JP2014511060A - 高速周波数ホッピングを有する多搬送波動作 - Google Patents

高速周波数ホッピングを有する多搬送波動作 Download PDF

Info

Publication number
JP2014511060A
JP2014511060A JP2013555595A JP2013555595A JP2014511060A JP 2014511060 A JP2014511060 A JP 2014511060A JP 2013555595 A JP2013555595 A JP 2013555595A JP 2013555595 A JP2013555595 A JP 2013555595A JP 2014511060 A JP2014511060 A JP 2014511060A
Authority
JP
Japan
Prior art keywords
downlink
carrier
primary carrier
control information
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013555595A
Other languages
English (en)
Other versions
JP5801422B2 (ja
Inventor
バルビエリ、アラン
ガール、ピーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2014511060A publication Critical patent/JP2014511060A/ja
Application granted granted Critical
Publication of JP5801422B2 publication Critical patent/JP5801422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信方法は、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中にダウンリンクプライマリ搬送波でのeNode B(eNodeB)からのダウンリンク送信の第1の部分をユーザ装置(UE)の単一のRF受信機によって受信することを含む。方法は、セカンダリダウンリンク搬送波でのeNodeBからのダウンリンク送信の第2の部分を単一のRF受信機によって受信することも含む。受信は、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に生じる。

