WO2016157287A1 - Component mounting device - Google Patents

Component mounting device Download PDF

Info

Publication number
WO2016157287A1
WO2016157287A1 PCT/JP2015/059602 JP2015059602W WO2016157287A1 WO 2016157287 A1 WO2016157287 A1 WO 2016157287A1 JP 2015059602 W JP2015059602 W JP 2015059602W WO 2016157287 A1 WO2016157287 A1 WO 2016157287A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging
suction
held
head
Prior art date
Application number
PCT/JP2015/059602
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 野沢
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/059602 priority Critical patent/WO2016157287A1/en
Priority to JP2017508822A priority patent/JP6673902B2/en
Publication of WO2016157287A1 publication Critical patent/WO2016157287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a component mounting machine.
  • Patent Document 1 A component mounter is known (see, for example, Patent Document 1).
  • the component mounting machine of Patent Document 1 includes a revolver head in which a plurality of suction nozzles are arranged at equal intervals in the circumferential direction, and a component camera fixed to the revolver head.
  • the component mounting machine images the electronic component with the component camera, and based on the image obtained by the imaging, The position of the electronic component is calculated.
  • the component camera moves the suction nozzle in the circumferential direction so as to be the same speed as the tape transport speed by the feeder, and images the electronic component while the tape transport and the suction nozzle movement are synchronized.
  • the component mounter finely corrects the position of the suction nozzle in accordance with the calculated position of the electronic component and causes the electronic component to be sucked to the suction nozzle.
  • the electronic component in the cavity immediately before suction is imaged with the component camera, and the position of the electronic component is calculated based on the image obtained by the imaging. It is possible to reduce suction mistakes by correcting electronic components and picking up electronic components.
  • imaging by the component camera is performed while synchronizing the conveyance of the tape by the feeder and the circumferential movement of the suction nozzle, so that it is difficult to take an imaging timing and the control becomes complicated.
  • the present invention holds a component supplied by feeding a tape having recesses in which the component is accommodated at a predetermined interval by a predetermined feeding amount by a holding member, and holds the component with high accuracy by simple control.
  • the main purpose is to make it possible.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the component mounter of the present invention is A component supply device is provided to supply a component by feeding a tape with recesses containing the components formed at predetermined intervals by a predetermined feed amount, and the component supplied by the component supply device is held and mounted on the substrate.
  • a component mounting machine that A head having a holding member for holding the component; Moving means for moving the head; It is movable with the head by the moving means, and when the head is in a position where the component can be held by the holding member, the head is held after being upstream of the component that can be held by the holding member.
  • Imaging means arranged so that the position of the recess in which the component to be stored is within the imaging range; The position of the later held component that was within the imaging range based on the image captured by the imaging means when the head is in a position where the component can be held by the holding member, or the component was accommodated Recognizing the position of the recess, correcting the recognized position based on the predetermined feed amount, determining a target holding position, and holding the component on the holding member at the determined target holding position, Control means for controlling the moving means; It is a summary to provide.
  • the component mounter of the present invention is provided with a component supply device that supplies a component by feeding a tape in which recesses in which components are accommodated are formed at predetermined intervals by a predetermined feed amount, and is supplied by the component supply device.
  • a component supply device that supplies a component by feeding a tape in which recesses in which components are accommodated are formed at predetermined intervals by a predetermined feed amount, and is supplied by the component supply device.
  • the component mounter accommodates the position of the component held after being within the imaging range based on the image captured by the imaging means when the head is in a position where the component can be held by the holding member, or the component is accommodated.
  • the head is configured to recognize the position of the recessed portion, determine the target holding position by correcting the recognized position based on a predetermined feed amount, and hold the component on the holding member at the determined target holding position.
  • the moving means This makes it possible to determine the target holding position when holding the component based on the position of the component to be held later and the feed amount of the component by the tape, so that the component can be held with high accuracy by simple control. Is possible.
  • “parts to be held later” includes parts to be held next time, parts to be held one after another, parts to be held at a later time, and the like.
  • the control unit is based on an image captured by the imaging unit when the component is held by the holding member. Recognizing the position of the part to be held next time within the imaging range or the position of the concave part in which the part is accommodated, and correcting the recognized position based on the predetermined feed amount, the next holding is performed.
  • the control unit controls the head and the moving unit so that the component is held at the determined target holding position when the tape is fed by the predetermined feed amount.
  • the imaging control for controlling the imaging means to perform imaging in the imaging range when the component is held at the target holding position by the holding control, and the image captured by the imaging control.
  • the target holding position determination process for determining the target holding position of the part to be held next time may be repeatedly executed. In this way, every time holding control is executed, the target holding position of the component to be held next time is determined based on the image picked up by the imaging means, so that it is possible to hold the component with high accuracy every time. Become.
  • control unit may determine the target holding position by correcting the recognized position based on the predetermined feed amount and a predetermined correction amount. In this way, the accuracy of the target holding position can be further increased.
  • the control unit is configured such that the imaging range of the imaging unit is a position of a recess in which a component to be held next time is accommodated.
  • the moving unit and the imaging unit are controlled so that the imaging unit performs imaging after the head is moved, and the next time that is within the imaging range is held based on the image captured by the imaging unit.
  • the imaging range of the imaging unit is The moving means and the imaging means so that imaging is performed by the imaging means after the head is moved to the position of the recess in which the component held this time is accommodated. Controlling and recognizing, as a second position, the position of the component held this time or the position of the concave portion in which the component was stored that was within the imaging range based on the image captured by the imaging unit.
  • the predetermined correction amount may be calculated based on the first position and the second position.
  • the imaging unit when the head is in a position where the component can be held by the holding member, the imaging unit includes a position of a recess in which a component to be held this time is stored and a recess in which a component to be held next time is stored.
  • the control means can image the position of the recess in which the part to be held this time is accommodated and the position of the recess in which the part to be held next time is accommodated.
  • the moving means and the imaging means are controlled so that imaging is performed by the imaging means after the head is moved so that the position of the component held next time based on the image captured by the imaging means or
  • the position of the concave portion in which the part is accommodated is recognized as the first position, and imaging is performed by the imaging unit when the part to be held next time is sent by the tape as a part to be held this time.
  • Controlling the moving means and the imaging means so as to recognize the position of the part held this time or the position of the recess in which the part is accommodated as the second position based on the image taken by the imaging means,
  • the predetermined correction amount may be calculated based on the recognized first position and the second position. In these cases, the control means may calculate the predetermined correction amount when the holding member holds the first part from the tape.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a component mounting system 1.
  • FIG. FIG. 3 is a configuration diagram showing an outline of the configuration of a head unit 60. It is explanatory drawing which shows a mode that the components P are adsorbed
  • FIG. FIG. 3 is a configuration diagram showing an outline of configurations of a rotary head 64 and a side camera 80.
  • 2 is a configuration diagram showing an outline of a configuration of an optical system 84 of a side camera 80.
  • FIG. 3 is a block diagram illustrating an electrical connection relationship between a control device 100 and a management device 110.
  • FIG. It is explanatory drawing which shows an example of the captured image obtained by the imaging of the side camera.
  • FIG. 3 is a flowchart illustrating an example of a component mounting process executed by a CPU 101 of a control device 100.
  • 4 is a flowchart illustrating an example of a process at the time of first suction executed by a CPU 101 of the control device 100.
  • 4 is a flowchart illustrating an example of non-first-time adsorption processing executed by a CPU 101 of the control device 100. It is explanatory drawing which shows a mode that the carrier tape T is sent inclining to an X-axis direction. It is the elements on larger scale which expand and show a part of carrier tape T of FIG. It is a block diagram which shows the outline of a structure of the optical system 84B of the side camera 80B of a modification.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of the component mounting system 1.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of the head unit 60
  • FIG. 3 is an explanatory diagram showing a state in which the component P is sucked by the suction nozzle 61
  • FIG. 4 is a diagram showing the rotary head 64 and the side camera 80.
  • 5 is a configuration diagram showing an outline of the configuration of the optical system 84 of the side camera 80
  • FIG. 6 is an electrical connection between the control device 100 and the management device 110. It is a block diagram which shows a relationship.
  • the component mounting system 1 includes a component mounter 10 that mounts (mounts) an electronic component (hereinafter referred to as “component”) P on a circuit board (hereinafter referred to as “substrate”) S, and a management device 110 that manages the entire system.
  • component an electronic component
  • substrate hereinafter referred to as “substrate”
  • management device 110 that manages the entire system.
  • the left-right direction in FIG. 1 is the X-axis direction
  • the front-rear direction is the Y-axis direction
  • the up-down direction is the Z-axis direction.
  • the component mounter 10 includes a component supply device 20 that supplies a component P, a substrate transport device 30 that transports the substrate S, a backup device 40 that backs up the transported substrate S, and a component P.
  • the head unit 60 that adsorbs the liquid by the suction nozzle 61 and mounts it on the substrate S, the XY robot 50 that moves the head unit 60 in the XY direction, and the control device 100 (see FIG. 6) that controls the entire mounting machine.
  • the substrate transfer device 30, the backup device 40, the XY robot 50, and the head unit 60 are accommodated in the housing 12.
  • the component mounter 10 also includes a parts camera 90 for imaging the suction posture of the component P sucked by the suction nozzle 61 from below, and a board positioning reference mark attached to the board S from above.
  • a mark camera 92 for imaging is also provided.
  • the component supply device 20 includes a feeder 22 that is arranged on the feeder base 14 formed on the front surface of the housing 12 so as to be aligned in the left-right direction (X-axis direction).
  • the feeder 22 is a tape feeder that feeds the carrier tape T in which the parts P are accommodated at a predetermined pitch to a parts supply area where the suction nozzle 61 can pick up.
  • the carrier tape T includes a bottom tape BT in which cavities (recesses) C are formed at predetermined intervals, and a top film TT that covers the bottom tape BT in a state where the component P is accommodated in each cavity C. Yes.
  • FIG. 1 the feeder 22 that is arranged on the feeder base 14 formed on the front surface of the housing 12 so as to be aligned in the left-right direction (X-axis direction).
  • the feeder 22 is a tape feeder that feeds the carrier tape T in which the parts P are accommodated at a predetermined pitch to a parts supply area where the suction nozzle 61 can pick up.
  • the feeder 22 includes a reel 22a around which a carrier tape T is wound, and the carrier tape T is pulled out from the reel 22a and sent out to a component supply area.
  • the component P is exposed in the component supply area, that is, in a state where it can be picked up.
  • the part P sent to the part supply area is called a suction part this time, and the part P in the area just before the part supply area (upstream in the tape feed direction) is the next suction part. Call.
  • the substrate transport device 30 includes a belt conveyor device 32, and the substrate S is transported from the left to the right (substrate transport direction) in FIG. 1 by driving the belt conveyor device 32.
  • a backup device 40 that backs up the transported substrate S from the back side is provided at the center of the substrate transport device 30 in the substrate transport direction (X-axis direction).
  • the XY robot 50 includes a guide rail 56 provided in the upper part of the apparatus along the Y-axis direction, a Y-axis slider 58 that can move along the guide rail 56, and a Y-axis slider 58.
  • a guide rail 52 provided on the side surface along the X-axis direction and an X-axis slider 54 capable of moving along the guide rail 52 are provided.
  • a head unit 60 is attached to the X-axis slider 54, and the control device 100 can move the head unit 60 to an arbitrary position on the XY plane by driving and controlling the XY robot 50.
  • the head unit 60 includes a rotary head 64 in which a plurality of nozzle holders 62 holding suction nozzles 61 are arranged on a circumference coaxial with the rotation axis at a predetermined angular interval (for example, 30 degrees).
  • a side camera 80 capable of imaging the immediately preceding area is provided.
  • the nozzle holder 62 is configured as a hollow cylindrical member that extends in the Z-axis direction.
  • the upper end portion 62 a of the nozzle holder 62 is formed in a columnar shape having a larger diameter than the shaft portion of the nozzle holder 62.
  • the nozzle holder 62 has a flange portion 62b having a diameter larger than that of the shaft portion at a predetermined position below the upper end portion 62a.
  • a spring (coil spring) 65 is disposed between an annular surface below the flange portion 62 b and a recess (not shown) formed on the upper surface of the rotary head 64. For this reason, the spring 65 urges the nozzle holder 62 (flange portion 62b) upward with the depression on the upper surface of the rotary head 64 as a spring receiver.
  • the rotary head 64 has a plurality (for example, 12) of suction nozzles 61 mounted on a nozzle holder 62 (see FIG. 2) arranged in the circumferential direction.
  • a cylindrical reflector 64 a that can reflect light is attached to the center of the lower surface of the rotary head 64.
  • the rotary head 64 of this embodiment includes a Q-axis actuator 69 (see FIG. 6) that rotates each nozzle holder 62 individually.
  • the Q-axis actuator 69 includes a drive gear meshed with a gear provided on the outer circumference of the nozzle holder 62 and a drive motor connected to the rotation shaft of the drive gear. Therefore, in the present embodiment, the plurality of nozzle holders 62 can be individually rotated around the axis (Q direction), and accordingly, each suction nozzle 61 can also be individually rotated.
  • the R-axis actuator 66 includes a rotary shaft 67 connected to the rotary head 64 and a drive motor 68 connected to the rotary shaft 67, as shown in FIG.
  • the R-axis actuator 66 intermittently rotates the rotary head 64 by a predetermined angle by driving the drive motor 68 intermittently by a predetermined angle (for example, 30 degrees).
  • a predetermined angle for example, 30 degrees.
  • each suction nozzle 61 arranged in the rotary head 64 pivots by a predetermined angle in the circumferential direction.
  • the suction nozzle 61 sucks the component P supplied from the component supply device 20 to the component supply area when the suction nozzle 61 is at the 12 o'clock position in FIG. 4 among the plurality of movable positions.
  • this 12 o'clock position is referred to as a suction position A0.
  • the position at 11 o'clock in FIG. 4 is a position immediately before (at just before) the suction position A0 when the suction nozzle 61 moves in the circumferential direction (arrow direction in the figure).
  • the position at 1 o'clock in FIG. 4 is a position immediately after the suction position A0 when the suction nozzle 61 moves in the circumferential direction (in the direction of the arrow in the figure). .
  • the suction position A0 is a mounting position
  • the position A1 immediately before the suction is a position immediately before mounting
  • the position A2 immediately after the suction is immediately after mounting.
  • the Z-axis actuator 70 includes a screw shaft 74 that extends in the Z-axis direction and moves the ball screw nut 72, a Z-axis slider 76 that is attached to the ball screw nut 72, and a rotation shaft that is connected to the screw shaft 74.
  • the feed screw mechanism includes a drive motor 78 connected thereto.
  • the Z-axis actuator 70 rotates the drive motor 78 to move the Z-axis slider 76 in the Z-axis direction.
  • the Z-axis slider 76 is formed with a substantially L-shaped lever portion 77 projecting toward the rotary head 64 side. The lever portion 77 can come into contact with the upper end portion 62a of the nozzle holder 62 located in a predetermined range including the suction position A0.
  • the nozzle holder 62 (suction nozzle 61) located within a predetermined range can be moved in the Z-axis direction. it can.
  • the side camera 80 includes a camera body 82 that includes an image sensor 82 a such as a CCD or CMOS provided under the head unit 60, and an optical system that forms an image on the image sensor 82 a. 84.
  • an image sensor 82 a such as a CCD or CMOS provided under the head unit 60
  • an optical system that forms an image on the image sensor 82 a.
  • the upper entrance 86c is formed at a position facing the proximal end of the suction nozzle 61 at the suction position A0, and the left entrance 86a is formed at a position facing the distal end of the suction nozzle 61 at the position A1 immediately before suction.
  • the right entrance 86b is formed at a position facing the tip of the suction nozzle 61 at the position A2 immediately after the suction.
  • the optical system 84 is provided with a plurality of light emitters 87 such as LEDs that emit light toward the reflector 64 a of the rotary head 64.
  • the optical system 84 includes a plurality of mirrors (a left mirror 88a, a right mirror 88b, a middle mirror 88c, and an upper mirror 88d) that refract the light incident from the incident ports 86a, 86b, and 86c and guide the light to the imaging element 82a. , Rear mirrors 88e, 88f).
  • the left mirror 88a is disposed at the left entrance 86a, refracts light incident from the left entrance 86a to the middle mirror 88c
  • the right mirror 88b is disposed at the right entrance 86b and is incident from the right entrance 86b. Refracted light to the middle mirror 88c.
  • the middle mirror 88c is disposed between the left mirror 88a and the right mirror 88b, refracts the light from the left mirror 88a to the lower left region of the back mirror 88e, and directs the light from the right mirror 88b to the right of the back mirror 88e. Refract to the lower region.
  • the upper mirror 88d is disposed at the upper incident port 86c, and refracts light incident from a direction of about 45 degrees with respect to the lower side of the suction nozzle 61 into the middle region of the rear mirror 88e.
  • the upper entrance 86c is open in an area above the area that receives light from the upper mirror 88d of the rear mirror 88e, and light incident from the upper part of the upper mirror 88d is directed to the upper area of the rear mirror 88e. It comes to reach directly.
  • the back mirrors 88e and 88f translate the light incident on the back mirror 88e so as to be refracted toward the image sensor 82a. From the above, the light from the direction of the suction nozzle 61 at the position A1 immediately before the suction enters the left entrance 86a and is refracted by the left mirror 88a, the middle mirror 88c, and the back mirrors 88e and 88f (first optical system). To the first area A of the image sensor 82a.
  • the first area B of 82a is reached.
  • the light from the oblique 45 ° direction below the suction nozzle 61 is refracted by the upper mirror 88d and the back mirrors 88e and 88f (second optical system) and reaches the second region of the image sensor 82a.
  • the image sensor 82a forms images from different directions in different regions.
  • the side camera 80 captures the suction nozzle 61 at the suction position A0, the suction nozzle 61 at the position A1 immediately before the suction, and the suction nozzle 61 at the position A2 immediately after the suction in one imaging operation.
  • each captured image can be acquired.
  • the carrier tape A captured image of the cavity C in the area immediately before the supply of T and the component P (next suction component) accommodated in the cavity C can also be acquired.
  • the acquired image includes a side image (hereinafter referred to as an image immediately after the suction) of the tip of the suction nozzle 61 at the position A2 immediately after the suction nozzle 61 sucks the component P, and a suction A side image (hereinafter referred to as an image immediately before the suction) of the suction nozzle 61 at the position A1 immediately before the suction of the component P by the nozzle 61 and the suction nozzle 61 at the suction position A0 at which the suction nozzle 61 sucks the component P.
  • a side image hereinafter referred to as an image immediately after the suction
  • a suction A side image hereinafter referred to as an image immediately before the suction
  • a side image (hereinafter referred to as a nozzle image) of the base end portion and an image of the next suction component housed in the cavity C in the area immediately before the supply of the carrier tape T (hereinafter referred to as the next suction component image).
  • the control device 100 is configured as a microprocessor centered on the CPU 101, and includes a ROM 102, an HDD 103, a RAM 104, an input / output interface 105 and the like in addition to the CPU 101. These are connected via a bus 106.
  • the control device 100 inputs image signals from the side camera 80, the parts camera 90, and the mark camera 92 via the input / output interface 105.
