WO2016155663A1 - 动力工具及其工况控制方法 - Google Patents

动力工具及其工况控制方法 Download PDF

Info

Publication number
WO2016155663A1
WO2016155663A1 PCT/CN2016/078318 CN2016078318W WO2016155663A1 WO 2016155663 A1 WO2016155663 A1 WO 2016155663A1 CN 2016078318 W CN2016078318 W CN 2016078318W WO 2016155663 A1 WO2016155663 A1 WO 2016155663A1
Authority
WO
WIPO (PCT)
Prior art keywords
output head
power tool
electrical signal
sensing
trigger
Prior art date
Application number
PCT/CN2016/078318
Other languages
English (en)
French (fr)
Inventor
毋宏兵
张伟
梁冰
张宝全
汪方勇
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2016155663A1 publication Critical patent/WO2016155663A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F3/00Associations of tools for different working operations with one portable power-drive means; Adapters therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the invention relates to the field of mechanical tools, in particular to a power tool and a working condition control method thereof.
  • the double-head power tool is widely used in machinery, construction and other fields. Because it includes two working heads, different functions can be realized with different working heads without replacing the body. For example, one working head realizes the drilling function, and the other work. The head is to implement the screwdriver function.
  • the dual-head power tools on the market fail to distinguish the different functions and working conditions of the two working heads. After the operator uses one of the working heads and then switches to another working head, the working condition of the working head needs to be manually adjusted to adapt to different working conditions of the two working heads, thereby reducing work efficiency and bringing the user a It is inconvenient.
  • a power tool includes a housing, a driving device disposed on the housing, and at least two output heads disposed relatively fixedly on the indexing body, the at least two output heads including a first output for rotating the tool a first output head and a second output head, wherein the first output head and the second output head are alternately coupled to the driving device by the indexing body in a swinging or inserting manner to be in a working position, the power tool further comprising a switching device, the switching device includes: a triggering member corresponding to the first outputting head and/or the second outputting head; and an inductive member moving relative to the triggering member for sensing the triggering member in a non-contact manner, And transmitting an electrical signal according to the sensing result; and controlling means for receiving the electrical signal and identifying an output head at the working position according to the electrical signal.
  • the control device can transmit different control signals to automatically and quickly cut the power tool equipped with the switching device. Different working modes are used to adapt different output heads.
  • control device sends a corresponding control signal to the driving device according to the electrical signal to control the power tool to be in different working modes.
  • the working mode comprises one of the first output head and the second output head performing a drilling mode.
  • the working mode comprises one of the first output head and the second output head executing a screwdriver mode.
  • the switching device further includes a torque regulator, and the control device sends a control signal to the driving device according to the preset torque of the torque regulator to control the first output head and the second output head.
  • the control device sends a control signal to the driving device according to the preset torque of the torque regulator to control the first output head and the second output head.
  • One of the torque outputs is a torque regulator
  • the torque regulator comprises a potentiometer or an encoder.
  • control device controls the driving device to perform deceleration or shutdown according to the state parameter of the driving device.
  • the state parameter includes at least one of current, voltage, rotational speed, and torque.
  • the sensing component is a sensor.
  • the senor is a linear Hall sensor.
  • the electrical signal is a voltage
  • the trigger member is a magnetic member.
  • the number of the triggering members is one
  • the triggering component is disposed corresponding to the first outputting head or the second outputting head
  • the control device determines, according to the electrical signal, whether the triggering component is located in the sensing component. Within the area, thereby identifying the position of the first output head and/or the second output head.
  • the number of the triggering members is two, the two triggering members are respectively disposed corresponding to the first outputting head and the second outputting head, and the control device determines the two according to the electrical signal transmitted by the sensing component. Whether one of the trigger members is located within the sensing region of the sensing member to identify the position of the first output head and/or the second output head.
  • the trigger member is a magnetic member
  • the sensing member is a linear Hall sensor. And detecting a change in the magnetic field strength of the magnetic member, and converting the change in the magnetic field strength into the electrical signal, the control device determining a position of the trigger member according to the electrical signal, thereby identifying the first The position of an output head and/or a second output head.
  • the triggering member includes a first magnetic member corresponding to the first output head and a second magnetic member corresponding to the second output head, and the first magnetic member and the second magnetic member
  • the sensing component is a Hall sensor for sensing the magnetic field strength of the first magnetic component and the magnetic field polarity or the magnetic field strength of the second magnetic component and the polarity of the magnetic field, and generating corresponding electricity Signaling to the control device, the control device determining a position of the first magnetic member and/or the second magnetic member relative to the sensing member according to the electrical signal, thereby identifying a first output head or a working position Two output headers.
  • the sensing component is a sensor
  • the control device comprises a main control board electrically connected to the sensor, the torque regulator and the driving device.
  • a working condition control method for a power tool comprising a housing, a driving device disposed on the housing, a trigger for controlling the driving device, and at least two output heads fixedly disposed on the indexing body,
  • the output head includes a first output head and a second output head for rotating the cutter, and the first output head and the second output head are alternately coupled to the drive by the index body in a swinging or inserting manner a device coupling, and a switching device, the switching device comprising: a triggering member corresponding to the first outputting head and/or the second outputting head; and an inductive member moving relative to the triggering member for non-contact sensing Deriving a trigger, and transmitting an electrical signal according to the sensing result; and controlling means for receiving the electrical signal and identifying an output head at the working position according to the electrical signal, wherein the operating condition control method comprises Take the following steps:
  • the sensing component sends an electrical signal according to the detection result
  • the control device identifies the first output head and/or the second output head according to the electrical signal
  • the control device transmits a control signal that controls the driving device to perform an operation mode corresponding to the first output head or the second output head.
  • the method further comprises the following steps:
  • the control device Before transmitting the control signal, the control device acquires the state parameter of the driving device and compares it with the preset parameter.
  • the electrical signal includes a first electrical signal indicating that the trigger is detected and a second electrical signal indicating that the trigger is not detected, and when the first electrical signal is received, indicating that the trigger is located at the sensing component Within the detection area; when the second electrical signal is received, it indicates that the trigger is located outside the detection area of the sensing element.
  • the triggering component includes a first triggering component and a second triggering component; when detecting the first triggering component, transmitting an electrical signal indicating that the first triggering component is detected; and when detecting the second triggering component, transmitting a representation An electrical signal of the second trigger is detected.
  • a hand-held tool includes a housing, a handle connecting the housing, a driving device disposed on the housing, and a first output head and a second output head for rotating the cutter relatively fixedly disposed on the indexing body, The first output head and the second output head are alternately coupled to the driving device by the indexing body in a swinging or inserting manner to be in a working position, wherein the power tool further includes a switching device.
  • the switching device includes:
  • a triggering component corresponding to the first output head and/or the second output head
  • An inductive member that moves relative to the trigger member for sensing the trigger member in a non-contact manner and transmitting an electrical signal according to the sensing result
  • a control device configured to receive the electrical signal and determine the electrical signal to identify an output head at a working position.
  • the sensing component is a sensor.
  • the senor is a linear Hall sensor.
  • the trigger member is a magnetic member.
  • FIG. 1 is a perspective view of a power tool according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the power tool of FIG. 1 in a front view direction.
  • FIG. 3 is a perspective view showing the partial structure of the indexing body and the switching device of the power tool shown in FIG. 2.
  • FIG. 4 is a view showing the operation of the switching device when the sensing member of the second embodiment corresponds to the N pole of the magnetic member Schematic diagram.
  • Fig. 5 is a line diagram showing the output voltage value when the inductive member shown in Fig. 4 senses the N pole of the magnetic member.
  • FIG. 6 is a schematic view showing the working principle of the switching device when the sensing member of the third embodiment corresponds to the S pole of the magnetic member.
  • Fig. 7 is a line diagram showing the output voltage value of the S pole of the inductive member shown in Fig. 6.
  • FIG. 8 is a schematic structural diagram of a switching apparatus according to an embodiment of the present invention.
  • Figure 9 is a flow chart showing the control of the working condition of the power tool of the present invention.
  • FIG. 10 is a flow chart of the working condition control corresponding to the two trigger members in FIG. 9.
  • Figure 11 is a flow chart showing the control of the corresponding one of the trigger members of Figure 9.
  • Figure 12 is a sub-flow diagram of the corresponding steps in Figure 9.
  • a power tool 100 in accordance with a preferred embodiment of the present invention, includes The body 10 includes an indexing body 30 provided with a first output head 32 and a second output head 34, and a switching device.
  • the first output head 32 and the second output head 34 are respectively used to receive a tool and can drive the rotation thereof; wherein the tool can be a work attachment for a working object such as a drill bit, a screwdriver bit, a sanding head, and the like.
  • the first output head 32 is provided with a first working shaft 322, the second output head 34 is provided with a second working shaft 342, and the first working shaft 322 and the second working shaft 342 are alternatively coupled with the output shaft 14. That is, when the first output head 32 is switched to the operating position, the first output shaft 322 is coupled to the output shaft 14; when the second output head 34 is switched to the operating position, the second output shaft 342 is coupled to the output shaft 14.