Description

関連出願の相互参照
本出願は、バルビエリ(BARBIERI)、等を名義人とする米国仮特許出願第61/446,940号(出願日:2011年2月25日)の利益を主張するものであり、その開示は、ここでの引用によってその全体が明示で組み入れられている。
本開示の態様は、概して、無線通信システムに関するものである。本開示の態様は、より具体的には、信頼できない通信チャネルでの通信を可能にするためにキャリアアグリゲーション(carrier aggregation)を使用することに関するものである。
様々な通信サービス、例えば、音声、映像、パケットデータ、メッセージング、ブロードキャスト、等、を提供することを目的として無線通信ネットワークが広範囲にわたって配備されている。これらの無線ネットワークは、利用可能なネットワークリソースを共有することによって複数のユーザをサポートすることが可能な多元接続ネットワークであることができる。無線通信ネットワークは、幾つかのユーザ装置(UE)のための通信をサポートすることが可能な幾つかの基地局を含むことができる。UEは、ダウンリンク及びアップリンクを介して基地局と通信することができる。ダウンリンク(又は順方向リンク)は、基地局からUEへの通信リンクを意味し、アップリンク(又は逆方向リンク)は、UEから基地局への通信リンクを意味する。
基地局は、ダウンリンクでデータ及び制御情報をUEに送信することができ及び/又はアップリンクでUEからデータ及び制御情報を受信することができる。ダウンリンクでは、基地局からの送信は、近隣基地局からの又はその他のワイヤレス無線周波数(RF)送信機からの送信に起因する干渉を受けることがある。アップリンクでは、UEからの送信は、近隣基地局と通信中のその他のUEのアップリンク送信からの又はその他のワイヤレスRF送信機からの干渉を受けることがある。この干渉は、ダウンリンク及びアップリンクの両方における性能を劣化させることがある。
モバイルブロードバンドアクセスの要求が引き続き増大するのに従い、より多くのUEが長距離無線通信ネットワークにアクセスするようになり及びより短距離の無線システムがコミュニティに配備されるようになるのに伴って干渉及び混雑するネットワークの可能性が増大している。ますます増大するモバイルブロードバンドアクセスの要求を満たすためだけでなくモバイル通信に関するユーザの経験を進歩及び向上させるためにUMTSを進歩させることを目的とする研究開発が継続されている。
無線通信方法は、ダウンリンクプライマリ搬送波(primary carrier)の少なくとも1つの周期的サブフレーム中にダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信することを含む。方法は、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波(secondary downlink carrier)のサブフレームの周期的シーケンス中にセカンダリダウンリンク搬送波でのダウンリンク送信の第2の部分を受信することも含む。
本開示の他の態様では、無線通信のための装置は、メモリと、メモリに結合された少なくとも1つのプロセッサと、を含む。プロセッサは、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中にダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信するように構成される。プロセッサは、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中にセカンダリダウンリンク搬送波でのダウンリンク送信の第2の部分を受信するようにも構成される。
さらに他の態様では、無線ネットワークでの無線通信のためのコンピュータプログラム製品は、プログラムが記録されている非一時的なコンピュータによって読み取り可能な媒体を有する。プログラムコードは、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中にダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信するためのプログラムコードを含む。プログラムコードは、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中にセカンダリダウンリンク搬送波でのダウンリンク送信の第2の部分を受信するためのプログラムコードも含む。
さらに他の態様では、無線通信のための装置は、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中にダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信するための手段を有する。装置は、ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中にセカンダリダウンリンク搬送波でのダウンリンク送信の第2の部分を受信するための手段も有する。
これは、後続する詳細な発明を実施するための形態をより良く理解できるようにするために本開示の特徴及び技術的利点をかなりおおまかに概説している。本開示の追加の特徴及び利点が以下において説明される。本開示は、本開示の同じ目的を実施するために修正するか又はその他の構造を設計するための基礎として容易に利用可能であることが当業者によって評価されるべきである。該同等の構成は、添付される請求項において記述される本開示の教示から逸脱するものではないことも当業者によって自覚されるべきである。本開示の特徴であると信じられている新規の特徴は、その構成及び動作方法の両方に関して、さらなる目的及び利点とともに、以下の説明を添付図と関係させて検討することでより良く理解されるであろう。しかしながら、それらの図の各々は、例示及び説明のみを目的として提供されており、本開示の限度の定義であることは意図されていないことが明確に理解されるべきである。
電気通信システムの例を概念的に示したブロック図である。 電気通信システムにおけるダウンリンクフレーム構造の例を概念的に示した図である。 本開示の一態様により構成された基地局/eNodeB及びUEの設計を概念的に示したブロック図である。 連続的なキャリアアグリゲーションタイプを開示した図である。 非連続的なキャリアアグリゲーションタイプを開示した図である。 MAC層データアグリゲーションを開示した図である。 多搬送波構成における無線リンクを制御するための方法を例示したブロック図である。 本開示の一態様による多搬送波フレーム構造の例を概念的に示した図である。 本開示の一態様による多搬送波フレーム構造の例を概念的に示した図である。 本開示の一態様による単一の受信機を有するUEによる多搬送波通信のための方法を例示したブロック図である。 本開示の一態様による単一の受信機を有するUEとの多搬送波通信のための方法を例示したブロック図である。 本開示の一態様による単一の受信機を有するUEとの多搬送波通信のための方法を例示したブロック図である。 本開示の一態様による単一の受信機を有するUEとの多搬送波通信のための方法を例示したブロック図である。 処理システムを採用する装置に関するハードウェア実装の例を示したブロック図である。
以下において記述される詳細な発明を実施するための形態は、添付された図面と関係し、様々な構成の説明であることが意図され、ここにおいて説明される概念を実践することができる唯一の構成を代表することは意図されない。詳細な発明を実施するための形態は、様々な概念についての徹底的な理解を提供することを目的とする具体的な詳細を含む。しかしながら、これらの概念は、これらの具体的な詳細なしに実践可能であることが当業者にとって明らかになるであろう。幾つかの事例では、よく知られた構造及びコンポーネントは、該概念を曖昧にすることを回避するためにブロック図形で示される。
ここにおいて説明される技法は、様々な無線通信ネットワーク、例えば、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、単一搬送波周波数分割多元接続(SC−FDMA)及びその他のネットワークに関して用いることができる。用語“ネットワーク”及び“システム”は、しばしば互換可能な形で用いられる。CDMAネットワークは、ユニバーサル地上無線アクセス(UTRA)、米国電気通信工業会(TIA)CDMA2000(登録商標)、等の無線技術を実装することができる。UTRA技術は、広帯域−CDMA(WCDMA)(登録商標)と、CDMAのその他の変形と、を含む。CDMA2000(登録商標)は、米国電子工業会(EIA)及びTIAからのIS−2000規格、IS−95規格及びIS−856規格を含む。TDMAネットワークは、グローバル移動体通信システム(GSM(登録商標))、等の無線技術を実装することができる。OFDMAネットワークは、エボルブド(Evolved)UTRA(E−UTRA)、ウルトラモバイルブロードバンド(Ultra Mobile Broadband)(UMB)、IEEE802.11(Wi−Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash−OFDM、等の無線技術を実装することができる。UTRA及びE−UTRA技術は、ユニバーサル移動体通信システム(UMTS)の一部である。3GPPロングタームエボリューション(Long Term Evolution)(LTE)及びLTE−Advanced(LTE−A)は、E−UTRAを使用するUMTSのより新しいリリース版である。UTRA、E−UTRA、UMTS、LTE、LTE−A及びGSMは、“第3世代パートナーシッププロジェクト”(3GPP)という名称の組織からの文書において記述される。CDMA2000(登録商標)及びUMBは、“第3世代パートナーシッププロジェクト2”(3GPP2)という名称の組織からの文書において記述される。ここにおいて説明される技法は、上述される無線ネットワーク及び無線アクセス技術、及びその他の無線ネットワーク及び無線アクセス技術のために用いることができる。明確化のため、これらの技法の幾つかの態様は、LTE又はLTE−A(代替としてまとめて“LTE/−A”と呼ばれる)に関して以下において説明されており、以下の説明の多くの部分においては該LTE/−A用語が用いられる。
図1は、LTE−Aネットワークであることができる無線通信ネットワーク100を示し、多搬送波動作のための高速周波数ホッピングを有する。無線ネットワーク100は、幾つかのエボルブドノードB(eNodeB)110と、その他のネットワークエンティティと、を含む。eNodeBは、UEと通信する局であることができ及び基地局、ノードB、アクセスポイント、等と呼ばれることもある。各eNodeB110は、特定の地理上のエリアのための通信カバレッジを提供することができる。3GPPにおいては、用語“セル”は、その用語が使用される前後関係に依存して、カバレッジエリアにサービスを提供するeNodeB及び/又はeNBサブシステムのこの特定の地理上のカバレッジエリアを意味することができる。
eNodeBは、マクロセル、ピコセル、フェムトセル、及び/又はその他のタイプのセルのための通信カバレッジを提供することができる。マクロセルは、概して、相対的に大きい地理上のエリア(例えば、半径数キロメートル)を網羅することができ、ネットワークプロバイダとのサービス加入契約を有するUEによる無制限のアクセスを許容することができる。ピコセルは、概して、相対的にそれよりも小さい地理上のエリアを網羅し、ネットワークプロバイダとのサービス加入契約を有するUEによる無制限のアクセスを許容することができる。フェムトセルも、概して相対的に小さい地理上のエリア(例えば、住宅)を網羅し、無制限のアクセスに加えて、フェムトセルとの関連性を有するUE(例えば、例えば、クローズド加入者グループ(CSG)内のUE、住宅内のユーザのためのUE、等))による制限されたアクセスを提供することもできる。マクロセルのためのeNodeBは、マクロeNodeBと呼ばれることがある。ピコセルためのeNodeBは、ピコeNodeBと呼ばれることがある。及び、フェムトセルのためのeNodeBは、フェムトeNodeB又はホームeNodeBと呼ばれることがある。図1に示される例では、eNodeB110a、110b及び110cは、マクロセル102a、102b及び102cのためのそれぞれのマクロeNodeBである。eNodeB100xは、ピコセル120xのためのピコeNodeBである。及び、eNodeB100y及び110zは、フェムトセル102y及び102zのそれぞれのためのフェムトeNodeBである。eNodeBは、1つ又は複数の(例えば、2つ、3つ、4つ、等)セルをサポートすることができる。
無線ネットワーク100は、中継局を含むこともできる。中継局は、上流局(例えば、eNodeB、UE、等)からのデータ及び/又はその他の情報の送信を受信し、下流局(例えば、UE又はeNodeB、等)にデータ及び/又はその他の情報の送信を送る局である。中継局は、その他のUEのための送信を中継するUEであることもできる。図1に示された例では、中継局110rは、eNodeB110aとUE120rとの間での通信を容易にするためにeNodeB110a及びUE120rと通信することができる。中継局は、中継eNodeB、リレー、等と呼ばれることもある。
無線ネットワーク100は、異なるタイプのeNodeB、例えば、マクロeNodeB、ピコeNodeB、フェムトeNodeB、リレー、等を含む異種ネットワークであることができる。これらの異なるタイプのeNodeBは、異なる送信電力レベル、異なるカバレッジエリア、及び無線ネットワーク100での干渉に対する異なる影響を有することができる。例えば、マクロeNodeBは、高い送信電力レベル(例えば、20ワット)を有することができ、ピコeNodeB、フェムトeNodeB及びリレーは、それよりも低い送信電力レベル(例えば、1ワット)を有することができる。
