WO2016155074A1 - 光轴夹角的校准、对焦方法和系统和双摄像头设备 - Google Patents

光轴夹角的校准、对焦方法和系统和双摄像头设备 Download PDF

Info

Publication number
WO2016155074A1
WO2016155074A1 PCT/CN2015/078051 CN2015078051W WO2016155074A1 WO 2016155074 A1 WO2016155074 A1 WO 2016155074A1 CN 2015078051 W CN2015078051 W CN 2015078051W WO 2016155074 A1 WO2016155074 A1 WO 2016155074A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
optical axis
imaging point
object distance
angle
Prior art date
Application number
PCT/CN2015/078051
Other languages
English (en)
French (fr)
Inventor
吴炽强
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016155074A1 publication Critical patent/WO2016155074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/18Focusing aids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Definitions

  • the present invention relates to the field of optical focusing technology, and in particular to a method and system for calibrating an optical axis angle, a focusing method and system, and a dual camera device.
  • a dual camera for use in various shooting devices, and each camera selects the focus point (feature point) of the object to be photographed after the user selects the focus point (feature point) of the object to be photographed.
  • Point imaging to form two imaging points determining the object distance value of the object to be shot to the lens plane according to the distance between the two imaging points and the center point of the imaging plane at the imaging plane and the equivalent focal length, thereby determining the focusing process The distance the lens moves.
  • the above process is based on the ideal situation in which the two optical axes are parallel.
  • determining the object distance value according to the ideal situation may cause serious focus deviation and affect the user. Shooting effects and experience.
  • the present invention is based on at least one of the above technical problems, and proposes a method and system for calibrating an optical axis angle, a focusing method and system, and a dual camera device.
  • a method for calibrating an angle of an optical axis comprising: focusing on any feature point of the object to be captured, and acquiring a first object distance value; Determining a first image point coordinate value of the feature point on the first camera; determining the feature point in the a second imaging point coordinate value on the second camera; an imaging point coordinate value according to the first coordinate value, an imaging point coordinate value of the second coordinate value, a pre-stored parameter of the dual camera device, and the first object
  • the distance value and the pre-stored optical axis angle calculation formula determine the optical axis angle of the dual camera device.
  • the first object distance value of the first camera is obtained, and the optical axis angle sampling value of the dual camera device is determined by the optical axis angle calculation formula to complete the light.
  • the calibration process of the angle of the shaft improves the calibration efficiency of the angle of the optical axis, avoids the problem of inaccurate focus caused by the deviation of the angle of the optical axis, and improves the user experience.
  • determining a first coordinate system with the mirror core of the first camera as an origin wherein the y-axis of the first coordinate system is perpendicular to the imaging plane, the x-axis of the first coordinate system is parallel to the imaging plane
  • a second The mirror core of the camera is the second coordinate system of the origin (where the y-axis of the second coordinate system is perpendicular to the imaging plane, and the x-axis of the second coordinate system is parallel to the imaging plane)
  • the calculation formula of the optical axis angle is the difference, double The relationship between the parameters of the camera (equivalent focal length and centroid distance, etc.), the angle between the optical axis, and the object distance value, where the imaging point difference is between the distance between the two imaging points and the corresponding y-axis.
  • the difference further, after obtaining the plurality of optical axis angle samples by the difference, the weighted average is calculated as the angle of the optical axis, which improves the accuracy of the optical axis angle calibration.
  • the parameters of the dual camera device can be stored in a register or in a storage unit of the microprocessor to ensure that the above parameters are quickly read for calculation of the angle of the optical axis, and at the same time, the process of acquiring the first object distance value can be adopted.
  • the single camera focusing method such as using a closed loop motor to obtain the object distance value after focusing, ensures the accuracy of the object distance value and the reliability of the calibration process.
  • the first object distance value is obtained, comprising the following specific steps: acquiring a pre-stored first map of the lens shift value and the object distance value, wherein the object distance value comprises a first object distance value of the first camera and a second object distance value of the second camera; and acquiring, by the first mapping table, the first object distance value corresponding to the lens displacement value.
  • the first object distance value can be quickly obtained by acquiring the lens displacement value and the mapping table, and the optical axis angle is adjusted according to the object distance value, and the technical process is simple.
  • the efficiency of the calibration process is improved.
  • the lens can be quickly obtained by the closed-loop motor after focusing by installing a closed motor.
  • the following specific steps are further included: storing parameters of the dual camera device, wherein the parameter The number includes an equivalent focal length value of the dual camera device and a centroid distance between the first camera center point and the second camera center point.
  • the calibration method of the optical axis angle according to the embodiment of the present invention, by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp. The efficiency and accuracy of the corners.
  • the first imaging point coordinate value is characterized by x1
  • the second imaging point coordinate value is represented by x2
  • the object distance value is characterized by L
  • the dual camera device The parameter includes a centroid distance d and an equivalent focal length value f
  • the optical axis angle calculation formula specifically includes:
  • the optical axis angle calculation formula is created by optical geometric relationship, specifically, by the similarity relationship between the triangle where the feature point is located and the triangle where the imaging point is located.
  • the above-mentioned optical axis angle calculation formula that is, the sampling value of the optical axis angle is determined by the imaging point, and further, by focusing on the feature point multiple times, the weighted average value of the optical axis angle sampling value is obtained, etc. Meet the calculation accuracy requirements of the angle of the optical axis.
  • determining an optical axis angle of the dual camera device comprises the following specific steps: calculating a weighted average value of optical axis angle sampling values of all feature points; The average value is stored in the microprocessor of the dual camera device as the optical axis angle of the dual camera device.
  • the method for calibrating the angle of the optical axis by calculating the weighted average value of the sample value of the optical axis angle as the angle of the optical axis, the error in the calibration process is reduced, and the angle of the optical axis is increased. The accuracy of the calibration.
  • the method further includes: after determining the angle of the optical axis, using a difference between the second imaging point coordinate value and the first imaging point coordinate value as an imaging point And a second mapping table between the imaging point difference value and the object distance value is created by the optical axis angle calculation formula.
  • the method for calibrating the angle of the optical axis provides a data basis for the actual focusing process of the dual camera device by creating the second mapping table, specifically, and by continuously correcting the angle of the optical axis, timely By correcting the second mapping table, the object distance value can be quickly determined by the difference of the imaging points in the actual focusing process, thereby completing the focusing process.
  • a focusing method comprising: acquiring a third imaging point coordinate value of any feature point of a subject on a first camera; acquiring the feature point in the a fourth imaging point coordinate value on the second camera; a difference between the fourth imaging point coordinate value and the third imaging point coordinate value as the imaging point difference value, according to the imaging point difference value, the calibration
  • the angle of the optical axis determines the second object distance value; determining the lens displacement value according to the second object distance value and the first mapping table to complete the first focus.
  • the calibration displacement value of the second camera can be directly determined according to the image distance value, thereby reducing the calculation process, wherein After calibrating the angle of the optical axis, according to the angle of the optical axis and the above calculation formula, by repeatedly measuring the image distance value, a calibration map can be created, and in the actual focusing process, only the image distance value needs to be obtained. Quickly determine the calibration displacement value of the second camera.
  • the second object distance value is determined according to the imaging point difference value, the calibrated angle of the optical axis, and the following specific steps are included: the imaging point difference value, calibration The angle of the optical axis and the parameter of the dual camera device are substituted into the optical axis angle calculation formula to obtain the second object distance value.
  • the second object distance value is obtained by the optical axis angle calculation formula, and the accuracy of the focusing of the second camera is improved.
  • the calculation formula of the angle of the shaft can accurately obtain the object distance of the second camera by substituting the average value of the difference of the imaged points, the angle of the calibrated optical axis and the parameters of the dual camera device into the calculation formula of the angle of the optical axis. Value, and quickly determine the calibration displacement value of the second camera according to the object distance value and the second mapping table.
  • determining a second object distance value of the second camera according to the imaging point difference value and the calibrated angle of the optical axis includes the following specific steps: according to the imaging point
  • the difference value and the second mapping table determine the second object distance value corresponding to the imaging point difference value.
  • the focusing efficiency and the accuracy of the second camera are improved, and the second camera is controlled according to the lens displacement value. Focusing process.
  • the method further comprises: performing the second focusing by using a contrast focusing method or a phase focusing method after the first focusing is completed.
  • the second pair is performed. Focusing achieves a more precise focusing effect.
  • the contrast focusing method is based on the contrast change of the screen at the focus to find the lens position when the contrast is maximum, that is, the position of accurate focus, and the phase focusing method is at the accurate focus position. At the time, the phase detection system can accurately know that the current state is in focus.
  • a calibration system for an optical axis angle comprising: an acquisition unit, configured to focus on any feature point of the object to be captured, and obtain a first object distance value; a unit, configured to determine a first imaging point coordinate value of the feature point on the first camera; the determining unit is further configured to determine a second imaging point coordinate of the feature point on the second camera The determining unit is further configured to: image the point coordinate value, the second coordinate value, the image point coordinate value, the pre-stored parameter of the dual camera device, and the first object distance according to the first coordinate value The value and the pre-stored optical axis angle calculation formula determine the angle of the optical axis of the dual camera device.
  • the optical axis angle calibration system obtains the first object distance value of the first camera, and determines the optical axis angle sampling value of the dual camera device by the optical axis angle calculation formula to complete the light.
  • the calibration process of the angle of the shaft improves the calibration efficiency of the angle of the optical axis, avoids the problem of inaccurate focus caused by the deviation of the angle of the optical axis, and improves the user experience.
  • determining a first coordinate system with the mirror core of the first camera as an origin wherein the y-axis of the first coordinate system is perpendicular to the imaging plane, the x-axis of the first coordinate system is parallel to the imaging plane
  • a second The mirror core of the camera is the second coordinate system of the origin (where the y-axis of the second coordinate system is perpendicular to the imaging plane, and the x-axis of the second coordinate system is parallel to the imaging plane)
  • the calculation formula of the optical axis angle is the difference, double The relationship between the parameters of the camera (equivalent focal length and centroid distance, etc.), the angle between the optical axis, and the object distance value, where the imaging point difference is between the distance between the two imaging points and the corresponding y-axis.
  • the difference further, after obtaining the plurality of optical axis angle samples by the difference, the weighted average is calculated as the angle of the optical axis, which improves the accuracy of the optical axis angle calibration.
  • the parameters of the dual camera device can be stored in a register or in a storage unit of the microprocessor to ensure that the above parameters are quickly read for calculation of the angle of the optical axis, and at the same time, the process of acquiring the first object distance value can be adopted.
  • the single camera focusing method such as using a closed loop motor to obtain the object distance value after focusing, ensures the accuracy of the object distance value and the reliability of the calibration process.
  • the acquiring unit is further configured to: acquire a pre-stored first mapping table of the lens displacement value and the object distance value, wherein the object distance value includes the first Camera a first object distance value of the head and a second object distance value of the second camera; and the first object distance value corresponding to the lens displacement value obtained by the first mapping table.
  • the first object distance value can be quickly obtained by acquiring the lens displacement value and the mapping table, and then the optical axis angle is calibrated according to the object distance value, and the technical process is simple.
  • the efficiency of the calibration process is improved.
  • the lens can be quickly obtained by the closed-loop motor after focusing by installing a closed motor.
  • the method further includes: a storage unit configured to store parameters of the dual camera device, wherein the parameter includes an equivalent focal length value of the dual camera device and the first camera The centroid distance between the center point and the center point of the second camera.
  • the calibration system of the optical axis angle by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp.
  • the efficiency and accuracy of the corners by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp. The efficiency and accuracy of the corners.
  • the first imaging point coordinate value is characterized by x1
  • the second imaging point coordinate value is represented by x2
  • the object distance value is characterized by L
  • the dual camera device The parameter includes a centroid distance d and an equivalent focal length value f
  • the optical axis angle calculation formula specifically includes:
  • the optical axis angle calculation formula is created by optical geometric relationship, specifically, by the similarity relationship between the triangle where the feature point is located and the triangle where the imaging point is located.
  • the above-mentioned optical axis angle calculation formula that is, the sampling value of the optical axis angle is determined by the imaging point, and further, by focusing on the feature point multiple times, the weighted average value of the optical axis angle sampling value is obtained, etc. Meet the calculation accuracy requirements of the angle of the optical axis.
  • the method further includes: a calculating unit, configured to calculate a weighted average value of the optical axis angle sampling values of the all feature points; the storage unit is further configured to: The value is stored in the microprocessor of the dual camera device as the angle of the optical axis of the dual camera device.
  • the calibration system of the optical axis angle according to the embodiment of the present invention, by calculating the weighted average value of the optical axis angle sampling value as the optical axis angle, the error in the calibration process is reduced, and the optical axis angle is increased. The accuracy of the calibration.
  • the method further includes: a creating unit, configured to determine the After the angle of the optical axis is included, the difference between the coordinate value of the second imaging point and the coordinate value of the first imaging point is used as an imaging point difference value, and the imaging point difference is created by the optical axis angle calculation formula A second mapping table between the value and the object distance value.
  • a creating unit configured to determine the After the angle of the optical axis is included, the difference between the coordinate value of the second imaging point and the coordinate value of the first imaging point is used as an imaging point difference value, and the imaging point difference is created by the optical axis angle calculation formula A second mapping table between the value and the object distance value.
  • the calibration system for the angle of the optical axis provides a data basis for the actual focusing process of the dual camera device by creating the second mapping table, and specifically, by continuously correcting the angle of the optical axis, timely By correcting the second mapping table, the object distance value can be quickly determined by the difference of the imaging points in the actual focusing process, thereby completing the focusing process.