  • the power tool 100 of the present embodiment is a hand-held tool, and the body 10 includes a housing 10a, a handle 4 connecting the housing 10a, a driving device disposed in the housing 10a, an output shaft 14, and a driving device and an output.
  • the indexing body 30 is pivotally disposed relative to the body 10 about a fixed axis Y.
  • the first output head 32 and the second output head 34 are respectively disposed on opposite sides of the indexing body 30 and opposite to the pivot axis Y of the indexing body 30. Symmetrical settings.
  • the driving device of the embodiment adopts an electric motor 8 and is triggered to be activated by a trigger provided on the handle 4; the transmission device 6 is a planetary gear train; of course, the motor 8 can also be replaced by a driving method such as a steam moving or a hydraulic motor.
  • the power tool 100 further includes a switching control mechanism 330 for locking or releasing the indexing body 30 relative to the housing 10a.
  • a switching control mechanism 330 for locking or releasing the indexing body 30 relative to the housing 10a.
  • the switching control mechanism 330 locks the indexing body 30 to the housing 10a, the first output head 32 and the second One of the output heads 34 is in the working position.
  • the switching control mechanism 330 releases the locking of the indexing body 30, the indexing body 30 can drive the position adjustment of the first output head 32 and the second output head 34 relative to the housing 10a.
  • the indexing body 30 can rotate relative to the housing 10a about the pivot axis Y, so that the output heads 32, 34 can be in the working position and non- Switch between work positions.
  • One of the output heads 32, 34 is in an operational position that is axially coupled to the output shaft 14, that is, one of the output heads 32, 34 is in a position.
  • the other of the output heads 32, 34 is in an inoperative position that is axially angled with the output shaft 14, that is, the other of the output heads 32, 34 is in a non-positioned state.
  • the shift control mechanism 330 includes a clutch sleeve 12 that is movably disposed relative to the output shaft 14, and a lock plate 16.
  • the clutch sleeve 12 optionally couples the output shaft 14 with the first working shaft 322 or with the second working shaft 342.
  • the locking plate 16 can be selectively engaged or disengaged from the indexing body 30. When the locking plate 16 is engaged with the indexing body 30, the indexing body 30 is locked with respect to the housing 10a, and one of the first output head 32 and the second output head 34 is in operation.
  • the output shaft 14 is disengaged from the first working shaft 322 and the second working shaft 342, and the switching control mechanism 330 allows the indexing body 30 to move relative to the housing 10a to switch the first The position of an output head 32 and a second output head 34.
  • the specific control method and structure of the conversion control mechanism 330 can be referred to the technical solutions disclosed in the patent application documents of the applicants, and the patent application No. 201520061551.9 and 201620095447.6, which is not described herein.
  • the switching device includes a triggering member 52, a sensing member 54, and a control device for electrically connecting the motor 8 and the sensing member 54.
  • the sensing member 54 is fixedly disposed relative to the body 10, and the triggering member 52 is disposed at an edge of the indexing body 30 and opposite to the body 10.
  • the number of the triggering members 52 may be set to one or two as needed, and when the number of the triggering members 52 is two, corresponding to the first outputting head 32 and the second outputting head 34, respectively.
  • the trigger member 5 When the trigger member 5 is disposed one, it corresponds to the first output head 32 or the second output head 34.
  • the indexing body 30 rotates relative to the casing 10a, and the first output head 32 and the second output head 34 can be alternately switched to a preset working position.
  • Such an arrangement enables the trigger member 52 to change relative to the position of the sensing member 54 as the indexing body 30 rotates relative to the body 10, that is, the trigger member 52 is between the sensing region and the non-sensing region of the sensing member 54. Movement, whereby the sensing member 54 can identify the corresponding output heads 32, 34 based on the sensing results.
  • the rotation of the index body 30 relative to the body 10 can be replaced with the body 10 in a plug-in manner.
  • the index body 30 can be The first output head 32 or the second output head 34 is alternately switched to be connected to the output shaft 14 after being detached from the body 10 or separated from the body 10 and adjusted to the position of the index body 30.
  • Working position When the first output head 32 is in the working position, the first working shaft 322 is coupled to the output shaft 14, and the motor 8 drives the first output head. 32 work.
  • the second output head 34 is in the operating position, the second working shaft 342 is mated with the output shaft 14, and the motor 8 drives the second output head 34 to operate.
  • the trigger member 52 is a magnetic member having two numbers, which are a first magnetic member 522 and a second magnetic member 524, respectively.
  • the positions of the first magnetic member 522 and the second magnetic member 524 are respectively corresponding to the first output head 32 and the second output head 34, and the first magnetic member 522 and the second magnetic member 524 are fixedly disposed with respect to the index body 30.
  • the sensing member 54 is generally disposed in the housing 10a of the body 1 of the power tool 100.
  • the indexing body 30 drives the first magnetic member 522 and the second magnetic member 524 to move when the first magnetic member 522 or the second magnetic member 524 moves to In the sensing region of the sensing member 54, the sensing member 54 can sense the magnetic field strength of the first magnetic member 522 or the second magnetic member 524 in a non-contact manner, and according to the sensing result, whether the current sensing region is the first magnetic member 522 or the first Two magnetic members 524.
  • the first output head 32 is considered to be in the working position or in the in-position state
  • the second output head 34 is considered to be in the Working position or in place.
  • the first magnetic member 522 is opposite in polarity to the second magnetic member 524, and the sensing member 54 is a Hall sensor 540, preferably a linear Hall sensor.
  • One end of the first magnetic member 522 opposite to the Hall sensor 540 is an N pole, and one end of the second magnetic member 524 opposite to the Hall sensor 540 is an S pole.
  • the Hall sensor 540 is used to detect the magnetic field strength of the first magnetic member 522 or the second magnetic member 524. Since the polarities of the first magnetic member 522 and the second magnetic member 524 are different, the Hall sensor 540 can be generated according to the difference of the magnetic members. The different magnetic field strengths determine whether the first magnetic member 522 or the second magnetic member 524 is located within the sensing region.
  • the Hall sensor 540 When the first magnetic member 522 enters the sensing region, the Hall sensor 540 receives the magnetic field strength from the N pole of the first magnetic member 522 to the Hall sensor 540, and when the second magnetic member 524 enters the sensing region, the Hall sensor The 540 receives the magnetic field strength directed to the S pole of the second magnetic member 524; thus, the Hall sensor 540 can recognize whether the N pole or the S pole is located in the sensing region according to the magnitude and direction of the induced magnetic field strength. It is determined whether the first magnetic member 522 or the second magnetic member 524 is located in the sensing area, thereby identifying whether the first output head 32 or the second output head 34 is in the working position or in position. status.
  • the indexing body 30 rotates relative to the housing 10a to move the magnetic member 522a relative to the Hall sensor 540.
  • Hall sensor 540 converts the detected change in magnetic field strength into an electrical signal that is represented by a voltage value that is linear with the strength of the magnetic field.
  • the Hall sensor 540 Opposite the Hall sensor 540 is the N pole of the magnetic member 522a, wherein the horizontal axis represents the strength of the magnetic field induced by the Hall sensor 540, the magnitude and direction of the magnetic field strength, in units of G (Gauss, Gauss); The sensor 540 outputs a voltage in V (Volt, volts).
  • the magnetic member 522a moves to the point A on the side of the Hall sensor 540, the magnetic field strength sensed by the Hall sensor 540 approaches zero, and the Hall sensor 540 outputs a voltage value a.
  • the Hall sensor 540 senses the magnetic induction B', and the Hall sensor 540 outputs the voltage value b.
  • the Hall sensor 540 senses the magnetic field strength C' corresponding to the voltage value c.
  • the control device presets that the first output head 32 is in the working position or in the in-position state, the voltage range output by the Hall sensor 540 is between b and c, when the control device detects that the output voltage of the Hall sensor 540 is in the preset voltage range. In the meantime, the control device considers that the first output head 32 is in the in-position state, rather than the second output head 34 being in the in-position state. When the control device detects that the output voltage of the Hall sensor 540 is not within the preset range, then the second output head 34 is considered to be in the in-position state, rather than the first output head 32 being in the in-position state.
  • the control device issues a corresponding preset control signal according to the identified output head in the in-position state, and controls the motor 8 to execute the corresponding working mode.
  • the S pole of the magnetic member 524a corresponds to the Hall sensor 540.
  • the hall sensor 540 senses the magnetic induction B', and the hall sensor 540 outputs the voltage value e.
  • the Hall sensor 540 senses the magnetic field strength C', and the Hall sensor 540 outputs the voltage value f.
  • the control device presets that the first output head 32 is in the in-position state
  • the voltage range output by the Hall sensor 540 is between e and f
  • the control device considers that the first output head 32 is in the in-position state, rather than the second output head 34 being in the in-position state.
  • the control device detects that the output voltage of the Hall sensor 540 is not within the preset range, then the second output head 34 is considered to be in the in-position state, rather than the first output head 32 being in the in-position state.
  • the first output head 32 is defined as a working head that is affected by the torque regulator 80, which can be used to clamp the screwdriver tool 22 for screwing; the second output head 34 is defined as not subject to torque regulation.
  • the working head affected by the device 80 is used to hold the drilling tool 24 for drilling.
  • the control device recognizes the type of the output head in the in-position state, a control signal corresponding to the output head is issued, and the control motor 8 operates according to the preset parameters, so that the power tool 100 does not need manual adjustment, and should be able to perform differently quickly. Operating mode.
  • the switching device includes a torque regulator 80 that includes a manually operated code wheel 70 (see Figure 2) that is at least partially disposed outside of the housing 10a and that is manually operated by an operator.
  • the required torque value The torque adjuster 80 of the embodiment of the present invention is disposed on the handle 4, and the code wheel 70 is partially located outside the handle 4 for manual operation.
  • the control device of the embodiment of the present invention uses a main control board 56 for receiving an electrical signal transmitted by the sensing component 54.