無線ネットワーク100は、同期的な又は非同期的な動作をサポートすることができる。同期的な動作に関しては、eNodeBは、同様のフレームタイミングを有することができ、異なるeNodeBからの送信は時間の点でほぼ整合させることができる。非同期的な動作に関しては、eNodeBは、異なるフレームタイミングを有することができ、及び、異なるeNodeBからの送信は、時間の点で整合させることができない。ここにおいて説明される技法は、同期的な動作及び非動的な動作のいずれに関しても使用することができる。
一態様では、無線ネットワーク100は、周波数分割複信(FDD)動作モード又は時分割複信(TDD)動作モードをサポートすることができる。ここにおいて説明される技法は、FDD動作モード又はTDD動作モードに関して使用することができる。
ネットワークコントローラ130は、eNodeB110の組に結合し、これらのeNodeBに関する調整及び制御を提供することができる。ネットワークコントローラ130は、バックホールを介してeNodeB110と通信することができる。eNodeB110は、例えば、直接的に又は無線バックホール又は有線バックホールを介して間接的に、互いに通信することもできる。
UE120(例えば、UE120x、UE120y、等)は、無線ネットワーク100全体にわたって分散され、各UEは、静止型又は移動型であることができる。UEは、端末、ユーザ端末、移動局、加入者ユニット、局、等と呼ばれることもある。UEは、携帯電話(例えば、スマートフォン)、パーソナルデジタルアシスタント(PDA)、無線モデム、無線通信デバイス、ハンドヘルドデバイス、ラップトップコンピュータ、コードレスフォン、ワイヤレスローカルループ(WLL)局、タブレット、ネットブック、スマートブック、等であることができる。UEは、マクロeNodeB、ピコeNodeB、フェムトeNodeB、リレー、等と通信することができる。図1において、2つの矢印を有する太線は、UEと、ダウンリンク及び/又はアップリンクでUEにサービスを提供するように指定されたeNodeBであるサービングeNodeBとの間での希望される送信を示す。2つの矢印を有する破線は、UEとeNodeBとの間で干渉している送信を示す。
LTEは、ダウンリンクでは直交周波数分割多重(OFDM)、アップリンクでは単一搬送波周波数分割多重(SC−FDM)を利用する。OFDM及びSC−FDMは、システム帯域幅を複数(K)の直交副搬送波に分割し、それらは、一般的にはトーン、ビン、等と呼ばれる。各副搬送波は、データとともに変調することができる。概して、変調シンボルは、OFDMの場合は周波数領域で、SC−FDMの場合は時間領域で送信される。隣接する副搬送波間の間隔は、一定であることができ、副搬送波の総数(K)は、システム帯域幅に依存することができる。例えば、副搬送波の間隔は、15kHzであることができ、最小リソース割り当て(‘リソースブロック’と呼ばれる)は、12の副搬送波(すなわち、180kHz)であることができる。従って、公称のFTTのサイズは、1.25、2.5、5、10又は20メガヘルツ(MHz)の対応するシステム帯域幅に関してはそれぞれ128、256、512、1024又は2048に等しいことができる。システム帯域幅は、サブバンドに分割することもできる。例えば、サブバンドは、1.08MHz(すなわち、6つのリソースブロック)を網羅することができ、1.25、2.5、5、10、15又は20MHzの対応するシステム帯域幅に関してはそれぞれ1、2、4、8又は16のサブバンドが存在することができる。
図2は、LTEにおいて使用されるダウンリンクFDDフレーム構造を示す。ダウンリンクのための送信タイムラインは、無線フレーム単位に分割することができる。各無線フレームは、予め決定された継続時間(例えば、10ミリ秒(ms))を有することができ及び0乃至9のインデックスを有する10のサブフレームに分割することができる。各サブフレームは、2つのスロットを含むことができる。従って、各無線フレームは、0乃至19のインデックスを有する20のスロットを含むことができる。各スロットは、Lのシンボル期間、例えば、(図2に示される)通常のサイクリックプリフィックスに関しては7つのシンボル期間又は拡張されたサイクリックプリフィックスに関しては6つのシンボル期間、を含むことができる。各サブフレーム内の2Lのシンボル期間には、0乃至2L−1のインデックスを割り当てることができる。利用可能な時間周波数リソースは、リソースブロックに分割することができる。各リソースブロックは、1つのスロットでNの副搬送波(例えば、12の副搬送波)を網羅することができる。
LTEでは、eNodeBは、eNodeB内の各セルに関して一次同期信号(PSC又はPSS)及び二次同期信号(SSC又はSSS)を送信することができる。FDD動作モードに関しては、一次及び二次同期信号は、図2に示されるように、通常のサイクリックプリフィックスを有する各無線フレームのサブフレーム0乃至5の各々において、シンボル期間6及び5でそれぞれ送信することができる。同期信号は、セルの検出及び取得のためにUEによって使用することができる。FDD動作モードに関しては、eNodeBは、サブフレーム0のスロット1においてシンボル期間0乃至3で物理ブロードキャストチャネル(PBCH)を送信することができる。PBCHは、一定のシステム情報を搬送することができる。
eNodeBは、図2に見られるように、各サブフレームの第1のシンボル期間に物理制御フォーマットインジケータチャネル(PCFICH)を送信することができる。PCFICHは、制御チャネルのために使用されるシンボル期間数(M)を搬送することができ、ここで、Mは、1、2又は3に等しいことができ及びサブフレームごとに変わることができる。Mは、例えば、10未満のリソースブロックを有する小さいシステム帯域幅に関しては4に等しいこともできる。図2に示される例ではM=3である。eNodeBは、各サブフレームの第1のMのシンボル期間において物理HARQインジケータチャネル(PHICH)及び物理ダウンリンク制御チャネル(PDCCH)を送信することができる。PDCCH及びPHICHは、図2に示される例では最初の3つのシンボル期間にも含められる。PHICHは、ハイブリッド自動再送要求(HARQ)をサポートするための情報を搬送することができる。PDCCHは、UEのためのアップリンク及びダウンリンクリソース割り当てに関する情報およびアップリンクチャネルのための電力制御情報を搬送することができる。eNodeBは、各サブフレームの残りのシンボル期間で物理ダウンリンク共有チャネル(PDSCH)を送信することができる。PDSCHは、ダウンリンクでのデータ送信のためにスケジューリングされたUEのためのデータを搬送することができる。
eNodeBは、eNodeBによって使用されるシステム帯域幅の中央の1.08MHzにおいてPSC、SSC及びPBCHを送信することができる。eNodeBは、PCFICH及びPHICHが送信される各シンボル期間にシステム帯域幅全体でこれらのチャネルを送信することができる。eNodeBは、システム帯域幅の幾つかの部分でUEのグループにPDCCHを送信することができる。eNodeBは、システム帯域幅の特定の部分でUEのグループにPDSCHを送信することができる。eNodeBは、全UEに対してブロードキャスト方式でPSC、SSC、PBCH、PCFICH及びPHICHを送信することができ、及び、特定のUEに対してユニキャスト方式でPDCCHを送信することができ、及び、特定のUEに対してユニキャスト方式でPDSCHを送信することもできる。
各シンボル期間において幾つかのリソース要素を利用可能である。各リソース要素は、1つのシンボル期間に1つの副搬送波を網羅することができ及び実数値又は複素値であることができる1つの変調シンボルを送信するために使用することができる。制御チャネルのために使用されるシンボルに関しては、各シンボル期間において基準信号のために使用されないリソース要素は、リソース要素グループ(REG)にまとめることができる。各REGは、1つのシンボル期間に4つのリソース要素を含むことができる。PCFICHは、4つのREGを占めることができ、それらは、シンボル期間0において、周波数全体にわたってほぼ均等に配置することができる。PHICHは、3つのREGを占めることができ、それらは、1つ以上の構成可能なシンボル期間において、周波数全体にわたって分散させることができる。例えば、PHICHのための3つのREGは、すべて、シンボル期間0内に属することができ又はシンボル期間0、1及び2において分散させることができる。PDCCHは、最初のMのシンボル期間において、9、18、36又は72のREGを占めることができ、それらは、利用可能なREGから選択することができる。PDCCHに関しては、REGの幾つかの組み合わせのみを許容することができる。
UEは、PHICH及びPCFICHのために使用される特定のREGを知っていることができる。UEは、PDCCHに関してREGの異なる組み合わせを探索することができる。探索すべき組み合わせ数は、典型的には、PDCCH内の全UEに関する許容された組み合わせ数よりも少ない。eNodeBは、UEが探索する組み合わせのうちのいずれかでUEにPDCCHを送信することができる。
UEは、複数のeNodeBのカバレッジ内に存在することができる。UEにサービスを提供するためにこれらのeNodeBのうちの1つを選択することができる。サービスを提供するeNodeBは、様々な基準、例えば、受信電力、経路損、信号対雑音比(SNR)、等、に基づいて選択することができる。
図3は、基地局/eNodeB110及びUE120の設計のブロック図を示し、それは、図1の基地局/eNodeBのうちの1つ及びUEのうちの1つであることができる。制限された関連付けのシナリオに関しては、基地局110は、図1のマクロeNodeB110cであることができ、UE120は、UE120yであることができる。基地局110は、何らかのその他のタイプの基地局であることもできる。基地局110は、アンテナ334a乃334tを装備することができ、UE120は、アンテナ352a乃至352rを装備することができる。
基地局110において、送信プロセッサ320は、データソース312からデータを及びコントローラ/プロセッサ340から制御情報を受信することができる。制御情報は、PBCH、PCFICH、PHICH、PDCCH、等を対象にすることができる。データは、PDSCH、等を対象とすることができる。プロセッサ320は、データシンボル及び制御シンボルをそれぞれ入手するためにデータ及び制御情報を処理(例えば、符号化及びシンボルマッピング)することができる。プロセッサ320は、例えば、PSS、SSS、及び各々のセルごとの基準信号のための基準シンボルも生成することができる。送信(TX)多入力多出力(MIMO)プロセッサ330は、該当する場合は、データシンボル、制御シンボル、及び/又は基準シンボルに対する空間処理(例えば、プリコーディング)を行うことができ、及び、変調器(MOD)332a乃至332tに対して出力シンボルストリームを提供することができる。各変調器332は、(例えば、OFDMに関して)各々の出力シンボルストリームを処理して出力サンプルストリームを入手することができる。各変調器332は、出力サンプルストリームをさらに処理(例えば、アナログへの変換、増幅、フィルタリング、及びアップコンバージョン)し、ダウンリンク信号を入手することができる。変調器332a乃至332tからのダウンリンク信号は、アンテナ334a乃至334tをそれぞれ介して送信することができる。
UE120において、アンテナ352a乃至352rは、基地局110からダウンリンク信号を受信することができ及び受信された信号を復調器(DEMOD)354a乃至354rにそれぞれ提供することができる。各復調器354は、各々の受信された信号をコンディショニング(例えば、フィルタリング、増幅、ダウンコンバージョン、及びデジタル化)して入力サンプルを入手することができる。各復調器354は、(例えば、OFDMに関して)入力サンプルをさらに処理して受信されたシンボルを入手することができる。MIMO検出器356は、全復調器354a乃至354rから受信されたシンボルを入手し、該当する場合は受信されたシンボルにおいてMIMO検出を行い、検出されたシンボルを提供することができる。受信プロセッサ358は、検出されたシンボルを処理(例えば、復調、デインターリービング、及び復号)し、UE120のための復号されたデータをデータシンク360に提供し、復号された制御情報をコントローラ/プロセッサ380に提供することができる。
アップリンクでは、UE120において、送信プロセッサ364は、データソース362から(例えば、PUSCHに関する)データを及びコントローラ/プロセッサ380から(例えば、PUCCHに関する)制御情報を受信及び処理することができる。プロセッサ364は、基準信号のための基準シンボルを生成することもできる。送信プロセッサ364からのシンボルは、該当する場合はTX MIMOプロセッサ366によってプリコーディングし、(例えば、SC−FDMに関して)復調器354a乃至354rによってさらに処理し、基地局110に送信することができる。基地局110において、UE120からのアップリンク信号は、アンテナ334によって受信し、変調器332によって処理し、該当する場合はMIMO検出器336によって検出し、受信プロセッサ338によってさらに処理してUE120によって送信された復号されたデータ及び制御情報を入手することができる。プロセッサ338は、復号されたデータをデータシンク339に提供することができ及び復号された制御情報をコントローラ/プロセッサ340に提供することができる。