  • a focusing system comprising: an acquiring unit, configured to acquire a third imaging point coordinate value of any feature point of the subject on the first camera; The unit is further configured to acquire a fourth imaging point coordinate value of the feature point on the second camera; the focusing system further includes: a determining unit, configured to use the fourth imaging point coordinate value and the a difference between the third imaging point coordinate values as the imaging point difference value, the second object distance value is determined according to the imaging point difference value, the calibrated angle of the optical axis; a focusing unit, configured to be used according to the The second object distance value and the first mapping table determine the lens shift value to complete the first focus.
  • the calibration displacement value of the second camera can be directly determined according to the image distance value, thereby reducing the calculation process, wherein After calibrating the angle of the optical axis, according to the angle of the optical axis and the above calculation formula, by repeatedly measuring the image distance value, a calibration map can be created, and in the actual focusing process, only the image distance value needs to be obtained. Quickly determine the calibration displacement value of the second camera.
  • the determining unit is further configured to substitute the imaging point difference value, the calibrated optical axis angle, and the parameter of the dual camera device into the optical axis angle calculation formula To obtain the second object distance value.
  • the second object distance value is obtained by the optical axis angle calculation formula, and the accuracy of the focusing of the second camera is improved.
  • the calculation formula of the angle of the shaft can accurately obtain the object distance of the second camera by substituting the average value of the difference of the imaged points, the angle of the calibrated optical axis and the parameters of the dual camera device into the calculation formula of the angle of the optical axis. Value, and quickly determine the calibration displacement value of the second camera according to the object distance value and the second mapping table.
  • the determining unit is further configured to determine, according to the imaging point difference value and the second mapping table, the second object distance value corresponding to the imaging point difference value.
  • the focusing efficiency and the accuracy of the second camera are improved, and the second camera is controlled according to the lens displacement value. Focusing process.
  • the focusing unit is further configured to perform the second focusing by using a contrast focusing method or a phase focusing method after the first focusing is completed.
  • the second focusing is performed, thereby achieving a more precise focusing effect, wherein the contrast focusing method is to find the contrast according to the contrast change of the screen at the focus.
  • the maximum lens position that is, the position of accurate focus, and the phase focusing method is at the accurate focus position, the phase detection system can accurately know that the current focus state is already in focus.
  • a dual camera device comprising a communication bus, a transceiver, a memory, and a processor, wherein:
  • the communication bus is configured to implement connection communication between the transceiver device, the memory, and the processor;
  • the program stores a set of program codes, and the processor calls program code stored in the memory to perform the following operations:
  • the transceiver device is configured to focus on any feature point of the object to be captured, and obtain a first object distance value
  • the processor is configured to determine a first imaging point coordinate value of the feature point on the first camera
  • the processor is further configured to determine a second imaging point coordinate value of the feature point on the second camera
  • the processor is further configured to: image a point coordinate value according to the first coordinate value, an image point coordinate value of the second coordinate value, a pre-stored parameter of the dual camera device, and the first object distance value
  • the pre-stored optical axis angle calculation formula determines the optical axis angle of the dual camera device.
  • the transceiver device acquires the first object distance value, and includes the following specific steps:
  • the object distance value includes a first object distance value of the first camera and a second object distance value of the second camera ;
  • the processor is further configured to perform the following steps:
  • the parameters include an equivalent focal length value of the dual camera device and a centroid distance between the first camera center point and the second camera center point.
  • the processor characterizes the first imaging point coordinate value by x1, the second imaging point coordinate value by x2, and the object distance value by L
  • the parameters of the dual camera device include a mirror distance d and an equivalent focal length value f
  • the calculation formula of the optical axis angle includes:
  • the processor determines an optical axis angle of the dual camera device, comprising the following specific steps:
  • the weighted average is stored into the microprocessor of the dual camera device as the optical axis angle of the dual camera device.
  • the processor is further configured to perform the following steps:
  • the difference between the second imaging point coordinate value and the first imaging point coordinate value is used as an imaging point difference value, and the optical axis angle calculation formula is used to create a A second mapping table between the image point difference value and the object distance value is described.
  • a dual camera device comprising a communication bus, a transceiver, a memory, and a processor, wherein:
  • the communication bus is configured to implement connection communication between the transceiver device, the memory, and the processor;
  • the program stores a set of program codes, and the processor calls program code stored in the memory to perform the following operations:
  • the transceiver device is configured to acquire a third imaging point coordinate value of any feature point of the object on the first camera;
  • the transceiver device is further configured to acquire the fourth component of the feature point on the second camera Image point coordinate value
  • the processor is configured to use a difference between the fourth imaging point coordinate value and the third imaging point coordinate value as the imaging point difference value, according to the imaging point difference value, the calibrated optical axis clip An angle determining the second object distance value;
  • the processor is further configured to determine the lens displacement value according to the second object distance value and the first mapping table to complete the first focus.
  • the processor determines the second object distance value according to the imaging point difference value and the calibrated angle of the optical axis, including the following specific steps:
  • the processor determines a second object distance value of the second camera according to the imaging point difference value and the calibrated angle of the optical axis, and includes the following specific steps:
  • the processor is further configured to perform the following steps:
  • the second focus is achieved using the contrast focus method or the phase focus method.
  • FIG. 1 shows a schematic flow chart of a method of calibrating an angle of an optical axis according to an embodiment of the present invention
  • FIG. 2 shows a schematic flow chart of a focusing method in accordance with one embodiment of the present invention
  • Figure 3 shows a schematic block diagram of a calibration system for the angle of the optical axis in accordance with one embodiment of the present invention
  • Figure 4 shows a schematic block diagram of a focusing system in accordance with one embodiment of the present invention
  • Figure 5 shows a schematic block diagram of a dual camera device in accordance with one embodiment of the present invention
  • Figure 6 shows a schematic block diagram of a dual camera device in accordance with one embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a coordinate system of a dual camera device according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing the optical path of the photographing apparatus (the optical axis angle is zero) according to an embodiment of the present invention
  • FIG. 9 shows a schematic diagram of an optical path of a photographing apparatus (one optical axis is deflected) according to an embodiment of the present invention.
  • FIG. 10 shows a schematic diagram of an optical path of a photographing apparatus (two optical axes are deflected) according to an embodiment of the present invention.
  • FIG. 1 shows a schematic flow chart of a method of calibrating the angle of the optical axis in accordance with one embodiment of the present invention.
  • a method for calibrating an angle of an optical axis includes: Step 102: Focusing on any feature point of the object to be captured, and acquiring a first object distance value; Step 104, determining a first imaging point coordinate value of the feature point on the first camera; step 106, determining a second imaging point coordinate value of the feature point on the second camera; step 108, according to the first Coordinate value imaging point coordinate value, the second coordinate value imaging point coordinate value, pre-stored parameters of the dual camera device, and the first object distance value and a pre-stored optical axis angle calculation formula determine the double The angle of the optical axis of the camera device.
  • the first object distance value of the first camera is obtained, and the optical axis angle sampling value of the dual camera device is determined by the optical axis angle calculation formula to complete the light.
  • the calibration process of the angle of the shaft improves the calibration efficiency of the angle of the optical axis, avoids the problem of inaccurate focus caused by the deviation of the angle of the optical axis, and improves the user experience.
  • determining a first coordinate system with the mirror core of the first camera as an origin wherein the y-axis of the first coordinate system is perpendicular to the imaging plane, the x-axis of the first coordinate system is parallel to the imaging plane
  • a second The mirror core of the camera is the second coordinate system of the origin (where the y-axis of the second coordinate system is perpendicular to the imaging plane, and the x-axis of the second coordinate system is parallel to the imaging plane)
  • the calculation formula of the optical axis angle is the difference, double The relationship between the parameters of the camera (equivalent focal length and centroid distance, etc.), the angle between the optical axis, and the object distance value, where the imaging point difference is between the distance between the two imaging points and the corresponding y-axis.
  • the difference further, after obtaining the plurality of optical axis angle samples by the difference, the weighted average is calculated as the angle of the optical axis, which improves the accuracy of the optical axis angle calibration.
  • the parameters of the dual camera device can be stored in a register or in a storage unit of the microprocessor to ensure that the above parameters are quickly read for calculation of the angle of the optical axis, and at the same time, the process of acquiring the first object distance value can be adopted.
  • the single camera focusing method such as using a closed loop motor to obtain the object distance value after focusing, ensures the accuracy of the object distance value and the reliability of the calibration process.
  • the first object distance value is obtained, comprising the following specific steps: acquiring a pre-stored first map of the lens shift value and the object distance value, wherein the object distance value comprises a first object distance value of the first camera and a second object distance value of the second camera; and acquiring, by the first mapping table, the first object distance value corresponding to the lens displacement value.
  • the first object distance value can be quickly obtained by acquiring the lens displacement value and the mapping table, and the optical axis angle is adjusted according to the object distance value, and the technical process is simple.
  • the efficiency of the calibration process is improved.
  • the lens can be quickly obtained by the closed-loop motor after focusing by installing a closed motor.
  • the following specific steps are further included: storing parameters of the dual camera device, wherein the parameter includes the dual camera An equivalent focal length value of the device and a centroid distance between the first camera center point and the second camera center point.
  • the calibration method of the optical axis angle according to the embodiment of the present invention, by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp. The efficiency and accuracy of the corners.
  • the first imaging point coordinate value is characterized by x1
  • the second imaging point coordinate value is represented by x2
  • the object distance value is characterized by L
  • the dual camera device The parameter includes a centroid distance d and an equivalent focal length value f
  • the optical axis angle calculation formula specifically includes:
  • the optical axis angle calculation formula is created by optical geometric relationship, specifically, by the similarity relationship between the triangle where the feature point is located and the triangle where the imaging point is located.
  • the above-mentioned optical axis angle calculation formula that is, the sampling value of the optical axis angle is determined by the imaging point, and further, by focusing on the feature point multiple times, the weighted average value of the optical axis angle sampling value is obtained, etc. Meet the calculation accuracy requirements of the angle of the optical axis.
  • determining an optical axis angle of the dual camera device comprises the following specific steps: calculating a weighted average value of optical axis angle sampling values of all feature points; The average value is stored in the microprocessor of the dual camera device as the optical axis angle of the dual camera device.
  • the method for calibrating the angle of the optical axis by calculating the weighted average value of the sample value of the optical axis angle as the angle of the optical axis, the error in the calibration process is reduced, and the angle of the optical axis is increased. The accuracy of the calibration.
  • the method further includes: after determining the angle of the optical axis, using a difference between the second imaging point coordinate value and the first imaging point coordinate value as an imaging point And a second mapping table between the imaging point difference value and the object distance value is created by the optical axis angle calculation formula.
  • the method for calibrating the angle of the optical axis provides a data basis for the actual focusing process of the dual camera device by creating the second mapping table, specifically, and by continuously correcting the angle of the optical axis, timely By correcting the second mapping table, the object distance value can be quickly determined by the difference of the imaging points in the actual focusing process, thereby completing the focusing process.
  • FIG. 2 shows a schematic flow chart of a focusing method in accordance with one embodiment of the present invention.
  • the focusing method includes: Step 202: acquiring a third imaging point coordinate value of any feature point of the object on the first camera; Step 204, acquiring the a fourth imaging point coordinate value of the feature point on the second camera; step 206, the difference between the fourth imaging point coordinate value and the third imaging point coordinate value is used as the imaging point difference value, according to Determining the image point difference, the calibrated angle of the optical axis to determine the second object distance value; step 208, determining the lens displacement value according to the second object distance value and the first mapping table to complete Focusing for the first time.
  • the calibration displacement value of the second camera can be directly determined according to the image distance value, thereby reducing the calculation process, wherein After calibrating the angle of the optical axis, according to the angle of the optical axis and the above calculation formula, by repeatedly measuring the image distance value, a calibration map can be created, and in the actual focusing process, only the image distance value needs to be obtained. Quickly determine the calibration displacement value of the second camera.
  • the second object distance value is determined according to the imaging point difference value, the calibrated angle of the optical axis, and the following specific steps are included: the imaging point difference value, calibration The angle of the optical axis and the parameter of the dual camera device are substituted into the optical axis angle calculation formula to obtain the second object distance value.
  • the second object distance value is obtained by the optical axis angle calculation formula, and the accuracy of the focusing of the second camera is improved.
  • the calculation formula of the angle of the shaft can accurately obtain the object distance of the second camera by substituting the average value of the difference of the imaged points, the angle of the calibrated optical axis and the parameters of the dual camera device into the calculation formula of the angle of the optical axis. Value, and quickly determine the calibration displacement value of the second camera according to the object distance value and the second mapping table.
  • determining a second object distance value of the second camera according to the imaging point difference value and the calibrated angle of the optical axis includes the following specific steps: according to the imaging point
  • the difference value and the second mapping table determine the second object distance value corresponding to the imaging point difference value.
  • the focusing efficiency and the accuracy of the second camera are improved, and the second camera is controlled according to the lens displacement value. Focusing process.
  • the method further comprises: performing the second focusing by using a contrast focusing method or a phase focusing method after the first focusing is completed.
  • a second focusing is performed after the first focusing is performed, thereby achieving a more precise focusing effect, wherein the contrast focusing method is to find the contrast according to the contrast change of the screen at the focus.
  • the maximum lens position that is, the position of accurate focus, and the phase focusing method is at the accurate focus position, the phase detection system can accurately know that the current focus state is already in focus.
  • Figure 3 shows a schematic block of a calibration system for the angle of the optical axis in accordance with one embodiment of the present invention.