  • the X-axis slider 54, the Y-axis slider 58, the Z-axis actuator 70, the Q-axis actuator 69, and the R-axis actuator 66 are equipped with position sensors (not shown). Also input location information.
  • the control device 100 also includes a component supply device 20, a substrate transport device 30, a backup device 40, an X-axis actuator 55 that moves the X-axis slider 54, a Y-axis actuator 59 that moves the Y-axis slider 58, and a Z-axis actuator 70 ( Drive signal to drive valve 78, Q-axis actuator 69 (drive motor), R-axis actuator 66 (drive motor 68), electromagnetic valve 79 that connects and disconnects vacuum pump (not shown) and suction nozzle 61, etc. Output via the output interface 105.
  • the management device 110 is, for example, a general-purpose computer. As shown in FIG. 6, the management device 110 includes a CPU 111, a ROM 112, an HDD 113 that stores board production data, a RAM 114, an input / output interface 115, and the like. These are connected via a bus 116.
  • the management apparatus 110 receives an input signal from an input device 117 such as a mouse or a keyboard via the input / output interface 115. Further, the management device 110 outputs an image signal to the display 118 via the input / output interface 115.
  • the board production data is data that defines which parts P are mounted on the board in which order in the component mounter 10, and how many boards S on which the parts P are mounted are produced. It is. This production data is input in advance by an operator, and is transmitted from the management apparatus 110 to the component mounting machine 10 when production is started.
  • FIG. 8 is a flowchart illustrating an example of component mounting processing executed by the CPU 101 of the control device 100. This process is executed when production data is received from the management apparatus 110 and an instruction to start production is given.
  • the CPU 101 of the control device 100 first performs a substrate transfer process for controlling the substrate transfer device 30 to transfer the substrate S (S100). Subsequently, the CPU 101 uses the XY robot 50 (X-axis actuator 55 and Y-axis actuator 59) to move the suction position A0 of the rotary head 64 (head unit 60) to just above the component supply area of the feeder 22, and the R-axis actuator. 66, the suction nozzle 61 at the position A1 immediately before suction is moved to the suction position A0, the suction nozzle 61 is lowered by the Z-axis actuator 70, and a negative pressure is applied to the suction port of the suction nozzle 61 by the electromagnetic valve 79.
  • a suction operation for sucking the component P onto the suction nozzle 61 is performed.
  • the suction operation is performed by executing the first suction processing (S104), and the second and subsequent component supply from the feeder 22 is performed. If it is made (“NO” in S102), it is performed by executing a non-first-time adsorption process (S106).
  • the initial adsorption process is executed according to the flowchart illustrated in FIG. 9, and the non-initial adsorption process is executed according to the flowchart of FIG. Details of the initial adsorption process and the non-initial adsorption process will be described later.
  • the CPU 101 repeats the suction operation for the number of suction nozzles 61 attached to the rotary head 64 (S108), and proceeds to the next processing of S110.
  • the CPU 101 controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 (head unit 60) moves directly above the mounting position of the substrate S (S110).
  • the head unit 60 is moved via the part camera 90.
  • the head unit 60 passes above the parts camera 90, the lower surface of the part P sucked by the suction nozzle 61 is imaged by the parts camera 90, and the part P with respect to the suction nozzle 61 is picked up based on the obtained image. The amount of misalignment is detected and the mounting position is corrected.
  • the CPU 101 executes a mounting operation for mounting the component P on the substrate S (S112), determines whether or not there is a component P to be mounted next (S114), and mounts the next time. If it is determined that there is a component P, the process returns to S112 to repeat the mounting operation. If it is determined that there is no component P to be mounted next time, the component mounting process is terminated.
  • the CPU 101 first drives the X-axis actuator 55 and the Y-axis actuator 59 so that the head unit 60 moves until the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80.
  • imaging by the side camera 80 is performed (S202).
  • the processing of S200 is performed by moving the suction position A0 of the rotary head 64 (head unit 60) to the component supply area of the carrier tape T so that the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80. Can fit.
  • the CPU 101 instructs the feeder 22 to feed the tape by one pitch (S204), and processes the image (next suction component image) obtained by the imaging of the side camera 80 in S202, and immediately before the supply area.
  • the next suction component position Q1 which is the position (XY coordinate) of the next suction component inside is recognized (S206), and the position is offset in the Y-axis direction by the specified feed amount R for one pitch from the recognized next suction component position Q1. Is set to the target suction position Q * (S208).
  • the next suction component position Q1 can be recognized by extracting the edge of the next suction component from the next suction component image and obtaining the center position (XY coordinate) between the extracted edges of the next suction component.
  • the specified feed amount R is the pitch between the cavities of the carrier tape T, and a predetermined value (design value) is used.
  • the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the head unit 60 moves until the component supply area of the carrier tape T is within the imaging range of the side camera 80 (S210). Imaging by the camera 80 is performed (S212).
  • the CPU 101 processes the image (currently picked-up part image) obtained by the image pickup and recognizes the current picked-up part position Q0 that is the position (XY coordinate) of the current picked-up part (S214).
  • the correction amount ⁇ for correcting the specified feed amount R is calculated by taking the difference between the recognized current suction part position Q0 and the target suction position Q * set in S208 (S216).
  • the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 moves immediately above the current suction part position Q0 recognized in S214 (S218). Further, the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 located immediately before the suction position A1 moves to the suction position A0 (S220). The suction nozzle 61 sucks the current suction component in the component supply area (current suction component position Q0) of the carrier tape T (S222).
  • the CPU 101 picks up an image by the side camera 80 (S224), processes the image (next pick-up part image) obtained by the image pickup, and recognizes the next pick-up part position (XY coordinate) Q1. (S226)
  • the position where the recognized next suction component position Q1 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the correction amount ⁇ calculated in S216 is set as the target suction position Q * of the next suction component.
  • the first adsorption process is terminated.
  • the CPU 101 first instructs the feeder 22 to feed one pitch of tape (S250), and the target set in S228 of the first suction process or S262 described later in this process.
  • the X-axis actuator 55 and the Y-axis actuator 59 are driven and controlled so that the suction position A0 of the rotary head 64 moves directly above the suction position Q * (S252).
  • the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 at the position A1 immediately before the suction moves to the suction position A0 ( S254), the suction part 61 is made to suck the suction part this time (S256).
  • the CPU 101 takes an image with the side camera 80 (S258), processes the image obtained by the image pickup (next suction part image), and recognizes the next suction part position Q1 (S260).
  • the position where the recognized next suction component position Q1 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the correction amount ⁇ calculated in S216 of the initial suction processing is the target suction position Q * of the next suction component. (S262), and the non-first-time adsorption process is terminated.
  • FIG. 11 is an explanatory view showing a state in which the carrier tape T is sent while being inclined in the X-axis direction
  • FIG. 12 is a partially enlarged view showing a part of the carrier tape T of FIG.
  • the specified feed amount R indicates the offset amount in the Y-axis direction when the current suction component position Q0 is estimated from the next suction component position Q1. For this reason, if the tape feeding direction of the carrier tape T and the Y-axis direction of the component mounting machine 10 completely coincide with each other, the next suction component will be sent from the next suction component position Q1 in the X-axis direction. There is no gap. However, as shown in FIG.
  • the side camera 80 images the parts supply area and the area just before the supply of the carrier tape T, recognizes the next suction part position Q1 and the current suction part position Q0, and the next suction part.
  • a correction amount ⁇ of the specified feed amount R is calculated based on the position Q1 and the current suction component position Q0.
  • the image acquired by the side camera 80 is an image immediately before the suction ( Side image of the tip of the suction nozzle 61 at the position A1 immediately before suction, an image immediately after suction (a side image of the tip of the suction nozzle 61 at the position A2 immediately after suction), and a nozzle image (base end of the suction nozzle 61 at the suction position A0) Side view).
  • the control device 100 confirms whether there is any abnormality (for example, damage to the suction nozzle 61 or presence / absence of adhering matter) of the suction nozzle 61 before the component suction based on the image immediately before the suction, or based on the image immediately after the suction. Then, the suction state of the component P (for example, whether the suction posture of the component P is good or not, or the presence or absence of the component P) is confirmed, or whether the suction nozzle 61 is present at the suction position A0 based on the nozzle image. be able to.
  • abnormality for example, damage to the suction nozzle 61 or presence / absence of adhering matter
  • the head unit 60 when the head unit 60 is in a position where the component P supplied to the component supply area can be adsorbed to the adsorption nozzle 61, one component before the component supply area (tape feed)
  • the side camera 80 is installed in the head unit 60 so that the area immediately before supply located upstream in the direction is within the imaging range, and the side camera 80 takes an image when the suction part 61 supplied to the part supply area is picked up by the suction nozzle 61. To recognize the position of the next suction component (next suction component position Q1) in the area immediately before supply.
  • the component mounter 10 sets the position where the next suction component position Q1 is offset by the specified feed amount R. This time, the component P is attracted to the suction nozzle 61 as the target suction position Q * of the suction component. Thereby, it is possible to suppress the occurrence of a suction deviation when the component P is sucked by the suction nozzle 61 by simple control. Moreover, since the component mounter 10 performs the imaging operation of the side camera 80 when the current suction component supplied to the component supply area is suctioned to the suction nozzle 61, the suction operation is not hindered by the imaging operation. A decrease in mounting efficiency can be suppressed.
  • the component mounter 10 of the embodiment images the component supply area and the immediately preceding supply area of the carrier tape T with the side camera 80, and the next suction component position Q1 and the current suction component position Q0 are obtained.
  • the correction amount ⁇ of the specified feed amount R is calculated based on the next suction component position Q1 and the current suction component position Q0.
  • the target suction position Q * can be estimated more accurately based on the specified feed amount R and the correction amount ⁇ by recognizing only the next suction component position Q1.
  • the head unit 60 when the head unit 60 is in a position where the component P supplied to the component supply area can be sucked by the suction nozzle 61, the area immediately before the supply is one side before the component suction position.
  • the optical system 84B of the modified example shown in FIG. 13 is used instead of the optical system 84 of the embodiment shown in FIG. 5, and the initial suction process of FIG. 15 is executed instead of the initial suction process of FIG. It should be.
  • An example of a captured image obtained by imaging with the side camera 80B according to the modification is shown in FIG.
  • the modified optical system 84B includes a large-sized upper mirror 88g that widens the imaging range in the feed direction of the carrier tape T, instead of the upper mirror 88d of the optical system 84 of the embodiment. For this reason, when the suction nozzle 61 picks up the suction component this time and the imaging is performed by the side camera 80, as shown in FIG. 14, the current suction component sucked by the suction nozzle 61 in the component supply area and the supply The next suction component in the immediately preceding area is imaged. In this modification, the component supplied by the feeder 22 needs to be large enough to image the component while the suction nozzle 61 is sucking the component. Therefore, the initial suction processing in FIG. 9 and the initial suction processing in FIG. 15 may be switched depending on the component size.
  • the CPU 101 first sets the target suction position Q * by the same processing as S200 to S208 (S300 to S308). Then, the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 moves directly above the target suction position Q * set in S308 (S310).
  • the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 at the position A1 immediately before the suction moves to the suction position A0 ( S312), the suction part 61 is made to suck the suction part this time (S314).
  • the CPU 101 picks up an image by the side camera 80 (S316), processes an image obtained by the image pickup (next suction part image, current suction part image), and picks up the current suction part position Q0.
  • the next suction component position Q1 is recognized (S318), and the correction amount ⁇ is calculated by taking the difference between the recognized current suction component position Q0 and the target suction position Q * set in S308 (S320).
  • the CPU 101 sets the position where the next suction component position Q1 recognized in S318 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the calculated correction amount ⁇ as the target of the next suction component.
  • the suction position Q * is set (S322), and the initial suction processing is completed.
  • the non-first-time adsorption process can be performed using the process of FIG. 10, but the same process as the process of S318 and S320 of FIG. 15 is added instead of the process of S260 of FIG. It is good. That is, the process of recognizing the current suction part position Q0 and the process of calculating the correction amount ⁇ based on the current suction part image obtained by imaging by the side camera 80 may be performed each time.
  • the component supply area can be imaged by the side camera 80 when the suction position A0 of the head unit 60 is above the component supply area of the carrier tape T. Therefore, the head unit 60 moves to the suction position A0.
  • the suction nozzle 61 picks up the suction part this time in the parts supply area and then picks up an image by the side camera 80 when the suction nozzle 61 rises by a predetermined amount. Can be confirmed.
  • the edge of the component P is extracted from the captured image (next suction component image) obtained by capturing with the side camera 80, and the extracted component current suction component position Q0 is extracted.
  • the component position (next suction component position Q1) is recognized by obtaining the center position (XY coordinate) between the edges, but the present invention is not limited to this, and the edge of the cavity C is extracted from the captured image and extracted.
  • the center position between the edges of C may be obtained, and the part position may be recognized based on the obtained center position.
  • the part P is accommodated in the cavity C, and there is usually a slight gap between the part P and the cavity C.
  • the part P may move in the cavity C when the tape is fed by the feeder 22. Therefore, when the part position is obtained from the position (center position) of the cavity C, the part position may be obtained after correcting the position of the cavity C by the amount of movement of the part P in the cavity C.
  • the carrier tape T is moved by one pitch and stopped, the component P is shifted to the inner wall in the feed direction of the cavity C by the inertial force acting on the component P. Therefore, the amount obtained by dividing the width of the gap between the part P and the cavity C in the tape feeding direction (Y-axis direction) by 2 may be corrected as the amount of movement of the part P in the cavity C.
  • the target suction position Q * is set using the correction amount ⁇ calculated by the initial suction processing, but the present invention is not limited to this, and a fixed value obtained in advance is used.
  • the target suction position Q * may be set using the correction amount ⁇ .
  • a value acquired in advance as a value unique to the feeder may be determined as the correction amount ⁇ .
  • the movement amount of the component P within the cavity C may be determined as the correction amount ⁇ .
  • the lower surface of the component P sucked by the suction nozzle 61 is imaged by the parts camera 90, and the amount of positional displacement of the component P with respect to the suction nozzle 61 is detected based on the obtained image.
  • the positional deviation amount of the component P may be used for correcting the target suction position Q *.
  • the detected positional deviation amount of the component P may be reflected in the target suction position Q * as it is, or after being multiplied by a predetermined coefficient (for example, 0.5) and reflected in the target suction position Q *. Also good.
  • the target suction position Q * is set based on the next suction component position Q1, the specified feed amount R, and the correction amount ⁇ in the non-first-time suction processing.
  • the correction amount ⁇ is used when the component size is relatively large and strict correction is not necessary, or when the feeding accuracy of the carrier tape T by the feeder 22 and the attachment error of the feeder 22 are sufficiently small.
  • the target suction position Q * may be set.
  • the CPU 101 may omit the processing of S102 and the processing of S104 (initial suction processing) in the component mounting process of FIG.
  • the CPU 101 may switch between using the correction amount ⁇ and not using the correction amount ⁇ for each component to be picked up by the operator's selection, or picking up the component according to the part size included in the production data. It is possible to switch between the case where the correction amount ⁇ is used and the case where the correction amount ⁇ is not used every time. In the latter case, the correction amount ⁇ may be used when the component size is less than the predetermined size, and the correction amount ⁇ may not be used when the component size is larger than the predetermined size.
  • the target suction position Q * set based on the next suction component position Q1 is used as the target suction position when the next suction component is sucked.
  • the present invention is not limited to this, and it may be used as a target suction position when sucking the suction component this time.
  • the next suction part position Q1 is recognized from the obtained image, and the target suction position is based on the recognized next suction part position Q1.
  • the suction position A0 of the head unit 60 may be moved directly above the set target suction position Q *, and the suction nozzle 61 may suck the current suction component.
  • the CPU 101 of the control device 100 executes the non-first-time adsorption process of FIG. 16 instead of the non-first-time adsorption process of FIG. That is, the CPU 101 first instructs the feeder 22 to feed one pitch of tape (S350). Subsequently, the CPU 101 moves the head unit 60 until the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80, and then performs imaging with the side camera 80 (S352).
  • the CPU 101 processes the image (next suction component image) obtained by the imaging of the side camera 80 in S352, recognizes the next suction component position Q1 (S354), and sends the recognized next suction component position Q1 to the specified feed.
  • the offset position based on the amount R and the correction amount ⁇ is set as the target suction position Q * of the current suction part (S356).
  • the CPU 101 moves the suction position A0 of the head unit 60 to a position directly above the target suction position Q * (S358), and moves the suction nozzle 61 at the position A1 immediately before the suction to the suction position A0. Then, the suction nozzle 61 is lowered (S360), and the suction component is sucked by the suction nozzle 61 (S362).
  • the CPU 101 performs the timing of the next suction component by the side camera 80 at a timing immediately after the suction nozzle 61 sucks the component.
  • the present invention is not limited to this, and the area immediately before the supply of the side camera 80 is not limited to this, for example, while the suction nozzle 61 is descending or while the suction nozzle 61 is in contact with the component at the lower end. As long as it is within the imaging range, imaging may be performed at any timing.
  • the suction component when the suction component is sucked this time by the suction nozzle 61, the area immediately before the supply of the carrier tape T immediately before the component supply area (upstream in the tape feed direction) is imaged.
  • the present invention is not limited to this, and two or more areas in front of the component supply area may be imaged.
  • the second-time suction component position Q2 that is the position of the next-time suction component (second-time suction component) is recognized and recognized based on the image obtained by the imaging.
  • the target suction position Q * of the successive suction component may be set based on the successive suction component position Q2 and the specified feed amount for two pitches.
  • the side camera 80 for imaging the side surface of the suction nozzle 61 is also used as a camera for imaging the component P and the cavity C in the carrier tape T.
  • the mark camera 92 for imaging the reference mark of the substrate S may be used as a camera for imaging the component P or the cavity C in the carrier tape T, or the carrier tape T.
  • a dedicated camera may be used as a camera for imaging the internal component P and the cavity C.
  • the present invention is applied to the head unit 60 having the rotary head 64 provided with the side camera 80.
  • the present invention is not limited thereto, and the side unit is provided in the head unit having the head that does not rotate. It is good also as what applies to what was done.
  • the rotary head 64 corresponds to the “head”
  • the XY robot 50 corresponds to the “moving means”
  • the side camera 80 corresponds to the “imaging means”
  • the component mounting process of FIG. 8 (FIG. 10 or FIG. 15).
  • the CPU 101 of the control device 100 that executes the process at the time of initial suction and the process at the time of non-first-time suction in FIG. 11 or FIG.
  • this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
  • the present invention can be used in the component mounter manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