コントローラ/プロセッサ340及び380は、基地局110及びUE120での動作をそれぞれ指示することができる。基地局110のプロセッサ340及び/又はその他のプロセッサ及びモジュールは、ここにおいて説明される技法のための様々なプロセスを実施すること又は実行を指示することができる。UE120のプロセッサ380及び/又はその他のプロセッサ及びモジュールは、図4及び5において例示された機能ブロック、及び/又はここにおいて説明される技法のためのその他のプロセスを実施すること又は実行を指示することができる。メモリ342及び382は、基地局110及びUE120のためのデータ及びプログラムコードをそれぞれ格納することができる。スケジューラ344は、ダウンリンク及び/又はアップリンクでのデータ送信のためにUEをスケジューリングすることができる。
キャリアアグリゲーション
LTE−Advanced UEは、各方向への送信のために使用される合計100MHz(5つのコンポーネントキャリア(component carrier))までのキャリアアグリゲーションにおいて割り当てられた最大20MHz帯域幅のスペクトルを使用する。概して、ダウンリンクよりもアップリンクでのほうが少ないトラフィックが送信され、このため、アップリンクスペクトル割り当ては、ダウンリンク割り当てよりも小さいことができる。例えば、20MHzがアップリンクに割り当てられる場合は、ダウンリンクには100Mhzを割り当てることができる。これらの非対称的なFDD割り当ては、スペクトルを節約し、ブロードバンド加入者による典型的に非対称的な帯域幅の利用によく適する。
キャリアアグリゲーションタイプ
LTE−Advancedモバイルシステムに関しては、2つのタイプのキャリアアグリゲーション(CA)法、連続的CA及び非連続的CA、が提案されている。それらは、図4A及び4Bにおいて例示される。非連続的CAは、複数の利用可能なコンポーネントキャリアが周波数帯域に沿って分離されるときに生じる(図4B)。他方、連続的CAは、複数の利用可能なコンポーネントキャリアが互いに隣接するときに生じる(図4A)。非連続的CA及び連続的CAの両方とも、複数のLTE/コンポーネントキャリアを束ねてLTE−Advanced UEの単一のユニットにする。
搬送波は周波数帯域に沿って分離されるため、LTE−Advanced UEでは複数のRF受信ユニット及び複数のFFTを非連続的CAによって配備することができる。非連続的CAは、大きな周波数範囲にわたる複数の分離された搬送波でのデータ送信をサポートするため、伝播経路損失、ドップラーシフト及びその他の無線チャネル特性は、異なる周波数帯域ごとに大きく変化することがある。
従って、非連続的CA手法下でのブロードバンドデータ送信をサポートするためには、異なるコンポーネントキャリアに関してコーディング、変調及び送信電力を好適に調整するために使用することができる。例えば、拡張NodeB(eNodeB)が各コンポーネントキャリアにおいて固定された送信電力を有するLTE−Advancedシステムでは、有効なカバレッジ又は各コンポーネントキャリアのサポート可能な変調及びコーディングが異なることがある。
データアグリゲーション方式
図5は、IMT−Advancedシステムに関するメディアアクセス制御(MAC)層(図5)での異なるコンポーネントキャリアからの送信ブロック(TB)を束ねることを例示する。MAC層データアグリゲーションでは、各コンポーネントキャリアは、MAC層においてそれ自体の独立したハイブリッド自動再送要求(HARQ)エンティティを有し及び物理層においてそれ自体の送信構成パラメータ(例えば、送信電力、変調及びコーディング方式、及び多アンテナ構成)を有する。同様に、物理層では、各コンポーネントキャリアに関して1つのHARQエンティティが提供される。
制御シグナリング
概して、複数のコンポーネントキャリアに関する制御チャネルシグナリングを配備するために3つの異なる手法が存在する。第1は、各コンポーネントキャリアにそれ自体のコーディングされた制御チャネルが与えられるLTEシステム内の制御構造の小さい修正を含む。
第2の方法は、異なるコンポーネントキャリアの制御チャネルをまとめてコーディングすることと、専用コンポーネントキャリア内に制御チャネルを配備することと、を含む。複数のコンポーネントキャリアに関する制御情報は、この専用制御チャネル内においてシグナリングコンテンツとして統合することができる。その結果、LTEシステム内での制御チャネル構造との後方互換性が維持され、その一方で、CAでのシグナリングオーバーヘッドが低減される。
異なるコンポーネントキャリアに関する複数の制御チャネルがまとめてコーディングされ、第3のCA法によって形成された周波数帯域全体にわたって送信される。この手法は、UE側での高い電力消費を犠牲にする形で、制御チャネルでの低い信号オーバーヘッド及び高い復号性能を提供する。しかしながら、この方法は、LTEシステムとは適合性がない。
ハンドオーバー制御
IMT−Advanced UEのためにCAが使用されるときには複数のセル間でハンドオーバー手順中に送信の連続性をサポートするのが好ましい。しかしながら、特定のCA構成及びサービス品質(QoS)要求を有する着信UEのために十分なシステムリソース(例えば、優れた送信品質を有するコンポーネントキャリア)を予約することは、次のeNodeBにとっての難題になるおそれがある。その理由は、2つの(又はそれよりも多い)隣接セル(eNodeB)のチャネル状態が特定のUEに関して異なることがあるためである。一手法においては、UEは、各隣接セル内の1つだけのコンポーネントキャリアの性能を測定する。これは、LTEシステムの場合と同様の測定遅延、複雑さ、及びエネルギー消費をもたらす。対応するセル内のその他のコンポーネントキャリアの性能の推定は、その1つのコンポーネントキャリアの測定結果に基づくことができる。この推定に基づいて、ハンドオーバー判断及び送信構成を決定することができる。
様々な例により、多搬送波システム(キャリアアグリゲーションとも呼ばれる)で動作するUEは、複数の搬送波の幾つかの機能、例えば、制御機能及びフィードバック機能、を同じ搬送波上で束ねるように構成され、それは、“プライマリ搬送波”と呼ぶことができる。サポートに関してプライマリ搬送波に依存する残りの搬送波は、関連付けられたセカンダリ搬送波(secondary carrier)と呼ばれる。例えば、UEは、制御機能、例えば、任意選択の専用チャネル(DCH)、スケジューリングされていないグラント(grant)、物理アップリンク制御チャネル(PUCCH)、及び/又は物理ダウンリンク制御チャネル(PDCCH)、によって提供されるそれら、を束ねることができる。シグナリング及びペイロードは、eNodeBによってUEに対してダウンリンクで、及びUEによってeNodeBに対してアップリンクで、の両方で送信することができる。
幾つかの例では、複数のプライマリ搬送波が存在することができる。さらに、例えば、LTE RRCプロトコルに関する3GPP技術仕様36.331において規定されるような、物理チャネルの確立と層2及び層3手順であるRLF手順とを含むUEの基本動作に対して影響を及ぼさずにセカンダリ搬送波を追加又は取り除くことができる。
図6は、一例により物理チャネルをグループ分類することによって多搬送波無線通信システムにおける無線リンクを制御するための方法600を例示する。示されるように、方法は、ブロック605において、少なくとも2つの搬送波からの制御機能を1つの搬送波上で束ねてプライマリ搬送波及び1つ以上の関連付けられたセカンダリ搬送波を形成することを含む。次に、ブロック610において、プライマリ搬送波及び各セカンダリ搬送波のための通信リンクが確立される。次に、ブロック615においてプライマリ搬送波に基づいて通信が制御される。
著しい干渉から保護される少なくとも1つのリソースをノードに提供するために幾つかの利用可能な搬送波を時分割多重化(TDM)によって分割することができる。これは、保護されたリソースでの干渉物による送信を制限するための潜在的な干渉ノードとの調整を含むことができる。保護されたリソースは、例えば“プライマリ搬送波”又は“アンカー搬送波”と呼ばれる特定の搬送波での周期的に繰り返されるサブフレームのパターンからの1つのサブフレームを含むことができる。保護されたリソースでの送信は、時間領域での分割に起因して信頼できる。
プライマリ搬送波での保護されていないサブフレームは、干渉を受けることがある。保護されているリソースを含まないその他の搬送波は、“保護されていないセカンダリ搬送波”と呼ばれ、同じく干渉を受けることがある。干渉は、保護されたリソースのみでの通信を許容することによって又は保護されていないリソースの使用を回避することによって軽減又は回避することができる。保護されたリソースでも、調整されたリソース保護方式に関わっていないノードから何らかのレベルの干渉を受けることがあることが理解されるべきである。
本開示の様々な態様により、保護されていないセカンダリ搬送波は、キャリアアグリゲーション(CA)実装のセカンダリ搬送波であることができ、又は、何らかの関連してない又は免許が付与されていないスペクトル、例えば、ホワイトスペース、内の搬送波であることができる。ホワイトスペースは、使用されないブロードキャストスペクトルを指し示すために用いられる用語である。現在未使用の又は免許が付与されていないスペクトルを使用することは、免許が付与されたスペクトルと比較してコストが低いため1つの利点となる。例えば、制御及びデータの両方の送信に関して、免許が付与されたスペクトルは、高い信頼性を持って制御情報を送信するために使用することができ、免許が付与されていないスペクトルは、制御情報よりも信頼性が低い状態でデータを送信するために使用することができる。
幾つかのシナリオでは、保護されていないセカンダリ搬送波も、例えば、UEにデータを搬送することができる。保護されていないセカンダリ搬送波の信頼性は、概して、干渉している送信機の強度、その干渉している送信機までの距離、及び保護されていないセカンダリ搬送波の負荷に依存する。
UEにデータを搬送するために保護されていないセカンダリ搬送波に依存することは、問題が生じることがある。その理由は、保護されていないセカンダリ搬送波は突然の干渉を受けることがあるためである。従って、保護されていないセカンダリ搬送波のみを使用するUEは、通常よりもはるかに頻繁に無線リンク障害(RLF)を被る可能性がある。RLFは、UEが新しい搬送波を再選択して再接続を行うまで相当の時間にわたってUEを使用不能状態にするおそれがある。
キャリアアグリゲーション(CA)技法を用いてプライマリ搬送波及びセカンダリ搬送波を束ねることは、2つ以上のRF受信機を有するUEに対してデータを搬送するためにセカンダリ搬送波を使用するリスクを低減させることができる。このシナリオでは、UE受信機のうちの1つは、プライマリ搬送波において常に同調させることができる。従って、干渉に起因してセカンダリ搬送波が失われた場合でも、コネクションは依然として維持することができる。CQI(チャネル品質インジケータ)報告(又は何らかのその他のタイプの測定報告)が、セカンダリ搬送波は許容可能な品質を有することを示す場合は、データ送信をセカンダリ搬送波に一時的にオフロードする(委ねる)ことができる。しかしながら、複数の受信機のコスト、スペース及びエネルギー消費量の増大に起因して、多くのUEは1つのRF受信機のみを採用している。
本開示の一態様により、1つのRF受信機のみを採用するUEは、プライマリ搬送波と保護されていないセカンダリ搬送波との間で高速の周波数ホッピングを行うことによって依然としてこれらの両方の搬送波で動作することができる。UEは、信頼できるコネクションを維持するために周期的にプライマリ搬送波に戻る。本開示のこの態様により、eNodeBは、コネクションを維持するためにUEと同じ周波数ホッピングパターンに従う。eNodeBは、セカンダリ搬送波の報告されたチャネル状態に依存して、セカンダリ搬送波にデータをオフロードすることを決定することができる。この周波数ホッピング技法は、UE送信機がプライマリ搬送波とセカンダリ搬送波との間で周期的に切り換わるアップリンク通信において使用することもできる。
本開示の態様は、物理層同期化を幾つかの搬送波で維持することができる周波数分割複信(FDD)通信で使用することができる。時間領域で分割されるプライマリ搬送波では、アイドルモード動作、例えば、システム情報ブロック1(SIB1)の引き渡し、ページング、及び測定、を行うことができる。周波数ホッピングを通じて、2つの搬送波、プライマリ搬送波及び保護されていないセカンダリ搬送波、で接続モード動作を行うことができる。一例では、無線周波数間の周期的な変更が短時間で行われ、概して、わずか数十又は数百マイクロ秒を使用するだけである。周期的な周波数変更は、エネルギー消費量を実質的に増大させずに実装することができる。
一例では、多搬送波動作は、ダウンリンク(DL)送信のみに関して行われ、アップリンク(UL)送信に関しては単一の保護された搬送波が利用可能である。UEへの送信のほとんどは、保護されていない搬送波で行われ、UEは、周期的にプライマリ搬送波に再同調する。プライマリ搬送波は、UEとeNodeB又はその他の送信ノードとの間で制御情報を通信するために及び保護されていないセカンダリ搬送波を依然として使用可能であるかどうかを通信するために使用することができる。データ送信のすべて又はほとんどが保護されていないセカンダリ搬送波で行われることが構想されている。保護されていないセカンダリ搬送波が使用不能になった場合は、セカンダリ搬送波にオフロードすることなしに、UEへのグラント(grant)において異なる保護されていないセカンダリ搬送波を指定することができ又はプライマリ搬送波をデータ送信のために使用することができる。
