terminal device Selecting as band and layer; Notifying the terminal device of the frequency band and the at least one layer;
- a readable recording medium on which a program for causing a processor to execute is recorded.
- a frequency band to which non-orthogonal multiple access is applied, and band information indicating the frequency band selected as a band used for transmission to a terminal device, and multiplexing in the frequency band for the non-orthogonal multiple access Obtaining layer information indicating at least one layer selected as a layer to be used for transmission to the terminal device, of at least one of a plurality of layers to be converted, Decoding a signal transmitted in the at least one layer in the frequency band; Including methods.
- a frequency band to which non-orthogonal multiple access is applied and band information indicating the frequency band selected as a band used for transmission to a terminal device, and multiplexing in the frequency band for the non-orthogonal multiple access
- a frequency band to which non-orthogonal multiple access is applied and band information indicating the frequency band selected as a band used for transmission to a terminal device, and multiplexing in the frequency band for the non-orthogonal multiple access
- a readable recording medium on which a program for causing a processor to execute is recorded.
- System 100 Base Station 151 Selection Unit 153 Notification Unit 155 Transmission Processing Unit 157 Reception Processing Unit 200 Terminal Device 241 Information Acquisition Unit 243 Notification Unit 245 Transmission Processing Unit 247 Reception Processing Unit
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.SPC
2.システムの概略的な構成
3.各装置の構成
3.1.基地局の構成
3.2.端末装置の構成
4.技術的特徴
5.処理の流れ
6.変形例
7.他の実施形態
7.1.技術的課題
7.2.技術的特徴
8.応用例
8.1.基地局に関する応用例
8.2.端末装置に関する応用例
9.まとめ
図1~図3を参照して、SPCの処理及び信号を説明する。
図1及び図2は、SPCをサポートする送信装置における処理の一例を説明するための説明図である。図1を参照すると、例えば、ユーザA、ユーザB及びユーザCの各々のビットストリーム(例えば、トランスポートブロック)が処理される。これらのビットストリームの各々について、いくつかの処理(例えば、図2に示されるような)CRC(Cyclic Redundancy Check)符号化、FEC(Forward Error Correction)符号化、レートマッチング及びスクランブリング/インターリービング)が行われ、その後変調が行われる。そして、レイヤマッピング、電力割当て、プリコーディング、SPC多重、リソースエレメントマッピング、IDFT(Inverse Discrete Fourier Transform)/IFFT(Inverse Fast Fourier Transform)、CP(Cyclic Prefix)挿入、並びに、デジタルからアナログ及びRF(Radio Frequency)への変換などが行われる。
図3は、干渉除去を行う受信装置における処理の一例を説明するための説明図である。図3を参照すると、例えば、RF及びアナログからデジタルへの変換、CP除去(removal)、DFT(Discrete Fourier Transform)/FFT(Fast Fourier Transform)、並びに、ジョイント干渉除去、等化及び復号などが行われる。その結果、ユーザA、ユーザB及びユーザCの各々のビットストリーム(例えば、トランスポートブロック)が得られる。
(a)ダウンリンク
次に、SPCが採用される場合のダウンリンクの送信信号及び受信信号を説明する。ここでは、HetNet(Heterogeneous Network)又はSCE(Small Cell Enhancement)などのマルチセルシステムを想定する。
次に、SPCが採用される場合のアップリンクの送信信号及び受信信号を説明する。ここでは、HetNet又はSCEなどのマルチセルシステムを想定する。なお、信号などを表す記号として、ダウンリンクについて用いられた記号を流用する。
続いて、図4~図6を参照して、本開示の実施形態に係るシステム1の概略的な構成を説明する。図4は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図4を参照すると、システム1は、基地局100、端末装置200及び端末装置300を含む。ここでは、端末装置200及び端末装置300の各々は、ユーザとも呼ばれる。
基地局100は、セルラーシステム(又は移動体通信システム)の基地局である。基地局100は、基地局100のセル101内に位置する端末装置(例えば、端末装置200及び端末装置300の各々)との無線通信を行う。例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
端末装置300は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置300は、セルラーシステムの基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
基地局100は、1つ以上の周波数帯域を使用して端末装置との無線通信を行う。例えば、基地局100は、キャリアグリゲーション(Carrier Aggregation:CA)をサポートし、上記1つ以上の周波数帯域の各々は、コンポーネントキャリア(Component Carrier:CC)である。以下、図5を参照して、基地局100が使用する周波数帯域の例を説明する。
とりわけ本開示の実施形態では、上述したように、基地局100及び端末装置200は、非直交多元接続(NOMA)をサポートする。
