WO2016157893A1 - 混合流路及びこの混合流路を備えたマイクロ流体デバイス - Google Patents

混合流路及びこの混合流路を備えたマイクロ流体デバイス Download PDF

Info

Publication number
WO2016157893A1
WO2016157893A1 PCT/JP2016/001821 JP2016001821W WO2016157893A1 WO 2016157893 A1 WO2016157893 A1 WO 2016157893A1 JP 2016001821 W JP2016001821 W JP 2016001821W WO 2016157893 A1 WO2016157893 A1 WO 2016157893A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
mixing
channel
groove
fluid
Prior art date
Application number
PCT/JP2016/001821
Other languages
English (en)
French (fr)
Inventor
隆司 大貫
正弘 國則
岩崎 力
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Publication of WO2016157893A1 publication Critical patent/WO2016157893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Abstract

 一つの流路内で流体を効率よく混合することができ、流路チップの作製も容易となるように、流路底面70に、上流端73と下流端74とを有し、かつ、流路軸線方向に延在する複数の溝部72を配置するとともに、配置された溝部72の方向が一定又は不定の周期で逆向きに入れ替わるようにする。

Description

混合流路及びこの混合流路を備えたマイクロ流体デバイス
 本発明は、微小な流路空間内で微小容量の流体を混合させたり反応させたりするための混合流路と、そのような混合流路を備えたマイクロ流体デバイスに関する。
 近年の微細加工技術の進展や、プラスチック成形加工技術の発展・広範化により、マイクロ流体デバイスの活用・普及が進んでいる。
 マイクロ流体デバイスは、マイクロ・トータル・アナリシス・システムズ(μTAS)又はラボ・オン・チップ(lab-on-a-chip)等とも呼ばれ、微小な流路空間内で流体を混合させたり反応させたりするための反応場を形成する流路チップによって構成されている。
 このようなマイクロ流体デバイスは、流路空間が狭小であり、流路内は慣性項に比べ粘性項の影響が非常に大きい。このため、流体の流れは、レイノルズ数が1を切る(例えばRe=0.21等)層流状態となるため、流体の混合反応は分子拡散のみによって進行することになる。その結果、流体の混合効率が非常に悪くなるという問題があり、このような混合効率の問題を解決するために、これまで種々の提案がなされている。
 例えば、非特許文献1には、基板上面に形成された流路の底面に微細なマイクロノズルを高密度に配置し、このノズルを通して流路を流れる試料液中に試薬を噴出させて混合させるマイクロミキサが提案されている。
三宅亮,外3名,「集積化マイクロ吸光度セルによる小形高感度フロー式分析装置」,電学論E,117巻3号,平成9年,p.147-154
 非特許文献1記載のマイクロミキサでは、試料液中に試薬を噴出させることで、試料液と試薬の接触面積が増えるため、高い混合効果を得ることができる(マイクロプルーム効果)。しかしながら、非特許文献1のマイクロミキサは、試料液が流れる流路の下方に試薬を導く別の流路を形成する二層構造となっている。このため、流路を刻設した二種類の基板が必要になり、さらに、これらを位置合わせして接合する工程も求められるため、流路チップの作製に煩雑な手間を要していた。
 本発明は、上記の事情に鑑みなされたものであり、一つの流路内で流体を効率よく混合することができ、流路チップの作製も容易な混合流路、及びそのような混合流路を備えたマイクロ流体デバイスの提供を目的とする。
 本発明に係る混合流路は、流体を混合させつつ移動させる混合流路であって、流路底面に、上流端と下流端とを有し、かつ、流路軸線方向に延在する複数の溝部が、流路軸線方向に沿って配置されているとともに、前記溝部の方向が、一定又は不定の周期で逆向きに入れ替わる構成としてある。