  • the optical axis angle calibration system 300 includes: an acquisition unit 302, configured to focus on any feature point of the object to obtain a first object distance value; a determining unit 304, configured to determine a first imaging point coordinate value of the feature point on the first camera; the determining unit 304 is further configured to determine a second feature point on the second camera An imaging point coordinate value; the determining unit 304 is further configured to: according to the first coordinate value, an imaging point coordinate value, the second coordinate value, an imaging point coordinate value, a pre-stored parameter of the dual camera device, and the The first object distance value and the pre-stored optical axis angle calculation formula determine the optical axis angle of the dual camera device.
  • the optical axis angle calibration system obtains the first object distance value of the first camera, and determines the optical axis angle sampling value of the dual camera device by the optical axis angle calculation formula to complete the light.
  • the calibration process of the angle of the shaft improves the calibration efficiency of the angle of the optical axis, avoids the problem of inaccurate focus caused by the deviation of the angle of the optical axis, and improves the user experience.
  • determining a first coordinate system with the mirror core of the first camera as an origin wherein the y-axis of the first coordinate system is perpendicular to the imaging plane, the x-axis of the first coordinate system is parallel to the imaging plane
  • a second The mirror core of the camera is the second coordinate system of the origin (where the y-axis of the second coordinate system is perpendicular to the imaging plane, and the x-axis of the second coordinate system is parallel to the imaging plane)
  • the calculation formula of the optical axis angle is the difference, double The relationship between the parameters of the camera (equivalent focal length and centroid distance, etc.), the angle between the optical axis, and the object distance value, where the imaging point difference is between the distance between the two imaging points and the corresponding y-axis.
  • the difference further, after obtaining the plurality of optical axis angle samples by the difference, the weighted average is calculated as the angle of the optical axis, which improves the accuracy of the optical axis angle calibration.
  • the parameters of the dual camera device can be stored in a register or in a storage unit of the microprocessor to ensure that the above parameters are quickly read for calculation of the angle of the optical axis, and at the same time, the process of acquiring the first object distance value can be adopted.
  • the single camera focusing method such as using a closed loop motor to obtain the object distance value after focusing, ensures the accuracy of the object distance value and the reliability of the calibration process.
  • the acquiring unit 302 is further configured to acquire a first mapping table of the pre-stored lens shift value and the object distance value, where the object distance value includes the first a first object distance value of a camera and a second object distance value of the second camera; and the first object distance value corresponding to the lens displacement value obtained by the first mapping table.
  • a calibration system for an optical axis angle by acquiring a lens displacement value and The mapping table can quickly obtain the first object distance value, and then realize the calibration of the optical axis angle according to the object distance value, the technical process is simple, and the efficiency of the calibration process is improved.
  • the motor can be installed by closing the motor to achieve the focus.
  • the lens displacement value is quickly obtained by a closed loop motor.
  • the method further includes: a storage unit 306, configured to store parameters of the dual camera device, wherein the parameter includes an equivalent focal length value of the dual camera device and the first The distance between the center point of the camera and the center point of the second camera.
  • a storage unit 306 configured to store parameters of the dual camera device, wherein the parameter includes an equivalent focal length value of the dual camera device and the first The distance between the center point of the camera and the center point of the second camera.
  • the calibration system of the optical axis angle by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp.
  • the efficiency and accuracy of the corners by storing parameters such as the equivalent focal length value and the mirror distance, the above parameters can be directly used for the calculation of the angle of the optical axis, thereby effectively improving the calibration optical axis clamp. The efficiency and accuracy of the corners.
  • the first imaging point coordinate value is characterized by x1
  • the second imaging point coordinate value is represented by x2
  • the object distance value is characterized by L
  • the dual camera device The parameter includes a centroid distance d and an equivalent focal length value f
  • the optical axis angle calculation formula specifically includes:
  • the optical axis angle calculation formula is created by optical geometric relationship, specifically, by the similarity relationship between the triangle where the feature point is located and the triangle where the imaging point is located.
  • the above-mentioned optical axis angle calculation formula that is, the sampling value of the optical axis angle is determined by the imaging point, and further, by focusing on the feature point multiple times, the weighted average value of the optical axis angle sampling value is obtained, etc. Meet the calculation accuracy requirements of the angle of the optical axis.
  • the method further includes: a calculating unit 308, configured to calculate a weighted average value of the optical axis angle sampling values of the all feature points; the storage unit 306 is further configured to: The weighted average is stored in the microprocessor of the dual camera device as the angle of the optical axis of the dual camera device.
  • the calibration system of the optical axis angle according to the embodiment of the present invention, by calculating the weighted average value of the optical axis angle sampling value as the optical axis angle, the error in the calibration process is reduced, and the optical axis angle is increased. The accuracy of the calibration.
  • the method further includes: a creating unit 310, configured to determine, between the second imaging point coordinate value and the first imaging point coordinate value, after determining the optical axis angle
  • the difference value is used as an imaging point difference value, and the imaging point is created by the optical axis angle calculation formula A second mapping table between the difference and the object distance value.
  • the calibration system for the angle of the optical axis provides a data basis for the actual focusing process of the dual camera device by creating the second mapping table, and specifically, by continuously correcting the angle of the optical axis, timely By correcting the second mapping table, the object distance value can be quickly determined by the difference of the imaging points in the actual focusing process, thereby completing the focusing process.
  • a focusing system 400 including: an acquiring unit 402, configured to acquire a third imaging point coordinate value of any feature point of the object on the first camera;
  • the obtaining unit 402 is further configured to acquire a fourth imaging point coordinate value of the feature point on the second camera;
  • the focusing system 400 further includes: a determining unit 404, configured to use the fourth imaging point a difference between the coordinate value and the third imaging point coordinate value as the imaging point difference value, determining the second object distance value according to the imaging point difference value, the calibrated angle of the optical axis; the focusing unit 406, And configured to determine the lens displacement value according to the second object distance value and the first mapping table to complete the first focus.
  • the calibration displacement value of the second camera can be directly determined according to the image distance value, thereby reducing the calculation process, wherein After calibrating the angle of the optical axis, according to the angle of the optical axis and the above calculation formula, by repeatedly measuring the image distance value, a calibration map can be created, and in the actual focusing process, only the image distance value needs to be obtained. Quickly determine the calibration displacement value of the second camera.
  • the determining unit 404 is further configured to calculate the imaging point difference value, the calibrated optical axis angle, and the parameter of the dual camera device into the optical axis angle calculation. Formula to obtain the second object distance value.
  • the second object distance value is obtained by the optical axis angle calculation formula, and the accuracy of the focusing of the second camera is improved.
  • the calculation formula of the angle of the shaft can accurately obtain the object distance of the second camera by substituting the average value of the difference of the imaged points, the angle of the calibrated optical axis and the parameters of the dual camera device into the calculation formula of the angle of the optical axis. Value, and quickly determine the calibration displacement value of the second camera according to the object distance value and the second mapping table.
  • the determining unit 404 is further configured to determine, according to the imaging point difference value and the second mapping table, the second object distance value corresponding to the imaging point difference value. .
  • the focusing efficiency and the accuracy of the second camera are improved, and the second camera is controlled according to the lens displacement value. Focusing process.
  • the focusing unit 406 is further configured to perform a second focusing by using a contrast focusing method or a phase focusing method after the first focusing is completed.
  • the second focusing is performed, thereby achieving a more precise focusing effect, wherein the contrast focusing method is to find the contrast according to the contrast change of the screen at the focus.
  • the maximum lens position that is, the position of accurate focus, and the phase focusing method is at the accurate focus position, the phase detection system can accurately know that the current focus state is already in focus.
  • Figure 5 shows a schematic block diagram of a dual camera device in accordance with one embodiment of the present invention.
  • a dual camera device in accordance with an embodiment of the present invention includes at least one transceiver 503, at least one processor 501, such as a CPU, memory 504, and at least one communication bus 502.
  • processor 501 such as a CPU, memory 504
  • the communication bus 502 is configured to connect the transceiver 503, the processor 501, and the memory 504.
  • the above memory 504 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the memory 504 is further configured to store a set of program codes, and the transceiver 503 and the processor 501 are configured to call the program code stored in the memory 504, and perform the following operations:
  • the communication bus 502 is configured to implement connection communication between the transceiver 503, the memory 504, and the processor 501.
  • the memory 504 stores a set of program codes, and the processor 501 calls the program code stored in the memory 504 for performing the following operations:
  • the transceiver device 503 is configured to focus on any feature point of the object to be captured, and obtain a first object distance value
  • the processor 501 is configured to determine a first imaging point coordinate value of the feature point on the first camera
  • the processor 501 is further configured to determine a second imaging point coordinate value of the feature point on the second camera;
  • the processor 501 is further configured to: image a point coordinate value according to the first coordinate value, an image point coordinate value of the second coordinate value, a pre-stored parameter of the dual camera device, and the first object distance value And the pre-stored optical axis angle calculation formula determines the optical axis angle of the dual camera device.
  • the transceiver 503 acquires the first object distance value, and includes the following specific steps:
  • the object distance value includes a first object distance value of the first camera and a second object distance value of the second camera ;
  • the processor 501 is further configured to perform the following steps:
  • the parameters include an equivalent focal length value of the dual camera device and a centroid distance between the first camera center point and the second camera center point.
  • the processor 501 represents the first imaging point coordinate value by x1, the second imaging point coordinate value by x2, and the object distance value by L.
  • the parameters of the dual camera device include a mirror distance d and an equivalent focal length value f, and the calculation formula of the optical axis angle includes:
  • the processor 501 determines an optical axis angle of the dual camera device, and includes the following specific steps:
  • the weighted average is stored into the microprocessor of the dual camera device as the optical axis angle of the dual camera device.
  • the processor 501 is further configured to perform the following steps:
  • the difference between the second imaging point coordinate value and the first imaging point coordinate value is used as an imaging point difference value, and the optical axis angle calculation formula is used to create a A second mapping table between the image point difference value and the object distance value is described.
  • Figure 6 shows a schematic block diagram of a dual camera device in accordance with one embodiment of the present invention.
  • a dual camera device in accordance with one embodiment of the present invention includes at least one transceiver 603, at least one processor 601, such as a CPU, memory 604, and at least one communication bus 602.
  • the communication bus 602 is used to connect the transceiver 603, the processor 601, and the memory 604.
  • the above memory 604 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the memory 604 is further configured to store a set of program codes, and the transceiver 603 and the processor 601 are configured to call the program code stored in the memory 604, and perform the following operations:
  • the communication bus 602 is configured to implement connection communication between the transceiver 603, the memory 604, and the processor 601.
  • the memory 604 stores a set of program codes, and the processor 601 calls the program code stored in the memory 604 for performing the following operations:
  • the transceiver device 603 is configured to acquire a third imaging point coordinate value of any feature point of the object on the first camera;
  • the transceiver device 603 is further configured to acquire a fourth imaging point coordinate value of the feature point on the second camera;
  • the processor 601 is configured to use a difference between the fourth imaging point coordinate value and the third imaging point coordinate value as the imaging point difference value, according to the imaging point difference value, the calibrated optical axis An angle determining the second object distance value;
  • the processor 601 is further configured to determine the lens displacement value according to the second object distance value and the first mapping table to complete the first focus.
  • the processor 601 determines the second object distance value according to the imaging point difference value, the calibrated angle of the optical axis, and includes the following specific steps:
  • the processor 601 determines the second object distance value of the second camera according to the imaging point difference value and the calibrated angle of the optical axis, and includes the following specific steps:
  • the processor 601 is further configured to perform the following steps:
  • the second focus is achieved using the contrast focus method or the phase focus method.
  • the closed-loop motor and lens of the dual camera device will output two sets of mapping tables, one of which is a mapping table of object distance value and lens displacement (Table 1), and another set of displacement and lens displacement mapping tables (Table 2 ).
  • a first coordinate system with the mirror core of the camera 1 as an origin is determined (wherein the y-axis of the first coordinate system is perpendicular to the imaging plane, the x-axis of the first coordinate system is parallel to the imaging plane), and the camera
  • the mirror core of 2 is the second coordinate system of the origin (wherein the y-axis of the second coordinate system is perpendicular to the imaging plane, and the x-axis of the second coordinate system is parallel to the imaging plane) for the angle between the optical axis 1 and the optical axis 2
  • Each parameter of the calculation formula is a value measured in the corresponding coordinate system.
  • Object Distance(m) Lens Shift(mm) ⁇ 0.000 10.0 -0.001 5.0 -0.003 4.0 -0.004 3.0 -0.005 2.0 -0.007 1.9 -0.008 1.8 -0.008 1.7 -0.009 1.6 -0.009 1.5 -0.010 1.4 -0.010 1.3 -0.011 1.2 -0.012 1.1 -0.013 1.0 -0.015 0.9 -0.016 0.8 -0.018
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • d is the distance of the mirror center
  • L is the object distance value
  • f is the equivalent focal length
  • x2-x1 is the difference
  • is the angle of the optical axis
  • ⁇ x is the offset distance of the optical axis. Therefore, the above formula can be quickly obtained.
  • the angle of the optical axis is the object distance value L of ⁇
  • the ⁇ value is obtained by the above equations, thereby realizing the self-calibration of the angle of the optical axis, and further calculating the object distance value based on the calibrated ⁇ , and combining Table 1 and Table 2 can realize Precision focusing process.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • ⁇ x1, ⁇ x2, ⁇ x, ⁇ 1, and ⁇ 2 are all signed, and may be positive or negative.
  • the above formula can quickly obtain the object distance value L of the optical axis angle ⁇ (eliminating the parametric variables ⁇ x1 and ⁇ x2), and obtain the ⁇ value by the above equations, thereby realizing the self-calibration of the angle of the optical axis. Further, based on the calibrated alpha calculated object distance value, combined with Table 1 and Table 2, the precise focusing process can be realized.
  • the calculation formula for obtaining the angle of the optical axis when both optical axes are deflected is also:
  • the calculation formula of the angle of the optical axis according to the embodiment of the present invention is applicable to the case where the angle of the optical axis is deflected, which is universally adaptable.
  • the table 1 and table 2 are updated and optimized after the lens displacement is counted.
  • the present invention proposes a new focusing scheme and a dual camera device, which can achieve fast focusing and precise focusing, and at the same time realize self-calibration of the optical axis angle parameter of the dual camera device, avoiding the optical axis
  • the error of the angle parameter causes the focus error, which improves the user experience during the shooting process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)