続いて、図7及び図8を参照して、本開示の実施形態に係る基地局100及び端末装置200の構成を説明する。
まず、図7を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図7は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図7を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部150は、基地局100の様々な機能を提供する。処理部150は、選択部151、通知部153、送信処理部155及び受信処理部157を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
まず、図8を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図8は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図8を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241、通知部243、送信処理部245及び受信処理部247を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
続いて、図9~図15を参照して、本開示の実施形態に係る技術的特徴を説明する。
基地局100(選択部151)は、非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置200への送信に使用される帯域及びレイヤとして選択する。そして、基地局100(通知部153)は、上記周波数帯域及び上記少なくとも1つのレイヤを端末装置200に通知する。
例えば、基地局100及び端末装置200は、キャリアアグリゲーション(CA)をサポートし、上記周波数帯域は、CAのためのコンポーネントキャリア(CC)である。一例として、図6を再び参照すると、上記周波数帯域は、CC33である。
例えば、上記非直交多元接続は、電力割当てを用いた非直交多元接続である。この場合に、上記複数のレイヤは、電力割当てを用いて上記周波数帯域において多重化される複数のレイヤである。
(c―1)1つのレイヤ
例えば、上記少なくとも1つのレイヤは、上記複数のレイヤのうちの1つのレイヤである。即ち、基地局100(選択部151)は、上記周波数帯域と、上記複数のレイヤのうちの1つのレイヤとを、端末装置200への送信に使用される帯域及びレイヤとして選択する。
例えば、基地局100(選択部151)は、端末装置200への送信に使用されるセカンダリコンポーネントキャリア(SCC)として上記周波数帯域を選択し、当該SCCにおいて端末装置200への送信に使用されるレイヤとして上記少なくとも1つのレイヤを選択する。換言すると、基地局100(選択部151)は、端末装置200のSCCの追加の際に、SCCとして追加するCCと、SCCにおいて送信に使用されるレイヤとを選択する。
基地局100(選択部151)は、端末装置200のハンドオーバ先の帯域として上記周波数帯域を選択し、当該ハンドオーバ先の当該帯域において端末装置200への送信に使用されるレイヤとして上記少なくとも1つのレイヤを選択してもよい。換言すると、基地局100(選択部151)は、端末装置200のハンドオーバの際に、PCCであるハンドオーバ先のCCと、PCCにおいて送信に使用されるレイヤとを選択してもよい。
一例として、図6を再び参照すると、基地局100(選択部151)は、CC33及びレイヤ2を、端末装置200への送信に使用される帯域及びレイヤとして選択する。別の例として、基地局100(選択部151)は、CC33及びレイヤ1を、端末装置200への送信に使用される帯域及びレイヤとして選択する。
(d-1)第1の例
例えば、基地局100(通知部153)は、端末装置200へのシグナリング(例えば、RRC(Radio Resource Control)シグナリング)により、上記周波数帯域及び上記少なくとも1つのレイヤを端末装置200に通知する。即ち、基地局100(通知部153)は、端末装置200へのシグナリングメッセージ(例えば、RRCメッセージ)の中で、上記周波数帯域及び上記少なくとも1つのレイヤを通知する。一例として、上記シグナリングメッセージは、RRCコネクションリコンフィギュレーションメッセージである。
上記周波数帯域がSCCとして選択される場合に、基地局100(通知部153)は、端末装置200へのMAC(Media Access Control)コントロールエレメントの中で、上記周波数帯域及び上記少なくとも1つのレイヤを通知してもよい。当該MACコントロールエレメントは、SCCのアクティベーションのためのものであってもよい。
端末装置200(情報取得部241)は、上記帯域情報(上記周波数帯域を示す情報)と、上記レイヤ情報(上記少なくとも1つのレイヤを示す情報)とを取得する。
例えば、端末装置200(通知部243)は、端末装置200が上記非直交多元接続をサポートすることを示すケイパビリティ情報を基地局100に通知する。具体的には、例えば、端末装置200(通知部243)は、シグナリングメッセージ(例えば、RRCメッセージ)の中で、上記ケイパビリティ情報を基地局100に通知する。一例として、当該シグナリングメッセージは、UEケイパビリティ情報メッセージである。
例えば、基地局100(選択部151)は、上記周波数帯域と、上記複数のレイヤのうちの、最大の電力を割り当てられるレイヤとを、端末装置300(即ち、上記非直交多元接続をサポートしていない端末装置)への送信に使用される帯域及びレイヤとして選択する。そして、基地局100(通知部153)は、上記周波数帯域を端末装置300に通知する。
(a-1)SCCとしての選択
例えば、基地局100(選択部151)は、端末装置300への送信に使用されるSCCとして、上記周波数帯域を選択し、当該SCCにおいて端末装置300への送信に使用されるレイヤとして、最大の電力を割り当てられる上記レイヤを選択する。換言すると、基地局100(選択部151)は、端末装置300のSCCの追加の際に、SCCとして追加するCCと、SCCにおいて送信に使用されるレイヤ(最大の電力を割り当てられるレイヤ)とを選択する。
基地局100(選択部151)は、端末装置300のハンドオーバ先の帯域として上記周波数帯域を選択し、当該ハンドオーバ先の当該帯域において端末装置300への送信に使用されるレイヤとして、最大の電力を割り当てられる上記レイヤを選択してもよい。換言すると、基地局100(選択部151)は、端末装置300のハンドオーバの際に、プライマコンポーネントキャリア(PCC)であるハンドオーバ先のCCと、PCCにおいて送信に使用されるレイヤ(最大の電力を割り当てられるレイヤ)とを選択してもよい。
一例として、図6を再び参照すると、基地局100(選択部151)は、CC33及びレイヤ1を、端末装置300への送信に使用される帯域及びレイヤとして選択する。
上述したように、基地局100(通知部153)は、上記周波数帯域を端末装置300に通知する。なお、基地局100(通知部153)は、最大の電力を割り当てられる上記レイヤを端末装置300に通知しない。レガシ端末である端末装置300は、レイヤを知ることができず、また知る必要がないからである。
例えば、基地局100(通知部153)は、端末装置300へのシグナリング(例えば、RRCシグナリング)により、上記周波数帯域を端末装置300に通知する。即ち、基地局100(通知部153)は、端末装置300へのシグナリングメッセージ(例えば、RRCメッセージ)の中で、上記周波数帯域を通知する。一例として、上記シグナリングメッセージは、RRCコネクションリコンフィギュレーションメッセージである。
上記周波数帯域がSCCとして選択される場合に、基地局100(通知部153)は、端末装置300へのMACコントロールエレメントの中で、上記周波数帯域を通知してもよい。当該MACコントロールエレメントは、SCCのアクティベーションのためのものであってもよい。