UEは、プライマリ搬送波ダウンリンク制御情報(DCI)グラント及びセカンダリ搬送波DCIグラントを受信する。ダウンリンク制御情報は、UEによるダウンリンクデータ送信の適切な受信及び復号を可能にする必要情報を提供する。ダウンリンクグラントは、ダウンリンクでのデータ送信のための制御情報を搬送することができる。プライマリ搬送波DCIグラントは、プライマリ搬送波でのUサブフレーム(保護されたサブフレーム)に関するものである。セカンダリ搬送波DCIグラントは、セカンダリ搬送波での特定のサブフレームに関するものである。セカンダリ搬送波DCIグラントは、幾つかの搬送波を利用可能である場合にいずれの搬送波を使用すべきかを示すビットを含むことができる。例えば、幾つか(M)の搬送波を利用可能である場合は、セカンダリ搬送波を識別するためにlog2(M)という少ないビットを使用することができる。DCIグラントは、そのグラントによって影響を受けるサブフレーム数も示すことができる。この例では、ダウンリンク待ち行列の長さに依存して最大で7つのサブフレームが影響を受けることがある。
図7を参照し、ダウンリンク送信のためのプライマリ搬送波の図が示される。プライマリ搬送波は、各々が約1ミリ秒のサブフレームに時分割される。それらのサブフレームには、周期的に繰り返す0乃至7の数のパターンのラベルが順次添付される。プライマリ搬送波が8つの繰り返すサブフレームのパターンに分割される様々な例が説明されるが、実質上あらゆる数の繰り返しサブフレームを使用可能であることが理解されるべきである。この例では、UEは、プライマリ搬送波において、“U”サブフレームと呼ばれる1つの周期的に繰り返すサブフレームしか使用しない。Uサブフレームは、潜在的に干渉する可能性がある送信機との調整によって干渉から保護され、このため、それは、信頼できる形でUEにデータを送信することができる。すべての送信が保護されたUサブフレームに制限されれば容量が有意に低減されることが明らかなはずである。
保護されていないセカンダリ搬送波704の図が、プライマリ搬送波702と時間的に並置された状態で示される。繰り返すと、単一の受信機を有するUEは、プライマリ搬送波702及び保護されていないセカンダリ搬送波704を同時に使用することはできないことが注記されるべきである。
Uサブフレーム中には、UE受信機回路は、プライマリ搬送波702に同調する。UEは、保護された“U”サブフレームで受信された信号を復号する。この例では、ダウンリンクUサブフレームは、次のサブフレームのために使用すべき保護されていないセカンダリ搬送波を示す数ビットを含む。例えば、この搬送波表示が指し示すサブフレーム及び/又は周期の数もUサブフレームに含めることができる。UEがUサブフレームを復号次第、UEは、それの受信機を保護されていないセカンダリ搬送波704に再同調させる。その再同調させることは、斜線の矢印706によって示されるようにある程度の短い時間を要し、それは、通常は、サブフレームの継続時間よりもはるかに短い。この例では、保護されていないセカンダリ搬送波704に再同調後は、UEは、保護されていないセカンダリ搬送波でPDSCHデータのみを受信する。PHICH及びPDCCH、等の制御信号は、プライマリ搬送波702で受信される。
UEトランシーバが再同調する間に経過する有限の時間中には、Uサブフレームに隣接するサブフレーム、“遷移サブフレーム”(transition subframe)は、完全には利用することができない。これは、図7でわかることができ、例えば、斜線矢印706によって表される遷移時間は、遷移サブフレーム0の一部分を使用し、斜線矢印708によって表される遷移時間は、遷移サブフレーム6の一部分を使用する。遷移サブフレームは、セカンダリ搬送波の使用のために全体的に利用可能ではないため、それらは、完全に飛ばす(skip)ことができるか又は部分的に使用することができる。遷移サブフレームは、例えば、遷移サブフレームの始めに又は終わりに幾つかのOFDMシンボルのみを飛ばすことによって部分的に使用することができる。この場合は、飛ばされるべきシンボルは、eNodeB及びUEの両方において知られているべきである。これは、幾つかの既存のシンボルをパンクチャリング(puncturing)するか、幾つかの既存のシンボルを遷移サブフレームから移動させるか、又は遷移サブフレームの各々の終端部からそれらを移動させることによって達成させることができる。
Uサブフレーム間の幾つかのサブフレームに対応する時間マイナス再同調動作を完了させるための十分な時間が経過後に、UEがプライマリ搬送波702に再同調する。再同調のために許容される遷移時間は、UEがプライマリ搬送波702での次のサブフレームを復号するための時間を有することになるような十分に長い時間であるべきである。この遷移は、斜線矢印708によって示される。プライマリ搬送波702と保護されていないセカンダリ搬送波704との間のこの遷移シーケンスは、周期的に繰り返す。
図7は、開示される周波数ホッピング方式に対応することができるHARQタイムラインの例も示す。概して、UEは、データが受信されている各サブフレームに関して1つのACK又はNACKビット(ACK/NACK)を生成する。この例では、データが保護されていないセカンダリ搬送波704で受信されているサブフレームに対応するACK/NACKは、保護されたアップリンク搬送波716の保護されたアップリンクリソース714で同じPUCCHリソースを用いて束ねられるか又は多重化されてフィードバックされる。プライマリ搬送波702でのUサブフレームに対応するACK/NACKも、保護されたアップリンクリソース714で同じPUCCHリソースを用いてフィードバックされるが、セカンダリ搬送波の結合されたACK/NACKから分離された状態が維持される。例示として、保護されたアップリンクリソースは、保護されたアップリンク搬送波716での時分割されたサブフレームであることができる。ACK/NACKを多重化又は結合するために様々な既知の方法を使用することができる。
少なくとも一例では、UEは、使用中の各搬送波に関して1つのチャネル品質表示を含めるために、複数のチャネル品質表示(CQI)を報告することができる。UEは、現在使用されていない搬送波に関してもCQIを報告することができる。eNodeBはあらゆる数の特定の搬送波に関するCQIを生成するようにUEに命令することができることが構想される。例えば、UEが各々の周期的な報告に関して一組の搬送波間を循環する新しい周期的報告モードを定義することができる。この例では、搬送波の組は、eNodeBの上層によってUEに提供することができる。
例えば、数多くのNACKによって示すことができるように、保護されていないセカンダリ搬送波が干渉を受けている、又はその他の形で劣化するか又は使用不能であることが明らかになった場合は、セカンダリ搬送波での送信は中止することができる。この場合は、新しいセカンダリ搬送波を選択することができ、及び、新しいセカンダリ搬送波でのリソースのためのグラントをUEに提供することができる。
他の例では、ダウンリンク(DL)送信に関して及び同じくアップリンク(UL)送信に関して多搬送波動作が実施される。UEへの送信のほとんどは、保護されていないダウンリンク搬送波を通じて行われ、UEからの送信のほとんどは、保護されていないアップリンク搬送波を通じて行われる。UEは、ダウンリンクプライマリ搬送波と保護されていないセカンダリ搬送波との間でそれの受信機回路を周期的に再同調させる。UEは、アップリンクプライマリ搬送波と保護されていないアップリンクセカンダリ搬送波との間でそれの送信機回路も周期的に再同調させる。
この例では、UEは、プライマリ搬送波アップリンク制御情報(UCI)グラント及びセカンダリ搬送波UCIグラントを受信する。アップリンク制御情報は、UEに関する情報をハイブリッド−ARQプロトコル及びスケジューラに提供する。アップリンクグラントは、アップリンクでのデータ送信のための制御情報を搬送することができる。プライマリ搬送波UCIグラントは、プライマリ搬送波での特定のサブフレームが対象である。セカンダリ搬送UCIグラントは、セカンダリ搬送波での特定のサブフレームが対象である。様々な例では、アップリンクプライマリ搬送波のUサブフレームは、ダウンリンクプライマリ搬送波のUサブフレームから一定数のサブフレームだけオフセットされる。
図8を参照し、ダウンリンク送信802のためのダウンリンクプライマリ搬送波の図が示され、及び、保護されていないダウンリンクセカンダリ搬送波804の図がダウンリンクプライマリ搬送波802と時間的に並置された状態で示される。UE受信機回路は、ダウンリンクプライマリ搬送波802のUサブフレーム中にダウンリンクプライマリ搬送波802に同調する。UEは、Uサブフレームで受信された信号を復号する。UEがUサブフレームを復号次第、UEは、斜線矢印806によって示されるように保護されていないダリセカンダリ搬送波804にそれの受信機を再同調させる。保護されていないダウンリンクセカンダリ搬送波804に再同調後は、UEは、保護されていないダウンリンクセカンダリ搬送波804でデータを受信する。Uサブフレーム間の幾つかのサブフレームに対応する時間マイナス再同調動作を完了させるための十分な時間が経過後に、UEは、斜線矢印808によって示されるようにダウンリンクプライマリ搬送波802に再同調する。ダウンリンクプライマリ搬送波802と保護されていないダウンリンクセカンダリ搬送波804との間のダウンリンク遷移のこのシーケンスは、周期的に繰り返す。
UE送信機回路は、アップリンクプライマリ搬送波816のUサブフレーム中にアップリンクプライマリ搬送波816に同調する。UEは、Uサブフレームで信号を送信し、次に、斜線矢印820によって示されているように保護されていないアップリンクセカンダリ搬送波818にそれの送信機回路を再同調させる。保護されていないアップリンクセカンダリ搬送波818に再同調後は、UEは、保護されていないアップリンクセカンダリ搬送波818でデータを送信する。Uサブフレーム間の幾つかのサブフレームに対応する時間マイナス再同調動作を完了させるための十分な時間が経過後に、UEは、斜線矢印822によって示されるようにアップリンクプライマリ搬送波816にそれの送信機回路を再同調させる。アップリンクプライマリ搬送波816と保護されていないアップリンクセカンダリ搬送波818との間のアップリンク遷移のこのシーケンスは、周期的に繰り返す。
データが保護されていないアップリンクセカンダリ搬送波818でeNodeBによって受信されているサブフレームに対応するACK/NACKは、束ねるか又は多重化し、矢印824によって示されるようにダウンリンクプライマリ搬送波802のUサブフレームでUEにフィードバックすることができる。アップリンクプライマリ搬送波816でeNodeBによって受信されたUサブフレームに対応するACK/NACKは、セカンダリ搬送波の結合されたACK/NACKから分離された状態を維持することができるが、矢印826によって示されるようにダウンリンクプライマリ搬送波802のUサブフレームでUEにフィードバックすることもできる。
本開示の例による無線通信の方法が、図9を参照して説明される。方法900は、ブロック901においてダウンリンクプライマリ搬送波に同調することを含む。次に、ブロック902において、ユーザ装置(UE)の単一の受信機が、ダウンリンクプライマリ搬送波の第1の周期的サブフレーム中にダウンリンクプライマリ搬送波でのeNode B(eNodeB)からのダウンリンク送信の第1の部分を受信する。次に、ブロック903において、一例ではUサブフレームである第1の周期的サブフレームで受信された信号の復号が生じる。ブロック904において、方法は、一例では保護されていないセカンダリ搬送波であるダウンリンクセカンダリ搬送波に再同調する。次に、方法は、ブロック905において、セカンダリダウンリンク搬送波でのeNodeBからのダウンリンク送信の第2の部分を単一の受信機によって受信する。その受信は、ダウンリンクプライマリ搬送波の第1の周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に生じる。次に、単一の受信機は、ダウンリンクプライマリ搬送波の第2の周期的サブフレーム中にダウンリンクプライマリ搬送波でのeNodeBからのダウンリンク送信の第3の部分を受信することができる。
方法は、アップリンクプライマリ搬送波の第1の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信をUEの単一の送信機によってeNodeBに送信することも含むことができる。単一の送信機は、アップリンクプライマリ搬送波の第1の周期的サブフレームの後で及びアップリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリアップリンク搬送波のサブフレームの周期的シーケンス中にセカンダリアップリンク搬送波でのアップリンク送信をeNodeBに送信する。次に、単一の送信機は、アップリンクプライマリ搬送波の第2の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信をeNodeBに送信する。