  • the main control board 56 is electrically connected to the motor 8, the induction member 54, and the torque regulator 80.
  • the sensing member 54 is used to sense the trigger member 52 in a non-contact manner.
  • the sensing member 54 When the sensing member 54 senses that the trigger member 52 is in the preset sensing region, it is determined that the first output head 32 affected by the torque regulator 80 is in the in-position state. Conversely, when the sensing member 54 senses that the trigger member 52 is outside the preset sensing region, then The second output head 34, which is not affected by the torque regulator 80, is in the in-position state.
  • the main control board 56 recognizes that the first output head 32 affected by the torque regulator 80 is in the in-position state, and then acquires the torque. In the state of the regulator 80, the main control board 56 outputs a corresponding electrical signal to control the motor 8.
  • the control board 56 considers that the second output head 34 that is not affected by the torque regulator 80 is in the in-position state, and the main control board 56 is directly A corresponding electrical signal is output to control the motor 8.
  • the switching device can automatically recognize the first output head 32 or the second output head 34 in the in-position state and issue control signals corresponding to the first output head 32 and the second output head 34.
  • the setting adjustments suitable for different working conditions such as manually setting the output speed, torque, etc., are required when the different output heads 32, 34 are switched to the in-position state, and the safety hazard is prevented due to failure to adjust the working conditions in time.
  • the switching device can automatically recognize different output heads, and the operating mode control corresponding to different output heads is realized by the control device, thereby realizing the intelligent operation of the power tool 100.
  • the main control board 56 constantly detects at least one of operating parameters of the motor 8, such as voltage, current, and speed, during the control of the motor 8.
  • the control parameters of the motor 8 are adjusted from time to time, so that the work of the power tool in different working modes is more stable and safe.
  • the torque regulator 80 of the embodiment of the present invention may employ a potentiometer, or an encoder.
  • the sensing member 54 is a non-contact sensor.
  • a Hall sensor is used, preferably a linear Hall sensor, and the trigger member 52 can be a magnetic member.
  • the Hall sensor is used to sense the magnetic field strength of the magnetic member and the direction of the magnetic field, and can convert the change in the magnetic field strength into an electrical signal.
  • the triggering member 52 can be a light source and fixedly disposed relative to the indexing body.
  • the sensing member 54 is correspondingly disposed with a light sensor and is fixedly disposed in the housing 10a.
  • the light sensor is used for non-contact sensing. The intensity of the light changes and the change in light intensity can be converted into an electrical signal.
  • the electrical signal emitted by the sensing component 54 is expressed by a voltage or a current.
  • the power tool 100 of the embodiment of the present invention is a double-headed gun drill, and the first output head 32 Used as an electric drill with a drilling function.
  • the main control board 56 controls the power tool 100 to output a constant torque.
  • the second output head 34 is used as a screwdriver to perform screwing work.
  • the main control board 56 controls its output torque according to the preset torque of the torque regulator 80, that is, by operating the code wheel 70 of the torque adjustment device 80, the torque output of the screwdriver head can be Adjustment. Specifically, the operator can sequentially increase or decrease the current across the motor 8 by controlling the code wheel 70, thereby realizing the torque values corresponding to different gear positions when the screwdriver function is realized.
  • the working condition control method of the power tool 100 includes the following steps:
  • S120 Send a corresponding electrical signal according to the detected condition of the trigger 52.
  • S130 Receive the electrical signal to control the working mode of the power tool 100.
  • the method of detecting the triggering member 52 in step S110 is to detect the magnetic field strength
  • step S120 the detected magnetic field strength is converted into a corresponding voltage signal, which specifically includes the following states:
  • a voltage signal indicating that the trigger 52 is detected is transmitted.
  • a voltage signal indicating that the trigger 52 is not detected is transmitted, meaning that neither the first output head 32 nor the second output head 34 is in place.
  • S130 is specifically:
  • Step S130 may specifically include the following states:
  • a voltage signal indicating that the first magnetic member 522 is detected is transmitted, that is, the voltage is within the first predetermined voltage range, thereby determining that the first output head 32 is in position.
  • a voltage signal indicating that the second magnetic member 524 is detected is transmitted, that is, the voltage is within the second predetermined voltage range, thereby determining that the first output head 34 is in position.
  • the specific step is to determine whether the voltage signal indicating the strength of the magnetic field is within the first preset voltage range. If yes, it indicates that the first output head 32 is in position, and if not, whether the voltage signal is in the second preset voltage range. If yes, it means that the second output head 34 is in place, and if not, it means that neither of the output heads is in place.
  • FIG. 11 is a case where a trigger member 52 is disposed, and correspondingly: S130 is specifically:
  • the second output head 34 is in position to control the power tool 100 to operate in either the operational mode of the first output head 32 or the operational mode of the second output head 34.
  • the working condition control method of the power tool 100 can automatically detect the position of the triggering member 52, and send a corresponding electrical signal to the control device to control the current of the whole machine, thereby controlling the working condition of the power tool 100, and realizing corresponding output heads. Automatic switching of different working modes.
  • the power tool 100 can also implement the following modes of operation: including the first output head 32 or the second output head 34 outputting an impact wrench function, a hammer drill function, and the like.
  • the sensing member 54 is detecting the triggering member 52 from time to time, and the main control panel 56 is operated in the power-on state.
  • the main control panel 56 determines whether the triggering member 52 is in the sensing component according to the electrical signal generated by the sensing component 54. In the sensing region of 54, thus defaulting, i.e., identifying whether the first output head 32 or the second output head 34 is already in position, regardless of whether the output shaft 14 and the working shafts 322, 342 are mated to a position.
  • the main control board 56 When the main control board 56 recognizes that the second output head 34 is in the in-position state, that is, when the power tool is in the drilling mode, the main control board 56 acquires the preset parameters of the second output head 34, and controls the motor 8 to be preset.
  • the parameter operation that is, the control power tool 100 operates in the drilling mode; however, the actual operation of the motor 8 is constantly changed due to the influence of the external working condition, and therefore, the main control 56 collects the horse from time to time.
  • the actual operating parameters of up to 8 are compared with the preset parameters, and the motor 8 is continuously updated and a control signal is issued.
  • the main control board 56 When the main control board 56 recognizes that the first output head 32 is in the in-position state, that is, when the power tool is in the screwdriver mode, the main control board 56 acquires the preset parameters of the first output head 32, and acquires the torque adjustment.
  • the controller 80 parameters control the power tool 100 to operate in the screwdriver mode; similarly, the main control 56 will collect the actual operating parameters of the motor 8 from time to time, compare it with the preset parameters, continuously update and issue a control signal to control the motor 8.
  • the first output head 32 and the second output head 34 are in the process of switching the working position as long as the first working shaft 322 corresponding to the first output head 32 is coupled to the output shaft 14 or corresponds to the second working axis of the second output head 34.
  • the 324 is coupled to the output shaft 14.
  • the main control 56 can recognize the output head in the working position or in the in-position state, thereby controlling the output head to perform the corresponding working mode.
  • the power tool may be provided with a third output head, a fourth output head, or more; for those skilled in the art, a different number of outputs are added based on the technical solution of the present invention.
  • the head also belongs to the technical solution claimed by the present invention.
  • the switching device of the embodiment recognizes that the first output head 32 is located in the sensing area, that is, it is considered to be in the in-position state.
  • the default current output head is in the screwdriver operation mode, and the main control board 56 is housed in the first output head 32.
  • the screwdriver tool 22 is detected and controlled during the working process.
  • the power tool 100 realizes automatic deceleration or shutdown, thereby avoiding
  • the screw driven by the screwdriver tool 22 further passes the position after reaching the predetermined position, so that the screws of different specifications can be smoothly leveled on the work surface.
  • the screwdriver tool 22 referred to herein does not limit its specifications and types.
  • the motor 8 of the power tool 100 is used to drive the first output head 32 to have a rotational speed; the power tool 100 is provided with a sensor for measuring a parameter indicating the load of the first working shaft 322, and the control device is configured to obtain the The second derivative or higher derivative of the parameter versus time; the corresponding control signal is generated according to the second derivative or the higher derivative to change the rotational speed of the motor.
  • the main control board 56 is configured to measure the current flowing through the motor 8, and detect a pulse signal on a curve of a second derivative or a high-order derivative of the current versus time, thereby generating a control signal to change the rotation of the motor 8. speed.
  • the sensing element 54 measures the current during successive time intervals, wherein the main control board 56 is configured to determine a first derivative of current versus time in each time interval; to compare a first derivative of two consecutive time intervals; and if two The first derivative of consecutive time intervals is different, that is, a control signal is generated.
  • the main control board 56 is pre-set with a threshold, and the control signal is generated only when the second derivative or the high order derivative is positive and the value is greater than a preset threshold.
  • the control signal is used to set the rotational speed of the second output head 32 to a low speed level or zero, and the control signal is generated immediately or after a predetermined delay time.
  • the first output head 32 in the screwdriver function automatically ensures that the screw driven by the screwdriver bit reaches the predetermined position and the screw does not further pass the predetermined position.
  • the switching device 50 recognizes that the current working mode of the power tool 100 is the screwdriver function
  • the technical solution disclosed by the applicant or other prior art can be selected to achieve automatic deceleration. Or the shutdown function, these are within the scope of protection of the present invention.