例えば、端末装置300は、上記帯域情報(上記周波数帯域を示す情報)を取得する。
(a)基地局100による送信
基地局100(送信処理部155)は、上記周波数帯域において信号を送信する。より具体的には、基地局100(送信処理部155)は、上記周波数帯域において上記複数のレイヤの各々で信号を送信する。
上述したように、端末装置200(情報取得部241)は、上記帯域情報(上記周波数帯域を示す情報)と、上記レイヤ情報(上記少なくとも1つのレイヤを示す情報)とを取得する。そして、端末装置200(受信処理部247)は、上記周波数帯域において上記少なくとも1つのレイヤ(即ち、端末装置200への送信に使用されるレイヤ)で送信される信号の復号を行う。
上述したように、端末装置300は、上記帯域情報(上記周波数帯域を示す情報)を取得する。そして、端末装置300は、上記周波数帯域において送信される信号(実際には、最大の電力を割り当てられる上記レイヤで送信される信号)の復号を行う。なお、端末装置200は、レガシ端末(上記非直交多元接続をサポートしない端末装置)であり、レイヤを意識することなく、信号の復号を行う。
(d―1)物理データチャネルの信号
例えば、基地局100(送信処理部155)は、上記周波数帯域において上記複数のレイヤの各々で物理データチャネルの信号を送信する。
例えば、基地局100(送信処理部155)は、上記周波数帯域において物理制御チャネルの信号を送信する。
例えば、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤのうちの1つのレイヤで、上記物理制御チャネルの上記信号を送信する。
基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤの各々で物理制御チャネルの信号を送信してもよい。以下、図11を参照して、基地局100により各レイヤで送信される信号の例を説明する。
基地局100(送信処理部155)は、上記周波数帯域において物理制御チャネルの信号を送信しなくてもよい。その代わりに、基地局100(送信処理部155)は、他の周波数帯域において物理制御チャネルの信号を送信し、当該信号は、上記複数のレイヤの各々についてのスケジューリング情報の信号を含んでもよい。即ち、クロスキャリアスケジューリングが行われてもよい。以下、図12を参照して、基地局100により各レイヤで送信される信号の例を説明する。
さらに、例えば、基地局100は、上記周波数帯域において他の信号も送信する。
例えば、上記他の信号は、同期信号を含む。例えば、当該同期信号は、PSS(Primary Synchronization Signal)及びSSS(Secondary Synchronization Signal)を含む。
第1の例として、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤのうちの1つのレイヤで、上記他の信号を送信する。以下、図13及び図14を参照して、基地局100により各レイヤで送信される信号の例を説明する。
第2の例として、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤの各々で上記他の信号(例えば、同期信号及び/又はPBCHの信号)を送信してもよい。これにより、例えば、レイヤを独立したCCとして扱うことが可能になる。
(e-1)レイヤごとの帯域幅
上記複数のレイヤに含まれる少なくとも2つのレイヤの間で、使用される周波数リソースの帯域幅が異なっていてもよい。以下、図15を参照して具体例を説明する。
上記複数のレイヤの各々は、コンポーネントキャリアと同様に取り扱われてもよい。例えば、上記複数のレイヤの各々でシステム情報が送信されてもよい。また、例えば、上記複数のレイヤの各々が、端末装置200のためにアクティベート又はディアクティベートされてもよい。
例えば、基地局100(選択部151)は、上記複数のレイヤのうちの他のレイヤを、端末装置200への送信に使用されるレイヤとして再選択する。そして、基地局100(通知部153)は、上記他のレイヤを端末装置200に通知する。即ち、基地局100は、周波数帯域(例えば、CC)を変更せずに、レイヤのみを変更し、変更後のレイヤを端末装置200に通知する。このようなレイヤの再選択(レイヤの変更)は、レイヤ間のハンドオーバとも言える。
続いて、図16及び図17を参照して、本開示の実施形態に係る技術的特徴を説明する。
図16は、本開示の実施形態に係る全体の処理の概略的な流れの一例を示すシーケンス図である。
図17は、本開示の実施形態に係る端末装置200の処理の概略的な流れの一例を示すシーケンス図である。当該処理は、図16に示されるステップS413及びS417などに対応する。上記処理は、サブフレームごとに行われ得る。
続いて、図18~図25を参照して、本開示の実施形態の変形例を説明する。
(a)時間フレームの例
例えば、上記時間フレームは、無線リソースの割当てのサイクルである。より具体的には、例えば、上記時間フレームは、サブフレームである。
例えば、上記第1の長さは、上記非直交多元接続が適用されない他の周波数帯域の時間フレームの長さと同じであり、上記第2の長さは、当該他の周波数帯域の時間フレームの長さよりも小さい。即ち、上記第1のレイヤの時間フレームは、通常の時間フレームと長さが同じであり、上記第2のレイヤの時間フレームは、通常の時間フレームよりも短い。
例えば、基地局100(送信処理部155)は、上記周波数帯域において、リアルタイム性がより低いデータの信号を上記第1のレイヤで送信し、リアルタイム性がより高いデータの信号を上記第2のレイヤで送信する。
基地局100(送信処理部155)は、上記周波数帯域において、サイズがより大きい情報の信号を上記第1のレイヤで送信し、サイズがより小さい情報の信号を上記第2のレイヤで送信してもよい。一例として、サイズがより大きい上記情報は、サイズがより大きいデータであってもよく、サイズがより小さい上記情報は、サイズがより小さい制御情報又はデータであってもよい。これにより、無線リソースがより効率的に使用され得る。
(a)物理データチャネルの信号
例えば、変形例においても、基地局100(送信処理部155)は、上記周波数帯域において上記複数のレイヤの各々で物理データチャネルの信号を送信する。
例えば、変形例においても、基地局100(送信処理部155)は、上記周波数帯域において物理制御チャネルの信号を送信する。
変形例においても、例えば、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤのうちの1つのレイヤで、上記物理制御チャネルの上記信号を送信する。また、例えば、上記物理制御チャネルの上記信号は、上記複数のレイヤの各々についてのスケジューリング情報の信号を含む。また、例えば、上記複数のレイヤのうちの上記1つのレイヤは、上記複数のレイヤのうちの、最大の送信電力を割り当てられるレイヤである。図20及び図21を参照して、基地局100により各レイヤで送信される信号の例を説明する。
変形例においても、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤの各々で物理制御チャネルの信号を送信してもよい。以下、図22を参照して、基地局100により各レイヤで送信される信号の例を説明する。
変形例では、基地局100(送信処理部155)は、上記周波数帯域において、上記複数のレイヤの各々で物理制御チャネルの信号を送信してもよい。この点については、第3の例は、第2の例と同じである。とりわけ第3の例では、基地局100(送信処理部155)は、上記第2のレイヤ(即ち、時間フレームがより短いレイヤ)では、複数の時間フレームのうちの1つの時間フレームにおいて物理制御チャネルの信号を送信してもよい。上記1つの時間フレームにおいて送信される物理制御チャネルの上記信号は、上記複数の時間フレームの各々についてのスケジューリング情報の信号を含む。これは、クロスフレームスケジューリングと言われ得る。以下、図23を参照して、基地局100により各レイヤで送信される信号の例を説明する。