 本発明に係るマイクロ流体デバイスは、上記したような混合流路を備える構成としてある。
 本発明によれば、流体が層流状態で移動するような狭小な流路であっても、マイクロプルーム効果によって、流体を混合させつつ移動させることができる。また、一つの流路内で流体を効率よく混合することができるので、流路チップの作製も容易である。
本発明の実施形態に係るマイクロ流体デバイスの一例を示す斜視図である。 本発明の実施形態に係るマイクロ流体デバイスの一例を示す分解斜視図である。 本発明の実施形態に係る混合流路の一例を示す要部拡大平面図である。 図3のA-A線断面図である。 本発明の実施形態に係る混合流路に配置される溝部の下流端の概略斜視図である。 本発明の実施形態に係る混合流路の変形例を示す要部拡大平面図である。 本発明の実施形態に係る混合流路の一例の解析結果を示す説明図であり、上記混合流路を平面視した混合状態を示している。 本発明の実施形態に係る混合流路の一例の解析結果を示す説明図であり、上記混合流路の断面における混合状態を示している。 参照例としてのストレート流路の解析結果を示す説明図であり、上記ストレート流路を平面視した混合状態を示している。 参照例としてのストレート流路の解析結果を示す説明図であり、上記ストレート流路の始点及び終点での断面における混合状態を示している。 本発明の実施形態に係る混合流路の他の変形例を示す要部拡大平面図である。
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
[マイクロ流体デバイス]
 まず、本発明に係るマイクロ流体デバイスの実施形態として、イムノクロマトグラフィー法に基づくインフルエンザ診断キットに適用した一例について説明する。
 図1は、本実施形態に係るマイクロ流体デバイスの斜視図であり、図2は、その分解斜視図である。これらの図に示す例において、インフルエンザ診断キットとして構成されるマイクロ流体デバイス1は、基板2と、基板2の表面を覆うカバー体3と、インフルエンザ抗原と結合する金コロイド標識抗体を含浸させたコンジュゲートパッド4と、分析後の残液を吸収させる吸収パッド5とを備えている。
 基板2の表面には、コンジュゲートパッド保持部4a、第1キャピラリポンプ部6a、液送流路部7、検出部8、第2キャピラリポンプ部6b、及び吸収パッド保持部5aが形成されている。
 検出部8には、金コロイド標識抗体と結合したインフルエンザ抗原を捕捉する捕捉抗体を塗布したテスト流路8aと、インフルエンザ抗原が結合していない金コロイド標識抗体を捕捉する捕捉抗体を塗布したコントロール流路8bが設けられている。テスト流路8aは、広幅浅底に形成して、その底面に捕捉抗体を塗布することで、金コロイド標識抗体と結合したインフルエンザ抗原を捕捉し易くすることができる。コントロール流路8bも同様とすることができる。
 また、第1キャピラリポンプ部6aと第2キャピラリポンプ部6bは、分析対象を含む調製液を、毛細管現象を推進力として液送する微細液送構造体によって構成される。かかる微細液送構造体としては、例えば、複数の微細突起が一列に並び、かつ、隣接する微細突起の間隙を液送路とする単位列が周期的に列設され、それぞれの微細突起の間隔が、毛細管現象を引き起こす間隔(例えば、一つの単位列において隣接する微細突起60の間の間隔が1~1000μm、隣接する単位列間の間隔が1~1000μm)となるように配列したものなどを利用することができる。好適には、先に本出願人が特願2014-242226で提案した微細液送構造体を利用することができ、これによれば、液送方向に偏りが生じることなく、液送方向を再現性よく任意に制御することができる。
 液送流路部7は、その流路上に形成された検出部8に、第1キャピラリポンプ部6aから送られてきた調製液を、毛細管現象により液送する流路としての機能とともに、当該調製液を混合する混合流路としての機能を兼ね備えているが、これについては後述する。
 基板2は、その表面に形成されるキャピラリポンプ部6a,6bや液送流路部7などの微細形状を良好に転写形成することができれば、ポリジメチルシロキサン等の紫外線硬化性、熱硬化性又は二液硬化性樹脂を用いてキャスト成形により成形してもよく、ポリメチルメタアクリレート,ポリスチレン、ポリカーボネート、シクロオレフィンコポリマー、シクロオレフィンポリマー等の熱可塑性樹脂を用いて射出成形、ナノインプリント等により成形してもよい。また、ガラスやシリコンを用いてエッチング、超精密機械加工等によって成形してもよい。