Abstract

一种动力工具(100),包括第一和第二输出头(32,34),以及切换装置,切换装置包括:触发件(52),对应第一和/或第二输出头设置;感应件(54),与触发件相对运动,用于非接触地感应触发件并发出电信号;以及控制装置,用于接收电信号,并根据电信号识别处于工作位置的输出头,该动力工具能快速且切换不同的工况以适应不同的输出头。还公开了一种控制动力工具的工况的方法。

Description

动力工具及其工况控制方法 技术领域
本发明涉及机械工具领域,特别是涉及一种动力工具及其工况控制方法。
背景技术
双头动力工具广泛应用于机械、建筑等领域,由于其包括两个工作头,因此无需更换机身即可用不同的工作头实现不同的功能,例如,一个工作头实现钻进功能,另一个工作头是实现螺丝批功能。
目前,市面上的双头动力工具未能区分两个工作头不同的功能和工况。操作者使用其中一个工作头之后切换至另一个工作头后,还需手动调节该工作头的工况,以适应两个工作头的不同工况要求,因此降低了工作效率,给使用者带来了不便。
发明内容
基于此,有必要针对无法快速切换动力工具的工作头工况问题,提供一种能快速切换工作头工况的动力工具及其工况控制方法。
一种动力工具,包括壳体,设置于壳体的驱动装置,以及至少两个相对固定地设置在转位体上的输出头,所述至少两个输出头包括用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接从而处于工作位置,所述动力工具还包括切换装置,所述切换装置包括:触发件,对应所述第一输出头和/或第二输出头设置;感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及控制装置,用于接收所述电信号,并根据所述电信号识别处于工作位置的输出头。
本发明的切换装置更换第一输出头或第二输出头后,控制装置可发送不同的控制信号,使装有该切换装置的动力工具自动且快速地切 换不同的工作模式以适配不同的输出头。
优选的,所述控制装置根据所述电信号发送相应的控制信号至驱动装置,以控制所述动力工具处于不同的工作模式。
优选的,所述工作模式包括所述第一输出头和第二输出头其中之一执行钻进模式。
优选的,所述工作模式包括所述第一输出头和第二输出头其中之一执行螺丝批模式。
优选的,所述切换装置还包括转矩调节器,所述控制装置根据所述转矩调节器的预设扭矩发送控制信号至驱动装置,以控制所述第一输出头和第二输出头其中之一的扭矩输出。
优选的,所述转矩调节器包括电位器或者编码器。
优选的,所述控制装置根据驱动装置的状态参数,控制驱动装置执行减速或停机。
优选的,所述状态参数包括电流、电压、转速、扭矩中的至少一个。
优选的,所述感应件为传感器。
优选的,所述传感器为线性霍尔传感器。
优选的,所述电信号为电压。
优选的,所述触发件为磁性件。
优选的,所述触发件的数量为一个,所述触发件对应第一输出头或第二输出头设置,所述控制装置根据所述电信号判断所述触发件是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
优选的,所述触发件的数量为两个,所述两个触发件分别对应第一输出头和第二输出头设置,所述控制装置根据所述感应件传来的电信号判断所述两个触发件中的一个是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
优选的,所述触发件为磁性件,所述感应件为线性霍尔传感器, 用于检测所述磁性件的磁场强度的变化,并将所述磁场强度的变化转化为所述电信号,所述控制装置根据所述电信号判断所述触发件的位置,从而识别所述第一输出头和/或及第二输出头的位置。
优选的,所述触发件包括与所述第一输出头对应的第一磁性件及与所述第二输出头对应的第二磁性件,所述第一磁性件与所述第二磁性件的极性布置相反,所述感应件为霍尔传感器,用于感应所述第一磁性件的磁场强度以及磁场极性或所述第二磁性件的磁场强度以及磁场极性,并产生对应的电信号至所述控制装置,所述控制装置根据所述电信号判断所述第一磁性件和/或所述第二磁性件相对感应件的位置,从而识别处于工作位置的第一输出头或第二输出头。
优选的,所述感应件为传感器,所述控制装置包括与传感器、转矩调节器以及驱动装置电性连接的主控板。
一种动力工具的工况控制方法,所述动力工具包括壳体,设置于壳体的驱动装置,用于控制驱动装置的扳机,至少两个相对固定地设置在转位体上的输出头,所述输出头包括用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接,以及切换装置,所述切换装置包括:触发件,对应所述第一输出头和/或第二输出头设置;感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及控制装置,用于接收所述电信号,并根据所述电信号识别出处于工作位置的输出头,其特征在于,所述工况控制方法包括以如下步骤:
启动驱动装置;
感应件根据检测结果发送电信号;
控制装置根据所述电信号识别第一输出头和/或第二输出头;
控制装置发送控制信号,控制驱动装置执行与第一输出头或第二输出头对应的工作模式。
优选的,还包括以下步骤:
在发送控制信号之前,控制装置获取驱动装置的状态参数,并与预设参数作比较。
优选的,所述电信号包括表示检测到所述触发件的第一电信号以及表示未检测到所述触发件的第二电信号,当接收到第一电信号,表示触发件位于感应件的检测区域内;当接收到第二电信号,表示触发件位于感应件的检测区域外。
优选的,所述触发件包括第一触发件和第二触发件;当检测到第一触发件,发送表示检测到所述第一触发件的电信号;当检测到第二触发件,发送表示检测到所述第二触发件的电信号。
一种手持式工具,包括壳体,连接壳体的手柄,设置于壳体的驱动装置,以及相对固定地设置在转位体上的用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接从而处于工作位置,其特征在于:所述动力工具还包括切换装置,所述切换装置包括:
触发件,对应所述第一输出头和/或第二输出头设置;
感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及
控制装置,用于接收所述电信号,并对所述电信号进行判断从而识别处于工作位置的输出头。
优选的,所述感应件为传感器。
优选的,所述传感器为线性霍尔传感器。
优选的,所述触发件为磁性件。
附图说明
图1为一实施方式的动力工具的立体示意图。
图2为图1所示的动力工具的主视方向的剖视示意图。
图3为图2所示的动力工具的转位体及切换装置局部结构的立体示意图。
图4为第二实施例感应件与磁性件N极对应时切换装置的工作 原理示意图。
图5为图4所示的感应件感应磁性件N极时输出电压值的折线图。
图6为第三实施例感应件与磁性件S极对应时切换装置的工作原理示意图。
图7为图6所示的感应件感应磁性件S极的输出电压值的折线图。
图8为本发明实施例切换装置结构示意图。
图9为本发明所示动力工具的工况控制流程图。
图10为图9中对应两个触发件的工况控制流程图。
图11为图9中对应一个触发件的工况控制流程图。
图12为图9中对应步骤的子流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1、图2所示,本发明较佳实施例的一种动力工具100,包 括机身10、设置有第一输出头32、第二输出头34的转位体30,以及切换装置。其中第一输出头32、第二输出头34分别各用于接收一个刀具并能带动其旋转;其中刀具可以是钻头、螺丝批头、磨砂头等用于对加工对象进行作业的工作附件。第一输出头32设置有第一工作轴322,第二输出头34设置有第二工作轴342,并且第一工作轴322、第二工作轴342可择一地与输出轴14联接。也就是说,当第一输出头32切换至工作位置时,第一输出轴322与输出轴14联接;当第二输出头34切换至工作位置时,第二输出轴342与输出轴14联接。
本实施例的动力工具100是一种手持式工具,机身10包括壳体10a,连接壳体10a的手柄4,设置于壳体10a内的驱动装置、输出轴14、以及位于驱动装置与输出轴14之间的传动装置6,传动装置6用于将驱动装置的旋转运动传递至输出轴14。转位体30相对机身10绕一固定轴线Y枢转设置,第一输出头32与第二输出头34分别设于转位体30两侧,并相对于转位体30的枢转轴线Y对称设置。本实施例的驱动装置采用电动马达8,通过设置于手柄4的扳机触发启动;传动装置6是行星齿轮系;当然马达8也可以采用汽动、液压马达等驱动方式替换。