変形例においても、基地局100(送信処理部155)は、上記周波数帯域において物理制御チャネルの信号を送信しなくてもよい。その代わりに、基地局100(送信処理部155)は、他の周波数帯域において物理制御チャネルの信号を送信し、当該信号は、上記複数のレイヤの各々についてのスケジューリング情報の信号を含んでもよい。即ち、クロスキャリアスケジューリングが行われてもよい。以下、図24を参照して、基地局100により各レイヤで送信される信号の例を説明する。
さらに、例えば、基地局100は、上記周波数帯域において他の信号(例えば、同期信号及び/又はPBCHの信号など)も送信する。この点についての説明は、上述したとおりである。
基地局100は、上記第2のレイヤの時間フレームの長さを変更してもよい。例えば、基地局100は、上記第2のレイヤの時間フレームの長さを動的に又は準静的に変更してもよい。また、基地局100は、上記複数のレイヤのうちの他のレイヤの時間フレームの長さも変更してもよい。以下、図25を参照して時間フレームの長さの変更の例を説明する。
続いて、図26を参照して、他の実施形態を説明する。
まず、他の実施形態に係る技術的課題を説明する。
次に、図26を参照して、他の実施形態に係る技術的特徴を説明する。
例えば、上記第1の周波数帯域及び上記第2の周波数帯域の各々は、コンポーネントキャリアである。
(a)時間フレームの例
例えば、上記時間フレームは、無線リソースの割当てのサイクルである。より具体的には、例えば、上記時間フレームは、サブフレームである。
例えば、上記第1の周波数帯域の時間フレームは、通常の時間フレームと長さが同じであり、上記第2の周波数帯域の時間フレームは、通常の時間フレームよりも短い。
例えば、基地局100(送信処理部155)は、上記第1の周波数帯域において、リアルタイム性がより低いデータの信号を送信し、上記第2の周波数帯域において、リアルタイム性がより高いデータの信号を送信する。
基地局100(送信処理部155)は、上記第1の周波数帯域において、サイズがより大きい情報の信号を送信し、上記第2の周波数帯域において、サイズがより小さい情報の信号を送信してもよい。一例として、サイズがより大きい上記情報は、サイズがより大きいデータであってもよく、サイズがより小さい上記情報は、サイズがより小さい制御情報又はデータであってもよい。これにより、無線リソースがより効率的に使用され得る。
基地局100は、上記第2の周波数帯域の時間フレームの長さを変更してもよい。例えば、基地局100は、上記第2の周波数帯域の時間フレームの長さを動的に又は準静的に変更してもよい。また、基地局100は、他の周波数帯域(例えば、上記第1の周波数帯域など)の時間フレームの長さも変更してもよい。
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
(1)第1の応用例
図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
図28は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(1)第1の応用例
図29は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
図30は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
ここまで、図3~図30を参照して、本開示の実施形態に係る各装置及び各処理を説明した。
(1)
非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択する選択部と、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知する通知部と、
を備える装置。
(2)
前記非直交多元接続は、電力割当てを用いた非直交多元接続であり、
前記複数のレイヤは、電力割当てを用いて前記周波数帯域において多重化される複数のレイヤである、
前記(1)に記載の装置。
(3)
前記非直交多元接続は、SPC(Superposition Coding)を用いた非直交多元接続である、前記(2)に記載の装置。
(4)
前記選択部は、前記周波数帯域と、前記複数のレイヤのうちの、最大の電力を割り当てられるレイヤとを、前記非直交多元接続をサポートしていない他の端末装置への送信に使用される帯域及びレイヤとして選択し、
前記通知部は、前記周波数帯域を前記他の端末装置に通知する、
前記(2)又は(3)に記載の装置。
(5)
前記端末装置は、前記非直交多元接続をサポートする端末装置である、前記(1)~(4)のいずれか1項に記載の装置。
(6)
前記周波数帯域は、コンポーネントキャリアであり、
前記選択部は、前記端末装置への送信に使用されるセカンダリコンポーネントキャリアとして前記周波数帯域を選択し、当該セカンダリコンポーネントキャリアにおいて前記端末装置への送信に使用されるレイヤとして前記少なくとも1つのレイヤを選択する、
前記(1)~(5)のいずれか1項に記載の装置。
(7)
前記選択部は、前記端末装置のハンドオーバ先の帯域として前記周波数帯域を選択し、当該ハンドオーバ先の当該帯域において前記端末装置への送信に使用されるレイヤとして前記少なくとも1つのレイヤを選択する、前記(1)~(5)のいずれか1項に記載の装置。
(8)
前記選択部は、前記複数のレイヤのうちの他のレイヤを、前記端末装置への送信に使用されるレイヤとして再選択し、
前記通知部は、前記他のレイヤを前記端末装置に通知する、
前記(1)~(7)のいずれか1項に記載の装置。
(9)
前記少なくとも1つのレイヤは、前記複数のレイヤのうちの1つのレイヤである、前記(1)~(8)のいずれか1項に記載の装置。
(10)
前記周波数帯域において信号を送信する送信処理部
をさらに備え、
前記送信処理部は、前記周波数帯域において前記複数のレイヤの各々で物理データチャネルの信号を送信する、
前記(1)~(9)のいずれか1項に記載の装置。
(11)
前記送信処理部は、前記周波数帯域において、前記複数のレイヤのうちの1つのレイヤで、又は、多重化なしで、物理制御チャネルの信号を送信する、前記(10)に記載の装置。
(12)
前記物理制御チャネルの前記信号は、前記複数のレイヤの各々についてのスケジューリング情報の信号を含む、前記(11)に記載の装置。
(13)
前記送信処理部は、前記周波数帯域において、前記複数のレイヤの各々で物理制御チャネルの信号を送信する、前記(10)に記載の装置。
(14)
前記複数のレイヤは、時間フレームの長さが第1の長さである第1のレイヤと、時間フレームの長さが前記第1の長さよりも小さい第2の長さである第2のレイヤとを含む、前記(1)~(13)のいずれか1項に記載の装置。
(15)
前記第1の長さは、前記非直交多元接続が適用されない他の周波数帯域の時間フレームの長さと同じである、前記(14)に記載の装置。
(16)
前記周波数帯域において信号を送信する送信処理部
をさらに備え、
前記送信処理部は、前記周波数帯域において、リアルタイム性がより低いデータの信号を前記第1のレイヤで送信し、リアルタイム性がより高いデータの信号を前記第2のレイヤで送信する、
前記(14)又は(15)に記載の装置。
(17)
前記時間フレームは、サブフレームである、前記(14)又は(15)に記載の装置。
(18)
プロセッサにより、
非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択することと、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知することと、
を含む方法。
(19)
非直交多元接続が適用される周波数帯域であって、端末装置への送信に使用される帯域として選択される当該周波数帯域を示す帯域情報と、前記非直交多元接続のために前記周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤであって、前記端末装置への送信に使用されるレイヤとして選択される当該少なくとも1つのレイヤを示すレイヤ情報と、を取得する取得部と、