Abstract

提供一种光轴夹角的校准、对焦方法和系统,以及一种双摄像头设备,其中校准方法包括:对被拍摄物体的任一特征点进行对焦,获取第一物距值(102);确定特征点在第一摄像头上的第一成像点坐标值(104);确定特征点在第二摄像头上的第二成像点坐标值(106);根据第一成像点坐标值、第二成像点坐标值、预存储的双摄像头设备的参数和第一物距值以及预存储的光轴夹角计算公式确定双摄像头设备的光轴夹角(108)。

Description

光轴夹角的校准、对焦方法和系统和双摄像头设备
本申请要求于2015年3月27日提交中国专利局、申请号为201510142411.9,发明名称为“光轴夹角的校准、对焦方法和系统和双摄像头设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学对焦技术领域,具体而言,涉及一种光轴夹角的校准方法和系统、一种对焦方法和系统和一种双摄像头设备。
背景技术
在相关技术中,为了在拍摄过程中实现更优异的对焦效果,双摄像头被开发应用于各种拍摄设备,在用户选择待拍摄物体的对焦点(特征点)后,每个摄像头均对该特征点进行成像以形成两个成像点,依据两个成像点到光轴点在成像平面的中心点之间的距离和等效焦距,确定待拍摄物体到镜头平面的物距值,进而确定对焦过程镜头移动的距离。
但是上述过程基于两个光轴平行的理想情况,当拍摄设备因为制作工艺偏差或者外力碰撞而造成光轴偏移时,在依据理想情况确定物距值,会造成严重的对焦偏差,影响用户的拍摄效果和使用体验。
而在将闭环马达技术应用于双镜头拍摄技术后,虽然可以实现基于霍尔传感器对镜头位移进行测量,但是并不能对光轴夹角参数进行自校准的效果。
因此,如何实现双镜头的拍摄设备的自校准过程以实现准确对焦成为亟待解决的技术问题。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种光轴夹角的校准方法和系统、一种对焦方法和系统和一种双摄像头设备。
有鉴于此,根据本发明的第一方面的实施例,提出了一种光轴夹角的校准方法,包括:对被拍摄物体的任一特征点进行对焦,获取第一物距值;确定所述特征点在所述第一摄像头上的第一成像点坐标值;确定所述特征点在所述第 二摄像头上的第二成像点坐标值;根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准方法,通过获取第一摄像头的第一物距值,并由光轴夹角计算公式确定双摄像头设备的光轴夹角采样值,以完成光轴夹角的校准过程,提高了光轴夹角的校准效率,避免了光轴夹角的偏差造成的对焦不准确等问题,提升了用户的使用体验。
具体地,确定以第一摄像头的镜心为原点的第一坐标系(其中,第一坐标系的y轴垂直于成像面,第一坐标系的x轴平行于成像面),以及一第二摄像头的镜心为原点的第二坐标系(其中,第二坐标系的y轴垂直于成像面,第二坐标系的x轴平行于成像面),光轴夹角计算公式是差值、双摄像头的参数(等效焦距和镜心距离等)、光轴夹角和物距值之间的等式关系,其中,成像点差值是两个成像点到对应的y轴的距离值之间的差值,更进一步地,在多次通过差值获得多个光轴夹角采样值后,计算其加权平均值作为光轴夹角,提高了光轴夹角校准的准确率。
另外,双摄像头设备的参数可以存储在寄存器中,或者微处理器的存储单元中,以保证快速读取上述参数进行光轴夹角的计算,同时,对第一物距值的获取过程可以采用单摄像头对焦方法,如采用闭环马达获取对焦后的物距值,保证了物距值的准确性和校正过程的可靠性。
根据本发明的一个实施例,优选地,获取第一物距值,包括以下具体步骤:获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的实施例的光轴夹角的校准方法,通过获取镜头位移值和映射表,可以快速获取第一物距值,进而根据物距值实现光轴夹角的校准,技术过程简单,提高了校准过程的效率,具体地,可以通过安装闭合马达,以实现在对焦后通过闭环马达快速获取镜头位移值。
根据本发明的一个实施例,优选地,在对被拍摄物体的任一特征点进行对焦之前,还包括以下具体步骤:存储所述双摄像头设备的参数,其中,所述参 数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的实施例的光轴夹角的校准方法,通过存储等效焦距值和镜心距离等参数,可以将上述参数直接用于光轴夹角的计算,进而有效地提高校准光轴夹角的效率和准确率。
根据本发明的一个实施例,优选地,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:。
根据本发明的实施例的光轴夹角的校准方法,通过光学几何关系创建上述光轴夹角计算公式,具体地,通过特征点所在的三角形和成像点所在的三角形之间的相似关系,创建了上述光轴夹角计算公式,也即通过成像点确定了光轴夹角采样值,更进一步地,通过多次对特征点的对焦,获取光轴夹角采样值的加权平均值等,更满足光轴夹角的计算精度要求。
根据本发明的一个实施例,优选地,确定所述双摄像头设备的光轴夹角,包括以下具体步骤:计算所述全部特征点的光轴夹角采样值的加权平均值;将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准方法,通过计算所述光轴夹角采样值的加权平均值作为光轴夹角,减小了校准过程中的误差,提高了光轴夹角的校准的准确度。
根据本发明的一个实施例,优选地,还包括:在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
根据本发明的实施例的光轴夹角的校准方法,通过创建第二映射表,为双摄像头设备的实际对焦过程提供了数据依据,具体地,并且通过对光轴夹角的不断修正,及时对第二映射表进行修正,可以在实际对焦过程中,通过成像点的差值,快速确定物距值,进而完成对焦过程。
根据本发明的第二方面的实施例,提出了一种对焦方法,包括:获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;获取所述特征点在所述第二摄像头上的第四成像点坐标值;以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的实施例的对焦方法,通过创建像距值和校准位移值之间的校准映射表,可以直接根据像距值确定第二摄像头的校准位移值,减少了计算的过程,其中,在对光轴夹角进行校准后,根据光轴夹角和上述计算公式,通过多次测得像距值,可以创建校准映射表,进而在实际对焦过程中,只需要获得像距值,即可快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的实施例的对焦方法,通过光轴夹角计算公式获得第二物距值,提高了第二摄像头的对焦的准确度,具体地,在对光轴夹角进行校准后,根据光轴夹角计算公式,通过将多次测得成像点的差值的平均值、校准的光轴夹角和双摄像头设备的参数代入光轴夹角计算公式,可以准确获得第二摄像头的物距值,并根据物距值和第二映射表快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的实施例的对焦方法,通过获取第二物距值和第二摄像头的镜头位移值的映射关系,提高了第二摄像头的对焦效率和准确率,控制第二摄像头根据镜头位移值完成对焦过程。
根据本发明的一个实施例,优选地,还包括:在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
根据本发明的实施例的对焦方法,通过完成第一次对焦后,进行第二次对 焦,实现了更精准的对焦效果,其中,采用对比度对焦的方式是根据焦点处画面的对比度变化,寻找对比度最大时的镜头位置,也就是准确对焦的位置,而相位对焦方法是在准确焦点位置的时候,相位检测系统可以准确的获知当前已经处于合焦状态。
根据本发明的第三方面的实施例,提出了一种光轴夹角的校准系统,包括:获取单元,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;确定单元,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;所述确定单元还用于,确定所述特征点在所述第二摄像头上的第二成像点坐标值;所述确定单元还用于,根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准系统,通过获取第一摄像头的第一物距值,并由光轴夹角计算公式确定双摄像头设备的光轴夹角采样值,以完成光轴夹角的校准过程,提高了光轴夹角的校准效率,避免了光轴夹角的偏差造成的对焦不准确等问题,提升了用户的使用体验。
具体地,确定以第一摄像头的镜心为原点的第一坐标系(其中,第一坐标系的y轴垂直于成像面,第一坐标系的x轴平行于成像面),以及一第二摄像头的镜心为原点的第二坐标系(其中,第二坐标系的y轴垂直于成像面,第二坐标系的x轴平行于成像面),光轴夹角计算公式是差值、双摄像头的参数(等效焦距和镜心距离等)、光轴夹角和物距值之间的等式关系,其中,成像点差值是两个成像点到对应的y轴的距离值之间的差值,更进一步地,在多次通过差值获得多个光轴夹角采样值后,计算其加权平均值作为光轴夹角,提高了光轴夹角校准的准确率。
另外,双摄像头设备的参数可以存储在寄存器中,或者微处理器的存储单元中,以保证快速读取上述参数进行光轴夹角的计算,同时,对第一物距值的获取过程可以采用单摄像头对焦方法,如采用闭环马达获取对焦后的物距值,保证了物距值的准确性和校正过程的可靠性。
根据本发明的一个实施例,优选地,所述获取单元还用于,获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像 头的第一物距值和所述第二摄像头的第二物距值;以及用于通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的实施例的光轴夹角的校准系统,通过获取镜头位移值和映射表,可以快速获取第一物距值,进而根据物距值实现光轴夹角的校准,技术过程简单,提高了校准过程的效率,具体地,可以通过安装闭合马达,以实现在对焦后通过闭环马达快速获取镜头位移值。
根据本发明的一个实施例,优选地,还包括:存储单元,用于存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的实施例的光轴夹角的校准系统,通过存储等效焦距值和镜心距离等参数,可以将上述参数直接用于光轴夹角的计算,进而有效地提高校准光轴夹角的效率和准确率。
根据本发明的一个实施例,优选地,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:。
根据本发明的实施例的光轴夹角的校准系统,通过光学几何关系创建上述光轴夹角计算公式,具体地,通过特征点所在的三角形和成像点所在的三角形之间的相似关系,创建了上述光轴夹角计算公式,也即通过成像点确定了光轴夹角采样值,更进一步地,通过多次对特征点的对焦,获取光轴夹角采样值的加权平均值等,更满足光轴夹角的计算精度要求。
根据本发明的一个实施例,优选地,还包括:计算单元,用于计算所述全部特征点的光轴夹角采样值的加权平均值;所述存储单元还用于,将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准系统,通过计算所述光轴夹角采样值的加权平均值作为光轴夹角,减小了校准过程中的误差,提高了光轴夹角的校准的准确度。
根据本发明的一个实施例,优选地,还包括:创建单元,用于在确定所述 光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
根据本发明的实施例的光轴夹角的校准系统,通过创建第二映射表,为双摄像头设备的实际对焦过程提供了数据依据,具体地,并且通过对光轴夹角的不断修正,及时对第二映射表进行修正,可以在实际对焦过程中,通过成像点的差值,快速确定物距值,进而完成对焦过程。
根据本发明的第四方面的实施例,提出了一种对焦系统,包括:获取单元,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;所述获取单元还用于,获取所述特征点在所述第二摄像头上的第四成像点坐标值;所述对焦系统,还包括:确定单元,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;对焦单元,用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的实施例的对焦系统,通过创建像距值和校准位移值之间的校准映射表,可以直接根据像距值确定第二摄像头的校准位移值,减少了计算的过程,其中,在对光轴夹角进行校准后,根据光轴夹角和上述计算公式,通过多次测得像距值,可以创建校准映射表,进而在实际对焦过程中,只需要获得像距值,即可快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,所述确定单元还用于,将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的实施例的对焦系统,通过光轴夹角计算公式获得第二物距值,提高了第二摄像头的对焦的准确度,具体地,在对光轴夹角进行校准后,根据光轴夹角计算公式,通过将多次测得成像点的差值的平均值、校准的光轴夹角和双摄像头设备的参数代入光轴夹角计算公式,可以准确获得第二摄像头的物距值,并根据物距值和第二映射表快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,所述确定单元还用于,根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的实施例的对焦系统,通过获取第二物距值和第二摄像头的镜头位移值的映射关系,提高了第二摄像头的对焦效率和准确率,控制第二摄像头根据镜头位移值完成对焦过程。
