WO2016155175A1 - 有机电致发光显示基板及其制作方法和显示装置 - Google Patents

有机电致发光显示基板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2016155175A1
WO2016155175A1 PCT/CN2015/085769 CN2015085769W WO2016155175A1 WO 2016155175 A1 WO2016155175 A1 WO 2016155175A1 CN 2015085769 W CN2015085769 W CN 2015085769W WO 2016155175 A1 WO2016155175 A1 WO 2016155175A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
emitting region
light emitting
light
Prior art date
Application number
PCT/CN2015/085769
Other languages
English (en)
French (fr)
Inventor
李彦松
李娜
孙力
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/913,037 priority Critical patent/US9859349B2/en
Publication of WO2016155175A1 publication Critical patent/WO2016155175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • Embodiments of the present invention generally relate to the field of transparent display technology, and in particular, to an organic electroluminescent display substrate having improved light transmittance, a method of fabricating the same, and a display device including the organic electroluminescent display substrate.
  • Transparent display as a new display technology that allows viewers to see behind the screen through the display screen
  • this new display effect broadens the application area of the display and can be applied to display devices such as televisions, mobile phones, notebook computers, display windows, refrigerator doors, car displays, billboards, and the like.
  • Organic electroluminescent devices such as organic light emitting diodes (OLEDs), including active matrix OLEDs (AMOLEDs), which have active illumination, high luminance, high resolution, wide viewing angle, fast response, low power consumption, flexibility, etc.
  • OLEDs organic light emitting diodes
  • AMOLEDs active matrix OLEDs
  • the feature is a display device that facilitates transparent display.
  • each pixel unit in the organic electroluminescent device in order to facilitate transparent display, each pixel unit in the organic electroluminescent device includes a light emitting region and a non-light emitting region, and an electroluminescence structure is formed in a light emitting region of each pixel unit, and a part of the pixels The non-illuminated area of the unit can be used to achieve a transparent display.
  • the first method is to change the structure of the pixel circuit so that the area of the opaque layer or structure (such as the active layer and the metal lead) is as small as possible, and the area of the transparent window is increased to increase the transparency of the display panel.
  • the second method is to increase the transparency of the panel by using a transparent conductive material instead of the metal lead and making the cathode of the device.
  • Transparent cathodes are critical in the preparation of transparent OLEDs, not only in terms of device performance, but also in transparency. In the top emitting device, the transparent cathode is mostly made of a thin metal or a metal oxide.
  • the metal oxide has a high transmittance, but the sputtering process is required to form a metal oxide cathode, which is easy to damage the OLED device, and the thin metal cathode is prepared by an evaporation process, which is simpler and more mass-produced.
  • Most designs use a thin metal or metal alloy (such as an alloy of Mg and Ag) to make the cathode, for example by adjusting the doping ratio of Mg and Ag to increase the transmittance of the panel.
  • a large step is formed at the interface between the light region and the non-light-emitting region, and the thin cathode may be broken at the interface to cause the device to be unlit, and the method of thickening the cathode may affect the light transmittance of the light-emitting region.
  • the present invention has been made in order to overcome at least one of the above and other problems and disadvantages of the prior art.
  • an organic electroluminescence display substrate comprising a substrate substrate and a plurality of pixel units formed on the base substrate, the pixel unit comprising a light emitting region and a non-light emitting region,
  • An organic electroluminescent structure is formed in the light emitting region, the organic electroluminescent structure includes a first electrode layer, an organic light emitting functional layer and a second electrode layer laminated on the base substrate, and the second electrode layer is disposed in the light emitting region a first portion and a second portion located in the non-light emitting region, and a plurality of organic/inorganic material layers disposed between the second electrode layer and the base substrate, the plurality of organic/inorganic material layers being at least within the light emitting region
  • the organic light emitting functional layer is included and includes a transparent material layer in a non-light emitting region of a portion of the pixel unit.
  • the transparent material layer may be formed such that a pitch between the second portion and the substrate substrate is less than or equal to a pitch between the first portion and the substrate.
  • the transparent material layer may include a conductive layer that is in direct contact with the second portion.
  • the conductive layer may be made of a metal oxide material.
  • the metal oxide material may include at least one of ITO and IZO.
  • the thickness of the transparent material layer may be less than or equal to a sum of thicknesses or thicknesses of at least one of the other layers of the plurality of organic/inorganic material layers in the light-emitting region .
  • the plurality of organic/inorganic material layers may further include a planarization layer formed on the base substrate and a pixel defining layer defining the plurality of pixel units, the first electrode layer being formed On the planarization layer, the pixel defining layer covers the planarization layer such that the first electrode layer is at least partially exposed from the opening in the pixel defining layer, and the organic light emitting functional layer covers the pixel defining layer and the first electrode layer .
  • the pixel unit may further include a thin film transistor formed between the base substrate and the organic electroluminescent structure, and the plurality of organic/inorganic material layers may also A semiconductor active layer and a gate insulating layer forming the thin film transistor, and a passivation layer covering the thin film transistor are included.
  • the plurality of organic/inorganic material layers may further include: an interlayer insulating layer forming the thin film transistor, the interlayer insulating layer being disposed on the gate insulating layer to cover the thin film transistor a gate electrode; and/or a buffer layer formed between the thin film transistor and the substrate substrate.
  • the transparent material layer may be disposed between the other adjacent two layers of the plurality of organic/inorganic material layers in the non-light emitting region.
  • an organic electroluminescent display substrate comprising a plurality of pixel units distributed in an array, each pixel unit comprising a light emitting area and a non-light emitting area, The method comprises the following steps:
  • the organic electroluminescent structure is located in the light emitting region and comprises a first electrode layer, an organic light emitting functional layer and a second electrode layer laminated on the base substrate, the second electrode layer comprising a first portion located in the light emitting region and Located in the second part of the non-illuminating area, and
  • the plurality of organic/inorganic material layers are located between the second electrode layer and the base substrate, include at least the organic light-emitting functional layer in the light-emitting region, and include a transparent material layer in the non-light-emitting region of the partial pixel unit.
  • the transparent material layer may be formed such that a spacing between the second portion and the substrate substrate is less than or equal to a spacing between the first portion and the substrate.
  • the transparent material layer may be formed in the non-light emitting region after removing at least one of the other layers of the plurality of organic/inorganic material layers in the non-light emitting region.
  • the step of forming a plurality of organic/inorganic material layers and an organic electroluminescent structure on the base substrate may include:
  • the plurality of The organic/inorganic material layer further includes the planarization layer and the pixel defining layer;
  • the at least one portion located in the non-light emitting region of the pixel unit is removed;
  • the second electrode layer is formed in a light emitting region and a non-light emitting region of the pixel unit.
  • the at least one layer may include the organic light emitting functional layer
  • the forming the transparent material layer may include forming the transparent material layer at a position where the portion of the organic light emitting functional layer is removed.
  • the transparent material layer may be formed of a conductive material and in direct contact with the second portion of the second electrode layer located in the non-light emitting region.
  • the conductive layer may be made of a metal oxide material.
  • the metal oxide material may include at least one of ITO and IZO.
  • the thickness of the transparent material layer may be formed to be less than or equal to a sum of thicknesses or thicknesses of at least one of the other layers of the plurality of organic/inorganic material layers in the light-emitting region.
  • the above method may further include the step of forming a thin film transistor on the base substrate in each pixel unit before forming the planarization layer, and the plurality of organic/inorganic material layers may further include forming the thin film A semiconductor active layer and a gate insulating layer of the transistor, and a passivation layer covering the thin film transistor.