 カバー体3は、樹脂製又はガラス製とすることができ、基板2の表面に形成された検出部8(テスト流路8a及びコントロール流路8b)を透視できる程度に透明であるのが好ましい。かかるカバー体3は、一端側に形成された切欠き部4b,5bに、コンジュゲートパッド4と吸収パッド5のそれぞれを保持しつつ、第1キャピラリポンプ部6a、液送流路部7、検出部8、第2キャピラリポンプ部6bを封止するようにして基板2に接合される。
 このとき、カバー体3で封止された第1キャピラリポンプ部6aが、コンジュゲートパッド保持部4a側に開口するように、コンジュゲートパッド保持部4aは、第1キャピラリポンプ部6aの底面と同じ深さか、それよりも若干深くなるように形成する。これにより、当該開口を介して、コンジュゲートパッド4と第1キャピラリポンプ部6aとが接続される。
 同様に、吸収パッド保持部5aは、カバー体3で封止された第2キャピラリポンプ部6bが、吸収パッド保持部5a側に開口するように、第2キャピラリポンプ部6bの底面と同じ深さか、それよりも若干深くなるように形成する。これにより、当該開口を介して、吸収パッド5と第2キャピラリポンプ部6bとが接続される。
 このようなマイクロ流体デバイス1を用いて、被験者がインフルエンザに感染しているか否かを診断するには、まず、被験者から採取した鼻汁などの検体(分析対象)を含む検体調製液をコンジュゲートパッド4に滴下する。
 コンジュゲートパッド4に滴下された検体調製液は、コンジュゲートパッド4から浸み出して第1キャピラリポンプ部6aに浸入する。そして、検体調製液は、毛細管現象を推進力として第1キャピラリポンプ部6a内を進行して液送流路部7に送られる。液送流路部7に送られた検体調製液は、液送流路部7内を毛細管現象により流動して、その流路上に形成された検出部8に送られる。検出部8を通過した検体調製液の残液は、第2キャピラリポンプ部6bに達すると、その毛細管現象を推進力として第2キャピラリポンプ部6b内を進行し、その後、吸収パッド5に吸収される。
 検体調製液をコンジュゲートパッド4に滴下すると、コンジュゲートパッド4に含浸された金コロイド標識抗体が検体調製液に溶出する。そして、患者がインフルエンザに感染していれば、検体調製液にはインフルエンザ抗原が含まれており、検体調製液に溶出した金コロイド標識抗体の一部がインフルエンザ抗原と結合し、インフルエンザ抗原が結合していない残りの金コロイド標識抗体とともに、液送流路部7の流路上に形成された検出部8に送られる。
 前述したように、検出部8には、金コロイド標識抗体と結合したインフルエンザ抗原を捕捉する捕捉抗体を塗布したテスト流路8aと、インフルエンザ抗原が結合していない金コロイド標識抗体を捕捉する捕捉抗体を塗布したコントロール流路8bが設けられている。したがって、検体調製液が検出部8を通過した後に、コントロール流路8bにだけ金コロイド粒子による発色が視認されれば、被験者はインフルエンザに感染していないと診断でき、テスト流路8aにも金コロイド粒子による発色が視認されれば、被験者はインフルエンザに感染していると診断できる。
 このようにして、被験者がインフルエンザに感染しているか否かを診断するにあたり、検体調製液にインフルエンザ抗原が含まれていても、金コロイド標識抗体と結合しなければ、インフルエンザ抗原を検出することができず、正確な診断をすることができない。このため、検体調製液にインフルエンザ抗原が含まれている場合に、インフルエンザ抗原が金コロイド標識抗体と確実に結合するようにして診断の精度(分析精度)を高めることが望まれる。
 本実施形態において、液送流路部7は、混合流路としての機能を兼ね備えているのは前述した通りであるが、これは、検体調製液が液送流路部7内を流動して検出部8に到達するまでに、金コロイド標識抗体が検体調製液と十分に混合されるようにするためである。これにより、検体調製液にインフルエンザ抗原が含まれている場合には、金コロイド標識抗体とより確実に結合するようにして、インフルエンザ感染の有無について精度の高い診断ができるようにしている。
[混合流路]
 次に、本発明に係る混合流路の実施形態として、前述したマイクロ流体デバイス1の液送流路部7に適用した一例について説明する。
 図3は、本実施形態に係る混合流路の概略を示す要部拡大平面図であり、図1において鎖線で囲む液送流路部7の要部を拡大して示している。また、図3では、流路軸線Axを流路の幅方向中央を通る一点鎖線で示しており、流体の移動方向を矢印で示している。