In the present invention, in a state where a head unit (60) is in a position at which a component P which has been supplied to a component supply area can be vacuumed by a vacuum nozzle (61), a lateral-surface camera (80) is installed on the head unit (60) so that an immediately-before-supply area which is just before the component vacuuming position is included within the image pickup range of the lateral-surface camera (80), and when the component P which has been supplied to the component supply area is vacuumed by the vacuum nozzle (61), image pickup is carried out by the lateral-surface camera (80) to recognize the position of the next component to be vacuumed (position of the next component to be vacuumed Q1) which is in the immediately-before-supply area. A position, determined by offsetting the position of the next component to be vacuumed Q1 by only a specified feed amount R, is set as the target vacuum position Q* of the next component to be vacuumed. Due to this configuration, by using simple control, the occurrence of vacuum displacement when the components P are vacuumed by the vacuum nozzle (61) can be suppressed.

Description

部品実装機Component mounter
 本発明は、部品実装機に関する。 The present invention relates to a component mounting machine.
 従来より、電子部品が収容されたキャビティ(凹部)が所定間隔毎に形成されたテープを搬送するフィーダが装着され、フィーダから供給された電子部品を吸着ノズルで吸着させてプリント基板上へ実装する部品実装機が知られている(例えば、特許文献1参照)。特許文献1の部品実装機は、複数の吸着ノズルが周方向に等間隔配置されたリボルバヘッドと、リボルバヘッドに固定された部品カメラと、を備える。また、部品実装機は、フィーダの搬送によって吸着位置よりも反搬送方向に位置する撮像位置まで電子部品が移動すると、部品カメラにより電子部品を撮像し、撮像により得られた画像に基づいてキャビティ内の電子部品の位置を算出する。部品カメラは、フィーダによるテープの搬送速度と同じ速度となるように吸着ノズルを周方向に移動させ、テープの搬送と吸着ノズルの移動とが同期している間に電子部品を撮像する。そして、電子部品が吸着位置まで移動すると、部品実装機は、算出した電子部品の位置に応じて吸着ノズルの位置を微修正して電子部品を吸着ノズルに吸着させる。
特開2012-191133号公報
Conventionally, a feeder that transports a tape in which cavities (recesses) containing electronic components are formed at predetermined intervals is mounted, and the electronic components supplied from the feeder are sucked by a suction nozzle and mounted on a printed circuit board. A component mounter is known (see, for example, Patent Document 1). The component mounting machine of Patent Document 1 includes a revolver head in which a plurality of suction nozzles are arranged at equal intervals in the circumferential direction, and a component camera fixed to the revolver head. In addition, when the electronic component moves to the imaging position located in the opposite conveyance direction than the suction position by the conveyance of the feeder, the component mounting machine images the electronic component with the component camera, and based on the image obtained by the imaging, The position of the electronic component is calculated. The component camera moves the suction nozzle in the circumferential direction so as to be the same speed as the tape transport speed by the feeder, and images the electronic component while the tape transport and the suction nozzle movement are synchronized. When the electronic component moves to the suction position, the component mounter finely corrects the position of the suction nozzle in accordance with the calculated position of the electronic component and causes the electronic component to be sucked to the suction nozzle.
JP 2012-191133 A
 上述した部品実装機では、吸着直前のキャビティ内の電子部品を部品カメラで撮像し、撮像により得られた画像に基づいて電子部品の位置を算出するため、算出した位置に基づいて吸着ノズルの位置を修正して電子部品を吸着することで、吸着ミスを少なくすることが可能である。しかしながら、上述した部品実装機では、部品カメラによる撮像を、フィーダによるテープの搬送と吸着ノズルの周方向の移動とを同期させながら行うから、撮像タイミングを取りづらく、制御が複雑となってしまう。 In the component mounting machine described above, the electronic component in the cavity immediately before suction is imaged with the component camera, and the position of the electronic component is calculated based on the image obtained by the imaging. It is possible to reduce suction mistakes by correcting electronic components and picking up electronic components. However, in the above-described component mounter, imaging by the component camera is performed while synchronizing the conveyance of the tape by the feeder and the circumferential movement of the suction nozzle, so that it is difficult to take an imaging timing and the control becomes complicated.
 本発明は、部品が収容された凹部が所定間隔毎に形成されたテープを所定送り量ずつ送ることにより供給される部品を保持部材で保持するものにおいて、簡易な制御によって、精度良く部品を保持できるようにすることを主目的とする。 The present invention holds a component supplied by feeding a tape having recesses in which the component is accommodated at a predetermined interval by a predetermined feeding amount by a holding member, and holds the component with high accuracy by simple control. The main purpose is to make it possible.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の部品実装機は、
 部品が収容された凹部が所定間隔毎に形成されたテープを所定送り量ずつ送ることで部品を供給する部品供給装置が設けられ、該部品供給装置により供給された部品を保持して基板に実装する部品実装機であって、
 前記部品を保持する保持部材を有するヘッドと、
 前記ヘッドを移動させる移動手段と、
 前記移動手段により前記ヘッドと共に移動可能であり、前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに、前記保持部材で保持可能な部品よりも前記テープの送り方向上流にある後に保持される部品が収容された凹部の位置が撮像範囲内となるよう配置された撮像手段と、
 前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記後に保持される部品の位置または該部品が収容された凹部の位置を認識し、該認識した位置を前記所定送り量に基づいて補正することで目標保持位置を決定し、前記決定した目標保持位置で前記保持部材に部品が保持されるよう前記ヘッドと前記移動手段とを制御する制御手段と、
 を備えることを要旨とする。
The component mounter of the present invention is
A component supply device is provided to supply a component by feeding a tape with recesses containing the components formed at predetermined intervals by a predetermined feed amount, and the component supplied by the component supply device is held and mounted on the substrate. A component mounting machine that
A head having a holding member for holding the component;
Moving means for moving the head;
It is movable with the head by the moving means, and when the head is in a position where the component can be held by the holding member, the head is held after being upstream of the component that can be held by the holding member. Imaging means arranged so that the position of the recess in which the component to be stored is within the imaging range;
The position of the later held component that was within the imaging range based on the image captured by the imaging means when the head is in a position where the component can be held by the holding member, or the component was accommodated Recognizing the position of the recess, correcting the recognized position based on the predetermined feed amount, determining a target holding position, and holding the component on the holding member at the determined target holding position, Control means for controlling the moving means;
It is a summary to provide.
 この本発明の部品実装機は、部品が収容された凹部が所定間隔毎に形成されたテープを所定送り量ずつ送ることで部品を供給する部品供給装置が設けられ、部品供給装置により供給された部品を保持して基板に実装するものにおいて、部品を保持する保持部材を有するヘッドと共に移動手段によって移動が可能な撮像手段を、ヘッドが保持部材で部品を保持可能な位置にあるときに、保持部材で保持可能な部品よりもテープの送り方向上流にある後に保持される部品が収容された凹部の位置が撮像範囲内となるよう配置する。そして、部品実装機は、ヘッドが保持部材で部品を保持可能な位置にあるときに撮像手段により撮像された画像に基づいて撮像範囲内にあった後に保持される部品の位置またはその部品が収容された凹部の位置を認識し、認識した位置を予め定められた所定送り量に基づいて補正することで目標保持位置を決定し、決定した目標保持位置で保持部材に部品が保持されるようヘッドと前記移動手段とを制御する。これにより、後に保持される部品の位置とテープによる部品の送り量とに基づいて部品を保持する際の目標保持位置を決定することができるため、簡易な制御によって、精度良く部品を保持することが可能となる。ここで、「後に保持される部品」とは、次回保持される部品が含まれる他、次々回に保持される部品やさらに後の回に保持される部品等も含まれる。 The component mounter of the present invention is provided with a component supply device that supplies a component by feeding a tape in which recesses in which components are accommodated are formed at predetermined intervals by a predetermined feed amount, and is supplied by the component supply device. When mounting a component on a board while holding the component, hold the imaging unit that can be moved by the moving unit together with the head having the holding member that holds the component when the head is in a position where the component can be held by the holding member. It arrange | positions so that the position of the recessed part in which the component hold | maintained after it exists in the feed direction of a tape rather than the component which can be hold | maintained with a member will be in an imaging range. The component mounter accommodates the position of the component held after being within the imaging range based on the image captured by the imaging means when the head is in a position where the component can be held by the holding member, or the component is accommodated. The head is configured to recognize the position of the recessed portion, determine the target holding position by correcting the recognized position based on a predetermined feed amount, and hold the component on the holding member at the determined target holding position. And the moving means. This makes it possible to determine the target holding position when holding the component based on the position of the component to be held later and the feed amount of the component by the tape, so that the component can be held with high accuracy by simple control. Is possible. Here, “parts to be held later” includes parts to be held next time, parts to be held one after another, parts to be held at a later time, and the like.
 後に保持される部品が次回保持される部品である態様の本発明の部品実装機において、前記制御手段は、前記保持部材に部品が保持される際に前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記次回保持される部品の位置または該部品が収容された凹部の位置を認識し、該認識した位置を前記所定送り量に基づいて補正することで前記次回保持される部品の目標保持位置を決定し、前記テープが前記所定量送られたときに前記決定した目標保持位置で前記保持部材に前記部品が保持されるよう前記ヘッドと前記移動手段とを制御するものとすることもできる。この態様の本発明の部品実装機において、前記制御手段は、前記テープが前記所定送り量送られたときに前記決定した目標保持位置で部品が保持されるよう前記ヘッドと前記移動手段とを制御する保持制御と、該保持制御により前記目標保持位置で部品が保持される際に前記撮像範囲で撮像が行われるよう前記撮像手段を制御する撮像制御と、該撮像制御により撮像された画像に基づいて次回保持される部品の前記目標保持位置を決定する目標保持位置決定処理とを繰り返し実行するものとすることもできる。こうすれば、保持制御が実行される毎に、撮像手段により撮像される画像に基づいて次回保持される部品の目標保持位置が決定されるため、毎回、精度良く部品を保持することが可能となる。 In the component mounting machine according to the aspect of the invention in which the component to be held later is a component to be held next time, the control unit is based on an image captured by the imaging unit when the component is held by the holding member. Recognizing the position of the part to be held next time within the imaging range or the position of the concave part in which the part is accommodated, and correcting the recognized position based on the predetermined feed amount, the next holding is performed. Determining a target holding position of the component, and controlling the head and the moving means so that the component is held by the holding member at the determined target holding position when the tape is fed by the predetermined amount; You can also In this aspect of the component mounting machine of the present invention, the control unit controls the head and the moving unit so that the component is held at the determined target holding position when the tape is fed by the predetermined feed amount. Based on the holding control to be performed, the imaging control for controlling the imaging means to perform imaging in the imaging range when the component is held at the target holding position by the holding control, and the image captured by the imaging control. Then, the target holding position determination process for determining the target holding position of the part to be held next time may be repeatedly executed. In this way, every time holding control is executed, the target holding position of the component to be held next time is determined based on the image picked up by the imaging means, so that it is possible to hold the component with high accuracy every time. Become.
 また、本発明の部品実装機において、前記制御手段は、前記認識した位置を前記所定送り量と所定補正量とに基づいて補正して前記目標保持位置を決定するものとすることもできる。こうすれば、目標保持位置の精度をより高めることができる。 In the component mounter of the present invention, the control unit may determine the target holding position by correcting the recognized position based on the predetermined feed amount and a predetermined correction amount. In this way, the accuracy of the target holding position can be further increased.
 所定補正量に基づいて目標保持位置を決定する態様の本発明の部品実装機において、前記制御手段は、前記撮像手段の撮像範囲が、次回保持される部品が収容された凹部の位置となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記次回保持される部品の位置または該部品が収容された凹部の位置を第1位置として認識し、前記次回保持される部品が今回保持される部品として前記テープによって送られる際に、前記撮像手段の撮像範囲が、前記今回保持される部品が収容された凹部の位置となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記今回保持される部品の位置または該部品が収容された凹部の位置を第2位置として認識し、認識した前記第1位置と前記第2位置とに基づいて前記所定補正量を算出するものとすることもできる。また、前記撮像手段は、前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに、今回保持される部品が収容された凹部の位置と、次回保持される部品が収容された凹部の位置と、を撮像可能であり、前記制御手段は、前記撮像手段が、前記今回保持される部品が収容された凹部の位置と前記次回保持される部品が収容された凹部の位置とを撮像可能となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記次回保持される部品の位置または該部品が収容された凹部の位置を第1位置として認識し、前記次回保持される部品が今回保持される部品として前記テープによって送られたときに前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記今回保持される部品の位置または該部品が収容された凹部の位置を第2位置として認識し、認識した前記第1位置と前記第2位置とに基づいて前記所定補正量を算出するものとすることもできる。これらの場合、前記制御手段は、前記テープから最初の部品を前記保持部材が保持する際に、前記所定補正量を算出するものとすることもできる。 In the component mounter according to the aspect of the invention in which the target holding position is determined based on the predetermined correction amount, the control unit is configured such that the imaging range of the imaging unit is a position of a recess in which a component to be held next time is accommodated. The moving unit and the imaging unit are controlled so that the imaging unit performs imaging after the head is moved, and the next time that is within the imaging range is held based on the image captured by the imaging unit. When the position of the part or the position of the recess in which the part is accommodated is recognized as the first position, and the part to be held next time is sent by the tape as the part to be held this time, the imaging range of the imaging unit is The moving means and the imaging means so that imaging is performed by the imaging means after the head is moved to the position of the recess in which the component held this time is accommodated. Controlling and recognizing, as a second position, the position of the component held this time or the position of the concave portion in which the component was stored that was within the imaging range based on the image captured by the imaging unit The predetermined correction amount may be calculated based on the first position and the second position. In addition, when the head is in a position where the component can be held by the holding member, the imaging unit includes a position of a recess in which a component to be held this time is stored and a recess in which a component to be held next time is stored. The control means can image the position of the recess in which the part to be held this time is accommodated and the position of the recess in which the part to be held next time is accommodated. The moving means and the imaging means are controlled so that imaging is performed by the imaging means after the head is moved so that the position of the component held next time based on the image captured by the imaging means or The position of the concave portion in which the part is accommodated is recognized as the first position, and imaging is performed by the imaging unit when the part to be held next time is sent by the tape as a part to be held this time. Controlling the moving means and the imaging means so as to recognize the position of the part held this time or the position of the recess in which the part is accommodated as the second position based on the image taken by the imaging means, The predetermined correction amount may be calculated based on the recognized first position and the second position. In these cases, the control means may calculate the predetermined correction amount when the holding member holds the first part from the tape.
部品実装システム1の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of the configuration of a component mounting system 1. FIG. ヘッドユニット60の構成の概略を示す構成図である。FIG. 3 is a configuration diagram showing an outline of the configuration of a head unit 60. 吸着ノズル61に部品Pを吸着する様子を示す説明図である。It is explanatory drawing which shows a mode that the components P are adsorbed | sucked to the suction nozzle 61. FIG. ロータリヘッド64および側面カメラ80の構成の概略を示す構成図である。FIG. 3 is a configuration diagram showing an outline of configurations of a rotary head 64 and a side camera 80. 側面カメラ80の光学系84の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of a configuration of an optical system 84 of a side camera 80. FIG. 制御装置100と管理装置110との電気的な接続関係を示すブロック図である。3 is a block diagram illustrating an electrical connection relationship between a control device 100 and a management device 110. FIG. 側面カメラ80の撮像により得られる撮像画像の一例を示す説明図である。It is explanatory drawing which shows an example of the captured image obtained by the imaging of the side camera. 制御装置100のCPU101により実行される部品実装処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of a component mounting process executed by a CPU 101 of a control device 100. 制御装置100のCPU101により実行される初回吸着時処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of a process at the time of first suction executed by a CPU 101 of the control device 100. 制御装置100のCPU101により実行される非初回吸着時処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of non-first-time adsorption processing executed by a CPU 101 of the control device 100. キャリアテープTがX軸方向に傾いて送られる様子を示す説明図である。It is explanatory drawing which shows a mode that the carrier tape T is sent inclining to an X-axis direction. 図11のキャリアテープTの一部を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show a part of carrier tape T of FIG. 変形例の側面カメラ80Bの光学系84Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the optical system 84B of the side camera 80B of a modification. 変形例の側面カメラ80Bの撮像により得られる撮像画像の一例を示す説明図である。It is explanatory drawing which shows an example of the captured image obtained by the imaging of the side camera 80B of a modification. 変形例の初回吸着時処理を示すフローチャートである。It is a flowchart which shows the process at the time of the first attraction | suction of a modification. 変形例の非初回吸着時処理を示すフローチャートである。It is a flowchart which shows the process at the time of non-first time adsorption | suction of a modification.
 次に、本発明の実施の形態を図面を用いて説明する。図1は、部品実装システム1の構成の概略を示す構成図である。図2は、ヘッドユニット60の構成の概略を示す構成図であり、図3は、吸着ノズル61に部品Pを吸着する様子を示す説明図であり、図4は、ロータリヘッド64および側面カメラ80の構成の概略を示す構成図であり、図5は、側面カメラ80の光学系84の構成の概略を示す構成図であり、図6は、制御装置100と管理装置110との電気的な接続関係を示すブロック図である。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of the configuration of the component mounting system 1. FIG. 2 is a configuration diagram showing an outline of the configuration of the head unit 60, FIG. 3 is an explanatory diagram showing a state in which the component P is sucked by the suction nozzle 61, and FIG. 4 is a diagram showing the rotary head 64 and the side camera 80. 5 is a configuration diagram showing an outline of the configuration of the optical system 84 of the side camera 80, and FIG. 6 is an electrical connection between the control device 100 and the management device 110. It is a block diagram which shows a relationship.
 部品実装システム1は、電子部品(以下、「部品」という)Pを回路基板(以下、「基板」という)Sに実装(装着)する部品実装機10と、システム全体の管理を行う管理装置110とを備える。なお、本実施例において、図1の左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 The component mounting system 1 includes a component mounter 10 that mounts (mounts) an electronic component (hereinafter referred to as “component”) P on a circuit board (hereinafter referred to as “substrate”) S, and a management device 110 that manages the entire system. With. In this embodiment, the left-right direction in FIG. 1 is the X-axis direction, the front-rear direction is the Y-axis direction, and the up-down direction is the Z-axis direction.