  • the step of forming a thin film transistor may include: forming an interlayer insulating layer covering a gate of the thin film transistor on the gate insulating layer, and insulating the interlayer in a light emitting region of the pixel unit a source/drain electrode is formed on the layer, and the plurality of organic/inorganic material layers further include the interlayer insulating layer; and/or the method may further include the plurality of organic/inorganic material layers further included in the formation
  • the step of forming a buffer layer on the base substrate before the thin film transistor, and the plurality of organic/inorganic material layers further includes the buffer layer.
  • a method of fabricating an organic electroluminescent display substrate comprising the steps of:
  • a second electrode of the organic electroluminescent structure is formed in the light emitting region and the non-light emitting region of the pixel unit such that the second electrode includes a first portion located within the light emitting region and a second portion located within the non-light emitting region.
  • the thickness of the transparent material layer is formed to be less than or equal to a sum of a thickness of at least one layer of the at least one layer of the organic/inorganic material layer in the light-emitting region or a thickness of the plurality of layers.
  • the step of removing at least one of the at least one layer of the organic/inorganic material layer located in the non-light-emitting region of the partial pixel unit is performed immediately after the formation of the at least one layer, or simultaneously performing non-lighting Removal of all organic/inorganic material layers that are desired to be removed within the region.
  • a display device comprising the above-described organic electroluminescence display substrate, or an organic electroluminescence display substrate fabricated according to the above method.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic electroluminescence display substrate according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic electroluminescence display substrate according to a second embodiment of the present invention
  • FIG. 3 is a cross-sectional view schematically showing the structure of an organic electroluminescence display substrate according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the structure of an organic electroluminescence display substrate according to a fourth embodiment of the present invention.
  • Figure 5 is a cross-sectional view schematically showing the structure of an organic electroluminescence display substrate according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic flowchart showing a method of fabricating an organic electroluminescence display substrate according to an exemplary embodiment of the present invention
  • FIG. 7A-7F illustrate a schematic flow of a method of fabricating an organic electroluminescent display substrate in accordance with one example of the present invention.
  • an organic electroluminescence display substrate which is provided by removing a portion of non-transparent or poor light transmittance in a non-light-emitting region of a portion of the pixel unit, that is, in a region to be used for light transmission or transparent display.
  • a layer of organic/inorganic material and, for example, at the location of the material being removed, an additional layer of transparent material is formed, which can increase the transmittance of the area for light transmission or transparent display while reducing the area of illumination
  • the difference in layer thickness between the non-emissive regions prevents the thin cathode from breaking at the interface.
  • the organic electroluminescent display substrate comprising a plurality of pixel units arranged in an array, such as R, G, B sub-pixels, Each of the pixel units includes a light emitting area A and a non-light emitting area B.
  • the organic electroluminescence display substrate emits light upward in the direction of the arrow in the light-emitting region A, and thus belongs to a top emission type light-emitting device.
  • the organic electroluminescent display substrate provided by the present invention may also be a bottom emission type or double-sided emission type light emitting device.
  • embodiments of the present invention will be described by taking only a top emission type light-emitting device as an example.
  • each pixel unit of the organic electroluminescence display substrate includes a base substrate 1, and a planarization layer 4, a first electrode layer 51, and a pixel defining layer 6 which are sequentially stacked on the base substrate 1 are stacked.
  • the first electrode layer 51, the organic light-emitting function layer 52, and the second electrode layer 53 constitute an organic electroluminescent structure 5, such as a light-emitting diode, and the first electrode layer 51 and the second electrode layer 53 respectively form an anode and a cathode of the light-emitting structure 5. .
  • the anode thereof can Made of a metal material or other conductive material;
  • the cathode is transparent or translucent, and may be a thin layer electrode made of a metal, a metal alloy or a metal oxide;
  • the organic light-emitting functional layer is usually a composite multilayer structure, for example including A hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer.
  • the first electrode layer 51 is located in the light-emitting area A of the pixel unit but not in the non-light-emitting area B, and the second electrode layer 53 is located in both the light-emitting area A and the non-light-emitting area B of the pixel unit. That is, the first portion located in the light-emitting area A and the second portion located in the non-light-emitting area B are included.
  • At least one organic/inorganic material layer such as the planarization layer 4, the pixel defining layer 6, and the organic light-emitting function layer 52 are removed in the non-light-emitting region B and thus Only in the light-emitting area A of the pixel unit, a transparent material layer 7 is formed in the non-light-emitting area B of the pixel unit at least at the position where the material is removed, that is, the transparent material layer 7 replaces at least the organic/inorganic material layer in the non-light-emitting area.
  • the portion of B that is removed, such as the thickness of the layer of transparent material, is less than or equal to the thickness of the material being removed.
  • the transparent material layer 7 is formed only in the non-light-emitting region B between the second portion of the base substrate 1 and the second electrode layer 53, at least partially replacing the organic removed in the non-light-emitting region B And / or organic material layer.
  • the transparent material layer may be formed such that the spacing between the second portion of the second electrode layer 53 and the substrate substrate 1 is smaller than Or equal to the spacing between the first portion of the second electrode layer 53 and the base substrate 1.
  • the thickness of the transparent material layer is less than or equal to the thickness of at least one of the other organic/inorganic material layers in the light emitting region, or less than or equal to at least two of the other organic/inorganic material layers in the light emitting region. The sum of the thicknesses makes the area for light transmission or transparent display substantially flush with or slightly lower than the height of the light-emitting area.
  • the thickness of the transparent material layer 7 may be less than or equal to one of the removed planarization layer 4, the pixel defining layer 6 and the organic light-emitting functional layer 52, or less than or equal to two of the removed layers. Or the sum of the thicknesses of the plurality.
  • the thin layer cathode (such as the second electrode layer 53) may be broken at the interface to cause the light-emitting device to fail to light.
  • an additional transparent material layer 7 is formed in the non-light-emitting region B at least at the position of the removed material, which can increase the light transmittance of the non-light-emitting region B while reducing the light emission
  • the difference in layer thickness between the region A and the non-light-emitting region B avoids the breakage of the thin cathode at the interface.
  • the transparent material layer 7 may be formed of a conductive material as a conductive layer that is in direct contact with a portion of the second electrode layer 53 that is located in the non-light emitting region.
  • the conductive transparent material layer 7 can not only increase the transmittance and reduce the step, but also reduce the sheet resistance of the second electrode layer or the cathode 53, thereby reducing the power consumption of the device.
  • the conductive material used may be a metal oxide material, for example, at least one of ITO (indium tin oxide) and IZO (indium-doped zinc oxide).
  • the organic electroluminescent display substrate according to the present invention may be an active matrix OLED light emitting device in which each pixel unit includes at least one thin film transistor such as a switching transistor or a driving transistor.
  • organic The electroluminescent display substrate includes a thin film transistor structure 3 formed between the base substrate 1 and the planarization layer 4, which may include:
  • a gate insulating layer 32 formed on the base substrate 1 and covering the semiconductor active layer 31;
  • a passivation layer 36 is formed on the interlayer insulating layer 34 and covering the source/drain electrodes 35.
  • a plurality of film layers forming a thin film transistor such as a gate insulating layer, an interlayer insulating layer, a passivation layer, and the like, are formed not only in the light-emitting region A but also in the non-light-emitting region B.
  • these films have a certain degree of light transmittance, they still cause light loss in the non-light-emitting region, and the light transmittance is lowered, resulting in poor transparency of the organic electroluminescence display substrate.
  • a plurality of organic/inorganic material layers forming a thin film transistor such as at least one of a gate insulating layer, an interlayer insulating layer, and a passivation layer, may be formed only in the pixel
  • the portion of the unit that is in the light-emitting region, that is, the portion of the layer that is in the non-light-emitting region, is removed.
  • a layer of a transparent material may be additionally formed at a position where a portion of the layer in the non-light-emitting region is removed to increase the light transmittance and reduce the aforementioned step or thickness difference.