 図3に示すように、流路底面70には、流路軸線方向に対して傾斜して延在する複数の溝部72が、流路軸線方向に沿って配置されている。流路底面70に配置する溝部72は、上流端73と下流端74とを有しており、流路内を移動する流体の一部が上流端73から流入するように形成されている。
 溝部72に流入した流体の一部は、溝部72の上方を移動する流体の下側に回り込みつつ、その流れを横切るようにして溝部72内を進行する。そして、下流端72に達して行き場を失った流体は、上昇流(プルーム)を形成しながら下流端74から噴出し、上方を移動する流体と合流して互いに混じり合うように挙動する。
 流路内を移動する流体に、このような挙動を生じさせるには、流路軸線方向に対する溝部72の傾斜角度θを10~80°とするのが好ましい。傾斜角度が10°未満の場合、流路の単位長さあたり溝数が少なくなるため、混合効率が低下し、また、傾斜角度θが80℃より大きい場合、圧力損失が大きくなってしまう。
 本実施形態にあっては、一定又は不定の周期で傾斜方向が逆向きに入れ替わるように流路軸線方向に沿って配置された溝部72ごとに、上記したような流体の挙動が繰り返されるようにすることで、流路内を移動する流体にマイクロプルームを生じさせて、これによって流体が混合されるようにしている。
 このようにして流路内を移動する流体が混合されるようにするにあたり、図3に示す例では、溝部72の傾斜方向が交互に逆向きに入れ替わるようにしている。このような態様とすることで、流路内を移動する流体に、交互にマイクロプルームが生じるようになり、流路内を移動する流体をより効率よく混合することができる。
 また、このような態様で溝部72を配置する場合には、溝部72の配置スペースを考慮して、上流側の溝部72の下流端74と、当該溝部72の下流側に隣接する溝部72の上流端73とが、流路軸線方向に直交する方向に離間して位置するように溝部72を配置するのが好ましい。
 また、図3に示す例では、溝部72が、流路底面70の幅方向中央部を跨いで、流路側壁71に到るように延在して形成されている。このような態様とすることで、マイクロプルームが生じる範囲を流路幅方向に広げることができ、これによって、流路幅方向の一方側を移動する流体と他方側を移動する流体との混合を促して、流路内を移動する流体をより効率よく混合することができる。
 また、溝部72の下流端74から上昇流を形成しながら流体を噴出させるにあたり、溝部72の下流端74は鋭角に形成するのが好ましい。下流端74を鋭角に形成することにより、図5に示すように、溝部72内を進行してきた流体が下流端74の先端に集中し、下端縁74に達した流体はより大きな上昇流を形成しながら噴出して、上方を移動する流体と広い範囲にわたって混じり合うようになり、流路内を移動する流体をより効率よく混合させることができる。
 ここで、図5は、図3において鎖線で囲む部分を斜視して示す溝部72の下流端74の概略斜視図である。図5中、流体の流れを矢印で示しており、下流端74に達した流体は、溝部側壁71に沿って上昇流を形成しながら噴出する。
 一方、溝部72の上流端73は、流路内を移動する流体が溝部72に流入し易くなるように、流路軸線方向に対して垂直に形成するのが好ましい。
 また、本実施形態では、図6に示すように、上流側の溝部72の延在方向に沿って、当該溝部72の下流側に隣接する溝部72と平行に一以上(図示する例では二つ)の副溝部72aを形成してもよい。すなわち、図3に示す例で溝部72が形成されていないデッドスペースとなっている部分にも、溝部72と同様の副溝部72aを、その長さを適宜調整して形成することができる。このようにすることで、流路底面70に溝部72及び副溝部72aをスペース効率よく密に配置し、流路内を移動する流体により多くのマイクロプルームを生じさせて、流体がよりいっそう効率よく混合されるようにすることができる。
 なお、図6中の矢印は、図3と同様に流体の移動方向を示している。
[性能評価]
 以上のような本実施形態に係る混合流路について、流体解析ソフト(PHOENICS)を用いて性能を評価した。
 図3及び図4に示す混合流路を評価対象とし、その流路幅wを300μm、流路深さdを30μm、溝部72の幅Wを50μm、溝部72の深さDを30μm、溝部72の傾斜角度θを30°、傾斜方向が同じ向きの溝部72の形成ピッチPを866μmとした。解析結果を図7及び図8に示す。
 図7は、上記混合流路を平面視した混合状態を示し、図8(a)~(i)のそれぞれは、図7の7a-7a線、7b-7b線、7c-7c線、7d-7d線、7e-7e線、7f-7f線、7g-7g線、7h-7h線、7i-7i線で示す断面における混合状態を示している。これらの図に示す解析結果は、シミュレーションのパラメータとして、定常流モデルにおいて、水と等価の物性値の2つの流体(A液・B液)を、流量1μL/minで流した場合となっており、図7の図面左側からA液・B液の2つの流体が並列に層流状に流れてきているとする。