动力工具100还包括转换控制机构330,用于将转位体30相对壳体10a进行锁定或者释放,当转换控制机构330将转位体30锁定于壳体10a,第一输出头32和第二输出头34其中之一处于工作位置,当转换控制机构330释放对转位体30的锁定,转位体30可带动第一输出头32和第二输出头34相对壳体10a进行位置调节。本实施例中,只有当转换控制机构330解除了对转位体30的锁定,转位体30才能绕枢转轴线Y相对壳体10a转动,从而使输出头32、34可以在工作位置和非工作位置之间转换。输出头32、34之一处于与输出轴14轴向联接的工作位置时,也就是说,输出头32、34之一处于就位状态。输出头32、34之另一个处于与输出轴14轴向呈角度的非工作位置,也就是说,输出头32、34之另一个处于非就位状态。
转换控制机构330包括相对输出轴14活动设置的离合套12、以及锁定板16。其中离合套12可选择地将输出轴14与第一工作轴322或者与第二工作轴342联接。锁定板16可选择与转位体30啮合或者分离,锁定板16与转位体30啮合时,转位体30相对壳体10a锁定,第一输出头32、第二输出头34之一处于工作位置;当锁定板16与转位体30分离,输出轴14与第一工作轴322、第二工作轴342脱开联接,转换控制机构330允许转位体30相对壳体10a运动,以切换第一输出头32、第二输出头34的位置。转换控制机构330的具体控制方式及结构可借鉴本申请人在专利申请号为201520061551.9及201620095447.6的专利申请文件中揭示的技术方案,本发明不作赘述。
切换装置包括触发件52、感应件54,以及电性连接马达8与感应件54的控制装置。感应件54相对机身10固定的设置,触发件52设于转位体30边缘且与机身10相对的位置。触发件52数量可根据需要设置一个或二个,当触发件52为二个时,分别与第一输出头32和第二输出头34对应。
当触发件5设置一个时,与第一输出头32或第二输出头34对应。转位体30相对机壳10a旋转,能将第一输出头32、第二输出头34交替地切换至预设的工作位置。这样的设置能使触发件52随转位体30相对于机身10转动时,相对感应件54的位置产生变化,也就是说,触发件52在感应件54的感应区域和非感应区域之间运动,从而感应件54能根据感应结果识别相应的输出头32、34。
转位体30相对机身10旋转可替换成以插换的方式与机身10相连接,当需要将第一输出头32、第二输出头34切换至工作位置时,可将转位体30从机身10上拆卸或与机身10分离,调整好转位体30位置后与机身10配接固定,从而使第一输出头32或第二输出头34交替地切换至与输出轴14连接的工作位置。当第一输出头32处于工作位置,第一工作轴322与输出轴14配接,马达8驱动第一输出头 32工作。当第二输出头34处于工作位置,第二工作轴342与输出轴14配接,马达8驱动第二输出头34工作。
参照图3,本发明的第一实施例中触发件52采用磁性件,数量为两个,分别为第一磁性件522和第二磁性件524。第一磁性件522、第二磁性件524的位置设置分别与第一输出头32、第二输出头34相对应,第一磁性件522、第二磁性件524相对转位体30固定设置。感应件54一般设置于动力工具100的机身1壳体10a内,转位体30带动第一磁性件522和第二磁性件524运动,当第一磁性件522或第二磁性件524运动至感应件54的感应区域内,感应件54能非接触地感应到第一磁性件522或第二磁性件524的磁场强度,并根据感应结果识别出当前感应区内是第一磁性件522还是第二磁性件524。当识别出第一磁性件522处于感应区域内时,则认为第一输出头32处于工作位置或就位状态,当识别出第二磁性件524处于感应区域内,则认为第二输出头34处于工作位置或就位状态。
第一磁性件522与第二磁性件524的极性布置相反,感应件54为霍尔传感器540,优选采用线性霍尔传感器。第一磁性件522与霍尔传感器540相对的一端为N极,而第二磁性件524与霍尔传感器540相对的一端为S极。霍尔传感器540用于检测第一磁性件522或第二磁性件524的磁场强度,由于第一磁性件522与第二磁性件524的极性不同,霍尔传感器540可根据磁性件的不同产生的不同的磁场强度,从而判断位于感应区域内的是第一磁性件522还是第二磁性件524。当第一磁性件522进入感应区域时,霍尔传感器540会接收到从第一磁性件522的N极指向霍尔传感器540的磁场强度,当第二磁性件524进入感应区域时,霍尔传感器540会接收到指向第二磁性件524的S极的磁场强度;从而霍尔传感器540能根据感应到的磁场强度大小和方向,识别出位于感应区域内的是N极还是S极,也就能判断出是第一磁性件522、还是第二磁性件524位于感应区域,从而识别出是第一输出头32还是第二输出头34位于工作位置或就位 状态。
本发明的第二实施例中,触发件52只设置一个,转位体30相对壳体10a旋转带动磁性件522a相对霍尔传感器540运动。霍尔传感器540将检测到的磁场强度的变化转化为电信号,该电信号以电压值表示,该电压值与磁场强度呈线性关系。
参照图4、图5所示,将详述磁性件522a相对霍尔传感器540运动时切换装置的工作原理。与霍尔传感器540相对的是磁性件522a的N极,其中,横轴表示霍尔传感器540感应到的磁场强度,磁场强度有大小和方向,单位为G(Gauss,高斯);纵轴表示霍尔传感器540输出电压,单位为V(Volt,伏特)。
当磁性件522a运动到霍尔传感器540一侧的A点时,霍尔传感器540感应到的磁场强度趋近于零,霍尔传感器540输出电压值a。
当磁性件522a运动至B点时,霍尔传感器540感应到磁感应强度B’,霍尔传感器540输出电压值b。
当磁性件522a运动至C点时,霍尔传感器540感应到磁场强度C’,对应电压值c。
控制装置预设第一输出头32处于工作位置或就位状态时,霍尔传感器540输出的电压范围在b、c之间,当控制装置检测到霍尔传感器540的输出电压处于预设电压范围内时,控制装置则认为是第一输出头32处于就位状态,而不是第二输出头34处于就位状态。当控制装置检测到霍尔传感器540的输出电压不在预设范围内时,则认为第二输出头34是处于就位状态,而不是第一输出头32处于就位状态。
控制装置根据识别出的处于就位状态的输出头,发出相应的预设控制信号,控制马达8执行相应的工作模式。
本发明的第三实施例中,触发件52也只设置一个,与第一实施例不同的是磁性件524a的S极与霍尔传感器540对应。
参照图6、图7所示,将详述磁性件524a的S极与霍尔传感器540对应时,切换装置的工作原理。
当磁性件524a运动至霍尔传感器540一侧的A点时,霍尔传感器540感应到的磁场强度趋近于零,霍尔传感器540输出电压值a。
当磁性件524a运动至B点时,霍尔传感器540感应到磁感应强度B’,霍尔传感器540输出电压值e。
当磁性件524a运动至C点时,霍尔传感器540感应到磁场强度C’,霍尔传感器540输出电压值f。
控制装置预设第一输出头32处于就位状态时,霍尔传感器540输出的电压范围在e与f之间,当控制装置检测到霍尔传感器540的输出电压稳定地处于预设电压范围内时,控制装置则认为是第一输出头32处于就位状态,而不是第二输出头34处于就位状态。当控制装置检测到霍尔传感器540的输出电压不在预设范围内时,则认为第二输出头34是处于就位状态,而不是第一输出头32处于就位状态。
参照图3,将第一输出头32定义为受转矩调节器80影响的工作头,该工作头可用于夹持螺丝批刀具22进行拧螺钉;第二输出头34定义为不受转矩调节器80影响的工作头,该工作头用于夹持钻刀具24进行钻孔。只要控制装置识别出处于就位状态的输出头类型,就会发出对应该输出头的控制信号,控制马达8按预设参数运转,从而使得动力工具100不需手动调节,应能快速地执行不同工作模式。
参照图8所示,切换装置包括转矩调节器80,转矩调节器80包括手动操作的码盘70(参见图2),其至少部分设置于壳体10a外部、由操作者手动操作调节所需的扭矩值。本发明实施例的转矩调节器80设置于手柄4,码盘70部分位于手柄4外部用于手动操作。本发明实施例的控制装置采用的是主控板56,用于接收感应件54发送的电信号。其中,主控板56与马达8、感应件54、转矩调节器80电性连接。在转位体30相对机身10转动过程中,感应件54用于非接触地感应触发件52。当感应件54感应到触发件52处于预设的感应区域时,判断受转矩调节器80影响的第一输出头32处于就位状态。反之,当感应件54感应到触发件52处于预设的感应区域之外时,则判 断不受转矩调节器80影响的第二输出头34处于就位状态。