  • FIG. 2 shows a structure schematically showing an organic electroluminescence display substrate according to a second embodiment of the present invention, in which a portion of the passivation layer 36 in the non-light-emitting region B is removed, and may be composed of a transparent material layer 7' replaces its position in the non-light-emitting area B.
  • the organic light-emitting function layer 52, the pixel defining layer 6, the planarization layer 4, the passivation layer 36 and the like of the AMOLED light-emitting device are to be used for light transmission or transparent display.
  • Portions in the non-light-emitting region B are removed, for example, by a patterning process, and a transparent material layer 7' is formed at a position where the portions are removed in the non-light-emitting region B.
  • the thickness of the transparent material layer 7' may be less than or equal to the sum of the thicknesses of the removed layers, for example, substantially equal to the sum of the thicknesses of the organic light-emitting functional layer 52 and the passivation layer 36, as shown in FIG.
  • the thickness of the transparent material layer 7" is substantially equal to the sum of the thicknesses of the passivation layer 36 and the interlayer insulating layer 34; in the fourth embodiment shown in FIG. 4, the transparent material The thickness of the layer 7"' is substantially equal to the sum of the thicknesses of the interlayer insulating layer 34 and the gate insulating layer 32. It can be understood that, in the case of increasing the light transmittance of the region for light transmissive or transparent display and reducing the aforementioned step or thickness difference, the thickness of the additional transparent material layer in the non-light emitting region of the light emitting device of the present invention may be Need to be set properly.
  • the thin film transistor 3 is a top gate type structure.
  • the thin film transistor of the organic electroluminescence display substrate of the present invention may be a bottom gate type structure as shown in FIG.
  • the bottom gate type thin film transistor 3' includes:
  • a gate insulating layer 32 formed on the base substrate 1 and covering the gate 33;
  • the passivation layer 36 formed on the gate insulating layer 32 covering at least the source/drain electrodes 35 and the semiconductor active layer 31 is covered.
  • a conductive via 8 may be formed through the passivation layer 36 and the planarization layer 4, and one of the source and drain electrodes of the thin film transistor 3' may be electrically connected to the first electrode layer 51 through the conductive via 8. Thereby, the organic electroluminescent structure 5 is driven to emit light.
  • At least one of the gate insulating layer 32 and the passivation layer 36 may be formed only in the light emitting region A of the pixel unit.
  • the organic light-emitting function layer 52, the pixel defining layer 6, the planarization layer 4, the gate insulating layer 32, and the passivation layer 36 are all removed in the portion of the light-emitting region B of the pixel unit, instead of Is a transparent material layer 7"" which can increase the light transmittance of some non-light-emitting regions B for light-transmitting or transparent display, and reduce the step or thickness at the interface between the light-emitting region A and the non-light-emitting region B difference.
  • the transparent material layers 7', 7"', 7"" may be in direct contact with the second electrode layer or cathode 53, preferably a conductive layer to reduce the second electrode layer Or the sheet resistance of the cathode 53.
  • the transparent material layer in contact with the second electrode layer 53 may not be a conductive layer, or as shown in FIG.
  • the transparent material layer 7" is not in contact with the second electrode layer 53, at this time Forming such an additional transparent material layer in the non-light-emitting region B achieves an increase in light transmittance of the non-light-emitting region B, and reduces a step at an interface between the light-emitting region A and the non-light-emitting region B, avoiding thinning The cathode breaks at this interface.
  • a buffer layer 2 is further formed between the thin film transistors 3, 3' and the base substrate 1.
  • the buffer layer 2 may be disposed only within the light emitting area A of the pixel unit.
  • the additional layer of transparent material of the organic electroluminescent display substrate in the non-emissive region is continuous, it will be appreciated that such additional layer of transparent material may also include a plurality of sub-layers that are discontinuous or spaced apart from each other, each sub-layer replacing one or more organic/organic material layers of the existing organic electroluminescent display substrate in the non-light-emitting region, or having one or more organic/ The thickness of the organic material layer or the thickness is substantially equal to the thickness.
  • FIG. 6 is a flow chart schematically showing a method of fabricating an organic electroluminescent display substrate according to an exemplary embodiment of the present invention, the method mainly comprising the steps of:
  • a substrate which may be a glass substrate or other transparent substrate
  • S2 sequentially forming a planarization layer, a pixel defining layer, a first electrode, and an organic light emitting functional layer in a stacked manner on the base substrate.
  • the formation of the layers may be performed by a deposition, evaporation, and patterning process.
  • An electrode layer is located in a light emitting area of the pixel unit;
  • the layer may be a conductive layer in direct contact with a portion of the second electrode layer located in the non-emitting region.
  • the conductive layer may be made of a metal oxide material.
  • the metal oxide material may include at least one of ITO and IZO.
  • the thickness of at least a portion of the layer of transparent material may be formed to be substantially the same as the thickness of the portion to be removed.
  • the above method may further include the step of forming a thin film transistor between the base substrate and the planarization layer in each pixel unit.
  • this step may include:
  • the at least one portion in the non-light emitting region of the pixel unit is removed.
  • this step may include:
  • the at least one portion within the non-light emitting region of the pixel unit is removed.
  • another transparent material layer may be formed at a position where the portion is removed.
  • the other layer of transparent material may be spaced apart or integrally formed from the aforementioned layer of transparent material.
  • the removal of the portion of the organic/organic material layer of the organic electroluminescent display substrate in the non-light-emitting region may be performed immediately after the formation of the layer, or all of the organic substances in the non-light-emitting region that are desired to be removed may be simultaneously performed. Removal of organic material layers.
  • FIG. 7A-7F illustrate a schematic flow of a method of fabricating an organic electroluminescent display substrate in accordance with one example of the present invention.
  • a layer is sequentially formed on the base substrate 1 by, for example, a deposition or evaporation process.
  • Stacking buffer layer 2 active semiconductor layer 31, gate insulating layer 32, gate 33, interlayer insulating layer 34, source/drain electrodes 35, passivation layer 36, planarization layer 4, pixel defining layer 6 and
  • An electrode layer 51 in which the active semiconductor layer 31, the gate electrode 33, the source/drain electrodes 35, and the first electrode 51 are patterned by a patterning process such that they are disposed only in the light-emitting region; then, as shown in FIG.
  • a patterning process removes a portion of the pixel defining layer 6 in the non-light emitting region B; as shown in FIG. 7C, a transparent material layer 7 is formed in the non-light emitting region B; then, as shown in FIG. 7D, an overlay pixel defining layer 6 is formed, The first electrode 51 and the organic light-emitting function layer 52 of the transparent material layer 7; as shown in FIG.
  • the organic light-emitting function layer 52 is patterned with a suitable mask to remove portions thereof in the non-light-emitting region B; finally, for example, The vapor deposition process forms a second electrode layer or cathode 53 covering the organic light-emitting function layer 52 and the transparent material layer 7 in the light-emitting region A and the non-light-emitting region B.
  • the present invention provides a display device comprising the organic electroluminescence display substrate provided in any of the above embodiments, or an organic electroluminescence display substrate fabricated according to the method provided in any of the above embodiments.