前記周波数帯域において前記少なくとも1つのレイヤで送信される信号の復号を行う受信処理部と、
を備える装置。
(20)
前記端末装置が前記非直交多元接続をサポートすることを示すケイパビリティ情報を基地局に通知する通知部をさらに備える、前記(19)に記載の装置。
(21)
前記装置は、基地局、基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(1)~(17)のいずれか1項に記載の装置。
(22)
前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、前記(19)又は(20)に記載の装置。
(23)
非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択することと、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知することと、
をプロセッサに実行させるためのプログラム。
(24)
非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択することと、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(25)
プロセッサにより、
非直交多元接続が適用される周波数帯域であって、端末装置への送信に使用される帯域として選択される当該周波数帯域を示す帯域情報と、前記非直交多元接続のために前記周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤであって、前記端末装置への送信に使用されるレイヤとして選択される当該少なくとも1つのレイヤを示すレイヤ情報と、を取得することと、
前記周波数帯域において前記少なくとも1つのレイヤで送信される信号の復号を行うことと、
を含む方法。
(26)
非直交多元接続が適用される周波数帯域であって、端末装置への送信に使用される帯域として選択される当該周波数帯域を示す帯域情報と、前記非直交多元接続のために前記周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤであって、前記端末装置への送信に使用されるレイヤとして選択される当該少なくとも1つのレイヤを示すレイヤ情報と、を取得することと、
前記周波数帯域において前記少なくとも1つのレイヤで送信される信号の復号を行うことと、
をプロセッサに実行させるためのプログラム。
(27)
非直交多元接続が適用される周波数帯域であって、端末装置への送信に使用される帯域として選択される当該周波数帯域を示す帯域情報と、前記非直交多元接続のために前記周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤであって、前記端末装置への送信に使用されるレイヤとして選択される当該少なくとも1つのレイヤを示すレイヤ情報と、を取得することと、
前記周波数帯域において前記少なくとも1つのレイヤで送信される信号の復号を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
100 基地局
151 選択部
153 通知部
155 送信処理部
157 受信処理部
200 端末装置
241 情報取得部
243 通知部
245 送信処理部
247 受信処理部
Claims (20)
- 非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択する選択部と、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知する通知部と、
を備える装置。 - 前記非直交多元接続は、電力割当てを用いた非直交多元接続であり、
前記複数のレイヤは、電力割当てを用いて前記周波数帯域において多重化される複数のレイヤである、
請求項1に記載の装置。 - 前記非直交多元接続は、SPC(Superposition Coding)を用いた非直交多元接続である、請求項2に記載の装置。
- 前記選択部は、前記周波数帯域と、前記複数のレイヤのうちの、最大の電力を割り当てられるレイヤとを、前記非直交多元接続をサポートしていない他の端末装置への送信に使用される帯域及びレイヤとして選択し、
前記通知部は、前記周波数帯域を前記他の端末装置に通知する、
請求項2に記載の装置。 - 前記端末装置は、前記非直交多元接続をサポートする端末装置である、請求項1に記載の装置。
- 前記周波数帯域は、コンポーネントキャリアであり、
前記選択部は、前記端末装置への送信に使用されるセカンダリコンポーネントキャリアとして前記周波数帯域を選択し、当該セカンダリコンポーネントキャリアにおいて前記端末装置への送信に使用されるレイヤとして前記少なくとも1つのレイヤを選択する、
請求項1に記載の装置。 - 前記選択部は、前記端末装置のハンドオーバ先の帯域として前記周波数帯域を選択し、当該ハンドオーバ先の当該帯域において前記端末装置への送信に使用されるレイヤとして前記少なくとも1つのレイヤを選択する、請求項1に記載の装置。
- 前記選択部は、前記複数のレイヤのうちの他のレイヤを、前記端末装置への送信に使用されるレイヤとして再選択し、
前記通知部は、前記他のレイヤを前記端末装置に通知する、
請求項1に記載の装置。 - 前記少なくとも1つのレイヤは、前記複数のレイヤのうちの1つのレイヤである、請求項1に記載の装置。
- 前記周波数帯域において信号を送信する送信処理部
をさらに備え、
前記送信処理部は、前記周波数帯域において前記複数のレイヤの各々で物理データチャネルの信号を送信する、
請求項1に記載の装置。 - 前記送信処理部は、前記周波数帯域において、前記複数のレイヤのうちの1つのレイヤで、又は、多重化なしで、物理制御チャネルの信号を送信する、請求項10に記載の装置。
- 前記物理制御チャネルの前記信号は、前記複数のレイヤの各々についてのスケジューリング情報の信号を含む、請求項11に記載の装置。
- 前記送信処理部は、前記周波数帯域において、前記複数のレイヤの各々で物理制御チャネルの信号を送信する、請求項10に記載の装置。
- 前記複数のレイヤは、時間フレームの長さが第1の長さである第1のレイヤと、時間フレームの長さが前記第1の長さよりも小さい第2の長さである第2のレイヤとを含む、請求項1に記載の装置。
- 前記第1の長さは、前記非直交多元接続が適用されない他の周波数帯域の時間フレームの長さと同じである、請求項14に記載の装置。
- 前記周波数帯域において信号を送信する送信処理部
をさらに備え、
前記送信処理部は、前記周波数帯域において、リアルタイム性がより低いデータの信号を前記第1のレイヤで送信し、リアルタイム性がより高いデータの信号を前記第2のレイヤで送信する、
請求項14に記載の装置。 - 前記時間フレームは、サブフレームである、請求項14に記載の装置。
- プロセッサにより、
非直交多元接続が適用される周波数帯域と、当該非直交多元接続のために当該周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤとを、端末装置への送信に使用される帯域及びレイヤとして選択することと、
前記周波数帯域及び前記少なくとも1つのレイヤを前記端末装置に通知することと、
を含む方法。 - 非直交多元接続が適用される周波数帯域であって、端末装置への送信に使用される帯域として選択される当該周波数帯域を示す帯域情報と、前記非直交多元接続のために前記周波数帯域において多重化される複数のレイヤのうちの少なくとも1つのレイヤであって、前記端末装置への送信に使用されるレイヤとして選択される当該少なくとも1つのレイヤを示すレイヤ情報と、を取得する取得部と、
前記周波数帯域において前記少なくとも1つのレイヤで送信される信号の復号を行う受信処理部と、