具体地,当霍尔传感器540感应到磁性件522a或524a处于预设的感应区域时,主控板56识别受转矩调节器80影响的第一输出头32处于就位状态,然后获取转矩调节器80的状态,主控板56输出相应的电信号控制马达8。当霍尔传感器540感应到磁性件522a或524a处于预设的感应区域之外时,控制板56认为不受转矩调节器80影响的第二输出头34处于就位状态,主控板56直接输出相应的电信号控制马达8。切换装置能自动地识别出处于就位状态的第一输出头32还是第二输出头34,并发出对应第一输出头32、第二输出头34的控制信号。省去了不同输出头32、34转换至就位状态时,所需要作的适合不同工况的设置调整,例如手动设置输出转速,扭矩等,并且防止因未能及时调整工况而形成安全隐患。切换装置能自动的识别不同的输出头,由控制装置实现对应不同输出头的工作模式控制,从而实现动力工具100的操作智能化。
主控板56在控制马达8的过程中,时时检测马达8的运行参数,例如电压、电流、速度中的至少一个。并时时调整马达8的控制参数,从而使得动力工具在不同工作模式下的工作更稳定、安全。
本发明实施例的转矩调节器80可以采用电位器,或者编码器。感应件54为非接触式传感器,本实施例采用的是霍尔传感器,优选为线性霍尔传感器,触发件52可以采用磁性件。霍尔传感器用于感应磁性件的磁场强度以及磁场方向,并能将磁场强度的变化转化成电信号。
另一种可替换的实施方式中,触发件52可以采用光源,相对转位体固定设置,感应件54对应地采用光传感器,固定地设置于壳体10a内,光传感器用于非接触地感应光的强度变化,并能将光强度的变化转化成电信号。
其中,感应件54发出的电信号以电压表达,也可以是电流。
本发明实施例的动力工具100为一种双头枪钻,第一输出头32 用作电钻,具有钻进功能。在电钻工作模式下,主控板56控制该动力工具100输出恒定扭矩。第二输出头34用作螺丝批,进行拧螺钉工作。在螺丝批工作模式下,主控板56根据转矩调节器80的预设扭矩控制其输出扭矩,也就是说,通过操作扭矩调节装置80的码盘70,螺丝批头的扭矩输出的大小可调节。具体地,操作者可通过控制码盘70使马达8两端的电流有序增加或减小,从而实现螺丝批功能时对应不同档位的扭矩值。
参照图9,动力工具100的工况控制方法,包括以如下步骤:
S110:检测触发件52。
S120:根据检测到的触发件52的情况发送相应的电信号。
S130:接收所述电信号,控制动力工具100的工作模式。
其中,步骤S110检测触发件52的方式为检测磁场强度;
步骤S120中将检测到的磁场强度转化为对应的电压信号,具体包括以下状态:
当检测到触发件52,发送表示检测到触发件52的电压信号。
当未检测到触发件52,发送表示未检测到触发件52的电压信号,即表示无论第一输出头32或第二输出头34都没有就位。
根据触发件52设置的数量不同,如图10中为设置两个触发件52的情形,对应地,S130具体为:
根据传来的电压信号判断触发件52是否位于感应区域内,即电压是否在预设的第一电压范围或者第二电压范围内,从而控制动力工具100对应以第一输出头32的工作模式或第二输出头34的工作模式工作;如果没有在预设的第一电压范围也没有在预设的第二电压范围内,即表示表示无论第一输出头32或第二输出头34都没有就位。
步骤S130具体可包括以下状态:
当检测到第一磁性件522,发送表示检测到所述第一磁性件522的电压信号,即电压在第一预设电压范围内,从而判定第一输出头32就位。
当检测到第二磁性件524,发送表示检测到所述第二磁性件524的电压信号,即电压在第二预设电压范围内,从而判定第一输出头34就位。
具体的步骤为判断表示磁场强度的电压信号是否处于第一预设电压范围内,如果是,则表示第一输出头32就位,如果不是,再检测该电压信号是否处于第二预设电压范围内,如果是,则表示第二输出头34就位,如果不是,则表示两个输出头都没有就位。
图11中为设置一个触发件52的情形,对应地:S130具体为:
根据传来的感应到的磁场强弱对应的电压信号判断触发件52是否位于感应区域内,即电压是否在预设的电压范围内,如果是,表示第一输出头32就位,如果不是表示第二输出头34就位,从而控制动力工具100对应以第一输出头32的工作模式或第二输出头34的工作模式工作。
上述动力工具100的工况控制方法,可自动检测触发件52的位置,发送相应的电信号至控制装置,以控制整机电流,从而控制该动力工具100的工况,实现对应不同输出头的不同工作模式的自动切换。
根据本发明的思想,该动力工具100还可实现以下工作模式:包括第一输出头32或第二输出头34输出冲击扳手功能、冲击钻功能等。
参照图12所示,感应件54时时在检测触发件52,而主控板56在开机状态下进行工作,主控板56根据感应件54感应后发出的电信号判断触发件52是否在感应件54的感应区域内,从而默认,也就是识别第一输出头32或者第二输出头34已处于就位状态,无论输出轴14与工作轴322、342是否配接到位。当主控板56识别出第二输出头34处于就位状态,也就是说,动力工具处于钻模式时,主控板56获取该第二输出头34的预设参数,控制马达8按预设参数运行,即控制动力工具100按钻模式进行工作;但马达8的实际运行是受到外部工况的影响而不断的产生变化的,因此,主控制56会时时收集马 达8的实际运行参数,并与预设参数作比较,不断的更新且发出控制信号控制马达8。
当主控板56识别出第一输出头32处于就位状态,也就是说,动力工具处于螺丝批模式时,主控板56获取该第一输出头32的预设参数,和获取转矩调节器80参数,控制动力工具100按螺丝批模式进行工作;同样的,主控制56会时时收集马达8的实际运行参数,并与预设参数作比较,不断的更新且发出控制信号控制马达8。
第一输出头32、第二输出头34在转换工作位置的过程中,只要对应第一输出头32的第一工作轴322与输出轴14联接,或者对应第二输出头34的第二工作轴324与输出轴14联接,只要动力工具一开机,主控制56即能识别出该处于工作位置或就位状态的输出头,从而控制该输出头执行相应的工作模式。
其它可选择地实施例技术方案中,动力工具可以设置第三个输出头,第四输出头,或者更多;对于本领域技术人员而言,在本发明技术方案的基础上增加不同数量的输出头,同样属于本发明要求保护的技术方案。
本实施例的切换装置识别出位于感应区域内的是第一输出头32,即认为其处于就位状态,默认当前输出头处于螺丝批工作模式,主控板56对收容于第一输出头32的螺丝批刀具22在工作过程进行检测和控制,当主控板56检测到马达8的状态参数达到预设条件或者螺钉到达一定深度时,动力工具100实现自动减速或者停机,由此可避免由螺丝批刀具22驱动的螺钉在到达预定位置后进一步越过该位置,从而可以很好的执行将不同规格的螺钉打平在工作面上。这里所指的螺丝批刀具22并不限制其规格和种类。
申请人于2008年2月13日申请的PCT专利申请WO2008101408A1,以及于2010年1月4日申请的PCT专利申请WO2010075820A1分别公开了用于实现自动减速或者停机的技术方案。本领域技术人员根据其记载结合本发明自动识别输出头并对该输 出头的工况进行控制的技术方案,对处于螺丝批工作模式下的第一输出头32实施拧螺钉深度的自动控制。
具体地,动力工具100的马达8用于驱动第一输出头32以使其具有一旋转速度;动力工具100设置有传感器用于测量表示第一工作轴322负载的参数,控制装置用于获得该参数对时间的二阶导数或高阶导数;根据二阶导数或高阶导数生成相应的控制信号以改变电机的旋转速度。
一种可实施方案中,主控板56用于测量流经马达8的电流,检测电流对时间求二阶导数或高阶导数的曲线上的脉冲信号,从而生成控制信号来改变马达8的旋转速度。
感应件54在连续的时间间隔内测量所述电流,其中主控板56用于在每一时间间隔内确定电流对时间的一阶导数;比较两个连续时间间隔的一阶导数;以及如果两个连续时间间隔的一阶导数不相同,即生成控制信号。
主控板56预设有阀值,控制信号只有在当二阶导数或高阶导数为正值且数值大于预设阀值时才生成。控制信号被用于将第二输出头32的旋转速度设定到一个低速水平或零,控制信号即时或在预定的延迟时间后产生。
由此,处于螺丝批功能的第一输出头32可自动确保由螺丝批头驱动的螺钉到达预定位置,并且该螺钉不会进一步越过该预定位置。对于本领域的普通技术人员来说,在切换装置50在识别出动力工具100的当前工作模式为螺丝批功能时,可以选择申请人已经公开或者其它现有技术中公开的技术方案来实现自动减速或者停机功能,这些都属于本发明的保护范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (28)