  • the display device may include an AMOLED display device such as for televisions, cell phones, notebook computers, display windows, refrigerator doors, in-vehicle displays, billboards, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光显示基板及其制作方法和显示装置。有机电致发光显示基板包括衬底基板(1)以及形成在衬底基板(1)上的多个像素单元,像素单元包括发光区域(A)和非发光区域(B),在发光区域(A)内形成有有机电致发光结构,有机电致发光结构包括层叠在衬底基板(1)上的第一电极层(51)、有机发光功能层(52)和第二电极层(53),第二电极层(53)包括位于发光区域(A)内的第一部分和位于非发光区域(B)内的第二部分,并且在第二电极层(53)和衬底基板(1)之间设置有多个有机/无机材料层,多个有机/无机材料层在发光区域(A)内至少包括有机发光功能层(52),并在部分像素单元的非发光区域(B)内包括透明材料层(7)。

Description

有机电致发光显示基板及其制作方法和显示装置
本申请要求于2015年4月1日递交中国专利局的、申请号为201510151619.7的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明的实施例一般地涉及透明显示技术领域,并且具体地,涉及透光率改善的有机电致发光显示基板及其制作方法,和包括该有机电致发光显示基板的显示装置。
背景技术
透明显示作为一种全新的显示技术,可以让观察者透过显示屏幕看到屏幕后方的
背景,这种新的显示效果拓宽了显示器的应用领域,可以被应用于电视、手机、笔记本电脑、展示橱窗、冰箱门、车载显示器、广告牌等显示装置上。
有机电致发光器件,例如有机发光二极管(OLED),包括有源矩阵OLED(AMOLED),其具有主动发光、发光亮度高、分辨率高、宽视角、响应速度快、低能耗、可柔性化等特点,是一种便于实现透明显示的显示器件。在有机电致发光器件中,为便于实现透明显示,有机电致发光器件中的每一个像素单元包括发光区域和非发光区域,每一个像素单元的发光区域内形成电致发光结构,而部分像素单元的非发光区域可以用于实现透明显示。
对于OLED显示器件来说,提高显示器件的透明度以实现透明显示主要有两种方法。第一种方法是改变像素电路的结构,让不透明的层或结构(如有源层和金属引线)的面积尽可能的小,增加透明窗口的面积以提高显示面板的透明度。第二种方法是使用透明的导电材料代替金属引线和制作器件的阴极来增加面板的透明度。透明阴极在透明OLED的制备中至关重要,不仅关系到器件的性能,对透明度的影响也尤为明显。在顶发射器件中,透明阴极多采用薄金属或金属氧化物制成。金属氧化物的透过率较高,但由于形成金属氧化物阴极需采用溅射的工艺,易对OLED器件造成损伤,而薄金属阴极采用蒸镀工艺制备,较为简单,更易量产化,因此大多数设计都采用薄金属或金属合金(如Mg和Ag的合金)制作阴极,例如通过调整Mg和Ag的掺杂比例来提高面板的透光率。
但是,现有技术中的电致发光器件中,存在各种有机、无机保护层或绝缘层,虽然在非发光区域中这些层是透光的,但依然在非发光区域中引起光损失,降低透光率,导致有机电致发光器件的透明显示效果较差。虽然可以通过去除非发光区域内的部分或者全部有机、无机保护层来提高器件的透光率,但是这样会由于膜厚的差异而在发 光区域与非发光区域之间的界面处形成大的阶梯,薄层阴极在界面处可能发生断裂而造成器件无法点亮,而如果采用增厚阴极的方法则会影响发光区域的透光率。
发明内容
为了克服现有技术存在的上述和其它问题和缺陷中的至少一种,提出了本发明。
根据本发明的一个方面,提出了一种有机电致发光显示基板,包括衬底基板以及形成在所述衬底基板上的多个像素单元,所述像素单元包括发光区域和非发光区域,在所述发光区域内形成有有机电致发光结构,有机电致发光结构包括层叠在衬底基板上的第一电极层、有机发光功能层和第二电极层,第二电极层包括位于发光区域内的第一部分和位于非发光区域内的第二部分,并且在第二电极层和衬底基板之间设置有多个有机/无机材料层,所述多个有机/无机材料层在发光区域内至少包括所述有机发光功能层,并在部分像素单元的非发光区域内包括透明材料层。
在上述有机电致发光显示基板中,所述透明材料层可以形成为使得所述第二部分与衬底基板之间的间距小于或等于所述第一部分与衬底基板之间的间距。
在上述有机电致发光显示基板中,所述透明材料层可以包括导电层,该导电层与所述第二部分直接接触。
在上述有机电致发光显示基板中,所述导电层可以由金属氧化物材料制成。
在上述有机电致发光显示基板中,所述金属氧化物材料可以包括ITO和IZO中的至少一种。
在上述有机电致发光显示基板中,所述透明材料层的厚度可以小于或等于所述多个有机/无机材料层在发光区域内的其它层中的至少一个的厚度或多个的厚度之和。
在上述有机电致发光显示基板中,所述多个有机/无机材料层还可以包括形成在衬底基板上的平坦化层和限定所述多个像素单元的像素界定层,第一电极层形成在平坦化层上,像素界定层覆盖在平坦化层上使得第一电极层至少部分地从像素界定层中的开口露出,且所述有机发光功能层覆盖在像素界定层和第一电极层上。
在上述有机电致发光显示基板中,所述像素单元还可以包括形成在所述衬底基板和所述有机电致发光结构之间的薄膜晶体管,并且所述多个有机/无机材料层还可以包括形成所述薄膜晶体管的半导体有源层和栅绝缘层、以及覆盖薄膜晶体管的钝化层。
在上述有机电致发光显示基板中,所述多个有机/无机材料层还可以包括:形成所述薄膜晶体管的层间绝缘层,该层间绝缘层设置在所述栅绝缘层上覆盖薄膜晶体管的栅极;和/或形成在所述薄膜晶体管与所述衬底基板之间的缓冲层。
在上述有机电致发光显示基板中,所述透明材料层可以在所述非发光区域内设置在所述多个有机/无机材料层的其它相邻的两层之间。
根据本发明的另一个方面,提供了一种制作有机电致发光显示基板的方法,该有机电致发光显示基板包括阵列分布的多个像素单元,每个像素单元包括发光区域和非发光区域,该方法包括下述步骤:
提供衬底基板;以及
在衬底基板上形成多个有机/无机材料层和有机电致发光结构,
其中,有机电致发光结构位于所述发光区域内并包括层叠在衬底基板上的第一电极层、有机发光功能层和第二电极层,第二电极层包括位于发光区域内的第一部分和位于非发光区域内的第二部分,并且
所述多个有机/无机材料层位于第二电极层和衬底基板之间,在发光区域内至少包括所述有机发光功能层,并在部分像素单元的非发光区域内包括透明材料层。
在上述方法中,所述透明材料层可以形成为使得所述第二部分与衬底基板之间的间距小于或等于所述第一部分与衬底基板之间的间距。
在上述方法中,所述透明材料层可以是在去除所述多个有机/无机材料层的其它层中的至少一个在非发光区域内的部分之后形成在非发光区域内的。
在上述方法中,在衬底基板上形成多个有机/无机材料层和有机电致发光结构的步骤可以包括:
依次在所述衬底基板上层叠形成平坦化层、像素界定层、第一电极层、和有机发光功能层,使得所述第一电极层位于所述像素单元的发光区域内,所述多个有机/无机材料层还包括所述平坦化层和像素界定层;
在平坦化层、像素界定层和有机发光功能层中的至少一层形成之后,去除所述至少一层位于所述像素单元的非发光区域内的部分;
在所述像素单元的非发光区域内形成所述透明材料层;以及
在所述像素单元的发光区域和非发光区域内形成所述第二电极层。
在上述方法中,所述至少一层可以包括所述有机发光功能层,并且形成所述透明材料层的步骤可以包括在去除有机发光功能层的所述部分的位置处形成所述透明材料层。
在上述方法中,所述透明材料层可以由导电材料形成并与第二电极层位于非发光区域内的第二部分直接接触。
在上述方法中,所述导电层可以由金属氧化物材料制成。
在上述方法中,所述金属氧化物材料可以包括ITO和IZO中的至少一种。
在上述方法中,所述透明材料层的厚度可以形成为小于或等于所述多个有机/无机材料层在发光区域内的其它层中的至少一个的厚度或多个的厚度之和。
上述方法还可以包括在每个像素单元内、在形成所述平坦化层之前在所述衬底基板上形成薄膜晶体管的步骤,并且所述多个有机/无机材料层还可以包括形成所述薄膜晶体管的半导体有源层和栅绝缘层、以及覆盖薄膜晶体管的钝化层。