 部品実装機10は、図1に示すように、部品Pを供給する部品供給装置20と、基板Sを搬送する基板搬送装置30と、搬送された基板Sをバックアップするバックアップ装置40と、部品Pを吸着ノズル61で吸着して基板Sに実装するヘッドユニット60と、ヘッドユニット60をXY方向に移動させるXYロボット50と、実装機全体を制御する制御装置100(図6参照)とを備える。基板搬送装置30とバックアップ装置40とXYロボット50とヘッドユニット60とは、筐体12内に収容されている。また、部品実装機10は、これらの他に、吸着ノズル61に吸着させた部品Pの吸着姿勢を下方から撮像するためのパーツカメラ90や、基板Sに付された基板位置決め基準マークを上方から撮像するためのマークカメラ92なども備えている。 As shown in FIG. 1, the component mounter 10 includes a component supply device 20 that supplies a component P, a substrate transport device 30 that transports the substrate S, a backup device 40 that backs up the transported substrate S, and a component P. The head unit 60 that adsorbs the liquid by the suction nozzle 61 and mounts it on the substrate S, the XY robot 50 that moves the head unit 60 in the XY direction, and the control device 100 (see FIG. 6) that controls the entire mounting machine. The substrate transfer device 30, the backup device 40, the XY robot 50, and the head unit 60 are accommodated in the housing 12. In addition to these components, the component mounter 10 also includes a parts camera 90 for imaging the suction posture of the component P sucked by the suction nozzle 61 from below, and a board positioning reference mark attached to the board S from above. A mark camera 92 for imaging is also provided.
 部品供給装置20は、図1に示すように、筐体12の前面部に形成されたフィーダ台14に、左右方向(X軸方向)に並ぶように整列配置されたフィーダ22を備える。フィーダ22は、図3に示すように、部品Pが所定ピッチで収容されたキャリアテープTを吸着ノズル61がピックアップ可能な部品供給エリアまで送り出すテープフィーダである。なお、キャリアテープTは、所定間隔毎にキャビティ(凹部)Cが形成されたボトムテープBTと、各キャビティCに部品Pが収容された状態でボトムテープBTを覆うトップフィルムTTとにより構成されている。フィーダ22は、図1に示すように、キャリアテープTが巻回されたリール22aを備え、リール22aからキャリアテープTを引き出して部品供給エリアへ送り出し、部品供給エリアの手前で剥離部によってボトムテープBTからトップフィルムTTを剥がすことにより、部品供給エリアにて部品Pを露出状態、即ちピックアップ可能な状態とする。尚、本実施例では、部品供給エリアに送られた部品Pを今回吸着部品と呼び、部品供給エリアよりも1つ手前(テープ送り方向上流)の供給直前エリアにある部品Pを次回吸着部品と呼ぶ。 As shown in FIG. 1, the component supply device 20 includes a feeder 22 that is arranged on the feeder base 14 formed on the front surface of the housing 12 so as to be aligned in the left-right direction (X-axis direction). As shown in FIG. 3, the feeder 22 is a tape feeder that feeds the carrier tape T in which the parts P are accommodated at a predetermined pitch to a parts supply area where the suction nozzle 61 can pick up. The carrier tape T includes a bottom tape BT in which cavities (recesses) C are formed at predetermined intervals, and a top film TT that covers the bottom tape BT in a state where the component P is accommodated in each cavity C. Yes. As shown in FIG. 1, the feeder 22 includes a reel 22a around which a carrier tape T is wound, and the carrier tape T is pulled out from the reel 22a and sent out to a component supply area. By peeling the top film TT from the BT, the component P is exposed in the component supply area, that is, in a state where it can be picked up. In the present embodiment, the part P sent to the part supply area is called a suction part this time, and the part P in the area just before the part supply area (upstream in the tape feed direction) is the next suction part. Call.
 基板搬送装置30は、図1に示すように、ベルトコンベア装置32を備えており、ベルトコンベア装置32の駆動により基板Sを図1の左から右(基板搬送方向)へと搬送する。基板搬送装置30の基板搬送方向(X軸方向)中央部には、搬送された基板Sを裏面側からバックアップするバックアップ装置40が設けられている。 As shown in FIG. 1, the substrate transport device 30 includes a belt conveyor device 32, and the substrate S is transported from the left to the right (substrate transport direction) in FIG. 1 by driving the belt conveyor device 32. A backup device 40 that backs up the transported substrate S from the back side is provided at the center of the substrate transport device 30 in the substrate transport direction (X-axis direction).
 XYロボット50は、図1に示すように、装置上部にY軸方向に沿って設けられたガイドレール56と、ガイドレール56に沿って移動が可能なY軸スライダ58と、Y軸スライダ58の側面にX軸方向に沿って設けられたガイドレール52と、ガイドレール52に沿って移動が可能なX軸スライダ54とを備える。X軸スライダ54にはヘッドユニット60が取り付けられており、制御装置100は、XYロボット50を駆動制御することにより、ヘッドユニット60をXY平面上の任意の位置に移動可能である。 As shown in FIG. 1, the XY robot 50 includes a guide rail 56 provided in the upper part of the apparatus along the Y-axis direction, a Y-axis slider 58 that can move along the guide rail 56, and a Y-axis slider 58. A guide rail 52 provided on the side surface along the X-axis direction and an X-axis slider 54 capable of moving along the guide rail 52 are provided. A head unit 60 is attached to the X-axis slider 54, and the control device 100 can move the head unit 60 to an arbitrary position on the XY plane by driving and controlling the XY robot 50.
 ヘッドユニット60には、図2に示すように、吸着ノズル61を保持する複数のノズルホルダ62が回転軸と同軸の円周上に所定角度間隔(例えば30度)で配置されたロータリヘッド64と、ロータリヘッド64を回転させるR軸アクチュエータ66と、ノズルホルダ62をZ軸方向に移動させるZ軸アクチュエータ70と、吸着ノズル61および吸着ノズル61に吸着された部品Pの側面とキャリアテープTの供給直前エリアとを撮像可能な側面カメラ80とを備える。 As shown in FIG. 2, the head unit 60 includes a rotary head 64 in which a plurality of nozzle holders 62 holding suction nozzles 61 are arranged on a circumference coaxial with the rotation axis at a predetermined angular interval (for example, 30 degrees). R-axis actuator 66 for rotating rotary head 64, Z-axis actuator 70 for moving nozzle holder 62 in the Z-axis direction, suction nozzle 61, side surface of component P sucked by suction nozzle 61, and supply of carrier tape T A side camera 80 capable of imaging the immediately preceding area is provided.
 ノズルホルダ62は、Z軸方向に延伸された中空円筒部材として構成されている。ノズルホルダ62の上端部62aは、ノズルホルダ62の軸部よりも大きな径の円柱状に形成されている。また、ノズルホルダ62は、上端部62aよりも下方の所定位置に、軸部よりも大きな径のフランジ部62bが形成されている。このフランジ部62bの下方の円環面と、ロータリヘッド64の上面に形成された図示しない窪みとの間には、スプリング(コイルスプリング)65が配置されている。このため、スプリング65は、ロータリヘッド64の上面の窪みをスプリング受けとして、ノズルホルダ62(フランジ部62b)を上方に付勢する。 The nozzle holder 62 is configured as a hollow cylindrical member that extends in the Z-axis direction. The upper end portion 62 a of the nozzle holder 62 is formed in a columnar shape having a larger diameter than the shaft portion of the nozzle holder 62. The nozzle holder 62 has a flange portion 62b having a diameter larger than that of the shaft portion at a predetermined position below the upper end portion 62a. A spring (coil spring) 65 is disposed between an annular surface below the flange portion 62 b and a recess (not shown) formed on the upper surface of the rotary head 64. For this reason, the spring 65 urges the nozzle holder 62 (flange portion 62b) upward with the depression on the upper surface of the rotary head 64 as a spring receiver.
 ロータリヘッド64は、図4に示すように、周方向に配置されたノズルホルダ62(図2参照)に複数(例えば12個)の吸着ノズル61が装着されている。また、ロータリヘッド64の下面中央には、光を反射可能な円筒状の反射体64aが取り付けられている。なお、本実施例のロータリヘッド64は、その内部に、各ノズルホルダ62を個別に回転させるQ軸アクチュエータ69(図6参照)を備えている。このQ軸アクチュエータ69は、図示は省略するが、ノズルホルダ62の円筒外周に設けられたギヤに噛み合わされた駆動ギヤと、駆動ギヤの回転軸に接続された駆動モータとを備える。このため、本実施例では、複数のノズルホルダ62が、軸回り(Q方向)にそれぞれ個別に回転可能となり、これに伴って各吸着ノズル61もそれぞれ個別に回転可能となる。 As shown in FIG. 4, the rotary head 64 has a plurality (for example, 12) of suction nozzles 61 mounted on a nozzle holder 62 (see FIG. 2) arranged in the circumferential direction. A cylindrical reflector 64 a that can reflect light is attached to the center of the lower surface of the rotary head 64. The rotary head 64 of this embodiment includes a Q-axis actuator 69 (see FIG. 6) that rotates each nozzle holder 62 individually. Although not shown, the Q-axis actuator 69 includes a drive gear meshed with a gear provided on the outer circumference of the nozzle holder 62 and a drive motor connected to the rotation shaft of the drive gear. Therefore, in the present embodiment, the plurality of nozzle holders 62 can be individually rotated around the axis (Q direction), and accordingly, each suction nozzle 61 can also be individually rotated.
 R軸アクチュエータ66は、図2に示すように、ロータリヘッド64に接続される回転軸67と、回転軸67に接続された駆動モータ68を備えている。このR軸アクチュエータ66は、駆動モータ68を所定角度(例えば30度)ずつ間欠的に駆動させることにより、ロータリヘッド64を所定角度ずつ間欠回転させる。これにより、ロータリヘッド64に配置された各吸着ノズル61は周方向に所定角度ずつ旋回移動する。ここで、吸着ノズル61は、移動可能な複数の位置のうち図4中の12時の位置にあるときに、部品供給装置20から部品供給エリアに供給される部品Pを吸着する。このため、この12時の位置を、吸着位置A0という。また、図4中の11時の位置は、吸着ノズル61が周方向(図中矢印方向)に移動する際に吸着位置A0の一つ前(直前)の位置であるため、吸着直前位置A1といい、図4中の1時の位置は、吸着ノズル61が周方向(図中矢印方向)に移動する際に吸着位置A0の一つ後(直後)の位置であるため、吸着直後位置A2という。なお、吸着ノズル61に吸着させた部品Pを基板S上に実装する際には、吸着位置A0は、実装位置となり、吸着直前位置A1は、実装直前位置となり、吸着直後位置A2は、実装直後位置となる。 The R-axis actuator 66 includes a rotary shaft 67 connected to the rotary head 64 and a drive motor 68 connected to the rotary shaft 67, as shown in FIG. The R-axis actuator 66 intermittently rotates the rotary head 64 by a predetermined angle by driving the drive motor 68 intermittently by a predetermined angle (for example, 30 degrees). As a result, each suction nozzle 61 arranged in the rotary head 64 pivots by a predetermined angle in the circumferential direction. Here, the suction nozzle 61 sucks the component P supplied from the component supply device 20 to the component supply area when the suction nozzle 61 is at the 12 o'clock position in FIG. 4 among the plurality of movable positions. For this reason, this 12 o'clock position is referred to as a suction position A0. Further, the position at 11 o'clock in FIG. 4 is a position immediately before (at just before) the suction position A0 when the suction nozzle 61 moves in the circumferential direction (arrow direction in the figure). The position at 1 o'clock in FIG. 4 is a position immediately after the suction position A0 when the suction nozzle 61 moves in the circumferential direction (in the direction of the arrow in the figure). . When the component P sucked by the suction nozzle 61 is mounted on the substrate S, the suction position A0 is a mounting position, the position A1 immediately before the suction is a position immediately before mounting, and the position A2 immediately after the suction is immediately after mounting. Position.
 Z軸アクチュエータ70は、図2に示すように、Z軸方向に延伸されボールネジナット72を移動させるネジ軸74と、ボールネジナット72に取り付けられたZ軸スライダ76と、回転軸がネジ軸74に接続された駆動モータ78とを備える送りネジ機構として構成されている。このZ軸アクチュエータ70は、駆動モータ78を回転駆動することにより、Z軸スライダ76をZ軸方向に移動させる。Z軸スライダ76には、ロータリヘッド64側に張り出した略L字状のレバー部77が形成されている。レバー部77は、吸着位置A0を含む所定範囲に位置するノズルホルダ62の上端部62aに当接可能となっている。このため、Z軸スライダ76のZ軸方向の移動に伴ってレバー部77がZ軸方向に移動すると、所定範囲内に位置するノズルホルダ62(吸着ノズル61)をZ軸方向に移動させることができる。 As shown in FIG. 2, the Z-axis actuator 70 includes a screw shaft 74 that extends in the Z-axis direction and moves the ball screw nut 72, a Z-axis slider 76 that is attached to the ball screw nut 72, and a rotation shaft that is connected to the screw shaft 74. The feed screw mechanism includes a drive motor 78 connected thereto. The Z-axis actuator 70 rotates the drive motor 78 to move the Z-axis slider 76 in the Z-axis direction. The Z-axis slider 76 is formed with a substantially L-shaped lever portion 77 projecting toward the rotary head 64 side. The lever portion 77 can come into contact with the upper end portion 62a of the nozzle holder 62 located in a predetermined range including the suction position A0. Therefore, when the lever portion 77 moves in the Z-axis direction as the Z-axis slider 76 moves in the Z-axis direction, the nozzle holder 62 (suction nozzle 61) located within a predetermined range can be moved in the Z-axis direction. it can.
 側面カメラ80は、図4および図5に示すように、ヘッドユニット60の下部に設けられCCDやCMOS等の撮像素子82aを内蔵するカメラ本体82と、撮像素子82aに画像を結像させる光学系84とを備える。光学系84は、ロータリヘッド64側に左入射口86a、右入射口86b、上入射口86cの3つの入射口が形成され、カメラ本体82側にカメラ接続口86dが形成されている。なお、上入射口86cは吸着位置A0にある吸着ノズル61の基端部に対向する位置に形成され、左入射口86aは吸着直前位置A1にある吸着ノズル61の先端部に対向する位置に形成され、右入射口86bは吸着直後位置A2にある吸着ノズル61の先端部に対向する位置に形成されている。また、光学系84は、ロータリヘッド64の反射体64aに向けて光を発光するLEDなどの発光体87が複数設けられている。光学系84は、その内部に、各入射口86a,86b,86cからそれぞれ入射した光を屈折させて撮像素子82aに導く複数のミラー(左ミラー88a,右ミラー88b,中ミラー88c,上ミラー88d,奥ミラー88e,88f)を備える。左ミラー88aは、左入射口86aに配置され、左入射口86aから入射される光を中ミラー88cへ屈折させ、右ミラー88bは、右入射口86bに配置され、右入射口86bから入射される光を中ミラー88cへ屈折させる。また、中ミラー88cは、左ミラー88aと右ミラー88bとの間に配置され、左ミラー88aからの光を奥ミラー88eの左下領域へ屈折させると共に右ミラー88bからの光を奥ミラー88eの右下領域へ屈折させる。また、上ミラー88dは、上入射口86cに配置され、吸着ノズル61の下方に対して略45度の方向から入射される光を奥ミラー88eの中領域へ屈折させる。また、上入射口86cは、奥ミラー88eの上ミラー88dからの光を受ける領域よりも上の領域が開放されており、上ミラー88dの上部から入射される光が奥ミラー88eの上領域へ直接届くようになっている。奥ミラー88e,88fは、奥ミラー88eに入射される光を平行移動させて撮像素子82aへ向かうように屈折させる。以上から、吸着直前位置A1にある吸着ノズル61の方向からの光は、左入射口86aに入射し、左ミラー88a,中ミラー88cおよび奥ミラー88e,88f(第1の光学系)により屈折されて撮像素子82aの第1領域Aに到達する。吸着直後位置A2にある吸着ノズル61の方向からの光は、右入射口86bに入射し、右ミラー88b,中ミラー88cおよび奥ミラー88e,88f(第1の光学系)により屈折されて撮像素子82aの第1領域Bに到達する。吸着ノズル61の下方の斜め45度の方向からの光は、上ミラー88dおよび奥ミラー88e,88f(第2の光学系)により屈折されて撮像素子82aの第2領域に到達する。吸着位置A0にある吸着ノズル61の方向からの光は、上入射口86cに入射して直接奥ミラー88eに届き、奥ミラー88e,88f(第3の光学系)により屈折されて撮像素子82aの第3領域に到達する。これにより、撮像素子82aは、それぞれ異なる方向からの画像を異なる領域で結像する。 As shown in FIGS. 4 and 5, the side camera 80 includes a camera body 82 that includes an image sensor 82 a such as a CCD or CMOS provided under the head unit 60, and an optical system that forms an image on the image sensor 82 a. 84. In the optical system 84, three incident ports, a left incident port 86a, a right incident port 86b, and an upper incident port 86c, are formed on the rotary head 64 side, and a camera connection port 86d is formed on the camera body 82 side. The upper entrance 86c is formed at a position facing the proximal end of the suction nozzle 61 at the suction position A0, and the left entrance 86a is formed at a position facing the distal end of the suction nozzle 61 at the position A1 immediately before suction. The right entrance 86b is formed at a position facing the tip of the suction nozzle 61 at the position A2 immediately after the suction. The optical system 84 is provided with a plurality of light emitters 87 such as LEDs that emit light toward the reflector 64 a of the rotary head 64. The optical system 84 includes a plurality of mirrors (a left mirror 88a, a right mirror 88b, a middle mirror 88c, and an upper mirror 88d) that refract the light incident from the incident ports 86a, 86b, and 86c and guide the light to the imaging element 82a. , Rear mirrors 88e, 88f). The left mirror 88a is disposed at the left entrance 86a, refracts light incident from the left entrance 86a to the middle mirror 88c, and the right mirror 88b is disposed at the right entrance 86b and is incident from the right entrance 86b. Refracted light to the middle mirror 88c. The middle mirror 88c is disposed between the left mirror 88a and the right mirror 88b, refracts the light from the left mirror 88a to the lower left region of the back mirror 88e, and directs the light from the right mirror 88b to the right of the back mirror 88e. Refract to the lower region. The upper mirror 88d is disposed at the upper incident port 86c, and refracts light incident from a direction of about 45 degrees with respect to the lower side of the suction nozzle 61 into the middle region of the rear mirror 88e. The upper entrance 86c is open in an area above the area that receives light from the upper mirror 88d of the rear mirror 88e, and light incident from the upper part of the upper mirror 88d is directed to the upper area of the rear mirror 88e. It comes to reach directly. The back mirrors 88e and 88f translate the light incident on the back mirror 88e so as to be refracted toward the image sensor 82a. From the above, the light from the direction of the suction nozzle 61 at the position A1 immediately before the suction enters the left entrance 86a and is refracted by the left mirror 88a, the middle mirror 88c, and the back mirrors 88e and 88f (first optical system). To the first area A of the image sensor 82a. The light from the direction of the suction nozzle 61 at the position A2 immediately after the suction enters the right incident port 86b, is refracted by the right mirror 88b, the middle mirror 88c, and the back mirrors 88e and 88f (first optical system) and is imaged. The first area B of 82a is reached. The light from the oblique 45 ° direction below the suction nozzle 61 is refracted by the upper mirror 88d and the back mirrors 88e and 88f (second optical system) and reaches the second region of the image sensor 82a. Light from the direction of the suction nozzle 61 at the suction position A0 is incident on the upper entrance 86c and directly reaches the back mirror 88e, and is refracted by the back mirrors 88e and 88f (third optical system) to be reflected by the imaging element 82a. Reach the third area. Thereby, the image sensor 82a forms images from different directions in different regions.
 このようにして、側面カメラ80は、1回の撮像動作で、吸着位置A0にある吸着ノズル61と、吸着直前位置A1にある吸着ノズル61と、吸着直後位置A2にある吸着ノズル61とを撮像して、それぞれの撮像画像を取得することができる。また、ヘッドユニット60がフィーダ22により部品供給エリアに供給された部品Pを吸着ノズル61に吸着可能な位置にある状態で側面カメラ80を撮像すると、上述の3つの撮像画像に加えて、キャリアテープTの供給直前エリアにあるキャビティCやキャビティCに収容された部品P(次回吸着部品)の撮像画像も取得することができる。図7は、側面カメラ80の撮像により取得される画像の一例である。図7に示すように、取得される画像には、吸着ノズル61が部品Pを吸着した直後の吸着直後位置A2における吸着ノズル61の先端部の側面画像(以下、吸着直後画像という)と、吸着ノズル61が部品Pを吸着する直前の吸着直前位置A1における吸着ノズル61の先端部の側面画像(以下、吸着直前画像という)と、吸着ノズル61が部品Pを吸着する吸着位置A0における吸着ノズル61の基端部の側面画像(以下、ノズル画像という)と、キャリアテープTの供給直前エリアにあるキャビティCに収容された次回吸着部品の画像(以下、次回吸着部品画像という)とが含まれる。 In this way, the side camera 80 captures the suction nozzle 61 at the suction position A0, the suction nozzle 61 at the position A1 immediately before the suction, and the suction nozzle 61 at the position A2 immediately after the suction in one imaging operation. Thus, each captured image can be acquired. When the side camera 80 is imaged in a state where the head unit 60 is in a position where the component P supplied to the component supply area by the feeder 22 can be adsorbed to the adsorption nozzle 61, in addition to the above three captured images, the carrier tape A captured image of the cavity C in the area immediately before the supply of T and the component P (next suction component) accommodated in the cavity C can also be acquired. FIG. 7 is an example of an image acquired by imaging by the side camera 80. As shown in FIG. 7, the acquired image includes a side image (hereinafter referred to as an image immediately after the suction) of the tip of the suction nozzle 61 at the position A2 immediately after the suction nozzle 61 sucks the component P, and a suction A side image (hereinafter referred to as an image immediately before the suction) of the suction nozzle 61 at the position A1 immediately before the suction of the component P by the nozzle 61 and the suction nozzle 61 at the suction position A0 at which the suction nozzle 61 sucks the component P. And a side image (hereinafter referred to as a nozzle image) of the base end portion and an image of the next suction component housed in the cavity C in the area immediately before the supply of the carrier tape T (hereinafter referred to as the next suction component image).
 制御装置100は、図6に示すように、CPU101を中心とするマイクロプロセッサとして構成されており、CPU101の他に、ROM102、HDD103、RAM104、入出力インタフェース105などを備える。これらは、バス106を介して接続されている。制御装置100は、側面カメラ80やパーツカメラ90、マークカメラ92からの画像信号などを入出力インタフェース105を介して入力する。なお、X軸スライダ54,Y軸スライダ58,Z軸アクチュエータ70,Q軸アクチュエータ69およびR軸アクチュエータ66には、それぞれ図示しない位置センサが装備されており、制御装置100はそれらの位置センサからの位置情報も入力する。また、制御装置100は、部品供給装置20や基板搬送装置30、バックアップ装置40、X軸スライダ54を移動させるX軸アクチュエータ55、Y軸スライダ58を移動させるY軸アクチュエータ59、Z軸アクチュエータ70(駆動モータ78)、Q軸アクチュエータ69(駆動モータ)、R軸アクチュエータ66(駆動モータ68)、図示しない真空ポンプと吸着ノズル61との連通と遮断とを行う電磁弁79への駆動信号などを入出力インタフェース105を介して出力する。 As shown in FIG. 6, the control device 100 is configured as a microprocessor centered on the CPU 101, and includes a ROM 102, an HDD 103, a RAM 104, an input / output interface 105 and the like in addition to the CPU 101. These are connected via a bus 106. The control device 100 inputs image signals from the side camera 80, the parts camera 90, and the mark camera 92 via the input / output interface 105. The X-axis slider 54, the Y-axis slider 58, the Z-axis actuator 70, the Q-axis actuator 69, and the R-axis actuator 66 are equipped with position sensors (not shown). Also input location information. The control device 100 also includes a component supply device 20, a substrate transport device 30, a backup device 40, an X-axis actuator 55 that moves the X-axis slider 54, a Y-axis actuator 59 that moves the Y-axis slider 58, and a Z-axis actuator 70 ( Drive signal to drive valve 78, Q-axis actuator 69 (drive motor), R-axis actuator 66 (drive motor 68), electromagnetic valve 79 that connects and disconnects vacuum pump (not shown) and suction nozzle 61, etc. Output via the output interface 105.