  1. 一种动力工具,包括壳体,设置于壳体的驱动装置,以及至少两个相对固定地设置在转位体上的输出头,所述至少两个输出头包括用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接从而处于工作位置,其特征在于:所述动力工具还包括切换装置,所述切换装置包括:
    触发件,对应所述第一输出头和/或第二输出头设置;
    感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及
    控制装置,用于接收所述电信号,并根据所述电信号识别处于工作位置的输出头。
  2. 根据权利要求1所述的动力工具,其特征在于,所述控制装置根据所述电信号发送相应的控制信号至驱动装置,以控制所述动力工具处于不同的工作模式。
  3. 根据权利要求2所述的动力工具,其特征在于,所述工作模式包括所述第一输出头和第二输出头其中之一执行钻进模式。
  4. 根据权利要求2所述的动力工具,其特征在于,所述工作模式包括所述第一输出头和第二输出头其中之一执行螺丝批模式。
  5. 根据权利要求4所述的动力工具,其特征在于,所述切换装置还包括转矩调节器,所述控制装置根据所述转矩调节器的预设扭矩发送控制信号至驱动装置,以控制所述第一输出头和第二输出头其中之一的扭矩输出。
  6. 根据权利要求5所述的动力工具,其特征在于,所述转矩调节器包括电位器或者编码器。
  7. 根据权利要求1所述的动力工具,其特征在于,所述控制装置根据驱动装置的状态参数,控制驱动装置执行减速或停机。
  8. 根据权利要求7所述的动力工具,其特征在于,所述状态参 数包括电流、电压、转速、扭矩中的至少一个。
  9. 根据权利要求1所述的动力工具,其特征在于,所述感应件为传感器。
  10. 根据权利要求9所述的动力工具,其特征在于,所述传感器为线性霍尔传感器。
  11. 根据权利要求1所述的动力工具,其特征在于,所述电信号为电压。
  12. 根据权利要求1所述的动力工具,其特征在于,所述触发件为磁性件。
  13. 根据权利要求1所述的动力工具,其特征在于,所述触发件的数量为一个,所述触发件对应第一输出头或第二输出头设置,所述控制装置根据所述电信号判断所述触发件是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
  14. 根据权利要求1所述的动力工具,其特征在于,所述触发件的数量为两个,所述两个触发件分别对应第一输出头和第二输出头设置,所述控制装置根据所述感应件传来的电信号判断所述两个触发件中的一个是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
  15. 根据权利要求13或14所述的动力工具,其特征在于,所述触发件为磁性件,所述感应件为线性霍尔传感器,用于检测所述磁性件的磁场强度的变化,并将所述磁场强度的变化转化为所述电信号,所述控制装置根据所述电信号判断所述触发件的位置,从而识别所述第一输出头和/或及第二输出头的位置。
  16. 根据权利要求1所述的动力工具,其特征在于,所述触发件包括与所述第一输出头对应的第一磁性件及与所述第二输出头对应的第二磁性件,所述第一磁性件与所述第二磁性件的极性布置相反,所述感应件为霍尔传感器,用于感应所述第一磁性件的磁场强度以及磁场极性或所述第二磁性件的磁场强度以及磁场极性,并产生对应的 电信号至所述控制装置,所述控制装置根据所述电信号判断所述第一磁性件和/或所述第二磁性件相对感应件的位置,从而识别处于工作位置的第一输出头或第二输出头。
  17. 根据权利要求5所述的动力工具,其特征在于,所述感应件为传感器,所述控制装置包括与传感器、转矩调节器以及驱动装置电性连接的主控板。
  18. 一种动力工具的工况控制方法,所述动力工具包括壳体,设置于壳体的驱动装置,用于控制驱动装置的扳机,至少两个相对固定地设置在转位体上的输出头,所述输出头包括用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接,以及切换装置,所述切换装置包括:触发件,对应所述第一输出头和/或第二输出头设置;感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及控制装置,用于接收所述电信号,并根据所述电信号识别出处于工作位置的输出头,其特征在于,所述工况控制方法包括以如下步骤:
    启动驱动装置;
    感应件根据检测结果发送电信号;
    控制装置根据所述电信号识别第一输出头和/或第二输出头;
    控制装置发送控制信号,控制驱动装置执行与第一输出头或第二输出头对应的工作模式。
  19. 根据权利要求18所述的动力工具的工况控制方法,其特征在于,还包括以下步骤:
    在发送控制信号之前,控制装置获取驱动装置的状态参数,并与预设参数作比较。
  20. 根据权利要求18所述的动力工具的工况控制方法,其特征在于,
    所述电信号包括表示检测到所述触发件的第一电信号以及表示 未检测到所述触发件的第二电信号,当接收到第一电信号,表示触发件位于感应件的检测区域内;当接收到第二电信号,表示触发件位于感应件的检测区域外。
  21. 根据权利要求18所述的动力工具的工况控制方法,其特征在于,所述触发件包括第一触发件和第二触发件;当检测到第一触发件,发送表示检测到所述第一触发件的电信号;当检测到第二触发件,发送表示检测到所述第二触发件的电信号。
  22. 一种手持式工具,包括壳体,连接壳体的手柄,设置于壳体的驱动装置,以及相对固定地设置在转位体上的用于旋转刀具的第一输出头及第二输出头,所述第一输出头、第二输出头通过所述转位体以摆动或插换方式可交替地与所述驱动装置联接从而处于工作位置,其特征在于:所述动力工具还包括切换装置,所述切换装置包括:
    触发件,对应所述第一输出头和/或第二输出头设置;
    感应件,与所述触发件相对运动,用于非接触地感应所述触发件,并根据感应结果发送电信号;以及
    控制装置,用于接收所述电信号,并对所述电信号进行判断从而识别处于工作位置的输出头。
  23. 根据权利要求22所述的动力工具,其特征在于,所述感应件为传感器。
  24. 根据权利要求23所述的动力工具,其特征在于,所述传感器为线性霍尔传感器。
  25. 根据权利要求22所述的动力工具,其特征在于,所述触发件为磁性件。
  26. 根据权利要求22所述的动力工具,其特征在于,所述触发件的数量为一个,所述触发件对应第一输出头或第二输出头设置,所述控制装置根据所述电信号判断所述触发件是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
  27. 根据权利要求22所述的动力工具,其特征在于,所述触发件的数量为两个,所述两个触发件分别对应第一输出头和第二输出头 设置,所述控制装置根据所述感应件传来的电信号判断所述两个触发件中的一个是否位于所述感应件的感应区域内,从而识别第一输出头和/或第二输出头的位置。
  28. 根据权利要求26或27所述的动力工具,其特征在于,所述触发件为磁性件,所述感应件为线性霍尔传感器,用于检测所述磁性件的磁场强度的变化,并将所述磁场强度的变化转化为所述电信号,所述控制装置根据所述电信号判断所述触发件的位置,从而识别所述第一输出头和/或及第二输出头的位置。
PCT/CN2016/078318 2015-04-02 2016-04-01 动力工具及其工况控制方法 WO2016155663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510155322 2015-04-02
CN201510155322.8 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016155663A1 true WO2016155663A1 (zh) 2016-10-06