在上述方法中,形成薄膜晶体管的步骤可以包括:在所述栅绝缘层上形成覆盖薄膜晶体管的栅极的层间绝缘层,以及在所述像素单元的发光区域内、在所述层间绝缘层上形成源/漏电极,并且所述多个有机/无机材料层还包括所述层间绝缘层;和/或所述方法还可以包括所述多个有机/无机材料层还包括在形成所述薄膜晶体管之前在所述衬底基板形成缓冲层的步骤,并且所述多个有机/无机材料层还包括所述缓冲层。
根据本发明的另一个方面,提供了一种制作有机电致发光显示基板的方法,包括下述步骤:
提供衬底基板;
在衬底基板上形成有机电致发光结构的第一电极层以及至少包括有机电致发光结构的有机发光功能层的至少一层有机/无机材料层;
去除所述至少一层有机/无机材料层中的至少一层位于部分像素单元的非发光区域内的部分;
在所述部分像素单元的非发光区域内形成透明材料层;以及
在像素单元的发光区域和非发光区域内形成有机电致发光结构的第二电极,使得所述第二电极包括位于发光区域内的第一部分和位于非发光区域内的第二部分。
在上述方法中,所述透明材料层的厚度形成为小于或等于所述至少一层有机/无机材料层在发光区域内的至少一层的厚度或多层的厚度之和。
在上述方法中,去除所述至少一层有机/无机材料层中的至少一层位于部分像素单元的非发光区域内的部分的步骤在所述至少一层形成之后立即执行,或同时执行非发光区域内的所有期望被去除的有机/无机材料层的去除。
根据本发明的又一个方面,提供了一种显示装置,其包括上述有机电致发光显示基板、或根据上述方法制作的有机电致发光显示基板。
通过下文中参照附图对本发明所作的详细描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
通过参考附图能够更加清楚地理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,附图中相同或相似的附图标记指示相同或对应的部件。在附图中:
图1是示意性地示出根据本发明的第一实施例的有机电致发光显示基板的结构的剖视图;
图2是示意性地示出根据本发明的第二实施例的有机电致发光显示基板的结构的剖视图;
图3是示意性地示出根据本发明的第三实施例的有机电致发光显示基板的结构的剖视图;
图4是示意性地示出根据本发明的第四实施例的有机电致发光显示基板的结构的剖视图;
图5是示意性地示出根据本发明的第五实施例的有机电致发光显示基板的结构的剖视图;
图6是示出根据本发明的一个示例性实施例的制作有机电致发光显示基板的方法的示意性流程图;以及
图7A-7F示出根据本发明的一个示例的制造有机电致发光显示基板的方法的示意性流程。
具体实施方式
在下面的详细描述中,为便于说明,阐述了许多具体的细节以提供对本发明的实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其它情况下,公知的结构和装置以图示的方式体现以简化附图。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开内容的实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的构思,提供了一种有机电致发光显示基板,通过在部分像素单元的非发光区域内,即在将用于透光或透明显示的区域内,去除一部分非透明或透光性差的有机/无机材料层,并且,例如在被去除的材料的位置处,形成额外的透明材料层,这能够增大用于透光或透明显示的区域的透光率,同时能够减小发光区域和非发光区域之间的层厚差,避免薄层阴极在界面处发生断裂。
图1示意性地示出根据本发明的第一实施例的有机电致发光显示基板的结构,该有机电致发光显示基板包括阵列分布的多个像素单元,如R、G、B子像素,每个像素单元包括发光区域A和非发光区域B。在图1中,有机电致发光显示基板在发光区域A沿箭头方向向上发光,因此属于顶发射型发光器件。可以理解,本发明提供的有机电致发光显示基板也可以是底发射型或双面发射型发光器件。以下仅以顶发射型发光器件为例说明本发明的实施例。
如图1所示,该有机电致发光显示基板的每个像素单元包括衬底基板1,以及依次层叠形成在衬底基板1上的平坦化层4、第一电极层51、像素界定层6、有机发光功能层52和第二电极层53。第一电极层51、有机发光功能层52和第二电极层53构成有机电致发光结构5,如发光二极管,第一电极层51和第二电极层53分别形成该发光结构5的阳极和阴极。例如,对于顶发射型有机电致发光显示基板,其阳极可以 采用金属材料或其它导电材料制成;阴极是透明或半透明的,可以是由金属、金属合金或金属氧化物制成的薄层电极;有机发光功能层通常是复合的多层结构,例如包括空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层。
如图1所示,第一电极层51位于像素单元的发光区域A内但不位于非发光区域B内,而第二电极层53位于该像素单元的发光区域A和非发光区域B二者内,即包括位于发光区域A内的第一部分和位于非发光区域B内的第二部分。根据第一实施例,在部分像素单元内,至少一个有机/无机材料层,如平坦化层4、像素界定层6和有机发光功能层52,在非发光区域B内的部分都被去除并因此仅位于像素单元的发光区域A内,一透明材料层7至少在去除材料的位置处形成在该像素单元的非发光区域B内,即透明材料层7至少代替有机/无机材料层在非发光区域B内被去除的部分,例如透明材料层的厚度小于或等于被去除的材料的厚度。根据本发明的实施例,透明材料层7仅形成在非发光区域B,位于衬底基板1和第二电极层53的第二部分之间,至少部分地代替非发光区域B内被去除的有机和/或有机材料层。
由于用透明材料层至少部分地代替非发光区域内被去除的有机/无机材料层,因此,透明材料层可以形成为使得第二电极层53的第二部分与衬底基板1之间的间距小于或等于第二电极层53的第一部分与衬底基板1之间的间距。换句话说,透明材料层的厚度小于或等于在发光区域内的其它有机/无机材料层中的至少一个的厚度,或小于或等于发光区域内的其它有机/无机材料层中的至少两个的厚度之和,使得用于透光或透明显示的区域与发光区域大致平齐或稍微低于发光区域的高度。例如,该透明材料层7的厚度可以小于或等于被去除的平坦化层4、像素界定层6和有机发光功能层52中的一个厚度同,或者小于或等于被去除的这些层中的两个或多个的厚度之和。
当平坦化层4、像素界定层6和有机发光功能层52在非发光区域B内的部分都被去除时,在发光区域A和非发光区域B之间的界面处产生大的阶梯,即,发光区域A和非发光区域B之间的层厚差大,此时,薄层阴极(如第二电极层53)在该界面处可能发生断裂而造成发光器件无法点亮。在第一实施例中,在非发光区域B中、至少在被去除的材料的位置处形成了额外的透明材料层7,这能够增大非发光区域B的透光率,同时能够减小发光区域A和非发光区域B之间的层厚差,避免了薄层阴极在界面处发生断裂。
根据本发明的示例性实施例,透明材料层7可以由导电材料形成为导电层,该导电层与第二电极层53位于非发光区域内的部分直接接触。在这种情况下,导电的透明材料层7不仅能够增大透过率和减小阶梯,而且能够减小第二电极层或阴极53的面电阻,从而降低器件的功耗。所采用的导电材料可以是金属氧化物材料,例如,包括ITO(氧化铟锡)和IZO(掺铟氧化锌)中的至少一种。
根据本发明的有机电致发光显示基板可以是有源矩阵OLED发光器件,其中每个像素单元包括至少一个薄膜晶体管,如开关晶体管或驱动晶体管。如图1所示,有机 电致发光显示基板包括形成在衬底基板1和平坦化层4之间的薄膜晶体管结构3,其可以包括:
形成在衬底基板1上的半导体有源层31,其位于像素单元的发光区域A内;
形成在衬底基板1上并覆盖半导体有源层31的栅绝缘层32;
形成在栅绝缘层32上的栅极33,其位于像素单元的发光区域A内;
形成在栅极33上并覆盖栅极33的层间绝缘层34;
形成在层间绝缘层34上的源/漏电极35,其位于像素单元的发光区域A内;和
形成在层间绝缘层34上并覆盖源/漏电极35的钝化层36。
可以看出,在AMOLED发光器件中,形成薄膜晶体管的多个膜层,如栅绝缘层、层间绝缘层、钝化层等,不仅形成在发光区域A内,还形成在非发光区域B中,这些膜层虽然存在一定程度的透光性,但依然在非发光区域中引起光损失,降低透光率,导致有机电致发光显示基板的透明显示效果较差。根据本发明,与发光结构中的有机/无机材料层一样,形成薄膜晶体管的多个有机/无机材料层,如栅绝缘层、层间绝缘层和钝化层中的至少一个可以仅形成在像素单元的发光区域内,即该层在非发光区域内的部分被去除。进一步,在该层在非发光区域内的部分被去除的位置可以附加地形成透明材料层,以增大透光率并减小前述阶梯或厚度差。