 管理装置110は、例えば、汎用のコンピュータである。管理装置110は、図6に示すように、CPU111やROM112、基板の生産データなどを記憶するHDD113、RAM114、入出力インターフェース115などを備える。これらは、バス116を介して接続されている。管理装置110は、マウスやキーボード等の入力デバイス117から入力信号が入出力インターフェース115を介して入力される。また、管理装置110は、ディスプレイ118への画像信号を入出力インターフェース115を介して出力する。ここで、基板の生産データは、部品実装機10においてどの部品Pをどの順番で基板へ実装するか、また、そのように部品Pを実装した基板Sを何枚作製するかなどを定めたデータである。この生産データは、作業者により予め入力され、生産を開始する際に管理装置110から部品実装機10へ送信される。 The management device 110 is, for example, a general-purpose computer. As shown in FIG. 6, the management device 110 includes a CPU 111, a ROM 112, an HDD 113 that stores board production data, a RAM 114, an input / output interface 115, and the like. These are connected via a bus 116. The management apparatus 110 receives an input signal from an input device 117 such as a mouse or a keyboard via the input / output interface 115. Further, the management device 110 outputs an image signal to the display 118 via the input / output interface 115. Here, the board production data is data that defines which parts P are mounted on the board in which order in the component mounter 10, and how many boards S on which the parts P are mounted are produced. It is. This production data is input in advance by an operator, and is transmitted from the management apparatus 110 to the component mounting machine 10 when production is started.
 次に、こうして構成された部品実装機10の動作についての詳細を説明する。図8は、制御装置100のCPU101により実行される部品実装処理の一例を示すフローチャートである。この処理は、管理装置110から生産データを受信し、生産開始が指示されたときに実行される。 Next, the details of the operation of the component mounter 10 thus configured will be described. FIG. 8 is a flowchart illustrating an example of component mounting processing executed by the CPU 101 of the control device 100. This process is executed when production data is received from the management apparatus 110 and an instruction to start production is given.
 部品実装処理では、制御装置100のCPU101は、まず、基板搬送装置30を制御して基板Sを搬送する基板搬送処理を行う(S100)。続いて、CPU101は、XYロボット50(X軸アクチュエータ55およびY軸アクチュエータ59)によりロータリヘッド64(ヘッドユニット60)の吸着位置A0をフィーダ22の部品供給エリアの真上に移動させ、R軸アクチュエータ66により吸着直前位置A1にある吸着ノズル61を吸着位置A0に移動させながら、Z軸アクチュエータ70によりその吸着ノズル61を下降させ、電磁弁79により吸着ノズル61の吸引口に負圧を作用させることで、吸着ノズル61に部品Pを吸着させる吸着動作を行う。吸着動作は、フィーダ22から初めての部品供給がなされる場合には(S102の「YES」)、初回吸着時処理を実行することにより行われ(S104)、フィーダ22から2回目以降の部品供給がなされる場合には(S102の「NO」)、非初回吸着時処理を実行することにより行われる(S106)。ここで、初回吸着時処理は、図9に例示するフローチャートに従って実行され、非初回吸着時処理は、図10のフローチャートに従って実行される。初回吸着時処理と非初回吸着時処理の詳細については後述する。CPU101は、こうして吸着動作を行うと、ロータリヘッド64に装着された吸着ノズル61の数だけ吸着動作を繰り返して(S108)、次のS110の処理に進む。 In the component mounting process, the CPU 101 of the control device 100 first performs a substrate transfer process for controlling the substrate transfer device 30 to transfer the substrate S (S100). Subsequently, the CPU 101 uses the XY robot 50 (X-axis actuator 55 and Y-axis actuator 59) to move the suction position A0 of the rotary head 64 (head unit 60) to just above the component supply area of the feeder 22, and the R-axis actuator. 66, the suction nozzle 61 at the position A1 immediately before suction is moved to the suction position A0, the suction nozzle 61 is lowered by the Z-axis actuator 70, and a negative pressure is applied to the suction port of the suction nozzle 61 by the electromagnetic valve 79. Thus, a suction operation for sucking the component P onto the suction nozzle 61 is performed. When the first component supply is performed from the feeder 22 (“YES” in S102), the suction operation is performed by executing the first suction processing (S104), and the second and subsequent component supply from the feeder 22 is performed. If it is made (“NO” in S102), it is performed by executing a non-first-time adsorption process (S106). Here, the initial adsorption process is executed according to the flowchart illustrated in FIG. 9, and the non-initial adsorption process is executed according to the flowchart of FIG. Details of the initial adsorption process and the non-initial adsorption process will be described later. When performing the suction operation in this way, the CPU 101 repeats the suction operation for the number of suction nozzles 61 attached to the rotary head 64 (S108), and proceeds to the next processing of S110.
 次に、CPU101は、基板Sの実装位置の真上にロータリヘッド64(ヘッドユニット60)の吸着位置A0が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を制御する(S110)。なお、ヘッドユニット60の移動はパーツカメラ90の上方を経由して行われる。ヘッドユニット60がパーツカメラ90の上方を通過する際には、パーツカメラ90により吸着ノズル61に吸着されている部品Pの下面を撮像し、得られた画像に基づいて吸着ノズル61に対する部品Pの位置ズレ量を検出し、実装位置を補正する。 Next, the CPU 101 controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 (head unit 60) moves directly above the mounting position of the substrate S (S110). The head unit 60 is moved via the part camera 90. When the head unit 60 passes above the parts camera 90, the lower surface of the part P sucked by the suction nozzle 61 is imaged by the parts camera 90, and the part P with respect to the suction nozzle 61 is picked up based on the obtained image. The amount of misalignment is detected and the mounting position is corrected.
 ヘッドユニット60が実装位置に移動すると、CPU101は、部品Pを基板Sに実装する実装動作を実行し(S112)、次回実装する部品Pがあるか否かを判定し(S114)、次回実装する部品Pがあると判定すると、S112に戻って実装動作を繰り返し、次回実装する部品Pがないと判定すると、部品実装処理を終了する。 When the head unit 60 moves to the mounting position, the CPU 101 executes a mounting operation for mounting the component P on the substrate S (S112), determines whether or not there is a component P to be mounted next (S114), and mounts the next time. If it is determined that there is a component P, the process returns to S112 to repeat the mounting operation. If it is determined that there is no component P to be mounted next time, the component mounting process is terminated.
 次に、図9の初回吸着時処理について説明する。図9の初回吸着時処理では、CPU101は、まず、キャリアテープTの供給直前エリアが側面カメラ80の撮像範囲内に収まるまでヘッドユニット60が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を駆動制御した後(S200)、側面カメラ80による撮像を行う(S202)。ここで、S200の処理は、ロータリヘッド64(ヘッドユニット60)の吸着位置A0をキャリアテープTの部品供給エリアに移動させることで、キャリアテープTの供給直前エリアを側面カメラ80の撮像範囲内に収めることができる。続いて、CPU101は、フィーダ22に対して1ピッチ分のテープ送りを指示し(S204)、S202で側面カメラ80の撮像により得られた画像(次回吸着部品画像)を処理して、供給直前エリア内にある次回吸着部品の位置(XY座標)である次回吸着部品位置Q1を認識し(S206)、認識した次回吸着部品位置Q1から1ピッチ分の規定送り量RだけY軸方向にオフセットした位置を目標吸着位置Q*に設定する(S208)。ここで、次回吸着部品位置Q1の認識は、次回吸着部品画像から次回吸着部品のエッジを抽出し、抽出した次回吸着部品のエッジ間の中心位置(XY座標)を求めることにより行うことができる。また、規定送り量Rは、キャリアテープTのキャビティ間のピッチであり、予め定められた値(設計値)が用いられる。 Next, the process at the time of the first adsorption in FIG. 9 will be described. In the initial suction processing of FIG. 9, the CPU 101 first drives the X-axis actuator 55 and the Y-axis actuator 59 so that the head unit 60 moves until the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80. After the control (S200), imaging by the side camera 80 is performed (S202). Here, the processing of S200 is performed by moving the suction position A0 of the rotary head 64 (head unit 60) to the component supply area of the carrier tape T so that the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80. Can fit. Subsequently, the CPU 101 instructs the feeder 22 to feed the tape by one pitch (S204), and processes the image (next suction component image) obtained by the imaging of the side camera 80 in S202, and immediately before the supply area. The next suction component position Q1 which is the position (XY coordinate) of the next suction component inside is recognized (S206), and the position is offset in the Y-axis direction by the specified feed amount R for one pitch from the recognized next suction component position Q1. Is set to the target suction position Q * (S208). Here, the next suction component position Q1 can be recognized by extracting the edge of the next suction component from the next suction component image and obtaining the center position (XY coordinate) between the extracted edges of the next suction component. The specified feed amount R is the pitch between the cavities of the carrier tape T, and a predetermined value (design value) is used.
 次に、CPU101は、キャリアテープTの部品供給エリアが側面カメラ80の撮像範囲内に収まるまでヘッドユニット60が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を駆動制御した後(S210)、側面カメラ80による撮像を行う(S212)。側面カメラ80による撮像を行うと、CPU101は、撮像により得られた画像(今回吸着部品画像)を処理して、今回吸着部品の位置(XY座標)である今回吸着部品位置Q0を認識し(S214)、認識した今回吸着部品位置Q0とS208で設定した目標吸着位置Q*との差分をとることで、規定送り量Rを補正するための補正量αを算出する(S216)。その後、CPU101は、S214で認識した今回吸着部品位置Q0の真上にロータリヘッド64の吸着位置A0が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を駆動制御する(S218)。また、CPU101は、吸着直前位置A1にある吸着ノズル61が吸着位置A0に移動するようR軸アクチュエータ66を駆動制御しながら、その吸着ノズル61が下降するようZ軸アクチュエータ70を駆動制御し(S220)、吸着ノズル61にキャリアテープTの部品供給エリア(今回吸着部品位置Q0)にある今回吸着部品を吸着させる(S222)。今回吸着部品を吸着させると、CPU101は、側面カメラ80による撮像を行い(S224)、撮像により得られた画像(次回吸着部品画像)を処理して、次回吸着部品位置(XY座標)Q1を認識し(S226)、認識した次回吸着部品位置Q1を規定送り量RとS216で算出した補正量αとによりX軸方向およびY軸方向にオフセットした位置を、次回吸着部品の目標吸着位置Q*に設定して(S228)、初回吸着時処理を終了する。 Next, the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the head unit 60 moves until the component supply area of the carrier tape T is within the imaging range of the side camera 80 (S210). Imaging by the camera 80 is performed (S212). When the image is captured by the side camera 80, the CPU 101 processes the image (currently picked-up part image) obtained by the image pickup and recognizes the current picked-up part position Q0 that is the position (XY coordinate) of the current picked-up part (S214). The correction amount α for correcting the specified feed amount R is calculated by taking the difference between the recognized current suction part position Q0 and the target suction position Q * set in S208 (S216). Thereafter, the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 moves immediately above the current suction part position Q0 recognized in S214 (S218). Further, the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 located immediately before the suction position A1 moves to the suction position A0 (S220). The suction nozzle 61 sucks the current suction component in the component supply area (current suction component position Q0) of the carrier tape T (S222). When the suction part is picked up this time, the CPU 101 picks up an image by the side camera 80 (S224), processes the image (next pick-up part image) obtained by the image pickup, and recognizes the next pick-up part position (XY coordinate) Q1. (S226) The position where the recognized next suction component position Q1 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the correction amount α calculated in S216 is set as the target suction position Q * of the next suction component. After setting (S228), the first adsorption process is terminated.
 続いて、図10の非初回吸着時処理について説明する。図10の非初回吸着時処理では、CPU101は、まず、フィーダ22に対して1ピッチ分のテープ送りを指示し(S250)、初回吸着時処理のS228または本処理の後述するS262で設定した目標吸着位置Q*の真上にロータリヘッド64の吸着位置A0が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を駆動制御する(S252)。また、CPU101は、吸着直前位置A1にある吸着ノズル61が吸着位置A0に移動するようR軸アクチュエータ66を駆動制御しながら、その吸着ノズル61が下降するようZ軸アクチュエータ70を駆動制御して(S254)、吸着ノズル61に今回吸着部品を吸着させる(S256)。今回吸着部品を吸着させると、CPU101は、側面カメラ80による撮像を行い(S258)、撮像により得られた画像(次回吸着部品画像)を処理して、次回吸着部品位置Q1を認識し(S260)、認識した次回吸着部品位置Q1を規定送り量Rと初回吸着時処理のS216で算出した補正量αとによりX軸方向およびY軸方向にオフセットした位置を、次回吸着部品の目標吸着位置Q*に設定して(S262)、非初回吸着時処理を終了する。 Subsequently, the non-initial adsorption process in FIG. 10 will be described. In the non-first suction process of FIG. 10, the CPU 101 first instructs the feeder 22 to feed one pitch of tape (S250), and the target set in S228 of the first suction process or S262 described later in this process. The X-axis actuator 55 and the Y-axis actuator 59 are driven and controlled so that the suction position A0 of the rotary head 64 moves directly above the suction position Q * (S252). Further, the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 at the position A1 immediately before the suction moves to the suction position A0 ( S254), the suction part 61 is made to suck the suction part this time (S256). When the suction part is picked up this time, the CPU 101 takes an image with the side camera 80 (S258), processes the image obtained by the image pickup (next suction part image), and recognizes the next suction part position Q1 (S260). The position where the recognized next suction component position Q1 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the correction amount α calculated in S216 of the initial suction processing is the target suction position Q * of the next suction component. (S262), and the non-first-time adsorption process is terminated.
 図11は、キャリアテープTがX軸方向に傾いて送られる様子を示す説明図であり、図12は、図11のキャリアテープTの一部を拡大して示す部分拡大図である。前述したように、規定送り量Rは、次回吸着部品位置Q1から今回吸着部品位置Q0を推定する際のY軸方向のオフセット量を示す。このため、キャリアテープTのテープ送り方向と部品実装機10のY軸方向とが完全に一致していれば、次回吸着部品位置Q1から次回吸着部品が送られてきたときに、X軸方向のズレは生じない。しかしながら、図11に示すように、キャリアテープTのテープ送り方向がY軸方向に対して傾いている場合、その傾きが大きいほど、次回吸着部品位置Q1から次回吸着部品が送られてきたときに、X軸方向のズレ幅が大きくなり、吸着ノズル61で部品Pを吸着する際に大きな吸着ズレが生じる。本実施例では、初回吸着時に、側面カメラ80でキャリアテープTの部品供給エリアと供給直前エリアとをそれぞれ撮像して、次回吸着部品位置Q1と今回吸着部品位置Q0とを認識し、次回吸着部品位置Q1と今回吸着部品位置Q0とに基づいて規定送り量Rの補正量αを算出しておく。これにより、次回以降の吸着時には、次回吸着部品位置Q1のみを認識することで、規定送り量Rと補正量αとに基づいて今回吸着部品位置Q0(目標吸着位置Q*)を正確に推定することができる。 FIG. 11 is an explanatory view showing a state in which the carrier tape T is sent while being inclined in the X-axis direction, and FIG. 12 is a partially enlarged view showing a part of the carrier tape T of FIG. As described above, the specified feed amount R indicates the offset amount in the Y-axis direction when the current suction component position Q0 is estimated from the next suction component position Q1. For this reason, if the tape feeding direction of the carrier tape T and the Y-axis direction of the component mounting machine 10 completely coincide with each other, the next suction component will be sent from the next suction component position Q1 in the X-axis direction. There is no gap. However, as shown in FIG. 11, when the tape feeding direction of the carrier tape T is inclined with respect to the Y-axis direction, the larger the inclination, the more the next suction component is sent from the next suction component position Q1. The deviation width in the X-axis direction becomes large, and a large adsorption deviation occurs when the component P is adsorbed by the adsorption nozzle 61. In this embodiment, at the time of the first suction, the side camera 80 images the parts supply area and the area just before the supply of the carrier tape T, recognizes the next suction part position Q1 and the current suction part position Q0, and the next suction part. A correction amount α of the specified feed amount R is calculated based on the position Q1 and the current suction component position Q0. As a result, at the time of the subsequent suction, only the next suction part position Q1 is recognized, so that the current suction part position Q0 (target suction position Q *) is accurately estimated based on the specified feed amount R and the correction amount α. be able to.
 なお、初回吸着時処理のS224または非初回吸着時処理のS258の撮像処理において、吸着ノズル61に部品Pを吸着する際に、側面カメラ80により撮像して得られる画像には、吸着直前画像(吸着直前位置A1における吸着ノズル61の先端部の側面画像)と吸着直後画像(吸着直後位置A2における吸着ノズル61の先端部の側面画像)とノズル画像(吸着位置A0における吸着ノズル61の基端部の側面画像)とが含まれている。このため、制御装置100は、吸着直前画像に基づいて部品吸着前の吸着ノズル61に異常(例えば吸着ノズル61の破損や付着物の有無など)がないかを確認したり、吸着直後画像に基づいて部品Pの吸着状態(例えば部品Pの吸着姿勢の良否や部品Pの有無など)を確認したり、ノズル画像に基づいて吸着位置A0に吸着ノズル61が存在するか否かを確認したりすることができる。 In the imaging process of S224 of the first suction process or S258 of the non-first suction process, when the component P is sucked to the suction nozzle 61, the image acquired by the side camera 80 is an image immediately before the suction ( Side image of the tip of the suction nozzle 61 at the position A1 immediately before suction, an image immediately after suction (a side image of the tip of the suction nozzle 61 at the position A2 immediately after suction), and a nozzle image (base end of the suction nozzle 61 at the suction position A0) Side view). For this reason, the control device 100 confirms whether there is any abnormality (for example, damage to the suction nozzle 61 or presence / absence of adhering matter) of the suction nozzle 61 before the component suction based on the image immediately before the suction, or based on the image immediately after the suction. Then, the suction state of the component P (for example, whether the suction posture of the component P is good or not, or the presence or absence of the component P) is confirmed, or whether the suction nozzle 61 is present at the suction position A0 based on the nozzle image. be able to.
 以上説明した実施例の部品実装機10は、ヘッドユニット60が部品供給エリアに供給された部品Pを吸着ノズル61に吸着可能な位置にあるときに、部品供給エリアよりも1つ手前(テープ送り方向上流)にある供給直前エリアが撮像範囲内に収まるようヘッドユニット60に側面カメラ80を設置し、部品供給エリアに供給された今回吸着部品を吸着ノズル61に吸着する際に側面カメラ80により撮像を行って供給直前エリアにある次回吸着部品の位置(次回吸着部品位置Q1)を認識する。そして、部品実装機10は、キャリアテープTが1ピッチ分送られて次回吸着部品が今回吸着部品として部品吸着エリアに供給されると、次回吸着部品位置Q1を規定送り量Rだけオフセットした位置を今回吸着部品の目標吸着位置Q*として、吸着ノズル61に部品Pを吸着させる。これにより、簡易な制御により、吸着ノズル61に部品Pを吸着させる際の吸着ズレの発生を抑制することができる。しかも、部品実装機10は、側面カメラ80の撮像動作を、部品供給エリアに供給された今回吸着部品を吸着ノズル61に吸着する際に行うから、撮像動作によって吸着動作が阻害されないようにして、実装効率の低下を抑制することができる。 In the component mounting machine 10 of the embodiment described above, when the head unit 60 is in a position where the component P supplied to the component supply area can be adsorbed to the adsorption nozzle 61, one component before the component supply area (tape feed) The side camera 80 is installed in the head unit 60 so that the area immediately before supply located upstream in the direction is within the imaging range, and the side camera 80 takes an image when the suction part 61 supplied to the part supply area is picked up by the suction nozzle 61. To recognize the position of the next suction component (next suction component position Q1) in the area immediately before supply. When the carrier tape T is fed by one pitch and the next suction component is supplied to the component suction area as the current suction component, the component mounter 10 sets the position where the next suction component position Q1 is offset by the specified feed amount R. This time, the component P is attracted to the suction nozzle 61 as the target suction position Q * of the suction component. Thereby, it is possible to suppress the occurrence of a suction deviation when the component P is sucked by the suction nozzle 61 by simple control. Moreover, since the component mounter 10 performs the imaging operation of the side camera 80 when the current suction component supplied to the component supply area is suctioned to the suction nozzle 61, the suction operation is not hindered by the imaging operation. A decrease in mounting efficiency can be suppressed.
 また、実施例の部品実装機10は、初回吸着時には、側面カメラ80でキャリアテープTの部品供給エリアと供給直前エリアとをそれぞれ撮像して、次回吸着部品位置Q1と今回吸着部品位置Q0とを認識し、次回吸着部品位置Q1と今回吸着部品位置Q0とに基づいて規定送り量Rの補正量αを算出する。これにより、次回以降の吸着時には、次回吸着部品位置Q1のみを認識することで、規定送り量Rと補正量αとに基づいて目標吸着位置Q*をより正確に推定することができる。 In addition, at the time of the first suction, the component mounter 10 of the embodiment images the component supply area and the immediately preceding supply area of the carrier tape T with the side camera 80, and the next suction component position Q1 and the current suction component position Q0 are obtained. The correction amount α of the specified feed amount R is calculated based on the next suction component position Q1 and the current suction component position Q0. Thereby, at the time of the next suction, the target suction position Q * can be estimated more accurately based on the specified feed amount R and the correction amount α by recognizing only the next suction component position Q1.