を備える装置。 - 前記端末装置が前記非直交多元接続をサポートすることを示すケイパビリティ情報を基地局に通知する通知部をさらに備える、請求項19に記載の装置。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680017526.8A CN107431555B (zh) | 2015-03-31 | 2016-01-04 | 装置 |
CN201911254679.6A CN111262676B (zh) | 2015-03-31 | 2016-01-04 | 通信装置和方法 |
BR112017020314-6A BR112017020314A2 (ja) | 2015-03-31 | 2016-01-04 | Device |
AU2016242223A AU2016242223B2 (en) | 2015-03-31 | 2016-01-04 | Device |
EP16771804.8A EP3280080A4 (en) | 2015-03-31 | 2016-01-04 | Device |
US15/551,210 US10194447B2 (en) | 2015-03-31 | 2016-01-04 | Communication apparatus and a method for communication |
JP2017509305A JP6787311B2 (ja) | 2015-03-31 | 2016-01-04 | 装置及び方法 |
US16/221,834 US10645700B2 (en) | 2015-03-31 | 2018-12-17 | Communication apparatus and a method for communication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-072405 | 2015-03-31 | ||
JP2015072405 | 2015-03-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/551,210 A-371-Of-International US10194447B2 (en) | 2015-03-31 | 2016-01-04 | Communication apparatus and a method for communication |
US16/221,834 Continuation US10645700B2 (en) | 2015-03-31 | 2018-12-17 | Communication apparatus and a method for communication |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157918A1 true WO2016157918A1 (ja) | 2016-10-06 |
Family
ID=57004434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050034 WO2016157918A1 (ja) | 2015-03-31 | 2016-01-04 | 装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10194447B2 (ja) |
EP (1) | EP3280080A4 (ja) |
JP (1) | JP6787311B2 (ja) |
CN (2) | CN111262676B (ja) |
AU (1) | AU2016242223B2 (ja) |
BR (1) | BR112017020314A2 (ja) |
WO (1) | WO2016157918A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018537032A (ja) * | 2016-02-02 | 2018-12-13 | 日本電気株式会社 | キャリアアグリゲーションで通信するための方法 |
WO2018230300A1 (ja) * | 2017-06-15 | 2018-12-20 | ソニー株式会社 | 通信装置、通信方法及びコンピュータプログラム |
JP2020005299A (ja) * | 2019-09-10 | 2020-01-09 | 日本電気株式会社 | キャリアアグリゲーションで通信するための方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10708941B2 (en) * | 2014-11-21 | 2020-07-07 | Sony Corporation | Apparatus for acquiring and reporting power allocation |
CN111262676B (zh) * | 2015-03-31 | 2022-07-12 | 索尼公司 | 通信装置和方法 |
US10736081B2 (en) * | 2016-09-14 | 2020-08-04 | Huawei Technologies Co., Ltd. | Non-orthogonal multiple access transmission |
US10499416B2 (en) * | 2017-01-10 | 2019-12-03 | Qualcomm Incorporated | Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system |
CN111630899B (zh) * | 2018-02-12 | 2024-09-13 | 中兴通讯股份有限公司 | 用于指示信息的系统和方法 |
CN111107580B (zh) * | 2018-10-25 | 2021-09-28 | 大唐移动通信设备有限公司 | 一种信息传输方法及网络设备 |
US11317427B2 (en) * | 2019-11-11 | 2022-04-26 | Trellisware Technologies, Inc. | Network-enabled connectivity for disadvantaged communication links |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012161082A1 (ja) * | 2011-05-20 | 2012-11-29 | 株式会社エヌ・ティ・ティ・ドコモ | 受信装置、送信装置及び無線通信方法 |
JP2012531101A (ja) * | 2009-06-19 | 2012-12-06 | リサーチ イン モーション リミテッド | 単一ユーザおよびマルチユーザmimoのための伝送層を信号伝達する方法およびシステム |
WO2014024964A1 (ja) * | 2012-08-10 | 2014-02-13 | 株式会社エヌ・ティ・ティ・ドコモ | ユーザ端末、無線通信方法及び無線通信システム |
JP2014511060A (ja) * | 2011-02-25 | 2014-05-01 | クゥアルコム・インコーポレイテッド | 高速周波数ホッピングを有する多搬送波動作 |
WO2015025847A1 (ja) * | 2013-08-23 | 2015-02-26 | 株式会社Nttドコモ | 無線基地局、中継局及び無線通信方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3666430B2 (ja) | 2001-09-04 | 2005-06-29 | ソニー株式会社 | 情報送信装置及び情報送信方法、並びに情報受信装置及び情報受信方法 |
JP3979105B2 (ja) | 2002-02-05 | 2007-09-19 | ソニー株式会社 | 多元接続システム |
KR100891818B1 (ko) * | 2006-01-27 | 2009-04-07 | 삼성전자주식회사 | 이동통신 시스템에서 복합 다중 접속 장치 및 방법 |