 図7の7a-7a線で示す部分での混合状態は、は、図中最も上流側の溝部72に達したときの混合状態を示している。この部分では、A液・B液の2つの流体の間に界面が認められるが、流路の下流側にいくにしたがって、A液・B液の2つの流体が徐々に混合されていくことが分かる。そして、図7の7i-7i線で示す部分での混合状態は、図中上流側から数えて十一番目の溝部72に達したときの混合状態を示しており、この部分では、A液・B液の2つの流体が十分に混合されていることが分かる。
 上記混合流路の解析は流路長30mmで行い、流路長約6.5mmでA液・B液の2つの流体が完全に混合することが確認できた。
 これに対し、参照例として、流路幅60μm、流路深さ20μm、流路長30mmの断面矩形状のストレート流路(Re=0.21)に、シミュレーションのパラメータとして、定常流モデルにおいて、水と等価の物性値の2つの流体(A液・B液)を、流量1μL/minで流した場合の解析結果を図9及び図10に示す。
 図9は、上記ストレート流路を平面視した混合状態を示し、その始点(X=0mm)である9a-9a線で示す断面における混合状態を図10(a)、終点(X=30mm)である9b-9b線で示す断面における混合状態を図10(b)にそれぞれ示す。これらの図からも分かるように、A液・B液の2つの流体の混合は分子拡散のみによって進行し、30mmの流路長を経てもA液・B液の2つの流体はほとんど混合されていない。
 これらの解析結果からも分かるように、本実施形態に係る混合流路によれば、2つの流体(A液・B液)をわずか6.5mm程度の流路長で混合することができ、通常のストレート流路と比較して、非常に効率良く、迅速かつ確実に流体の混合が行われることになる。
 以上説明したように、本実施形態に係る混合流路によれば、流体が層流状態で移動するような狭小な流路であっても、かかる流路を移動する流体にマイクロプルームを生じさせ、これによって、流体を混合させつつ移動させることができる。また、流路底面70に溝部72を配置することにより、一つの流路内で流体を効率よく混合することができるので、流路チップの作製も容易である。
 したがって、このような本実施形態に係る混合流路を、前述したインフルエンザ診断キットとして構成されるマイクロ流体デバイス1の液送流路部7に適用すれば、液送流路部7内を検体調製液が流動して検出部8に到達するまでに、金コロイド標識抗体が検体調製液と十分に混合されるようにすることができる。その結果、検体調製液にインフルエンザ抗原が含まれている場合には、金コロイド標識抗体とより確実に結合するようにして、インフルエンザ感染の有無について精度の高い診断が可能になる。
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
 例えば、前述した実施形態では、直線状の溝部70が、流路軸線方向に交差して延在すように形成されているが、これに限定されない。上流端73から流入した流体が溝部70内を進行して流端74から上昇流を形成しながら噴出するようになっていれば、溝部70を湾曲させる等してもよい。具体的には、図11に示すように、溝部70をS字状に湾曲させてもよい。
 また、前述した実施形態では、マイクロ流体デバイスの例としてインフルエンザ診断キットを挙げて説明したが、これに限定されない。一般に、マイクロ流体デバイスにあっては、流路長が長くなると流動抵抗が累積的に大きくなってしまい、圧力損失により液送が困難となってしまうが、本発明に係る混合流路は、流路を短くしても十分な混合が期待できるので、液送手段として外部ポンプを用いることなく、毛細管現象を推進力として液送することが求められる種々のマイクロ流体デバイスに好適に利用することができる。
 この明細書に記載の文献及び本願のパリ優先権の基礎となる日本出願明細書の内容を全てここに援用する。
 本発明は、微小な流路空間内で微小容量の流体を混合させたり反応させたりする種々のマイクロ流体デバイスに適用して利用することができる。
 1     マイクロ流体デバイス
 7     液送流路部(混合流路)
 70     流路底面
 71     流路側壁
 72     溝部
 72a     副溝部
 73     上流端
 74     下流端
 θ     流路軸線方向に対する溝部の傾斜角度
 