 実施例の部品実装機10では、ヘッドユニット60が部品供給エリアに供給された部品Pを吸着ノズル61に吸着可能な位置にあるときに、部品吸着位置よりも1つ手前の供給直前エリアを側面カメラ80の撮像範囲内に含めるものとしたが、これに限定されるものではなく、供給直前エリアと部品供給エリアの双方を撮像範囲内に含めるものとしてもよい。この場合、図5に示す実施例の光学系84に代えて図13に示す変形例の光学系84Bを用いると共に、図9の初回吸着時処理に代えて図15の初回吸着時処理を実行するものとすればよい。なお、変形例の側面カメラ80Bの撮像により得られる撮像画像の一例を図14に示す。変形例の光学系84Bは、図13に示すように、実施例の光学系84の上ミラー88dに代えて、キャリアテープTの送り方向の撮像範囲を広げる大サイズの上ミラー88gを備える。このため、吸着ノズル61に今回吸着部品を吸着させる際に、側面カメラ80により撮像を行うと、図14に示すように、部品供給エリアで吸着ノズル61に吸着されている今回吸着部品と、供給直前エリアにある次回吸着部品とが撮像される。なお、この変形例では、フィーダ22により供給される部品として、吸着ノズル61が部品を吸着している状態でその部品を撮像可能な程度の大きさを必要とする。したがって、部品サイズによって図9の初回吸着時処理と図15の初回吸着時処理とを切り替えるものとしてもよい。 In the component mounter 10 according to the embodiment, when the head unit 60 is in a position where the component P supplied to the component supply area can be sucked by the suction nozzle 61, the area immediately before the supply is one side before the component suction position. Although included in the imaging range of the camera 80, the present invention is not limited to this, and both the immediately preceding supply area and the component supply area may be included in the imaging range. In this case, the optical system 84B of the modified example shown in FIG. 13 is used instead of the optical system 84 of the embodiment shown in FIG. 5, and the initial suction process of FIG. 15 is executed instead of the initial suction process of FIG. It should be. An example of a captured image obtained by imaging with the side camera 80B according to the modification is shown in FIG. As shown in FIG. 13, the modified optical system 84B includes a large-sized upper mirror 88g that widens the imaging range in the feed direction of the carrier tape T, instead of the upper mirror 88d of the optical system 84 of the embodiment. For this reason, when the suction nozzle 61 picks up the suction component this time and the imaging is performed by the side camera 80, as shown in FIG. 14, the current suction component sucked by the suction nozzle 61 in the component supply area and the supply The next suction component in the immediately preceding area is imaged. In this modification, the component supplied by the feeder 22 needs to be large enough to image the component while the suction nozzle 61 is sucking the component. Therefore, the initial suction processing in FIG. 9 and the initial suction processing in FIG. 15 may be switched depending on the component size.
 図15の初回吸着時処理では、CPU101は、まず、S200~S208と同様の処理によって、目標吸着位置Q*を設定する(S300~S308)。そして、CPU101は、S308で設定した目標吸着位置Q*の真上にロータリヘッド64の吸着位置A0が移動するようX軸アクチュエータ55およびY軸アクチュエータ59を駆動制御する(S310)。また、CPU101は、吸着直前位置A1にある吸着ノズル61が吸着位置A0に移動するようR軸アクチュエータ66を駆動制御しながら、その吸着ノズル61が下降するようZ軸アクチュエータ70を駆動制御して(S312)、吸着ノズル61に今回吸着部品を吸着させる(S314)。今回吸着部品を吸着させると、CPU101は、側面カメラ80による撮像を行い(S316)、撮像により得られた画像(次回吸着部品画像,今回吸着部品画像)を処理して、今回吸着部品位置Q0と次回吸着部品位置Q1とを認識し(S318)、認識した今回吸着部品位置Q0とS308で設定した目標吸着位置Q*との差分をとることで、補正量αを算出する(S320)。CPU101は、補正量αを算出すると、S318で認識した次回吸着部品位置Q1を規定送り量Rと算出した補正量αとによりX軸方向およびY軸方向にオフセットした位置を、次回吸着部品の目標吸着位置Q*に設定して(S322)、初回吸着時処理を終了する。 In the initial suction processing of FIG. 15, the CPU 101 first sets the target suction position Q * by the same processing as S200 to S208 (S300 to S308). Then, the CPU 101 drives and controls the X-axis actuator 55 and the Y-axis actuator 59 so that the suction position A0 of the rotary head 64 moves directly above the target suction position Q * set in S308 (S310). Further, the CPU 101 drives and controls the Z-axis actuator 70 so that the suction nozzle 61 descends while driving and controlling the R-axis actuator 66 so that the suction nozzle 61 at the position A1 immediately before the suction moves to the suction position A0 ( S312), the suction part 61 is made to suck the suction part this time (S314). When the suction part is picked up this time, the CPU 101 picks up an image by the side camera 80 (S316), processes an image obtained by the image pickup (next suction part image, current suction part image), and picks up the current suction part position Q0. The next suction component position Q1 is recognized (S318), and the correction amount α is calculated by taking the difference between the recognized current suction component position Q0 and the target suction position Q * set in S308 (S320). After calculating the correction amount α, the CPU 101 sets the position where the next suction component position Q1 recognized in S318 is offset in the X-axis direction and the Y-axis direction by the specified feed amount R and the calculated correction amount α as the target of the next suction component. The suction position Q * is set (S322), and the initial suction processing is completed.
 上述した変形例では、非初回吸着時処理は、図10の処理を用いて行うこともできるが、図10のS260の処理に代えて図15のS318,S320の処理と同じ処理を追加するものとしてもよい。即ち、側面カメラ80の撮像により得られた今回吸着部品画像に基づいて今回吸着部品位置Q0を認識する処理と補正量αを算出する処理とを毎回行うものとしてもよい。 In the above-described modification, the non-first-time adsorption process can be performed using the process of FIG. 10, but the same process as the process of S318 and S320 of FIG. 15 is added instead of the process of S260 of FIG. It is good. That is, the process of recognizing the current suction part position Q0 and the process of calculating the correction amount α based on the current suction part image obtained by imaging by the side camera 80 may be performed each time.
 なお、上述した変形例では、ヘッドユニット60の吸着位置A0がキャリアテープTの部品供給エリアの上方にあるときに、側面カメラ80により部品供給エリアを撮像することができるため、吸着位置A0に移動した吸着ノズル61が部品供給エリアにある今回吸着部品を吸着した後、その吸着ノズル61が所定量上昇したタイミングで、側面カメラ80による撮像を行うことで、吸着ノズル61に吸着ミスが生じていないかを確認することができる。 In the above-described modification, the component supply area can be imaged by the side camera 80 when the suction position A0 of the head unit 60 is above the component supply area of the carrier tape T. Therefore, the head unit 60 moves to the suction position A0. The suction nozzle 61 picks up the suction part this time in the parts supply area and then picks up an image by the side camera 80 when the suction nozzle 61 rises by a predetermined amount. Can be confirmed.
 実施例の部品実装機10では、側面カメラ80で撮像して得られた撮像画像(次回吸着部品画像)から部品P(次回吸着部品)のエッジを抽出し、抽出した部品今回吸着部品位置Q0のエッジ間の中心位置(XY座標)を求めることで部品位置(次回吸着部品位置Q1)を認識したが、これに限定されるものではなく、撮像画像からキャビティCのエッジを抽出し、抽出したキャビティCのエッジ間の中心位置を求め、求めた中心位置に基づいて部品位置を認識するものとしてもよい。ここで、部品PはキャビティC内に収容されており、部品PとキャビティCとの間に若干の隙間が空いているのが通常である。このため、部品Pは、フィーダ22によるテープ送りの際に、キャビティC内で移動することがある。そこで、キャビティCの位置(中心位置)から部品位置を求める場合には、キャビティCの位置をキャビティC内での部品Pの移動量で補正した上で部品位置を求めるものとしてもよい。なお、部品Pは、キャリアテープTが1ピッチ分移動して停止した際に、部品Pに作用する慣性力によってキャビティCの送り方向内壁に片寄せされる。このため、部品PとキャビティCとのテープ送り方向(Y軸方向)の隙間の幅を2で割った量を、キャビティC内での部品Pの移動量として補正を行えばよい。 In the component mounter 10 of the embodiment, the edge of the component P (next suction component) is extracted from the captured image (next suction component image) obtained by capturing with the side camera 80, and the extracted component current suction component position Q0 is extracted. The component position (next suction component position Q1) is recognized by obtaining the center position (XY coordinate) between the edges, but the present invention is not limited to this, and the edge of the cavity C is extracted from the captured image and extracted. The center position between the edges of C may be obtained, and the part position may be recognized based on the obtained center position. Here, the part P is accommodated in the cavity C, and there is usually a slight gap between the part P and the cavity C. For this reason, the part P may move in the cavity C when the tape is fed by the feeder 22. Therefore, when the part position is obtained from the position (center position) of the cavity C, the part position may be obtained after correcting the position of the cavity C by the amount of movement of the part P in the cavity C. When the carrier tape T is moved by one pitch and stopped, the component P is shifted to the inner wall in the feed direction of the cavity C by the inertial force acting on the component P. Therefore, the amount obtained by dividing the width of the gap between the part P and the cavity C in the tape feeding direction (Y-axis direction) by 2 may be corrected as the amount of movement of the part P in the cavity C.
 実施例の部品実装機10では、初回吸着時処理により算出した補正量αを用いて目標吸着位置Q*を設定するものとしたが、これに限定されるものではなく、予め求めた固定値を補正量αとして用いて目標吸着位置Q*を設定するものとしてもよい。例えば、フィーダ22の送り精度はフィーダ毎やメーカ毎に異なるため、事前にフィーダ固有の値として取得したものを補正量αとして定めるものとしてもよい。また、上述したように、キャビティCの位置を基に部品位置を求める場合には、キャビティC内での部品Pの移動量を補正量αとして定めるものとしてもよい。 In the component mounter 10 of the embodiment, the target suction position Q * is set using the correction amount α calculated by the initial suction processing, but the present invention is not limited to this, and a fixed value obtained in advance is used. The target suction position Q * may be set using the correction amount α. For example, since the feeding accuracy of the feeder 22 is different for each feeder or manufacturer, a value acquired in advance as a value unique to the feeder may be determined as the correction amount α. Further, as described above, when the component position is obtained based on the position of the cavity C, the movement amount of the component P within the cavity C may be determined as the correction amount α.
 実施例の部品実装機10では、パーツカメラ90により吸着ノズル61に吸着されている部品Pの下面を撮像し、得られた画像に基づいて吸着ノズル61に対する部品Pの位置ズレ量を検出して実装位置を補正するものとしたが、部品Pの位置ズレ量を目標吸着位置Q*の補正にも用いるものとしてもよい。この場合、検出した部品Pの位置ズレ量をそのまま目標吸着位置Q*に反映させてもよいし、所定の係数(例えば0.5等)を乗じた上で目標吸着位置Q*に反映させてもよい。 In the component mounting machine 10 of the embodiment, the lower surface of the component P sucked by the suction nozzle 61 is imaged by the parts camera 90, and the amount of positional displacement of the component P with respect to the suction nozzle 61 is detected based on the obtained image. Although the mounting position is corrected, the positional deviation amount of the component P may be used for correcting the target suction position Q *. In this case, the detected positional deviation amount of the component P may be reflected in the target suction position Q * as it is, or after being multiplied by a predetermined coefficient (for example, 0.5) and reflected in the target suction position Q *. Also good.
 実施例の部品実装機10では、非初回吸着時処理において、次回吸着部品位置Q1と規定送り量Rと補正量αとに基づいて目標吸着位置Q*を設定するものとしたが、これに限定されるものではなく、部品サイズが比較的大きく厳密な補正が必要ない場合や、フィーダ22によるキャリアテープTの送り精度やフィーダ22の取り付け誤差等が十分に小さい場合には、補正量αを使用しないで目標吸着位置Q*を設定するものとしてもよい。なお、補正量αを使用しない場合、CPU101は、図8の部品実装処理でS102の処理とS104の処理(初回吸着時処理)を省略するものとすればよい。また、CPU101は、作業者の選択によって吸着する部品毎に補正量αを使用する場合と補正量αを使用しない場合とを切り替えるものとしてもよいし、生産データに含まれる部品サイズによって吸着する部品毎に補正量αを使用する場合と補正量αを使用しない場合とを切り替えるものとしてもよい。後者の場合、部品サイズが所定サイズ未満の場合には補正量αを使用し、所定サイズ以上の場合には補正量αを使用しないようにしてもよい。 In the component mounting machine 10 of the embodiment, the target suction position Q * is set based on the next suction component position Q1, the specified feed amount R, and the correction amount α in the non-first-time suction processing. The correction amount α is used when the component size is relatively large and strict correction is not necessary, or when the feeding accuracy of the carrier tape T by the feeder 22 and the attachment error of the feeder 22 are sufficiently small. Instead, the target suction position Q * may be set. When the correction amount α is not used, the CPU 101 may omit the processing of S102 and the processing of S104 (initial suction processing) in the component mounting process of FIG. Further, the CPU 101 may switch between using the correction amount α and not using the correction amount α for each component to be picked up by the operator's selection, or picking up the component according to the part size included in the production data. It is possible to switch between the case where the correction amount α is used and the case where the correction amount α is not used every time. In the latter case, the correction amount α may be used when the component size is less than the predetermined size, and the correction amount α may not be used when the component size is larger than the predetermined size.
 実施例の部品実装機10では、非初回吸着時処理において、次回吸着部品位置Q1に基づき設定される目標吸着位置Q*を、次回吸着部品を吸着する際の目標吸着位置として用いるものとしたが、これに限定されるものではなく、今回吸着部品を吸着する際の目標吸着位置として用いるものとしてもよい。この場合、今回吸着部品を吸着する前に、側面カメラ80で供給直前エリアを撮像し、得られた画像から次回吸着部品位置Q1を認識し、認識した次回吸着部品位置Q1に基づいて目標吸着位置Q*を設定した後、ヘッドユニット60の吸着位置A0を設定した目標吸着位置Q*の真上に移動させて、吸着ノズル61で今回吸着部品を吸着させるものとすればよい。具体的には、制御装置100のCPU101は、図10の非初回吸着時処理に代えて図16の非初回吸着時処理を実行する。即ち、CPU101は、まず、フィーダ22に対して1ピッチ分のテープ送りを指示する(S350)。続いて、CPU101は、キャリアテープTの供給直前エリアが側面カメラ80の撮像範囲内に収まるまでヘッドユニット60を移動させた後、側面カメラ80による撮像を行う(S352)。そして、CPU101は、S352で側面カメラ80の撮像により得られた画像(次回吸着部品画像)を処理して、次回吸着部品位置Q1を認識し(S354)、認識した次回吸着部品位置Q1を規定送り量Rと補正量αとに基づいてオフセットした位置を今回吸着部品の目標吸着位置Q*に設定する(S356)。目標吸着位置Q*を設定すると、CPU101は、ヘッドユニット60の吸着位置A0を目標吸着位置Q*の真上に移動させ(S358)、吸着直前位置A1にある吸着ノズル61を吸着位置A0に移動させながら、吸着ノズル61を下降させて(S360)、吸着ノズル61に今回吸着部品を吸着させる(S362)。 In the component mounting machine 10 of the embodiment, in the non-first-time suction processing, the target suction position Q * set based on the next suction component position Q1 is used as the target suction position when the next suction component is sucked. However, the present invention is not limited to this, and it may be used as a target suction position when sucking the suction component this time. In this case, before sucking the current suction part, the area immediately before supply is imaged by the side camera 80, the next suction part position Q1 is recognized from the obtained image, and the target suction position is based on the recognized next suction part position Q1. After setting Q *, the suction position A0 of the head unit 60 may be moved directly above the set target suction position Q *, and the suction nozzle 61 may suck the current suction component. Specifically, the CPU 101 of the control device 100 executes the non-first-time adsorption process of FIG. 16 instead of the non-first-time adsorption process of FIG. That is, the CPU 101 first instructs the feeder 22 to feed one pitch of tape (S350). Subsequently, the CPU 101 moves the head unit 60 until the area immediately before the supply of the carrier tape T is within the imaging range of the side camera 80, and then performs imaging with the side camera 80 (S352). Then, the CPU 101 processes the image (next suction component image) obtained by the imaging of the side camera 80 in S352, recognizes the next suction component position Q1 (S354), and sends the recognized next suction component position Q1 to the specified feed. The offset position based on the amount R and the correction amount α is set as the target suction position Q * of the current suction part (S356). When the target suction position Q * is set, the CPU 101 moves the suction position A0 of the head unit 60 to a position directly above the target suction position Q * (S358), and moves the suction nozzle 61 at the position A1 immediately before the suction to the suction position A0. Then, the suction nozzle 61 is lowered (S360), and the suction component is sucked by the suction nozzle 61 (S362).
 実施例の部品実装機10では、吸着時処理(初回吸着時処理,非初回吸着時処理)において、CPU101は、吸着ノズル61が部品を吸着した直後のタイミングで、側面カメラ80による次回吸着部品の撮像を行うものとしたが、これに限定されるものではなく、吸着ノズル61の下降中や、吸着ノズル61がその下降端で部品と接触している間等、供給直前エリアが側面カメラ80の撮像範囲内に含まれている間であれば、如何なるタイミングで撮像を行うものとしてもよい。 In the component mounting machine 10 according to the embodiment, in the processing at the time of suction (processing at the time of initial suction, processing at the time of non-first suction), the CPU 101 performs the timing of the next suction component by the side camera 80 at a timing immediately after the suction nozzle 61 sucks the component. However, the present invention is not limited to this, and the area immediately before the supply of the side camera 80 is not limited to this, for example, while the suction nozzle 61 is descending or while the suction nozzle 61 is in contact with the component at the lower end. As long as it is within the imaging range, imaging may be performed at any timing.
 実施例の部品実装機10では、吸着ノズル61に今回吸着部品を吸着する際に、キャリアテープTにおける部品供給エリアの1つ手前(テープ送り方向上流)の供給直前エリアを撮像するものとしたが、これに限定されるものではなく、部品供給エリアの2つ以上手前のエリアを撮像するものとしてもよい。例えば、部品供給エリアの2つ手前のエリアを撮像する場合、撮像により得られた画像に基づいて次々回に吸着する部品(次々回吸着部品)の位置である次々回吸着部品位置Q2を認識し、認識した次々回吸着部品位置Q2と2ピッチ分の規定送り量とに基づいて次々回吸着部品の目標吸着位置Q*を設定するものとすればよい。 In the component mounting machine 10 of the embodiment, when the suction component is sucked this time by the suction nozzle 61, the area immediately before the supply of the carrier tape T immediately before the component supply area (upstream in the tape feed direction) is imaged. However, the present invention is not limited to this, and two or more areas in front of the component supply area may be imaged. For example, when imaging the area immediately before the component supply area, the second-time suction component position Q2 that is the position of the next-time suction component (second-time suction component) is recognized and recognized based on the image obtained by the imaging. The target suction position Q * of the successive suction component may be set based on the successive suction component position Q2 and the specified feed amount for two pitches.
 実施例の部品実装機10では、吸着ノズル61の側面を撮像するための側面カメラ80を、キャリアテープT内の部品PやキャビティCを撮像するためのカメラに兼用するものとしたが、これに限定されるものではなく、基板Sの基準マークを撮像するためのマークカメラ92を、キャリアテープT内の部品PやキャビティCを撮像するためのカメラに兼用するものとしてもよいし、キャリアテープT内の部品PやキャビティCを撮像するためのカメラとして専用のカメラを用いるものとしてもよい。 In the component mounter 10 of the embodiment, the side camera 80 for imaging the side surface of the suction nozzle 61 is also used as a camera for imaging the component P and the cavity C in the carrier tape T. The mark camera 92 for imaging the reference mark of the substrate S may be used as a camera for imaging the component P or the cavity C in the carrier tape T, or the carrier tape T. A dedicated camera may be used as a camera for imaging the internal component P and the cavity C.
 実施例では、本発明を、ロータリヘッド64を有するヘッドユニット60に側面カメラ80が設けられたものに適用して説明したが、これに限られず、回転しないヘッドを有するヘッドユニットに側面カメラが設けられたものに適用するものとしてもよい。 In the embodiment, the present invention is applied to the head unit 60 having the rotary head 64 provided with the side camera 80. However, the present invention is not limited thereto, and the side unit is provided in the head unit having the head that does not rotate. It is good also as what applies to what was done.
 ここで、本実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係について説明する。即ち、ロータリヘッド64が「ヘッド」に相当し、XYロボット50が「移動手段」に相当し、側面カメラ80が「撮像手段」に相当し、図8の部品実装処理(図10または図15の初回吸着時処理,図11または図16の非初回吸着時処理)を実行する制御装置100のCPU101が「制御手段」に相当する。 Here, the correspondence between the main elements of the present embodiment and the main elements of the invention described in the disclosure section of the invention will be described. That is, the rotary head 64 corresponds to the “head”, the XY robot 50 corresponds to the “moving means”, the side camera 80 corresponds to the “imaging means”, and the component mounting process of FIG. 8 (FIG. 10 or FIG. 15). The CPU 101 of the control device 100 that executes the process at the time of initial suction and the process at the time of non-first-time suction in FIG. 11 or FIG.
 なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 In addition, this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
 本発明は、部品実装機の製造産業などに利用可能である。 The present invention can be used in the component mounter manufacturing industry.
 1 部品実装システム、10 部品実装装置、12 筐体、14 フィーダ台、20 部品供給装置、22 テープフィーダ、22a リール、30 基板搬送装置、32 ベルトコンベア装置、40 バックアップ装置、50 XYロボット、52,56 ガイドレール、54 X軸スライダ、55 X軸アクチュエータ、58 Y軸スライダ、59 Y軸アクチュエータ、60 ヘッドユニット、61 吸着ノズル、62 ノズルホルダ、62a 上端部、62b フランジ部、64 ロータリヘッド、64a 反射体、65 スプリング(コイルスプリング)、66 R軸アクチュエータ、67 回転軸、68 駆動モータ、69 Q軸アクチュエータ、70 Z軸アクチュエータ、72 ボールネジナット、74 ネジ軸、76 Z軸スライダ、77 レバー部、78 駆動モータ、79 電磁弁、80 側面カメラ、82 カメラ本体、82 撮像素子、84,84B 光学系、86a 左入射口、86b 右入射口、86c 上入射口、86d カメラ接続口、87 発光体、88a~88g ミラー、90 パーツカメラ、92 マークカメラ、100 制御装置、101,111 CPU、102,112 ROM、103,113 HDD、104,114 RAM、105,115 入出力インタフェース、106,116 バス、110 管理装置、117 入力デバイス、118 ディスプレイ、A0 実装位置、A1 実装直前位置、A2 実装直後位置、P 部品、S 基板。 1 component mounting system, 10 component mounting device, 12 housing, 14 feeder stand, 20 component supply device, 22 tape feeder, 22a reel, 30 substrate transport device, 32 belt conveyor device, 40 backup device, 50 XY robot, 52, 56 guide rail, 54 X-axis slider, 55 X-axis actuator, 58 Y-axis slider, 59 Y-axis actuator, 60 head unit, 61 suction nozzle, 62 nozzle holder, 62a upper end, 62b flange, 64 rotary head, 64a reflection Body, 65 spring (coil spring), 66 R-axis actuator, 67 rotating shaft, 68 drive motor, 69 Q-axis actuator, 70 Z-axis actuator, 72 ball screw nut, 74 screw shaft, 76 Axis slider, 77 lever part, 78 drive motor, 79 solenoid valve, 80 side camera, 82 camera body, 82 image sensor, 84, 84B optical system, 86a left entrance, 86b right entrance, 86c top entrance, 86d camera Connection port, 87 light emitter, 88a-88g mirror, 90 parts camera, 92 mark camera, 100 control device, 101, 111 CPU, 102, 112 ROM, 103, 113 HDD, 104, 114 RAM, 105, 115 I / O interface 106, 116 bus, 110 management device, 117 input device, 118 display, A0 mounting position, A1 mounting position, A2 mounting position, P component, S board.