根据本发明的一个实施例,优选地,所述对焦单元还用于,在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
根据本发明的实施例的对焦系统,通过完成第一次对焦后,进行第二次对焦,实现了更精准的对焦效果,其中,采用对比度对焦的方式是根据焦点处画面的对比度变化,寻找对比度最大时的镜头位置,也就是准确对焦的位置,而相位对焦方法是在准确焦点位置的时候,相位检测系统可以准确的获知当前已经处于合焦状态。
根据本发明的第五方面的实施例,提出了一种双摄像头设备,包括通信总线、收发装置、存储器以及处理器,其中:
所述通信总线,用于实现所述收发装置、所述存储器以及所述处理器之间的连接通信;
所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
所述收发装置,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;
所述处理器,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;
所述处理器,还用于确定所述特征点在所述第二摄像头上的第二成像点坐标值;
所述处理器,还用于根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的一个实施例,优选地,所述收发装置获取第一物距值,包括以下具体步骤:
获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;
通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的一个实施例,优选地,所述处理器还用于执行如下步骤:
存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的一个实施例,优选地,所述处理器以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:
Figure PCTCN2015078051-appb-000001
根据本发明的一个实施例,优选地,所述处理器确定所述双摄像头设备的光轴夹角,包括以下具体步骤:
计算所述全部特征点的光轴夹角采样值的加权平均值;
将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的一个实施例,优选地,所述处理器还用于执行如下步骤:
在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
根据本发明的第六方面的实施例,提出了一种双摄像头设备,包括包括通信总线、收发装置、存储器以及处理器,其中:
所述通信总线,用于实现所述收发装置、所述存储器以及所述处理器之间的连接通信;
所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
所述收发装置,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;
所述收发装置,还用于获取所述特征点在所述第二摄像头上的第四成 像点坐标值;
所述处理器,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;
所述处理器,还用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的一个实施例,优选地,所述处理器根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:
将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的一个实施例,优选地,所述处理器根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:
根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的一个实施例,优选地,所述处理器还用于执行如下步骤:
在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
通过以上技术方案,可以实现快速对焦和精准对焦,同时,实现了对双摄像头设备的光轴夹角的自校准,避免了因光轴夹角的偏差造成对焦误差,提升了用户在拍摄过程的使用体验。
附图说明
图1示出了根据本发明的一个实施例的光轴夹角的校准方法的示意流程图;
图2示出了根据本发明的一个实施例的对焦方法的示意流程图;
图3示出了根据本发明的一个实施例的光轴夹角的校准系统的示意框图;
图4示出了根据本发明的一个实施例的对焦系统的示意框图;
图5示出了根据本发明的一个实施例的双摄像头设备的示意框图;
图6示出了根据本发明的一个实施例的双摄像头设备的示意框图;
图7示出了根据本发明的一个实施例的双摄像头设备的坐标系示意图;
图8示出了根据本发明的实施例的拍摄设备的光路示意图(光轴夹角为零);
图9示出了根据本发明的实施例的拍摄设备的光路示意图(一个光轴发生偏转);
图10示出了根据本发明的实施例的拍摄设备的光路示意图(两个光轴发生偏转)。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的一个实施例的光轴夹角的校准方法的示意流程图。
如图1所示,根据本发明的一个实施例的光轴夹角的校准方法,包括:步骤102,对被拍摄物体的任一特征点进行对焦,获取第一物距值;步骤104,确定所述特征点在所述第一摄像头上的第一成像点坐标值;步骤106,确定所述特征点在所述第二摄像头上的第二成像点坐标值;步骤108,根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准方法,通过获取第一摄像头的第一物距值,并由光轴夹角计算公式确定双摄像头设备的光轴夹角采样值,以完成光轴夹角的校准过程,提高了光轴夹角的校准效率,避免了光轴夹角的偏差造成的对焦不准确等问题,提升了用户的使用体验。
具体地,确定以第一摄像头的镜心为原点的第一坐标系(其中,第一坐标系的y轴垂直于成像面,第一坐标系的x轴平行于成像面),以及一第二摄像头的镜心为原点的第二坐标系(其中,第二坐标系的y轴垂直于成像面,第二坐标系的x轴平行于成像面),光轴夹角计算公式是差值、双摄像头的参数(等效焦距和镜心距离等)、光轴夹角和物距值之间的等式关系,其中,成像点差值是两个成像点到对应的y轴的距离值之间的差值,更进一步地,在多次通过差值获得多个光轴夹角采样值后,计算其加权平均值作为光轴夹角,提高了光轴夹角校准的准确率。
另外,双摄像头设备的参数可以存储在寄存器中,或者微处理器的存储单元中,以保证快速读取上述参数进行光轴夹角的计算,同时,对第一物距值的获取过程可以采用单摄像头对焦方法,如采用闭环马达获取对焦后的物距值,保证了物距值的准确性和校正过程的可靠性。
根据本发明的一个实施例,优选地,获取第一物距值,包括以下具体步骤:获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的实施例的光轴夹角的校准方法,通过获取镜头位移值和映射表,可以快速获取第一物距值,进而根据物距值实现光轴夹角的校准,技术过程简单,提高了校准过程的效率,具体地,可以通过安装闭合马达,以实现在对焦后通过闭环马达快速获取镜头位移值。
根据本发明的一个实施例,优选地,在对被拍摄物体的任一特征点进行对焦之前,还包括以下具体步骤:存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的实施例的光轴夹角的校准方法,通过存储等效焦距值和镜心距离等参数,可以将上述参数直接用于光轴夹角的计算,进而有效地提高校准光轴夹角的效率和准确率。
根据本发明的一个实施例,优选地,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体 包括:
Figure PCTCN2015078051-appb-000002
根据本发明的实施例的光轴夹角的校准方法,通过光学几何关系创建上述光轴夹角计算公式,具体地,通过特征点所在的三角形和成像点所在的三角形之间的相似关系,创建了上述光轴夹角计算公式,也即通过成像点确定了光轴夹角采样值,更进一步地,通过多次对特征点的对焦,获取光轴夹角采样值的加权平均值等,更满足光轴夹角的计算精度要求。
根据本发明的一个实施例,优选地,确定所述双摄像头设备的光轴夹角,包括以下具体步骤:计算所述全部特征点的光轴夹角采样值的加权平均值;将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准方法,通过计算所述光轴夹角采样值的加权平均值作为光轴夹角,减小了校准过程中的误差,提高了光轴夹角的校准的准确度。
根据本发明的一个实施例,优选地,还包括:在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
根据本发明的实施例的光轴夹角的校准方法,通过创建第二映射表,为双摄像头设备的实际对焦过程提供了数据依据,具体地,并且通过对光轴夹角的不断修正,及时对第二映射表进行修正,可以在实际对焦过程中,通过成像点的差值,快速确定物距值,进而完成对焦过程。
图2示出了根据本发明的一个实施例的对焦方法的示意流程图。
如图2所示,根据本发明的一个实施例的对焦方法,包括:步骤202,获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;步骤204,获取所述特征点在所述第二摄像头上的第四成像点坐标值;步骤206,以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;步骤208,根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的实施例的对焦方法,通过创建像距值和校准位移值之间的校准映射表,可以直接根据像距值确定第二摄像头的校准位移值,减少了计算的过程,其中,在对光轴夹角进行校准后,根据光轴夹角和上述计算公式,通过多次测得像距值,可以创建校准映射表,进而在实际对焦过程中,只需要获得像距值,即可快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的实施例的对焦方法,通过光轴夹角计算公式获得第二物距值,提高了第二摄像头的对焦的准确度,具体地,在对光轴夹角进行校准后,根据光轴夹角计算公式,通过将多次测得成像点的差值的平均值、校准的光轴夹角和双摄像头设备的参数代入光轴夹角计算公式,可以准确获得第二摄像头的物距值,并根据物距值和第二映射表快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的实施例的对焦方法,通过获取第二物距值和第二摄像头的镜头位移值的映射关系,提高了第二摄像头的对焦效率和准确率,控制第二摄像头根据镜头位移值完成对焦过程。
根据本发明的一个实施例,优选地,还包括:在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
根据本发明的实施例的对焦方法,通过完成第一次对焦后,进行第二次对焦,实现了更精准的对焦效果,其中,采用对比度对焦的方式是根据焦点处画面的对比度变化,寻找对比度最大时的镜头位置,也就是准确对焦的位置,而相位对焦方法是在准确焦点位置的时候,相位检测系统可以准确的获知当前已经处于合焦状态。
图3示出了根据本发明的一个实施例的光轴夹角的校准系统的示意框 图。
如图3所示,根据本发明的一个实施例的光轴夹角的校准系统300,包括:获取单元302,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;确定单元304,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;所述确定单元304还用于,确定所述特征点在所述第二摄像头上的第二成像点坐标值;所述确定单元304还用于,根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准系统,通过获取第一摄像头的第一物距值,并由光轴夹角计算公式确定双摄像头设备的光轴夹角采样值,以完成光轴夹角的校准过程,提高了光轴夹角的校准效率,避免了光轴夹角的偏差造成的对焦不准确等问题,提升了用户的使用体验。
具体地,确定以第一摄像头的镜心为原点的第一坐标系(其中,第一坐标系的y轴垂直于成像面,第一坐标系的x轴平行于成像面),以及一第二摄像头的镜心为原点的第二坐标系(其中,第二坐标系的y轴垂直于成像面,第二坐标系的x轴平行于成像面),光轴夹角计算公式是差值、双摄像头的参数(等效焦距和镜心距离等)、光轴夹角和物距值之间的等式关系,其中,成像点差值是两个成像点到对应的y轴的距离值之间的差值,更进一步地,在多次通过差值获得多个光轴夹角采样值后,计算其加权平均值作为光轴夹角,提高了光轴夹角校准的准确率。
另外,双摄像头设备的参数可以存储在寄存器中,或者微处理器的存储单元中,以保证快速读取上述参数进行光轴夹角的计算,同时,对第一物距值的获取过程可以采用单摄像头对焦方法,如采用闭环马达获取对焦后的物距值,保证了物距值的准确性和校正过程的可靠性。
根据本发明的一个实施例,优选地,所述获取单元302还用于,获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;以及用于通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的实施例的光轴夹角的校准系统,通过获取镜头位移值和 映射表,可以快速获取第一物距值,进而根据物距值实现光轴夹角的校准,技术过程简单,提高了校准过程的效率,具体地,可以通过安装闭合马达,以实现在对焦后通过闭环马达快速获取镜头位移值。