图2示出了示意性地示出根据本发明的第二实施例的有机电致发光显示基板的结构,其中钝化层36在非发光区域B内的部分被去除,并且可以由透明材料层7’代替其在非发光区域B内的位置。可以看出,在图2中示出的结构中,AMOLED发光器件的有机发光功能层52、像素限定层6、平坦化层4、钝化层36等层在将用于透光或透明显示的非发光区域B内的部分都被去除,例如通过构图工艺被刻蚀掉,并在非发光区域B内去除这些部分的位置处形成透明材料层7’。透明材料层7’的厚度可以小于或等于这些被去除的层的厚度之和,例如,大致等于有机发光功能层52和钝化层36的厚度之和,如图2所示。
在图3所示的第三实施例中,透明材料层7”的厚度大致等于钝化层36和层间绝缘层34的厚度之和;在图4所示的第四实施例中,透明材料层7”’的厚度大致等于层间绝缘层34和栅绝缘层32的厚度之和。可以理解,在增大用于透光或透明显示的区域的透光率并减小前述阶梯或厚度差的情况下,本发明的发光器件的非发光区域内附加的透明材料层的厚度可以根据需要恰当地设定。
在图1-4示出的实施例中,薄膜晶体管3是顶栅型结构。可替换地,本发明的有机电致发光显示基板的薄膜晶体管可以是底栅型结构,如图5所示。在图5中所示的第五实施例中,底栅型薄膜晶体管3’包括:
形成在衬底基板1上的栅极33,其位于像素单元的发光区域A内;
形成在衬底基板1上并覆盖栅极33的栅绝缘层32;
形成在栅绝缘层32上的半导体有源层31,其位于像素单元的发光区域A内;
形成在半导体有源层31上的源/漏电极35,其位于像素单元的发光区域A内;和
至少覆盖源/漏电极35和半导体有源层31形成在栅绝缘层32上的钝化层36。
如图5所示,一导电通路8可以形成为贯穿钝化层36和平坦化层4,薄膜晶体管3’的源电极和漏电极中的一个可以通过导电通路8与第一电极层51电连接,从而驱动有机电致发光结构5发光。
栅绝缘层32和钝化层36中的至少一个可以仅形成在像素单元的发光区域A内。在图5中示出的结构中,有机发光功能层52、像素界定层6、平坦化层4、栅绝缘层32和钝化层36在像素单元的发光区域B的部分都被去除,代替的是透明材料层7””,其可以增大用于透光或透明显示的一些非发光区域B的透光率,并减小发光区域A和非发光区域B之间的界面处的阶梯或厚度差。
同样,如图2、4和5所示,透明材料层7’、7”’、7””可以与第二电极层或阴极53直接接触,优选地,是导电层以减小第二电极层或阴极53的面电阻。可替换地,与第二电极层53接触的透明材料层可以不是导电层,或者如图3所示,透明材料层7”不与第二电极层53接触,此时在非发光区域B内所形成这种附加的透明材料层实现非发光区域B的透光率的增大,并减小发光区域A和非发光区域B之间的界面处的阶梯,避免较薄的阴极在该界面处断裂。
在有机电致发光显示基板中,可能还存在其它的有机/有机材料层,这些有机/有机材料层中的一个或多个在一些非发光区域内的部分可以被去除,并且可以由透明材料层代替。例如,如图1-5所示,在薄膜晶体管3、3’与衬底基板1之间还形成有缓冲层2。示例性地,缓冲层2可以仅设置在像素单元的发光区域A内。
此外,虽然在图1-5中图示的结构中,有机电致发光显示基板在非发光区域内的附加的透明材料层是连续的,但可以理解,这种附加的透明材料层也可以包括不连续的或彼此隔开的多个子层,每个子层代替现有的有机电致发光显示基板在非发光区域内的一个或多个有机/有机材料层,或者具有与一个或多个有机/有机材料层的厚度或厚度之和大致相等的厚度。
进一步地,本发明还提供了一种制作有机电致发光显示基板的方法,该有机电致发光显示基板包括阵列分布的多个像素单元,每个像素单元包括发光区域和非发光区域。图6示意性地示出了根据本发明的一个示例性实施例的制作有机电致发光显示基板的方法的流程图,该方法主要包括下述步骤:
S1:提供衬底基板,其可以是玻璃基板或其它透明基板;
S2:在衬底基板上以层叠方式依次形成平坦化层、像素界定层、第一电极、和有机发光功能层,例如,可以采用沉积、蒸镀和构图工艺进行这些层的形成,所述第一电极层位于所述像素单元的发光区域内;
S3:在平坦化层、像素界定层和有机发光功能层中的至少一层形成之后,去除所述至少一层位于所述像素单元的非发光区域内的部分;
S4:在所述像素单元的非发光区域内形成透明材料层,例如在去除所述部分的位置处形成透明材料层;以及
S5:在所述像素单元的发光区域和非发光区域内形成第二电极层。
在一个示例中,可以在形成有机发光功能层之后,去除有机发光功能层位于所述像素单元的非发光区域内的部分,并且在去除有机发光功能层的所述部分的位置处形成的透明材料层可以是与第二电极层位于非发光区域内的部分直接接触的导电层。例如,所述导电层可以由金属氧化物材料制成。示例性地,所述金属氧化物材料可以包括ITO和IZO中的至少一种。优选地,所述透明材料层的至少一部分的厚度可以形成为与被去除的部分的厚度大致相同。
上述方法还可以包括在每个像素单元内、在所述衬底基板和所述平坦化层之间形成薄膜晶体管的步骤。对于顶栅型薄膜晶体管,该步骤可以包括:
在所述像素单元的发光区域内、在所述衬底基板上形成半导体有源层;
在所述衬底基板上形成覆盖所述半导体有源层的栅绝缘层;
在所述像素单元的发光区域内、在所述栅绝缘层上形成栅极;
在所述栅绝缘层上形成覆盖所述栅极的层间绝缘层;
在所述像素单元的发光区域内、在所述层间绝缘层上形成源/漏电极;以及
在所述层间绝缘层上形成覆盖所述源/漏电极的钝化层,
在所述栅绝缘层、层间绝缘层和钝化层中的至少一个形成以后,去除所述至少一个在所述像素单元的非发光区域内的部分。
对于底栅型薄膜晶体管,该步骤可以包括:
在所述像素单元的发光区域内、在所述衬底基板上形成栅极;
在所述衬底基板上形成覆盖所述栅极栅绝缘层;
在所述像素单元的发光区域内、在所述栅绝缘层上形成半导体有源层;
在所述像素单元的发光区域内、在所述半导体有源层上形成源/漏电极;以及
在所述栅绝缘层上形成至少覆盖所述源/漏电极和所述半导体有源层钝化层,
在所述栅绝缘层和钝化层中的至少一个形成以后,去除所述至少一个在所述像素单元的非发光区域内的部分。
在一个示例中,在去除栅绝缘层、层间绝缘层和/或钝化层位于所述像素单元的非发光区域内的部分之后,可以在去除所述部分的位置处形成另一透明材料层。该另一透明材料层可以与前述透明材料层隔开或是一体形成的。
可以理解,有机电致发光显示基板的上述有机/有机材料层在非发光区域内的部分的去除可以在该层形成之后立即进行,也可以同时进行非发光区域内的所有期望被去除的有机/有机材料层的去除。
图7A-7F示出了根据本发明的一个示例的制造有机电致发光显示基板的方法的示意性流程。如图7A所示,首先,例如采用沉积或蒸镀工艺,在衬底基板1上依次层 叠地形成缓冲层2、有源半导体层31、栅绝缘层32、栅极33、层间绝缘层34、源/漏电极35、钝化层36、平坦化层4、像素限定层6和第一电极层51,其中利用构图工艺图案化有源半导体层31、栅极33、源/漏电极35、第一电极51,使得它们仅设置在发光区域内;然后,如图7B所示,通过例如构图工艺去除像素限定层6在非发光区域B内的部分;如图7C所示,在非发光区域B内形成透明材料层7;接着,如图7D所示,形成覆盖像素限定层6、第一电极51和透明材料层7的有机发光功能层52;如图7E所示,采用合适的掩模图案化有机发光功能层52,以去除其在非发光区域B的部分;最后,例如采用蒸镀工艺在发光区域A和非发光区域B内形成覆盖有机发光功能层52和透明材料层7的第二电极层或阴极53。
进一步,本发明还提供了一种显示装置,其包括上述任一实施例中提供的有机电致发光显示基板、或根据上述任一实施例中提供的方法制作的有机电致发光显示基板。该显示装置可以包括AMOLED显示装置,如用于电视、手机、笔记本电脑、展示橱窗、冰箱门、车载显示器、广告牌等。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (25)

  1. 一种有机电致发光显示基板,包括衬底基板以及形成在所述衬底基板上的多个像素单元,所述像素单元包括发光区域和非发光区域,
    其中,在所述发光区域内形成有有机电致发光结构,有机电致发光结构包括层叠在衬底基板上的第一电极层、有机发光功能层和第二电极层,第二电极层包括位于发光区域内的第一部分和位于非发光区域内的第二部分,并且