本開示の他の例による無線通信の方法が図10を参照して説明される。方法1000は、ブロック1001においてダウンリンクプライマリ搬送波に同調することを含む。次に、ブロック1002において、ダウンリンクプライマリ搬送波の第1の周期的サブフレーム中にダウンリンクプライマリ搬送波でのeNodeBによるダウンリンク送信の第1の部分をユーザ装置(UE)の単一の受信機に送信することが生じる。ブロック1003において、セカンダリダウンリンク搬送波に再同調することが生じる。次に、方法は、セカンダリダウンリンク搬送波でのeNodeBによるダウンリンク送信の第2の部分を単一の受信機に送信する(ブロック1004)。その送信は、ダウンリンクプライマリ搬送波の第1の周期的サブフレームの後で及びダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に生じる。次に、eNodeBは、ダウンリンクプライマリ搬送波の第2の周期的サブフレーム中にダウンリンクプライマリ搬送波でのダウンリンク送信を単一の受信機に送信する。
方法は、アップリンクプライマリ搬送波の第1の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信をUEの単一の送信機から受信することも含むことができる。次に、eNodeBは、アップリンクプライマリ搬送波の第1の周期的サブフレームの後で及びアップリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリアップリンク搬送波のサブフレームの周期的シーケンス中にセカンダリアップリンク搬送波でのアップリンク送信を単一の送信機から受信する。
本開示の一例による無線通信の方法が図11を参照して説明される。方法1100は、ブロック1101においてアップリンクプライマリ搬送波に同調することを含む。次に、ブロック1102において、eNodeBは、アップリンクプライマリ搬送波の第1の周期的サブフレーム中にアップリンクプライマリ搬送波でのUEからのアップリンク送信を受信する。ブロック1103において、一例ではUサブフレームである第1の周期的サブフレームで受信された信号を復号することが生じる。次に、ブロック1104において、一例では保護されていないセカンダリ搬送波であるアップリンクセカンダリ搬送波に再同調することが生じる。方法は、次に、ブロック1105において、アップリンクプライマリ搬送波の第1の周期的サブフレームの後で及びアップリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリアップリンク搬送波のサブフレームの周期的シーケンス中にセカンダリダウンリンク搬送波でのUEからのアップリンク送信を受信する。次に、eNodeBは、アップリンクプライマリ搬送波の第2の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信を受信する。
本開示の他の例による無線通信の方法が図12を参照して説明される。方法1200は、ブロック1201においてアップリンクプライマリ搬送波に同調することを含む。次に、ブロック1202において、UEは、アップリンクプライマリ搬送波の第1の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信をeNodeBに送信する。ブロック1203において、セカンダリアップリンク搬送波に再同調することが生じる。方法は、次に、アップリンクプライマリ搬送波の第1の周期的サブフレームの後で及びアップリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリアップリンク搬送波のサブフレームの周期的シーケンス中にセカンダリアップリンク搬送波でのアップリンク送信をeNodeBに送信する(ブロック1204において)。UEは、アップリンクプライマリ搬送波の第2の周期的サブフレーム中にアップリンクプライマリ搬送波でのアップリンク送信をeNodeBに送信することができる。
ここにおいて開示される様々な例は、保護されていないセカンダリチャネルでのデータ通信と、プライマリチャネルの保護されたリソースでの制御情報の通信と、を含むが、様々な代替例は、セカンダリチャネルでの制御情報の通信及び/又はプライマリチャネルの保護されたリソースでのデータの通信も含むことができることが理解されるべきである。
一構成では、UE120は、無線通信のために構成され、受信手段を含む。様々な態様では、上記の受信手段は、上記の手段によって示される機能を実行するように構成されたアンテナ352A−T、復調器354A−T、受信プロセッサ358、コントローラプロセッサ380、及び/又はメモリ382であることができる。他の態様では、上記の手段は、上記の手段によって示される機能を実行するように構成されたあらゆるモジュール又はあらゆる装置であることができる。一構成では、eNodeB110は、無線通信のために構成され、上記の手段によって示される機能を実行するように構成された送信手段を含む。様々な態様では、上記の送信手段は、上記の手段によって示される機能を実行するように構成されたアンテナ334A−T、変調器332A−T、送信プロセッサ320、コントローラプロセッサ340、及び/又はメモリ342であることができる。他の態様では、上記の手段は、上記の手段によって示される機能を実行するように構成されたあらゆるモジュール又はあらゆる装置であることができる。
図13は、処理システム1314を採用する装置120に関するハードウェア実装の例を示す図である。処理システム1314は、概してバス1324によって代表されるバスアーキテクチャを用いて実装することができる。バス1324は、処理システム1314の特定の用途及び全体的な設計上の制約に依存してあらゆる数の相互接続バスとブリッジとを含むことができる。バス1324は、プロセッサ1304、モジュール1308、1309及びコンピュータによって読み取り可能な媒体1306によって表される、1つ以上のプロセッサ及び/又はハードウェアモジュールを含む様々な回路をまとめてリンクする。バス1324は、様々なその他の回路、例えば、タイミングソース、周辺装置、電圧調整器、及び電力管理回路、もリンクすることができ、それらは、当業においてはよく知られており、従って、これ以上は説明されない。
装置は、トランシーバ1310に結合された処理システム1314を含む。トランシーバ1310は、1つ以上のアンテナ1320に結合される。トランシーバ1310は、送信媒体を通じて様々なその他の装置と通信するための手段を提供する。処理システム1314は、コンピュータによって読み取り可能な媒体1306に結合されたプロセッサ1304を含む。プロセッサ1304は、コンピュータによって読み取り可能な媒体1306に格納されたソフトウェアの実行を含む一般的処理を担当する。ソフトウェアは、プロセッサ1304によって実行されたときには、特定の装置に関して上述された様々な機能を実行することを処理システム1314に行わせる。コンピュータによって読み取り可能な媒体1306は、ソフトウェアを実行するときにプロセッサ1304によって処理されるデータを格納するために使用することもできる。処理システムは、受信モジュール1308、1309をさらに含む。モジュールは、コンピュータによって読み取り可能な媒体1306内に常駐し/格納され、プロセッサ1304において実行するソフトウェアモジュール、プロセッサ304に結合された1つ以上のハードウェアモジュール、又はそれらの何らかの組み合わせであることができる。処理システム1314は、UE120のコンポーネントであることができ及びメモリ382及び/又はTXプロセッサ364、RXプロセッサ358、及びコントローラ/プロセッサ380のうちの少なくとも1つを含むことができる。
一構成では、無線通信のための装置120は、受信するための手段を含む。上記の手段は、上記の手段によって示される機能を実行するように構成された装置120の上記のモジュールのうちの1つ以上及び/又は装置120の処理システム1314であることができる。
当業者は、情報及び信号は様々な異なる技術及び技法のうちのいずれかを用いて表すことができることを理解するであろう。例えば、上記の説明全体を通じて参照されることがあるデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁場、磁粒子、光学場、光学粒子、又はそれらのあらゆる組合せによって表すことができる。
ここにおける開示と関係させて説明される様々な例示的な論理ブロック、モジュール、回路、及びアルゴリズムのステップは、電子ハードウェア、コンピュータソフトウェア、又は両方の組み合わせとして実装可能であることを当業者はさらに評価するであろう。ハードウェアとソフトウェアのこの互換性を明確に例示するため、上記においては、様々な例示的なコンポーネント、ブロック、モジュール、回路、及びステップが、それらの機能の観点で一般的に説明されている。該機能がハードウェアとして又はソフトウェアとして実装されるかは、特定の用途及び全体的システムに対する設計上の制約事項に依存する。当業者は、説明されている機能を各々の特定の用途に合わせて様々な形で実装することができるが、該実装決定は、本開示の適用範囲からの逸脱を生じさせるものであるとは解釈されるべきではない。
ここにおける開示と関係させて説明される様々な例示的な論理ブロック、モジュール、及び回路は、ここにおいて説明される機能を果たすように設計された汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、その他のプログラマブル論理デバイス、ディスクリートゲートロジック、ディスクリートトランジスタロジック、ディスクリートハードウェアコンポーネント、又はそれらのあらゆる組合せ、を用いて実装又は実行することが可能である。汎用プロセッサはマイクロプロセッサであることができるが、代替においては、プロセッサは、従来のどのようなプロセッサ、コントローラ、マイクロコントローラ、又はステートマシンであってもよい。プロセッサは、コンピューティングデバイスの組合せ、例えば、DSPと、1つのマイクロプロセッサとの組合せ、複数のマイクロプロセッサとの組合せ、DSPコアと関連する1つ以上のマイクロプロセッサとの組合せ、又はあらゆるその他の構成、として実装することも可能である。
ここにおける開示と関係させて説明される方法又はアルゴリズムのステップは、直接ハードウェア内において、プロセッサによって実行されるソフトウェアモジュール内において、又はこれらの2つの組み合わせ内において具現化することが可能である。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、取り外し可能なディスク、CD−ROM、又は当業において既知であるその他のあらゆる形態の記憶媒体において常駐することができる。典型的な記憶媒体は、プロセッサが記憶媒体から情報を読み出すこと及び記憶媒体に情報を書き込むことができるようにプロセッサに結合される。代替においては、記憶媒体は、プロセッサと一体化させることができる。プロセッサ及び記憶媒体は、ASIC内に常駐することができる。ASICは、ユーザ端末内に常駐することができる。代替においては、プロセッサ及び記憶媒体は、ユーザ端末内において個別コンポーネントとして常駐することができる。
1つ以上の典型的な設計において、説明される機能は、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせにおいて実装することができる。ソフトウェアにおいて実装される場合は、これらの機能は、コンピュータによって読み取り可能な媒体において1つ以上の命令又はコードとして格納すること又は送信することができる。コンピュータによって読み取り可能な媒体は、非一時的なコンピュータ記憶媒体と、1つの場所から他へのコンピュータプログラムの転送を容易にするあらゆる媒体を含む通信媒体との両方を含む。記憶媒体は、汎用又は専用コンピュータによってアクセス可能なあらゆる利用可能な媒体であることができる。一例として、及び制限することなしに、該非一時的なコンピュータによって読み取り可能な媒体は、RAM、ROM、EEPROM、CD−ROM又はその他の光学ディスク記憶装置、磁気ディスク記憶装置又はその他の磁気記憶装置、又は、命令又はデータ構造の形態で希望されるプログラムコード手段を搬送又は格納するために用いることができ及び汎用又は専用コンピュータ又は汎用又は専用プロセッサによってアクセス可能なその他の媒体、を備えることができる。さらに、いずれの接続もコンピュータによって読み取り可能な媒体であると適切に呼ばれる。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、より対線、デジタル加入者ライン(DSL)、又は無線技術、例えば、赤外線、無線、及びマイクロ波、を用いてウェブサイト、サーバ、又はその他の遠隔ソースから送信される場合は、該同軸ケーブル、光ファイバケーブル、より対線、DSL、又は無線技術、例えば赤外線、無線、及びマイクロ波、は、媒体の定義の中に含まれる。ここにおいて用いられるときのディスク(disk及びdisc)は、コンパクトディスク(CD)(disc)と、レーザディスク(disc)と、光ディスク(disc)と、デジタルバーサタイルディスク(DVD)(disc)と、フロッピーディスク(disk)(登録商標)と、ブルーレイディスク(disc)と、を含み、ここで、diskは通常は磁気的にデータを複製し、discは、レーザを用いて光学的にデータを複製する。上記の組合せも、コンピュータによって読み取り可能な媒体の適用範囲に含めるべきである。
本開示に関する前の説明は、当業者が本開示を製造又は使用することを可能にするために提供される。本開示に対する様々な修正は、当業者にとって容易に明確になるであろう、及びここにおいて定められる一般原理は、本開示の精神又は適用範囲を逸脱せずにその他の変形に対しても適用することができる。以上のように、本開示は、ここにおいて説明される例及び設計に限定されることが意図されるものではなく、ここにおいて開示される原理及び新規の特徴に一致する限りにおいて最も広範な適用範囲が認められるべきである。