根据本发明的一个实施例,优选地,还包括:存储单元306,用于存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的实施例的光轴夹角的校准系统,通过存储等效焦距值和镜心距离等参数,可以将上述参数直接用于光轴夹角的计算,进而有效地提高校准光轴夹角的效率和准确率。
根据本发明的一个实施例,优选地,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:
Figure PCTCN2015078051-appb-000003
根据本发明的实施例的光轴夹角的校准系统,通过光学几何关系创建上述光轴夹角计算公式,具体地,通过特征点所在的三角形和成像点所在的三角形之间的相似关系,创建了上述光轴夹角计算公式,也即通过成像点确定了光轴夹角采样值,更进一步地,通过多次对特征点的对焦,获取光轴夹角采样值的加权平均值等,更满足光轴夹角的计算精度要求。
根据本发明的一个实施例,优选地,还包括:计算单元308,用于计算所述全部特征点的光轴夹角采样值的加权平均值;所述存储单元306还用于,将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的实施例的光轴夹角的校准系统,通过计算所述光轴夹角采样值的加权平均值作为光轴夹角,减小了校准过程中的误差,提高了光轴夹角的校准的准确度。
根据本发明的一个实施例,优选地,还包括:创建单元310,用于在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点 差值与所述物距值之间的第二映射表。
根据本发明的实施例的光轴夹角的校准系统,通过创建第二映射表,为双摄像头设备的实际对焦过程提供了数据依据,具体地,并且通过对光轴夹角的不断修正,及时对第二映射表进行修正,可以在实际对焦过程中,通过成像点的差值,快速确定物距值,进而完成对焦过程。
根据本发明的第四方面的实施例,提出了一种对焦系统400,包括:获取单元402,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;所述获取单元402还用于,获取所述特征点在所述第二摄像头上的第四成像点坐标值;所述对焦系统400,还包括:确定单元404,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;对焦单元406,用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的实施例的对焦系统,通过创建像距值和校准位移值之间的校准映射表,可以直接根据像距值确定第二摄像头的校准位移值,减少了计算的过程,其中,在对光轴夹角进行校准后,根据光轴夹角和上述计算公式,通过多次测得像距值,可以创建校准映射表,进而在实际对焦过程中,只需要获得像距值,即可快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,所述确定单元404还用于,将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的实施例的对焦系统,通过光轴夹角计算公式获得第二物距值,提高了第二摄像头的对焦的准确度,具体地,在对光轴夹角进行校准后,根据光轴夹角计算公式,通过将多次测得成像点的差值的平均值、校准的光轴夹角和双摄像头设备的参数代入光轴夹角计算公式,可以准确获得第二摄像头的物距值,并根据物距值和第二映射表快速确定第二摄像头的校准位移值。
根据本发明的一个实施例,优选地,所述确定单元404还用于,根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的实施例的对焦系统,通过获取第二物距值和第二摄像头的镜头位移值的映射关系,提高了第二摄像头的对焦效率和准确率,控制第二摄像头根据镜头位移值完成对焦过程。
根据本发明的一个实施例,优选地,所述对焦单元406还用于,在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
根据本发明的实施例的对焦系统,通过完成第一次对焦后,进行第二次对焦,实现了更精准的对焦效果,其中,采用对比度对焦的方式是根据焦点处画面的对比度变化,寻找对比度最大时的镜头位置,也就是准确对焦的位置,而相位对焦方法是在准确焦点位置的时候,相位检测系统可以准确的获知当前已经处于合焦状态。
图5示出了根据本发明的一个实施例的双摄像头设备的示意框图。
如图5所示,根据本发明的一个实施例的双摄像头设备,包括至少一个收发装置503,至少一个处理器501,例如CPU,存储器504和至少一个通信总线502。
其中,上述通信总线502用于连接上述收发装置503、处理器501和存储器504。
上述存储器504可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器504还用于存储一组程序代码,上述收发装置503和处理器501用于调用存储器504中存储的程序代码,执行如下操作:
所述通信总线502,用于实现所述收发装置503、所述存储器504以及所述处理器501之间的连接通信;
所述存储器504中存储一组程序代码,且处理器501调用存储器504中存储的程序代码,用于执行以下操作:
所述收发装置503,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;
所述处理器501,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;
所述处理器501,还用于确定所述特征点在所述第二摄像头上的第二成像点坐标值;
所述处理器501,还用于根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
根据本发明的一个实施例,优选地,所述收发装置503获取第一物距值,包括以下具体步骤:
获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;
通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
根据本发明的一个实施例,优选地,所述处理器501还用于执行如下步骤:
存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
根据本发明的一个实施例,优选地,所述处理器501以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:
Figure PCTCN2015078051-appb-000004
根据本发明的一个实施例,优选地,所述处理器501确定所述双摄像头设备的光轴夹角,包括以下具体步骤:
计算所述全部特征点的光轴夹角采样值的加权平均值;
将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
根据本发明的一个实施例,优选地,所述处理器501还用于执行如下步骤:
在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
图6示出了根据本发明的一个实施例的双摄像头设备的示意框图。如 图6所示,根据本发明的一个实施例的双摄像头设备,包括至少一个收发装置603,至少一个处理器601,例如CPU,存储器604和至少一个通信总线602。
其中,上述通信总线602用于连接上述收发装置603、处理器601和存储器604。
上述存储器604可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器604还用于存储一组程序代码,上述收发装置603和处理器601用于调用存储器604中存储的程序代码,执行如下操作:
所述通信总线602,用于实现所述收发装置603、所述存储器604以及所述处理器601之间的连接通信;
所述存储器604中存储一组程序代码,且处理器601调用存储器604中存储的程序代码,用于执行以下操作:
所述收发装置603,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;
所述收发装置603,还用于获取所述特征点在所述第二摄像头上的第四成像点坐标值;
所述处理器601,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;
所述处理器601,还用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
根据本发明的一个实施例,优选地,所述处理器601根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:
将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
根据本发明的一个实施例,优选地,所述处理器601根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:
根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
根据本发明的一个实施例,优选地,所述处理器601还用于执行如下步骤:
在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
下面结合图1至图10,对根据本发明的实施例的拍摄设备的对焦过程进行具体说明。
双摄像头设备的闭环马达和镜头适配后会输出两组映射表,其中,一组为物距值和镜头位移的映射表(表1),另一组位移和镜头位移的映射表(表2)。
如图7所示,确定以摄像头1的镜心为原点的第一坐标系(其中,第一坐标系的y轴垂直于成像面,第一坐标系的x轴平行于成像面),以及摄像头2的镜心为原点的第二坐标系(其中,第二坐标系的y轴垂直于成像面,第二坐标系的x轴平行于成像面),用于光轴1和光轴2的夹角计算公式的各个参数,均是在对应的坐标系内测得的数值。
表1
Object Distance(m) Lens Shift(mm)
0.000
10.0 -0.001
5.0 -0.003
4.0 -0.004
3.0 -0.005
2.0 -0.007
1.9 -0.008
1.8 -0.008
1.7 -0.009
1.6 -0.009
1.5 -0.010
1.4 -0.010
1.3 -0.011
1.2 -0.012
1.1 -0.013
1.0 -0.015
0.9 -0.016
0.8 -0.018
0.7 -0.021
0.6 -0.024
0.5 -0.029
0.45 -0.033
0.40 -0.037
0.35 -0.042
0.30 -0.049
0.25 -0.059
0.20 -0.074
0.15 -0.099
0.14 -0.107
0.13 -0.115
0.12 -0.125
0.11 -0.137
0.10 -0.151
如图8所示,当拍摄设备的光轴夹角参数为0时,根据相似三角形的比例关系,有公式如下:
Figure PCTCN2015078051-appb-000005
其中,d为镜心距离,L为物距值,f为等效焦距,x1-x2为上述差值差值,因此,通过上述公式、表1和表2可以快速获取光轴夹角为0是的物距值L。
下面对光轴夹角的计算公式的普遍适用性通过具体实施例进行说明:
注意:在这里我们定义光轴2相对光轴1顺时针旋转的角度为正,反之为负。
实施例一:
如图9所示,当拍摄设备的一个光轴发生偏转,且光轴夹角参数为α时,同样,根据相似三角形的比例关系,有方程组(1)如下:
Figure PCTCN2015078051-appb-000006
其中,d为镜心距离,L为物距值,f为等效焦距,x2-x1为差值,α为光轴夹角,Δx为光轴偏移距离,因此,通过上述公式可以快速获取光轴夹角为α的物距值L,通过上述方程组获得α值,从而实现光轴夹角的自校准,进而基于校准后的α计算物距值,并结合表1和表2可以实现精准对焦过程。
对方程组(1)进行简化消除Δx后,获得光轴夹角的计算公式为:
Figure PCTCN2015078051-appb-000007
实施例二:
如图10所示,当拍摄设备的两个光轴发生偏转,且光轴夹角参数分别为α1和α2时,光轴夹角α=α21,同样,根据相似三角形的比例关系,有方程组(2)如下:
Figure PCTCN2015078051-appb-000008
注意,上述△x1、△x2、△x、α1、α2都是有符号的,可能为正也可能为负。
另外,
Figure PCTCN2015078051-appb-000009
其中,d为镜心距离,L为物距值,f为等效焦距,x2-x1为差值,α为光轴夹角,Δx1为第一光轴偏移距离,Δx2为第二光轴偏移距离,因此,通过上述公式可以快速获取光轴夹角为α的物距值L(消除参变量Δx1和Δx2),通过上述方程组获得α值,从而实现光轴夹角的自校准,进而基于校准后的α计算物距值,并结合表1和表2可以实现精准对焦过程。
表2
(x2-x1)(单位:像素) Lens Shift(mm)
0 0.000
1 -0.001
2 -0.003
3 -0.004
4 -0.005
5 -0.007
6 -0.008
7 -0.008
8 -0.009
9 -0.009
10 -0.010
11 -0.010
12 -0.011
13 -0.012
14 -0.013
16 -0.015
18 -0.016
20 -0.018