    在第二电极层和衬底基板之间设置有多个有机/无机材料层,所述多个有机/无机材料层在发光区域内至少包括所述有机发光功能层,并在部分像素单元的非发光区域内包括透明材料层。
  2. 根据权利要求1所述的有机电致发光显示基板,其中
    所述透明材料层形成为使得所述第二部分与衬底基板之间的间距小于或等于所述第一部分与衬底基板之间的间距。
  3. 根据权利要求2所述的有机电致发光显示基板,其中所述透明材料层包括导电层,该导电层与所述第二部分直接接触。
  4. 根据权利要求3所述的有机电致发光显示基板,其中所述导电层由金属氧化物材料制成。
  5. 根据权利要求4所述的有机电致发光显示基板,其中所述金属氧化物材料包括ITO和IZO中的至少一种。
  6. 根据权利要求1-5中任一项所述的有机电致发光显示基板,其中,
    所述透明材料层的厚度小于或等于所述多个有机/无机材料层在发光区域内的其它层中的至少一个的厚度或多个的厚度之和。
  7. 根据权利要求6所述的有机电致发光显示基板,其中
    所述多个有机/无机材料层还包括形成在衬底基板上的平坦化层和限定所述多个像素单元的像素界定层,第一电极层形成在平坦化层上,像素界定层覆盖在平坦化层上使得第一电极层至少部分地从像素界定层中的开口露出,且所述有机发光功能层覆盖在像素界定层和第一电极层上。
  8. 根据权利要求6所述的有机电致发光显示基板,其中
    所述像素单元还包括形成在所述衬底基板和所述有机电致发光结构之间的薄膜晶体管,并且
    所述多个有机/无机材料层还包括形成所述薄膜晶体管的半导体有源层和栅绝缘层、以及覆盖薄膜晶体管的钝化层。
  9. 根据权利要求8所述的有机电致发光显示基板,其中所述多个有机/无机材料层还包括:
    形成所述薄膜晶体管的层间绝缘层,该层间绝缘层设置在所述栅绝缘层上覆盖薄膜晶体管的栅极;和/或
    形成在所述薄膜晶体管与所述衬底基板之间的缓冲层。
  10. 根据权利要求1或2所述的有机电致发光显示基板,其中
    所述透明材料层在所述非发光区域内设置在所述多个有机/无机材料层的其它相邻的两层之间。
  11. 一种制作有机电致发光显示基板的方法,该有机电致发光显示基板包括阵列分布的多个像素单元,每个像素单元包括发光区域和非发光区域,该方法包括下述步骤:
    提供衬底基板;以及
    在衬底基板上形成多个有机/无机材料层和有机电致发光结构,
    其中,有机电致发光结构位于所述发光区域内并包括层叠在衬底基板上的第一电极层、有机发光功能层和第二电极层,第二电极层包括位于发光区域内的第一部分和位于非发光区域内的第二部分,并且
    所述多个有机/无机材料层位于第二电极层和衬底基板之间,在发光区域内至少包括所述有机发光功能层,并在部分像素单元的非发光区域内包括透明材料层。
  12. 根据权利要求11所述的方法,其中所述透明材料层形成为使得所述第二部分与衬底基板之间的间距小于或等于所述第一部分与衬底基板之间的间距。
  13. 根据权利要求12所述的方法,其中所述透明材料层是在去除所述多个有机/无机材料层的其它层中的至少一个在非发光区域内的部分之后形成在非发光区域内的。
  14. 根据权利要求13所述的方法,其中在衬底基板上形成多个有机/无机材料层和有机电致发光结构的步骤包括:
    依次在所述衬底基板上层叠形成平坦化层、像素界定层、第一电极层、和有机发光功能层,使得所述第一电极层位于所述像素单元的发光区域内,所述多个有机/无机材料层还包括所述平坦化层和像素界定层;
    在平坦化层、像素界定层和有机发光功能层中的至少一层形成之后,去除所述至少一层位于所述像素单元的非发光区域内的部分;
    在所述像素单元的非发光区域内形成所述透明材料层;以及
    在所述像素单元的发光区域和非发光区域内形成所述第二电极层。
  15. 根据权利要求14所述的方法,其中所述至少一层包括所述有机发光功能层,并且
    形成所述透明材料层的步骤包括在去除有机发光功能层的所述部分的位置处形成所述透明材料层。
  16. 根据权利要求15所述的方法,其中所述透明材料层由导电材料形成并与第二电极层位于非发光区域内的第二部分直接接触。
  17. 根据权利要求16所述的方法,其中所述导电层由金属氧化物材料制成。
  18. 根据权利要求17所述的方法,其中所述金属氧化物材料包括ITO和IZO中的至少一种。
  19. 根据权利要求12-18中任一项所述的方法,其中所述透明材料层的厚度形成为小于或等于所述多个有机/无机材料层在发光区域内的其它层中的至少一个的厚度或多个的厚度之和。
  20. 根据权利要求14-18中任一项所述的方法,还包括在每个像素单元内、在形成所述平坦化层之前在所述衬底基板上形成薄膜晶体管的步骤,并且
    所述多个有机/无机材料层还包括形成所述薄膜晶体管的半导体有源层和栅绝缘层、以及覆盖薄膜晶体管的钝化层。
  21. 根据权利要求20所述的方法,其中
    形成薄膜晶体管的步骤包括:在所述栅绝缘层上形成覆盖薄膜晶体管的栅极的层间绝缘层,以及在所述像素单元的发光区域内、在所述层间绝缘层上形成源/漏电极,并且所述多个有机/无机材料层还包括所述层间绝缘层;和/或
    所述方法还包括所述多个有机/无机材料层还包括在形成所述薄膜晶体管之前在所述衬底基板形成缓冲层的步骤,并且所述多个有机/无机材料层还包括所述缓冲层。
  22. 一种制作有机电致发光显示基板的方法,包括下述步骤:
    提供衬底基板;
    在衬底基板上形成有机电致发光结构的第一电极层以及至少包括有机电致发光结构的有机发光功能层的至少一层有机/无机材料层;
    去除所述至少一层有机/无机材料层中的至少一层位于部分像素单元的非发光区域内的部分;
    在所述部分像素单元的非发光区域内形成透明材料层;以及
    在像素单元的发光区域和非发光区域内形成有机电致发光结构的第二电极。
  23. 根据权利要求22所述的方法,其中,所述透明材料层的厚度形成为小于或等于所述至少一层有机/无机材料层在发光区域内的至少一层的厚度或多层的厚度之和。
  24. 根据权利要求22或23所述的方法,其中,去除所述至少一层有机/无机材料层中的至少一层位于部分像素单元的非发光区域内的部分的步骤在所述至少一层形成之后立即执行,或同时执行非发光区域内的所有期望被去除的有机/无机材料层的去除。
  25. 一种显示装置,包括权利要求1-10中任一项所述的有机电致发光显示基板、或根据权利要求11-24中任一项所述方法制作的有机电致发光显示基板。
PCT/CN2015/085769 2015-04-01 2015-07-31 有机电致发光显示基板及其制作方法和显示装置 WO2016155175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/913,037 US9859349B2 (en) 2015-04-01 2015-07-31 Organic electroluminescent display substrate and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510151619.7A CN104867958B (zh) 2015-04-01 2015-04-01 有机电致发光显示基板及其制作方法和显示装置
CN201510151619.7 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016155175A1 true WO2016155175A1 (zh) 2016-10-06

Family

ID=53913672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085769 WO2016155175A1 (zh) 2015-04-01 2015-07-31 有机电致发光显示基板及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US9859349B2 (zh)
CN (1) CN104867958B (zh)
WO (1) WO2016155175A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992961B (zh) * 2015-07-21 2018-03-30 京东方科技集团股份有限公司 有机电致发光晶体管阵列基板及其制作方法、显示装置