Claims (20)

  1. ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中に前記ダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信することと、
    前記ダウンリンクプライマリ搬送波の前記少なくとも1つの周期的サブフレームの後で及び前記ダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に前記セカンダリダウンリンク搬送波での前記ダウンリンク送信の第2の部分を受信することと、を備える、無線通信方法。
  2. 前記ダウンリンクプライマリ搬送波の前記第2の周期的サブフレーム中に前記ダウンリンクプライマリ搬送波での前記ダウンリンク送信の第3の部分を受信することと、をさらに備える請求項1に記載の方法。
  3. 前記ダウンリンク送信の前記第1の部分は、制御情報を備え、前記ダウンリンク送信の前記第2の部分は、データを備える請求項1に記載の方法。
  4. 前記制御情報は、プライマリ搬送波ダウンリンク制御情報(DCI)グラントと、セカンダリ搬送波ダウンリンク制御情報(DCI)グラントと、を備える請求項3に記載の方法。
  5. 前記ダウンリンクプライマリ搬送波で受信された前記ダウンリンク送信の前記第1の部分は、前記ダウンリンクプライマリ搬送波のための制御情報を備え、
    前記セカンダリダウンリンク搬送波で受信された前記ダウンリンク送信の前記第2の部分は、前記セカンダリダウンリンク搬送波のための制御情報を備える請求項1に記載の方法。
  6. 前記プライマリ搬送波でアップリンク制御情報(UCI)を及び前記セカンダリ搬送波でアップリンク制御情報(UCI)を送信することをさらに備える請求項1に記載の方法。
  7. 前記プライマリ搬送波及び前記セカンダリ搬送波の両方に関して前記プライマリ搬送波でアップリンク制御情報(UCI)を送信することをさらに備える請求項1に記載の方法。
  8. 前記ダウンリンクプライマリ搬送波で前記ダウンリンク送信を受信する前に前記セカンダリダウンリンク搬送波から前記ダウンリンクプライマリ搬送波に同調することと、
    前記ダウンリンクプライマリ搬送波で受信された信号を復号することと、
    前記セカンダリダウンリンク搬送波で前記ダウンリンク送信を受信する前に前記セカンダリダウンリンク搬送波に再同調することと、
    前記同調すること、復号すること、前記プライマリ及び前記セカンダリダウンリンク搬送波で受信すること、及び再同調することを周期的に繰り返すことと、をさらに備える請求項1に記載の方法。
  9. メモリと、
    前記メモリに結合され、及び
    ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中に前記ダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信し、及び
    前記ダウンリンクプライマリ搬送波の前記少なくとも1つの周期的サブフレームの後で及び前記ダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に前記セカンダリダウンリンク搬送波での前記ダウンリンク送信の第2の部分を受信するように構成された少なくとも1つのプロセッサと、を備える、無線通信のための装置。
  10. 前記少なくとも1つのプロセッサは、前記ダウンリンクプライマリ搬送波の前記第2の周期的サブフレーム中に前記ダウンリンクプライマリ搬送波での前記ダウンリンク送信の第3の部分を受信するようにさらに構成される請求項9に記載の装置。
  11. 前記ダウンリンク送信の前記第1の部分は、制御情報を備え、及び
    前記ダウンリンク送信の前記第2の部分は、データを備える請求項9に記載の装置。
  12. 前記制御情報は、プライマリ搬送波ダウンリンク制御情報(DCI)グラントと、セカンダリ搬送波ダウンリンク制御情報(DCI)グラントと、を備える請求項11に記載の装置。
  13. 前記ダウンリンクプライマリ搬送波で受信された前記ダウンリンク送信の前記第1の部分は、前記ダウンリンクプライマリ搬送波のための制御情報を備え、
    前記セカンダリダウンリンク搬送波で受信された前記ダウンリンク送信の前記第2の部分は、前記セカンダリダウンリンク搬送波のための制御情報を備える請求項9に記載の装置。
  14. 前記少なくとも1つのプロセッサは、前記プライマリ搬送波でアップリンク制御情報(UCI)を及び前記セカンダリ搬送波でアップリンク制御情報(UCI)を送信するようにさらに構成される請求項9に記載の装置。
  15. 前記少なくとも1つのプロセッサは、前記プライマリ搬送波及び前記セカンダリ搬送波の両方に関して前記プライマリ搬送波でアップリンク制御情報(UCI)を送信するようにさらに構成される請求項9に記載の装置。
  16. 前記少なくとも1つのプロセッサは、
    前記ダウンリンクプライマリ搬送波で前記ダウンリンク送信を受信する前に前記セカンダリダウンリンク搬送波から前記ダウンリンクプライマリ搬送波に同調し、
    前記ダウンリンクプライマリ搬送波で受信された信号を復号し、
    前記セカンダリダウンリンク搬送波で前記ダウンリンク送信を受信する前に前記セカンダリダウンリンク搬送波に再同調し、及び
    前記同調すること、復号すること、前記プライマリ及び前記セカンダリダウンリンク搬送波で受信すること、及び再同調することを周期的に繰り返すようにさらに構成される請求項9に記載の装置。
  17. プログラムコードが記録されている非一時的なコンピュータによって読み取り可能な媒体を備え、前記プログラムコードは、
    ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中に前記ダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信するためのプログラムコードと、
    前記ダウンリンクプライマリ搬送波の前記少なくとも1つの周期的サブフレームの後で及び前記ダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に前記セカンダリダウンリンク搬送波での前記ダウンリンク送信の第2の部分を受信するためのプログラムコードと、を備える、無線ネットワークにおける無線通信のためのコンピュータプログラム製品。
  18. 前記ダウンリンクプライマリ搬送波の前記第2の周期的サブフレーム中に前記ダウンリンクプライマリ搬送波での前記ダウンリンク送信の第3の部分を受信するためのプログラムコードをさらに備える請求項17に記載の媒体。
  19. ダウンリンクプライマリ搬送波の少なくとも1つの周期的サブフレーム中に前記ダウンリンクプライマリ搬送波でのダウンリンク送信の第1の部分を受信するための手段と、
    前記ダウンリンクプライマリ搬送波の前記少なくとも1つの周期的サブフレームの後で及び前記ダウンリンクプライマリ搬送波の第2の周期的サブフレームの前のセカンダリダウンリンク搬送波のサブフレームの周期的シーケンス中に前記セカンダリダウンリンク搬送波での前記ダウンリンク送信の第2の部分を受信するための手段と、を備える、無線通信のための装置。
  20. 前記ダウンリンクプライマリ搬送波の前記第2の周期的サブフレーム中に前記ダウンリンクプライマリ搬送波での前記ダウンリンク送信の第3の部分を受信するための手段をさらに備える請求項19に記載の装置。
JP2013555595A 2011-02-25 2012-02-24 高速周波数ホッピングを有する多搬送波動作 Active JP5801422B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161446940P 2011-02-25 2011-02-25
US61/446,940 2011-02-25
US13/403,933 US9294240B2 (en) 2011-02-25 2012-02-23 Multi-carrier operations with fast frequency hopping
US13/403,933 2012-02-23
PCT/US2012/026498 WO2012116273A1 (en) 2011-02-25 2012-02-24 Multi-carrier operations with fast frequency hopping