Claims (8)

  1.  部品が収容された凹部が所定間隔毎に形成されたテープを所定送り量ずつ送ることで部品を供給する部品供給装置が設けられ、該部品供給装置により供給された部品を保持して基板に実装する部品実装機であって、
     前記部品を保持する保持部材を有するヘッドと、
     前記ヘッドを移動させる移動手段と、
     前記移動手段により前記ヘッドと共に移動可能であり、前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに、前記保持部材で保持可能な部品よりも前記テープの送り方向上流にある後に保持される部品が収容された凹部の位置が撮像範囲内となるよう配置された撮像手段と、
     前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記後に保持される部品の位置または該部品が収容された凹部の位置を認識し、該認識した位置を前記所定送り量に基づいて補正することで目標保持位置を決定し、前記決定した目標保持位置で前記保持部材に部品が保持されるよう前記ヘッドと前記移動手段とを制御する制御手段と、
     を備えることを特徴とする部品実装機。
    A component supply device is provided to supply a component by feeding a tape with recesses containing the components formed at predetermined intervals by a predetermined feed amount, and the component supplied by the component supply device is held and mounted on the substrate. A component mounting machine that
    A head having a holding member for holding the component;
    Moving means for moving the head;
    It is movable with the head by the moving means, and when the head is in a position where the component can be held by the holding member, the head is held after being upstream of the component that can be held by the holding member. Imaging means arranged so that the position of the recess in which the component to be stored is within the imaging range;
    The position of the later held component that was within the imaging range based on the image captured by the imaging means when the head is in a position where the component can be held by the holding member, or the component was accommodated Recognizing the position of the recess, correcting the recognized position based on the predetermined feed amount, determining a target holding position, and holding the component on the holding member at the determined target holding position, Control means for controlling the moving means;
    A component mounting machine comprising:
  2.  請求項1記載の部品実装機であって、
     前記後に保持される部品は、次回保持される部品である
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 1,
    The component mounted machine is characterized in that the component to be held later is a component to be held next time.
  3.  請求項2記載の部品実装機であって、
     前記制御手段は、前記保持部材に部品が保持される際に前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記次回保持される部品の位置または該部品が収容された凹部の位置を認識し、該認識した位置を前記所定送り量に基づいて補正することで前記次回保持される部品の目標保持位置を決定し、前記テープが前記所定量送られたときに前記決定した目標保持位置で前記保持部材に前記部品が保持されるよう前記ヘッドと前記移動手段とを制御する
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 2,
    The control means includes a position of the part to be held next time within the imaging range based on an image taken by the imaging means when the part is held by the holding member, or a recess in which the part is accommodated. Is determined based on the predetermined feed amount to determine the target holding position of the component to be held next time, and the determined position is determined when the tape is fed by the predetermined amount. The component mounting machine, wherein the head and the moving means are controlled so that the component is held by the holding member at a target holding position.
  4.  請求項3記載の部品実装機であって、
     前記制御手段は、前記テープが前記所定送り量送られたときに前記決定した目標保持位置で部品が保持されるよう前記ヘッドと前記移動手段とを制御する保持制御と、該保持制御により前記目標保持位置で部品が保持される際に前記撮像範囲で撮像が行われるよう前記撮像手段を制御する撮像制御と、該撮像制御により撮像された画像に基づいて次回保持される部品の前記目標保持位置を決定する目標保持位置決定処理とを繰り返し実行する
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 3,
    The control means controls the head and the moving means so that the component is held at the determined target holding position when the tape is fed by the predetermined feed amount, and the target is controlled by the holding control. Imaging control for controlling the imaging means so that imaging is performed in the imaging range when the component is held at the holding position, and the target holding position of the component held next time based on the image captured by the imaging control A component mounter characterized by repeatedly executing a target holding position determining process for determining the position.
  5.  請求項1ないし4いずれか1項に記載の部品実装機であって、
     前記制御手段は、前記認識した位置を前記所定送り量と所定補正量とに基づいて補正して前記目標保持位置を決定する
     ことを特徴とする部品実装機。
    The component mounting machine according to any one of claims 1 to 4,
    The component mounting machine, wherein the control unit determines the target holding position by correcting the recognized position based on the predetermined feed amount and a predetermined correction amount.
  6.  請求項5記載の部品実装機であって、
     前記制御手段は、前記撮像手段の撮像範囲が、次回保持される部品が収容された凹部の位置となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記次回保持される部品の位置または該部品が収容された凹部の位置を第1位置として認識し、前記次回保持される部品が今回保持される部品として前記テープによって送られる際に、前記撮像手段の撮像範囲が、前記今回保持される部品が収容された凹部の位置となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記撮像範囲内にあった前記今回保持される部品の位置または該部品が収容された凹部の位置を第2位置として認識し、認識した前記第1位置と前記第2位置とに基づいて前記所定補正量を算出する
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 5,
    The control means moves the head so that an imaging range of the imaging means is a position of a recess in which a component to be held next time is accommodated, and then the moving means and the imaging so that imaging is performed by the imaging means. Controlling the means, recognizing the position of the part to be held next time or the position of the concave part in which the part is contained within the imaging range based on the image captured by the imaging means as the first position, When the component to be held next time is sent by the tape as the component to be held this time, the imaging range of the imaging means is moved to the position of the recess in which the component to be held this time is accommodated. The moving means and the imaging means are controlled so that imaging is performed by the imaging means, and the imaging range is within the imaging range based on the image captured by the imaging means The position of the component held once or the position of the recess in which the component is accommodated is recognized as the second position, and the predetermined correction amount is calculated based on the recognized first position and second position. A component mounting machine.
  7.  請求項5記載の部品実装機であって、
     前記撮像手段は、前記ヘッドが前記保持部材で部品を保持可能な位置にあるときに、今回保持される部品が収容された凹部の位置と、次回保持される部品が収容された凹部の位置と、を撮像可能であり、
     前記制御手段は、前記撮像手段が、前記今回保持される部品が収容された凹部の位置と前記次回保持される部品が収容された凹部の位置とを撮像可能となるよう前記ヘッドを移動させてから前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記次回保持される部品の位置または該部品が収容された凹部の位置を第1位置として認識し、前記次回保持される部品が今回保持される部品として前記テープによって送られたときに前記撮像手段により撮像が行われるよう前記移動手段と前記撮像手段を制御し、前記撮像手段により撮像された画像に基づいて前記今回保持される部品の位置または該部品が収容された凹部の位置を第2位置として認識し、認識した前記第1位置と前記第2位置とに基づいて前記所定補正量を算出する
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 5,
    When the head is in a position where the head can hold the component with the holding member, the position of the concave portion in which the component to be held this time is accommodated and the position of the concave portion in which the component to be held next time is accommodated , Can be imaged,
    The control means moves the head so that the imaging means can take an image of the position of the recess in which the component held this time is accommodated and the position of the recess in which the component to be held next time is accommodated. The moving unit and the imaging unit are controlled so that the imaging unit performs imaging from the position of the component held next time based on the image captured by the imaging unit or the position of the recess in which the component is accommodated Is controlled as the first position, and the moving unit and the imaging unit are controlled so that the imaging unit performs imaging when the component held next time is sent by the tape as the component held this time, Based on the image picked up by the image pickup means, the position of the component held this time or the position of the recess in which the component is stored is recognized as the second position, and the recognized first Mounter and calculates the predetermined correction amount based on the second position and location.
  8.  請求項6または7記載の部品実装機であって、
     前記制御手段は、前記テープから最初の部品を前記保持部材が保持する際に、前記所定補正量を算出する
     ことを特徴とする部品実装機。
    The component mounting machine according to claim 6 or 7,
    The component mounting machine, wherein the control means calculates the predetermined correction amount when the holding member holds the first component from the tape.
PCT/JP2015/059602 2015-03-27 2015-03-27 Component mounting device WO2016157287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/059602 WO2016157287A1 (en) 2015-03-27 2015-03-27 Component mounting device
JP2017508822A JP6673902B2 (en) 2015-03-27 2015-03-27 Component mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059602 WO2016157287A1 (en) 2015-03-27 2015-03-27 Component mounting device