US8626177B2 (en) * | 2006-05-17 | 2014-01-07 | Lg Electronics Inc. | Method of implementing superposition coding for a forward link in a wireless communication system |
US8326341B2 (en) * | 2008-06-23 | 2012-12-04 | Nokia Corporation | Method, apparatus and computer program for downlink MU-MIMO power settings and control |
RU2488967C2 (ru) * | 2008-07-31 | 2013-07-27 | Самсунг Электроникс Ко., Лтд. | Способ и устройство для выделения ресурсов множественных несущих в системе ofdma |
US8036098B2 (en) * | 2009-04-20 | 2011-10-11 | Intel Corporation | Wireless network and method for adaptive opportunistic clustering for interference alignment in wireless networks |
US9705653B2 (en) * | 2009-05-04 | 2017-07-11 | Qualcomm Inc. | Downlink control transmission in multicarrier operation |
US20120213196A1 (en) * | 2009-12-03 | 2012-08-23 | Jae Hoon Chung | Method and apparatus for efficient contention-based transmission in a wireless communication system |
EP2534783B1 (en) * | 2010-02-11 | 2018-06-13 | Nokia Solutions and Networks Oy | Assignment of component carriers |
GB2477915B (en) * | 2010-02-12 | 2014-06-04 | Ubiquisys Ltd | Basestation carrier frequency selection |
JP5864199B2 (ja) * | 2011-05-20 | 2016-02-17 | 株式会社Nttドコモ | 受信装置、送信装置及び無線通信方法 |
JP5869836B2 (ja) * | 2011-05-20 | 2016-02-24 | 株式会社Nttドコモ | 受信装置、送信装置及び無線通信方法 |
JP5947638B2 (ja) * | 2012-02-03 | 2016-07-06 | 株式会社Nttドコモ | 移動通信方法、無線基地局及び移動局 |
JP6050028B2 (ja) * | 2012-05-25 | 2016-12-21 | シャープ株式会社 | 端末、基地局、通信方法及び集積回路 |
US20140073337A1 (en) * | 2012-09-11 | 2014-03-13 | Electronics And Telecommunications Research Institute | Communication device and communication method using millimeter-wave frequency band |
JP5995203B2 (ja) * | 2012-10-19 | 2016-09-21 | Kddi株式会社 | 無線受信装置および無線受信方法 |
JP2014131202A (ja) * | 2012-12-28 | 2014-07-10 | Ntt Docomo Inc | 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム |
JP5894105B2 (ja) * | 2013-04-04 | 2016-03-23 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び無線通信方法 |
US20150282185A1 (en) * | 2014-03-28 | 2015-10-01 | Futurewei Technologies, Inc. | Multi-user, multiple access, systems, methods, and devices |
WO2016131164A1 (zh) * | 2015-02-16 | 2016-08-25 | 富士通株式会社 | 信号发送方法、装置以及通信系统 |
US10390292B2 (en) * | 2015-03-26 | 2019-08-20 | Intel IP Corporation | Device, system and method of quasi-orthogonal multiple access |
CN111262676B (zh) * | 2015-03-31 | 2022-07-12 | 索尼公司 | 通信装置和方法 |
CN107534857B (zh) * | 2015-05-15 | 2021-02-12 | 富士通株式会社 | 无线通信系统、无线基站装置、终端装置和无线通信方法 |
-
2016
- 2016-01-04 CN CN201911254679.6A patent/CN111262676B/zh active Active
- 2016-01-04 WO PCT/JP2016/050034 patent/WO2016157918A1/ja active Application Filing
- 2016-01-04 US US15/551,210 patent/US10194447B2/en active Active
- 2016-01-04 EP EP16771804.8A patent/EP3280080A4/en not_active Withdrawn
- 2016-01-04 CN CN201680017526.8A patent/CN107431555B/zh active Active
- 2016-01-04 AU AU2016242223A patent/AU2016242223B2/en not_active Ceased
- 2016-01-04 BR BR112017020314-6A patent/BR112017020314A2/ja not_active Application Discontinuation
- 2016-01-04 JP JP2017509305A patent/JP6787311B2/ja active Active
-
2018
- 2018-12-17 US US16/221,834 patent/US10645700B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012531101A (ja) * | 2009-06-19 | 2012-12-06 | リサーチ イン モーション リミテッド | 単一ユーザおよびマルチユーザmimoのための伝送層を信号伝達する方法およびシステム |
JP2014511060A (ja) * | 2011-02-25 | 2014-05-01 | クゥアルコム・インコーポレイテッド | 高速周波数ホッピングを有する多搬送波動作 |
WO2012161082A1 (ja) * | 2011-05-20 | 2012-11-29 | 株式会社エヌ・ティ・ティ・ドコモ | 受信装置、送信装置及び無線通信方法 |