Family

ID=57004237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078318 WO2016155663A1 (zh) 2015-04-02 2016-04-01 动力工具及其工况控制方法

Country Status (2)

Country Link
CN (1) CN106041836A (zh)
WO (1) WO2016155663A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855763A (zh) * 2017-11-29 2018-03-30 苏州弘瀚自动化科技有限公司 一种移动式锁螺丝工装
CN112690861B (zh) * 2019-10-23 2023-01-20 苏州英途康医疗科技有限公司 医疗器械、工作头及送夹位置识别方法
CN114074312A (zh) * 2020-08-21 2022-02-22 南京德朔实业有限公司 电动工具
CN112137519A (zh) * 2020-10-22 2020-12-29 深圳市洁傲智能科技有限公司 智能洗地机、滚刷/刷盘识别组件和方法
CN115225150A (zh) * 2021-04-15 2022-10-21 南京泉峰科技有限公司 多头电动工具及其工作组件识别方法
CN115319697A (zh) * 2021-05-11 2022-11-11 苏州宝时得电动工具有限公司 动力工具
WO2023237125A1 (zh) * 2022-06-08 2023-12-14 江苏东成工具科技有限公司 电动工具及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017728A1 (en) * 1999-09-10 2001-03-15 Cummins Richard D Turret hand drill
CN201152938Y (zh) * 2006-09-12 2008-11-19 百得有限公司 适合于在动力工具中使用的控制系统
CN102642194A (zh) * 2011-02-22 2012-08-22 罗伯特·博世有限公司 手持式工具机
DE102012211354A1 (de) * 2012-06-29 2014-01-02 Robert Bosch Gmbh Hand-Werkzeugmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ861300A0 (en) * 2000-07-06 2000-08-03 Telezygology Pty Limited Mulit-function tool
JP4517575B2 (ja) * 2002-11-29 2010-08-04 パナソニック電工株式会社 電動工具
CN101080304B (zh) * 2004-12-17 2013-03-06 密尔沃基电动工具公司 锯组件
CN201049399Y (zh) * 2007-04-25 2008-04-23 宁波市海联电动工具有限公司 自动换头电钻传动轴装置
CN103963023A (zh) * 2014-04-24 2014-08-06 天佑电器(苏州)有限公司 组合电动工具及其控制方法
CN205685278U (zh) * 2015-04-02 2016-11-16 苏州宝时得电动工具有限公司 动力工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017728A1 (en) * 1999-09-10 2001-03-15 Cummins Richard D Turret hand drill
CN201152938Y (zh) * 2006-09-12 2008-11-19 百得有限公司 适合于在动力工具中使用的控制系统
CN102642194A (zh) * 2011-02-22 2012-08-22 罗伯特·博世有限公司 手持式工具机
DE102012211354A1 (de) * 2012-06-29 2014-01-02 Robert Bosch Gmbh Hand-Werkzeugmaschine

Also Published As

Publication number Publication date
CN106041836A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2016155663A1 (zh) 动力工具及其工况控制方法
US6971454B2 (en) Pulsed rotation screw removal and insertion device
US11491616B2 (en) Power tools with user-selectable operational modes
US9505097B2 (en) Power tool
JP5403328B2 (ja) 電動穿孔工具
CN101051744B (zh) 电动工具机及用于运行该电动工具机的方法
US9038743B2 (en) Electric tool
US9364944B2 (en) Power tool
US10668612B2 (en) Hand-held power tool
US20150122523A1 (en) Power tool
US20130228353A1 (en) Torsion-adjustable impact wrench
US20150158157A1 (en) Electric power tool
WO2011129733A1 (en) A drilling device with a controller for the feeding unit.
US20190047133A1 (en) Application-optimized deactivation behavior of an electronic slipping clutch
JP5689517B1 (ja) 遮断機能付き油圧パルスドライバー
JP2011230272A5 (zh)
WO2013187411A1 (ja) 動力機器、動力機器システム、及び電動工具管理システム
EP1329294A1 (en) Rotary motor driven tool
JP2019519388A (ja) 反力が制御された電気パルス工具
WO2016158712A1 (ja) 螺合部材締付け工具
EP3302882B1 (en) Power tools with user-selectable operational modes
US11607789B2 (en) Technique for detecting twisted motion of electric working machine
CN205685278U (zh) 动力工具
KR101957437B1 (ko) 타격 기능을 갖는 전동공구 및 이를 이용한 타격 방법
US9366299B2 (en) Handheld drill/driver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771418

Country of ref document: EP

Kind code of ref document: A1