22 -0.021
24 -0.024
28 -0.029
32 -0.033
36 -0.037
40 -0.042
44 -0.049
50 -0.059
56 -0.074
62 -0.099
70 -0.107
80 -0.115
90 -0.125
110 -0.137
130 -0.151
对上述方程组(2)进行简化,可得到:
Figure PCTCN2015078051-appb-000010
光轴夹角:
Figure PCTCN2015078051-appb-000011
在小角度下可得:
Figure PCTCN2015078051-appb-000012
也即,在两光轴均发生偏转时获得光轴夹角的计算公式同样为:
Figure PCTCN2015078051-appb-000013
通过上述两个实施例可知,根据本发明的实施例的光轴夹角的计算公式适用于所有光轴夹角发生偏转的情况,具有普遍适应性。
上述拍摄设备采用快速对焦时,在测试对焦时,获取特征点在成像面的差值(多次测试的平均值),通过表2确定镜头位移,即可完成快速对焦过程。
在完成快速对焦后,在采用对比度对焦或相位对焦,对双镜头进行更准确的对焦,在拍摄过程中,统计镜头位移后对表1和表2进行更新和优化。
以上结合附图详细说明了本发明的技术方案,考虑到如何实现双镜头的拍摄设备的自校准过程以实现准确对焦成的技术问题。因此,本发明提出了一种新的对焦方案和一种双摄像头设备,可以实现快速对焦和精准对焦,同时,实现了对双摄像头设备的光轴夹角参数的自校准,避免了因光轴夹角参数的误差造成对焦误差,提升了用户在拍摄过程的使用体验。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种光轴夹角的校准方法,所述校准方法适用于包含有第一摄像头和第二摄像头的双摄像头设备,其特征在于,所述校准方法包括:
    对被拍摄物体的任一特征点进行对焦,获取第一物距值;
    确定所述特征点在所述第一摄像头上的第一成像点坐标值;
    确定所述特征点在所述第二摄像头上的第二成像点坐标值;
    根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
  2. 根据权利要求1所述的光轴夹角的校准方法,其特征在于,获取第一物距值,包括以下具体步骤:
    获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;
    通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
  3. 根据权利要求1所述的光轴夹角的校准方法,其特征在于,在对被拍摄物体的任一特征点进行对焦之前,还包括以下具体步骤:
    存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
  4. 根据权利要求3所述的光轴夹角的校准方法,其特征在于,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:
    Figure PCTCN2015078051-appb-100001
  5. 根据权利要求1至4中任一项所述的光轴校准方法,其特征在于,确定所述双摄像头设备的光轴夹角,包括以下具体步骤:
    计算所述全部特征点的光轴夹角采样值的加权平均值;
    将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所 述双摄像头设备的光轴夹角。
  6. 根据权利要求1至4中任一项所述的光轴校准方法,其特征在于,还包括:
    在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
  7. 一种对焦方法,适用于如权利要求1至6中任一项所述的光轴校准方法完成光轴夹角校准的双摄像头设备,其特征在于,包括:
    获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;
    获取所述特征点在所述第二摄像头上的第四成像点坐标值;
    以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;
    根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
  8. 根据权利要求7所述的对焦方法,其特征在于,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:
    将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
  9. 根据权利要求7所述的对焦方法,其特征在于,根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:
    根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
  10. 根据权利要求8或9所述的对焦方法,其特征在于,还包括:
    在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
  11. 一种光轴夹角的校准系统,所述校准系统适用于包含有第一摄像头和第二摄像头的双摄像头设备,其特征在于,所述校准系统包括:
    获取单元,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;
    确定单元,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;
    所述确定单元还用于,确定所述特征点在所述第二摄像头上的第二成像点坐标值;
    所述确定单元还用于,根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
  12. 根据权利要求11所述的光轴夹角的校准系统,其特征在于,所述获取单元还用于,获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;以及
    用于通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
  13. 根据权利要求11所述的光轴夹角的校准系统,其特征在于,还包括:
    存储单元,用于存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
  14. 根据权利要求13所述的光轴夹角的校准系统,其特征在于,以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括::
    Figure PCTCN2015078051-appb-100002
  15. 根据权利要求11至14中任一项所述的光轴校准系统,其特征在于,还包括:
    计算单元,用于计算所述全部特征点的光轴夹角采样值的加权平均值;
    所述存储单元还用于,将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所述双摄像头设备的光轴夹角。
  16. 根据权利要求11至14中任一项所述的光轴校准系统,其特征在 于,还包括:
    创建单元,用于在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
  17. 一种对焦系统,适用于如权利要求11至16中任一项所述的光轴校准系统完成光轴夹角校准的双摄像头设备,其特征在于,包括:
    获取单元,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;
    所述获取单元还用于,获取所述特征点在所述第二摄像头上的第四成像点坐标值;
    所述对焦系统,还包括:
    确定单元,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;
    对焦单元,用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
  18. 根据权利要求17所述的对焦系统,其特征在于,所述确定单元还用于,将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
  19. 根据权利要求17所述的对焦系统,其特征在于,所述确定单元还用于,根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所述第二物距值。
  20. 根据权利要求18或19所述的对焦系统,其特征在于,所述对焦单元还用于,在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
  21. 一种双摄像头设备,其特征在于,包括通信总线、收发装置、存储器以及处理器,其中:
    所述通信总线,用于实现所述收发装置、所述存储器以及所述处理器之间的连接通信;
    所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的 程序代码,用于执行以下操作:
    所述收发装置,用于对被拍摄物体的任一特征点进行对焦,获取第一物距值;
    所述处理器,用于确定所述特征点在所述第一摄像头上的第一成像点坐标值;
    所述处理器,还用于确定所述特征点在所述第二摄像头上的第二成像点坐标值;
    所述处理器,还用于根据所述第一坐标值成像点坐标值、所述第二坐标值成像点坐标值、预存储的所述双摄像头设备的参数和所述第一物距值和预存储的光轴夹角计算公式确定所述双摄像头设备的光轴夹角。
  22. 根据权利要求21所述的双摄像头设备,其特征在于,所述收发装置获取第一物距值,包括以下具体步骤:
    获取预存储的所述镜头位移值和物距值的第一映射表,其中,所述物距值包括所述第一摄像头的第一物距值和所述第二摄像头的第二物距值;
    通过所述第一映射表获取所述镜头位移值对应的所述第一物距值。
  23. 根据权利要求21所述的双摄像头设备,其特征在于,所述处理器还用于执行如下步骤:
    存储所述双摄像头设备的参数,其中,所述参数包括所述双摄像头设备的等效焦距值和所述第一摄像头中心点和所述第二摄像头中心点之间的镜心距离。
  24. 根据权利要求23所述的双摄像头设备,其特征在于,所述处理器以x1表征所述第一成像点坐标值,以x2表征所述第二成像点坐标值,以L表征所述物距值,所述双摄像头设备的参数包括镜心距离d和等效焦距值f,则所述光轴夹角计算公式,具体包括:
    Figure PCTCN2015078051-appb-100003
  25. 根据权利要求21至24中任一项所述的双摄像头设备,其特征在于,所述处理器确定所述双摄像头设备的光轴夹角,包括以下具体步骤:
    计算所述全部特征点的光轴夹角采样值的加权平均值;
    将所述加权平均值存储至所述双摄像头设备的微处理器中,以作为所 述双摄像头设备的光轴夹角。
  26. 根据权利要求21至24中任一项所述的双摄像头设备,其特征在于,所述处理器还用于执行如下步骤:
    在确定所述光轴夹角后,以所述第二成像点坐标值与所述第一成像点坐标值之间的差值作为成像点差值,通过所述光轴夹角计算公式创建所述成像点差值与所述物距值之间的第二映射表。
  27. 一种双摄像头设备,其特征在于,包括通信总线、收发装置、存储器以及处理器,其中:
    所述通信总线,用于实现所述收发装置、所述存储器以及所述处理器之间的连接通信;
    所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
    所述收发装置,用于获取被拍摄物的任一特征点在第一摄像头上的第三成像点坐标值;
    所述收发装置,还用于获取所述特征点在所述第二摄像头上的第四成像点坐标值;
    所述处理器,用于以所述第四成像点坐标值与所述第三成像点坐标值之差作为所述成像点差值,根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值;
    所述处理器,还用于根据所述第二物距值和所述第一映射表确定所述镜头位移值,以完成第一次对焦。
  28. 根据权利要求27所述的双摄像头设备,其特征在于,所述处理器根据所述成像点差值、校准的所述光轴夹角确定所述第二物距值,包括以下具体步骤:
    将所述成像点差值、校准的光轴夹角和所述双摄像头设备的参数代入所述光轴夹角计算公式,以获取所述第二物距值。
  29. 根据权利要求27所述的双摄像头设备,其特征在于,所述处理器根据所述成像点差值、校准的所述光轴夹角确定所述第二摄像头的第二物距值,包括以下具体步骤:
    根据所述成像点差值和所述第二映射表确定所述成像点差值对应的所 述第二物距值。
  30. 根据权利要求28至29中任一项所述的双摄像头设备,其特征在于,所述处理器还用于执行如下步骤:
    在完成第一次对焦后,采用对比度对焦方法或相位对焦方法完成第二次对焦。
PCT/CN2015/078051 2015-03-27 2015-04-30 光轴夹角的校准、对焦方法和系统和双摄像头设备 WO2016155074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510142411.9 2015-03-27
CN201510142411.9A CN104730802B (zh) 2015-03-27 2015-03-27 光轴夹角的校准、对焦方法和系统和双摄像头设备