Publications (1)

Publication Number Publication Date
WO2016157287A1 true WO2016157287A1 (en) 2016-10-06

Family

ID=57005294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059602 WO2016157287A1 (en) 2015-03-27 2015-03-27 Component mounting device

Country Status (2)

Country Link
JP (1) JP6673902B2 (en)
WO (1) WO2016157287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3334264A4 (en) * 2015-08-05 2018-08-01 Fuji Machine Mfg. Co., Ltd. Component mounting apparatus
CN110710343A (en) * 2017-06-06 2020-01-17 雅马哈发动机株式会社 Component mounting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005288A (en) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd Electronic component mounter and mounting method
JP2007012888A (en) * 2005-06-30 2007-01-18 Hitachi High-Tech Instruments Co Ltd Device for mounting electronic component
JP2007158050A (en) * 2005-12-06 2007-06-21 Matsushita Electric Ind Co Ltd Adjustment system of tape feeder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168894A (en) * 2001-11-30 2003-06-13 Yamaha Motor Co Ltd Surface-mounting machine
JP4425836B2 (en) * 2005-08-25 2010-03-03 パナソニック株式会社 Electronic component mounting method
CN104285508B (en) * 2012-04-27 2017-10-24 雅马哈发动机株式会社 Apparatus for mounting component
JP6059973B2 (en) * 2012-12-04 2017-01-11 ヤマハ発動機株式会社 Surface mounter and component supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005288A (en) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd Electronic component mounter and mounting method
JP2007012888A (en) * 2005-06-30 2007-01-18 Hitachi High-Tech Instruments Co Ltd Device for mounting electronic component
JP2007158050A (en) * 2005-12-06 2007-06-21 Matsushita Electric Ind Co Ltd Adjustment system of tape feeder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3334264A4 (en) * 2015-08-05 2018-08-01 Fuji Machine Mfg. Co., Ltd. Component mounting apparatus
CN110710343A (en) * 2017-06-06 2020-01-17 雅马哈发动机株式会社 Component mounting apparatus
CN110710343B (en) * 2017-06-06 2021-03-12 雅马哈发动机株式会社 Component mounting apparatus
US11477928B2 (en) 2017-06-06 2022-10-18 Yamaha Hatsudoki Kabushiki Kaisha Component mounting device

Also Published As

Publication number Publication date
JPWO2016157287A1 (en) 2018-01-18
JP6673902B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6462000B2 (en) Component mounter
JP6279708B2 (en) Component mounting device
JP7002831B2 (en) Parts mounting machine
WO2015166776A1 (en) Electronic component mounting apparatus
WO2016194136A1 (en) Component mounting device and suction position setting method
JP7213920B2 (en) Mounting machine
JP6673902B2 (en) Component mounting machine
CN109417869B (en) Component mounting machine
JP5988839B2 (en) Component mounter
JP2012248717A (en) Position recognition camera and position recognition device
JP6475165B2 (en) Mounting device
JP6853374B2 (en) Parts mounting machine
WO2016151797A1 (en) Mounting device and mounting method
JP6997069B2 (en) Parts mounting machine
JP5752401B2 (en) Component holding direction detection method
JP7117507B2 (en) Component mounting method and component mounting device
JP7256269B2 (en) Mounting machine and board-to-board work system
JP2005252007A (en) Electronic part mounting device
JP5860688B2 (en) Board work machine
JP2023041803A (en) Component mounting machine
WO2018158904A1 (en) Component mounting device and image processing method
JP2006093247A (en) Electronic part mounting device and nozzle return method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887442

Country of ref document: EP

Kind code of ref document: A1