WO2014024964A1 (ja) * | 2012-08-10 | 2014-02-13 | 株式会社エヌ・ティ・ティ・ドコモ | ユーザ端末、無線通信方法及び無線通信システム |
WO2015025847A1 (ja) * | 2013-08-23 | 2015-02-26 | 株式会社Nttドコモ | 無線基地局、中継局及び無線通信方法 |
Non-Patent Citations (3)
Title |
---|
NAGISA OTAO ET AL.: "Performance of Transmission Power Allocation for Non- orthogonal Access with SIC in Cellular Downlink", 2012 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, 28 August 2012 (2012-08-28), pages 378, XP009506474 * |
NOBUHIDE NONAKA ET AL.: "Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and SIC in Base Station Cooperative MIMO Cellular Downlink", VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2014 IEEE 80TH, 17 September 2014 (2014-09-17), XP032694767 * |
See also references of EP3280080A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018537032A (ja) * | 2016-02-02 | 2018-12-13 | 日本電気株式会社 | キャリアアグリゲーションで通信するための方法 |
US11019653B2 (en) | 2016-02-02 | 2021-05-25 | Nec Corporation | Method and apparatus for communications with carrier aggregation |
WO2018230300A1 (ja) * | 2017-06-15 | 2018-12-20 | ソニー株式会社 | 通信装置、通信方法及びコンピュータプログラム |
JP2019004325A (ja) * | 2017-06-15 | 2019-01-10 | ソニー株式会社 | 通信装置、通信方法及びコンピュータプログラム |
US11212055B2 (en) | 2017-06-15 | 2021-12-28 | Sony Corporation | Communication apparatus and communication method |
JP7043746B2 (ja) | 2017-06-15 | 2022-03-30 | ソニーグループ株式会社 | 通信装置、通信方法及びコンピュータプログラム |
US11929954B2 (en) | 2017-06-15 | 2024-03-12 | Sony Group Corporation | Communication apparatus and communication method |
JP2020005299A (ja) * | 2019-09-10 | 2020-01-09 | 日本電気株式会社 | キャリアアグリゲーションで通信するための方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016157918A1 (ja) | 2018-01-25 |
CN111262676A (zh) | 2020-06-09 |
AU2016242223A1 (en) | 2017-09-14 |
CN107431555A (zh) | 2017-12-01 |
US20180027544A1 (en) | 2018-01-25 |
US20190124644A1 (en) | 2019-04-25 |
EP3280080A1 (en) | 2018-02-07 |
CN107431555B (zh) | 2020-01-10 |
EP3280080A4 (en) | 2018-12-05 |
AU2016242223B2 (en) | 2019-09-12 |
CN111262676B (zh) | 2022-07-12 |
US10194447B2 (en) | 2019-01-29 |
JP6787311B2 (ja) | 2020-11-18 |
US10645700B2 (en) | 2020-05-05 |
BR112017020314A2 (ja) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6787311B2 (ja) | 装置及び方法 | |
JP6962197B2 (ja) | 装置及び方法 | |
JP6668686B2 (ja) | 送信装置 | |
US10708941B2 (en) | Apparatus for acquiring and reporting power allocation | |
JP6750637B2 (ja) | 装置及び方法 | |
JP6586762B2 (ja) | 受信装置、送信装置、受信方法、送信方法及びプログラム | |
EP3703294A1 (en) | Wireless communication electronic device and method, and computer readable storage medium | |
WO2016067690A1 (ja) | 通信制御装置、無線通信装置、通信制御方法、無線通信方法及びプログラム | |
WO2019097929A1 (ja) | 端末装置、基地局、方法及び記録媒体 | |
US10477555B2 (en) | Device and method for non-orthogonal multiplexing | |
WO2018128029A1 (ja) | 端末装置、基地局装置、方法及び記録媒体 | |
US20220109595A1 (en) | Apparatus and method | |
WO2017047210A1 (ja) | 装置及び方法 | |
US11425710B2 (en) | Multiple access technologies in a new radio system | |
US20220006598A1 (en) | Apparatus and method | |
WO2015178068A1 (ja) | 装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771804 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017509305 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15551210 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016242223 Country of ref document: AU Date of ref document: 20160104 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016771804 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017020314 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017020314 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170922 |