 
 

Claims (8)

  1.  流体を混合させつつ移動させる混合流路であって、
     流路底面に、上流端と下流端とを有し、かつ、流路軸線方向に延在する複数の溝部が、流路軸線方向に沿って配置されているとともに、
     前記溝部の方向が、一定又は不定の周期で逆向きに入れ替わることを特徴とする混合流路。
  2.  前記溝部が、流路側壁に到るように延在して形成されている請求項1に記載の混合流路。
  3.  前記溝部の下流端が、鋭角に形成されている請求項1又は2に記載の混合流路。
  4.  前記溝部の上流端が、流路軸線方向に対して垂直に形成されている請求項1~3のいずれか一項に記載の混合流路。
  5.  前記溝部の方向が、交互に逆向きに入れ替わる請求項1~4のいずれか一項に記載の混合流路。
  6.  上流側の前記溝部の下流端と、当該溝部の下流側に隣接する前記溝部の上流端とが、流路軸線方向に直交する方向に離間して位置する請求項5に記載の混合流路。
  7.  上流側の前記溝部の延在方向に沿って、当該溝部の下流側に隣接する前記溝部と平行に一以上の副溝部を形成した請求項5又は6に記載の混合流路。
  8.  請求項1~7のいずれか一項に記載の混合流路を備えることを特徴とするマイクロ流体デバイス。
     
     
     
PCT/JP2016/001821 2015-03-31 2016-03-29 混合流路及びこの混合流路を備えたマイクロ流体デバイス WO2016157893A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073775A JP2016193395A (ja) 2015-03-31 2015-03-31 混合流路及びこの混合流路を備えたマイクロ流体デバイス
JP2015-073775 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157893A1 true WO2016157893A1 (ja) 2016-10-06

Family

ID=57004111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001821 WO2016157893A1 (ja) 2015-03-31 2016-03-29 混合流路及びこの混合流路を備えたマイクロ流体デバイス

Country Status (3)

Country Link
JP (1) JP2016193395A (ja)
TW (1) TW201706038A (ja)
WO (1) WO2016157893A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634320B (zh) * 2017-06-23 2018-09-01 國立彰化師範大學 微通道反應教學裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030051760A1 (en) * 2001-09-19 2003-03-20 Johnson Timothy J. Microfluidic flow manipulation device
JP2008537904A (ja) * 2005-03-23 2008-10-02 ヴェロシス インコーポレイテッド マイクロプロセス技術における表面機能構造部分

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030051760A1 (en) * 2001-09-19 2003-03-20 Johnson Timothy J. Microfluidic flow manipulation device
JP2008537904A (ja) * 2005-03-23 2008-10-02 ヴェロシス インコーポレイテッド マイクロプロセス技術における表面機能構造部分

Also Published As

Publication number Publication date
TW201706038A (zh) 2017-02-16
JP2016193395A (ja) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6068850B2 (ja) 流体取扱装置および流体取扱方法
JP6312670B2 (ja) 開放マイクロ流体チャンネルに関する方法、システムおよび装置
CN108745429B (zh) 一种多通道快速检测微流体检测芯片
CN101868730B (zh) 用于分析流体样品的微流控芯片
US20050232076A1 (en) Micromixer with overlapping-crisscross entrance
JP2007225438A (ja) マイクロ流体チップ
JP4367283B2 (ja) マイクロ流体チップ
CN109070075A (zh) 具有毛细腔室的微流体装置
WO2017069139A1 (ja) 免疫学的測定デバイス
JP2013040776A (ja) 流路デバイスおよび流体の混合方法
US20080112849A1 (en) Micro total analysis chip and micro total analysis system
JP5476514B2 (ja) 混合流路で複数の流体を均一に混合する方法
US20100075109A1 (en) Microchip, Molding Die and Electroforming Master
JP6601416B2 (ja) 微細液送構造体、及び分析装置
US9770717B1 (en) Microfluidic chip with bead integration system
JP6636686B2 (ja) 流体取扱装置の取扱方法
WO2016157893A1 (ja) 混合流路及びこの混合流路を備えたマイクロ流体デバイス
CN207102625U (zh) 一种微流体分析盒
JP2009018311A (ja) マイクロ流体チップ
JP7164505B2 (ja) マイクロ流路チップ
JP6357217B2 (ja) 流体取扱装置および流体取扱方法
JP2019002926A (ja) マイクロ流体デバイス及び流体の送液方法
US7748410B2 (en) Fluid handling apparatus
JP2016097353A (ja) 混合流路及びこの混合流路を備えたマイクロ流体デバイス
JP2006053091A (ja) プレート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771780

Country of ref document: EP

Kind code of ref document: A1