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015098426A Division JP2015181258A (ja) 2011-02-25 2015-05-13 高速周波数ホッピングを有する多搬送波動作

Publications (2)

Publication Number Publication Date
JP2014511060A true JP2014511060A (ja) 2014-05-01
JP5801422B2 JP5801422B2 (ja) 2015-10-28

Family

ID=46718951

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013555595A Active JP5801422B2 (ja) 2011-02-25 2012-02-24 高速周波数ホッピングを有する多搬送波動作
JP2015098426A Pending JP2015181258A (ja) 2011-02-25 2015-05-13 高速周波数ホッピングを有する多搬送波動作

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015098426A Pending JP2015181258A (ja) 2011-02-25 2015-05-13 高速周波数ホッピングを有する多搬送波動作

Country Status (6)

Country Link
US (1) US9294240B2 (ja)
EP (1) EP2678968B1 (ja)
JP (2) JP5801422B2 (ja)
KR (1) KR101593052B1 (ja)
CN (1) CN103404070B (ja)
WO (1) WO2012116273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146573A (ja) * 2014-02-03 2015-08-13 アップル インコーポレイテッド 移動体無線装置による、非ライセンス無線周波数帯域における通信のための方法及び装置
JP2016136754A (ja) * 2011-08-12 2016-07-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信装置及び再送制御方法
WO2016157918A1 (ja) * 2015-03-31 2016-10-06 ソニー株式会社 装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603124B2 (en) * 2012-04-24 2017-03-21 Apple Inc. Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
EP2893759B1 (en) * 2012-09-07 2020-12-30 Samsung Electronics Co., Ltd. Method and apparatus for signalling resource allocation information in an asymmetric multicarrier communication network
JP6150487B2 (ja) * 2012-10-09 2017-06-21 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法
US9730207B2 (en) * 2013-01-31 2017-08-08 Lg Electronics Inc. Communication method using carrier aggregation and apparatus for same
KR102025385B1 (ko) * 2013-02-26 2019-11-27 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 단말의 능력에 따른 제어 채널 전송 방법 및 장치
US9642140B2 (en) * 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
US9307556B2 (en) * 2013-07-23 2016-04-05 Nokia Solutions And Networks Oy Shared access of uplink carrier
US9591644B2 (en) * 2013-08-16 2017-03-07 Qualcomm Incorporated Downlink procedures for LTE/LTE-A communication systems with unlicensed spectrum
EP3043610B1 (en) * 2013-09-27 2019-09-04 Huawei Technologies Co., Ltd. Communication method, user equipment and base station
DE102015201432B4 (de) * 2014-02-03 2022-07-14 Apple Inc. Verfahren und Vorrichtungen zur Kommunikation in nicht -lizenzierten Funkfrequenzbändern durch mobile drahtlose Vorrichtungen
EP3200545B1 (en) * 2014-09-26 2019-11-20 Nanchang Coolpad Intelligent Technology Company Limited Data transmission method and system, and device having base station function
US9756058B1 (en) 2014-09-29 2017-09-05 Amazon Technologies, Inc. Detecting network attacks based on network requests
US9426171B1 (en) 2014-09-29 2016-08-23 Amazon Technologies, Inc. Detecting network attacks based on network records
US20160227568A1 (en) * 2015-01-30 2016-08-04 Htc Corporation Method of Handling Carrier Grouping and Related Communication Device
WO2016130073A1 (en) * 2015-02-09 2016-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Implementation of harq on pusch for multiple carriers
CN106059980B (zh) * 2016-05-27 2019-03-29 电子科技大学 一种基于快速跳频的多载波扩频方法
WO2018006237A1 (en) * 2016-07-04 2018-01-11 Intel IP Corporation Downlink control information (dci) configuration
KR102397784B1 (ko) * 2018-06-21 2022-05-12 에프쥐 이노베이션 컴퍼니 리미티드 무선 통신 시스템에서 셀 (재)선택을 수행하기 위한 방법 및 장치
JP7108053B2 (ja) 2018-09-06 2022-07-27 グーグル エルエルシー 馴染みのあるロケーションを中間目的地とするナビゲーション指示
WO2021062856A1 (en) * 2019-10-01 2021-04-08 Qualcomm Incorporated Handling uplink channel and carrier switching gap collisions
CA3119114A1 (en) 2020-05-18 2021-11-18 Comcast Cable Communications, Llc Transmission using a plurality of wireless resources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078962A1 (en) * 2009-01-07 2010-07-15 Nokia Siemens Networks Oy Discontinuous reception in carrier aggregation wireless communication systems
WO2010088536A1 (en) * 2009-01-30 2010-08-05 Interdigital Patent Holdings, Inc. Method and apparatus for component carrier aggregation in wireless communications
WO2011014002A2 (en) * 2009-07-28 2011-02-03 Lg Electronics Inc. Method for performing carrier management procedure in a multi -carrier supported wideband wireless communication system and apparatus for the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767713B2 (en) * 2005-02-22 2014-07-01 Qualcomm Incorporated Apparatus and method for allowing page monitoring of a communication system during traffic/broadcast channel operation without reducing traffic performance
US8000272B2 (en) 2007-08-14 2011-08-16 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
CN101978721B (zh) * 2008-04-24 2013-07-31 夏普株式会社 移动站装置、移动通信系统以及通信方法
US9397775B2 (en) 2008-09-12 2016-07-19 Blackberry Limited Frequency division duplexing and half duplex frequency division duplexing in multihop relay networks
WO2010044632A2 (ko) * 2008-10-15 2010-04-22 엘지전자주식회사 다중 반송파 시스템에서 통신 방법 및 장치
US8243648B2 (en) * 2008-12-19 2012-08-14 Intel Corporation Spatial reuse techniques with wireless network relays
US20100271970A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
WO2010141618A1 (en) 2009-06-02 2010-12-09 Research In Motion Limited System and method for power control for carrier aggregation using single power control message for multiple carriers
US9118468B2 (en) * 2009-07-23 2015-08-25 Qualcomm Incorporated Asynchronous time division duplex operation in a wireless network
CN102111851B (zh) 2009-12-23 2014-06-18 中兴通讯股份有限公司南京分公司 一种实现下行控制信令传输的方法及系统
US8555128B2 (en) * 2010-03-24 2013-10-08 Futurewei Technologies, Inc. System and method for transmitting and receiving acknowledgement information
CN101867953B (zh) 2010-06-13 2015-06-03 中兴通讯股份有限公司 载波聚合场景下下行控制信息的检测方法和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078962A1 (en) * 2009-01-07 2010-07-15 Nokia Siemens Networks Oy Discontinuous reception in carrier aggregation wireless communication systems
WO2010088536A1 (en) * 2009-01-30 2010-08-05 Interdigital Patent Holdings, Inc. Method and apparatus for component carrier aggregation in wireless communications
WO2011014002A2 (en) * 2009-07-28 2011-02-03 Lg Electronics Inc. Method for performing carrier management procedure in a multi -carrier supported wideband wireless communication system and apparatus for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136754A (ja) * 2011-08-12 2016-07-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信装置及び再送制御方法
JP2017188935A (ja) * 2011-08-12 2017-10-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信装置及び再送制御方法
JP2015146573A (ja) * 2014-02-03 2015-08-13 アップル インコーポレイテッド 移動体無線装置による、非ライセンス無線周波数帯域における通信のための方法及び装置
WO2016157918A1 (ja) * 2015-03-31 2016-10-06 ソニー株式会社 装置
JPWO2016157918A1 (ja) * 2015-03-31 2018-01-25 ソニー株式会社 装置
US10194447B2 (en) 2015-03-31 2019-01-29 Sony Corporation Communication apparatus and a method for communication
US10645700B2 (en) 2015-03-31 2020-05-05 Sony Corporation Communication apparatus and a method for communication

Also Published As

Publication number Publication date
EP2678968A1 (en) 2014-01-01
WO2012116273A1 (en) 2012-08-30
EP2678968B1 (en) 2018-03-21
CN103404070A (zh) 2013-11-20
JP5801422B2 (ja) 2015-10-28
US9294240B2 (en) 2016-03-22
KR101593052B1 (ko) 2016-02-11
KR20130133000A (ko) 2013-12-05
CN103404070B (zh) 2016-08-10
US20120218954A1 (en) 2012-08-30
JP2015181258A (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5801422B2 (ja) 高速周波数ホッピングを有する多搬送波動作
CN111052834B (zh) 使用带宽部分(bwp)配置处理无线电链路监测(rlm)的方法和系统
US11588535B2 (en) Dynamic beam-switching latency for beam refinement procedures
CN109075953B (zh) 处理因载波切换引起的中断和载波切换能力指示
US10903942B2 (en) Synchronization signal block and downlink channel multiplexing
CN111448775B (zh) 用于带宽部分信令和切换的方法和装置
KR101574481B1 (ko) 채널 상태 정보 피드백을 위한 무효 기준 서브프레임들을 관리하기 위한 시스템 및 방법
KR101407037B1 (ko) 이종 네트워크들에서의 반-지속성 스케줄링 허가들
US20180132237A1 (en) Ultra-reliable low-latency communication mini-slot control
US9030971B2 (en) Simultaneous operation of short range wireless systems with a mobile wireless broadband system
US20220240234A1 (en) Uplink cross-carrier scheduling for time division multiplexing carrier aggregation
CN112703796B (zh) 多发送/接收点非相干联合发送中为ack-nack反馈调度物理上行链路控制信道
US11451279B2 (en) Subband channel state information (CSI) omission for type-II CSI
US11470606B2 (en) Decoding of semi-persistent scheduling occasions
US10743332B2 (en) Techniques and apparatuses for complementary transmission relating to an interrupted traffic flow in new radio
CN116210327A (zh) 关于用于msg4 pdsch的tbs缩放和重复的指示
CN113647047A (zh) 指示设计与信令
US11234176B2 (en) Quality of service (QOS) based beam determination for make-before-break (MBB) handover
US20230198593A1 (en) Channel state information triggering and reporting
US20220386362A1 (en) Transmission of uplink control information (uci) based on priority rules

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250