CN110034152B (zh) * 2018-01-12 2023-08-04 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN110943104B (zh) * 2018-09-21 2022-11-22 北京小米移动软件有限公司 有机发光二极管显示屏及电子设备
CN110767832B (zh) 2018-12-29 2022-05-17 云谷(固安)科技有限公司 显示面板、显示面板制备方法、显示屏及显示终端
CN110429203A (zh) * 2019-07-24 2019-11-08 昆山维信诺科技有限公司 一种显示基板、显示面板、显示装置及显示基板制备方法
CN110444690B (zh) * 2019-08-20 2022-03-04 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN110600508B (zh) * 2019-08-22 2021-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板和显示装置
CN110634935A (zh) * 2019-09-29 2019-12-31 武汉天马微电子有限公司 一种阵列基板及显示装置
EP4095923A4 (en) * 2020-01-20 2023-03-22 BOE Technology Group Co., Ltd. NETWORK SUBSTRATE AND DISPLAY DEVICE
CN111261800B (zh) * 2020-02-07 2021-07-06 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
EP4130945A4 (en) 2020-04-01 2023-04-26 BOE Technology Group Co., Ltd. TOUCH STRUCTURE, TOUCH DISPLAY PANEL AND ELECTRONIC DEVICE
US11789571B2 (en) 2020-04-01 2023-10-17 Chengdu Boe Optoelectronics Technology Co., Ltd. Touch structure, touch display panel and electronic device
CN111769146B (zh) * 2020-06-28 2022-07-29 武汉华星光电半导体显示技术有限公司 显示装置及显示面板
CN115224071A (zh) * 2022-07-21 2022-10-21 厦门天马微电子有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615624A (zh) * 2008-06-24 2009-12-30 乐金显示有限公司 发光显示面板及其制造方法
CN101645489A (zh) * 2008-08-08 2010-02-10 乐金显示有限公司 发光显示器件及其制造方法
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN103035667A (zh) * 2012-12-31 2013-04-10 友达光电股份有限公司 一种镜面主动式有机发光二极管显示设备及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106358B2 (en) 2002-12-30 2006-09-12 Motorola, Inc. Method, system and apparatus for telepresence communications
US8253770B2 (en) 2007-05-31 2012-08-28 Eastman Kodak Company Residential video communication system
KR101084195B1 (ko) * 2010-02-19 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615624A (zh) * 2008-06-24 2009-12-30 乐金显示有限公司 发光显示面板及其制造方法
CN101645489A (zh) * 2008-08-08 2010-02-10 乐金显示有限公司 发光显示器件及其制造方法
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN103035667A (zh) * 2012-12-31 2013-04-10 友达光电股份有限公司 一种镜面主动式有机发光二极管显示设备及其制造方法

Also Published As

Publication number Publication date
CN104867958A (zh) 2015-08-26
US20170040396A1 (en) 2017-02-09
US9859349B2 (en) 2018-01-02
CN104867958B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2016155175A1 (zh) 有机电致发光显示基板及其制作方法和显示装置
WO2018113018A1 (zh) Oled显示面板及其制作方法
WO2018045658A1 (zh) Amoled显示装置
EP3200232B1 (en) Organic light-emitting diode array substrate and manufacturing method therefor
CN100463213C (zh) 有机电致发光器件及其制造方法
US11038002B2 (en) Double-sided display device and method of manufacturing same
US8008857B2 (en) Organic light emitting display with reflective electrode
US20140151652A1 (en) Organic light-emitting display device
TWI401992B (zh) 影像顯示裝置、影像顯示系統及其製造方法
US7911131B2 (en) Organic light emitting diode display having differently colored layers
CN104851893A (zh) 一种阵列基板及其制备方法、显示装置
CN104779268A (zh) Oled显示器件
KR101820166B1 (ko) 화이트 유기발광다이오드 표시소자 및 그 제조방법
KR20160034414A (ko) 유기발광 다이오드의 애노드 연결구조 및 그 제작방법
JP2006269387A (ja) 有機el素子
JP2008226483A (ja) 有機el表示装置
US10777618B2 (en) Transparent display panel, fabricating method for the same, and display device
KR20150054125A (ko) 유기발광 표시장치 및 그 제조방법
KR102565699B1 (ko) 표시장치 및 이의 제조방법
WO2020056887A1 (zh) 有机发光二极管显示屏及电子设备
KR100778443B1 (ko) 유기 발광 표시 장치
KR102084717B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR101717075B1 (ko) 유기전기발광소자
CN111384087A (zh) 有机发光二极管显示面板
JP2008124073A (ja) 有機el素子及び有機el表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913037

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15887140

Country of ref document: EP

Kind code of ref document: A1