Publications (1)

Publication Number Publication Date
WO2016155074A1 true WO2016155074A1 (zh) 2016-10-06

Family

ID=53454846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078051 WO2016155074A1 (zh) 2015-03-27 2015-04-30 光轴夹角的校准、对焦方法和系统和双摄像头设备

Country Status (2)

Country Link
CN (1) CN104730802B (zh)
WO (1) WO2016155074A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105847665B (zh) * 2015-11-30 2018-09-04 维沃移动通信有限公司 双摄像头拍摄设备及双摄像头光轴校正装置
CN105607409B (zh) * 2016-01-07 2018-04-03 信利光电股份有限公司 一种双摄像头模组校正用的影像采集装置及其使用方法
TWI616715B (zh) 2016-06-24 2018-03-01 聚晶半導體股份有限公司 多鏡頭模組的調校方法及其系統
CN106506969B (zh) 2016-11-29 2019-07-19 Oppo广东移动通信有限公司 摄像模组、通过其进行人像追踪的方法以及电子设备
CN107872616B (zh) * 2016-12-19 2021-03-19 珠海市杰理科技股份有限公司 行车记录方法及装置
CN107871346B (zh) * 2016-12-19 2020-10-27 珠海市杰理科技股份有限公司 行车记录仪
CN106773514B (zh) * 2016-12-21 2019-04-02 信利光电股份有限公司 一种摄像模组光轴平行调节方法及系统
CN106878598B (zh) * 2017-03-13 2020-03-24 联想(北京)有限公司 处理方法及电子设备
JP7018566B2 (ja) * 2017-04-28 2022-02-14 パナソニックIpマネジメント株式会社 撮像装置、画像処理方法及びプログラム
CN106989697A (zh) * 2017-05-24 2017-07-28 深圳天珑无线科技有限公司 一种光轴夹角的获取方法及装置
CN107566720B (zh) * 2017-08-25 2019-09-27 维沃移动通信有限公司 一种更新移动终端的标定值的方法及移动终端
CN107742310B (zh) * 2017-09-18 2021-06-04 广东美晨通讯有限公司 一种双摄像头的夹角的测试方法、测试装置及存储装置
CN107635135B (zh) * 2017-09-20 2019-07-19 歌尔股份有限公司 双摄模组组装前相对倾斜角度的测试方法及测试系统
CN108234879B (zh) * 2018-02-02 2021-01-26 成都西纬科技有限公司 一种获取滑动变焦视频的方法和装置
CN108429908B (zh) * 2018-06-15 2020-09-22 昆山丘钛微电子科技有限公司 一种摄像模组的测试方法、装置、设备及介质
CN111355878A (zh) * 2018-12-21 2020-06-30 中兴通讯股份有限公司 一种终端、拍摄方法及存储介质
CN109788199B (zh) * 2019-01-30 2021-02-05 上海创功通讯技术有限公司 一种适用于具有双摄像头终端的对焦方法
CN111220360B (zh) * 2020-01-03 2021-08-31 歌尔光学科技有限公司 一种摄像模组解析力的测试方法及测试装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767024A (ja) * 1993-08-26 1995-03-10 Canon Inc 複眼撮像装置
US5974272A (en) * 1997-10-29 1999-10-26 Eastman Kodak Company Parallax corrected image capture system
CN101796817A (zh) * 2007-07-06 2010-08-04 前视红外系统股份公司 照相机和校准照相机的方法
CN102143321A (zh) * 2010-02-01 2011-08-03 卡西欧计算机株式会社 摄影装置及控制方法
US20120140037A1 (en) * 2010-12-06 2012-06-07 Lensvector, Inc. Motionless adaptive stereoscopic scene capture with tuneable liquid crystal lenses and stereoscopic auto-focusing methods
CN103246130A (zh) * 2013-04-16 2013-08-14 广东欧珀移动通信有限公司 一种对焦方法及装置
CN103344213A (zh) * 2013-06-28 2013-10-09 三星电子(中国)研发中心 一种双摄像头测量距离的方法和装置
US20140146141A1 (en) * 2012-11-27 2014-05-29 Canon Kabushiki Kaisha Three-dimensional image pickup lens system and image pickup system including the same
CN104184928A (zh) * 2013-05-22 2014-12-03 索尼公司 信息处理设备、信息处理方法以及程序

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057655A1 (en) * 2011-09-02 2013-03-07 Wen-Yueh Su Image processing system and automatic focusing method
KR101888956B1 (ko) * 2012-05-31 2018-08-17 엘지이노텍 주식회사 카메라 모듈 및 그의 오토 포커싱 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767024A (ja) * 1993-08-26 1995-03-10 Canon Inc 複眼撮像装置
US5974272A (en) * 1997-10-29 1999-10-26 Eastman Kodak Company Parallax corrected image capture system
CN101796817A (zh) * 2007-07-06 2010-08-04 前视红外系统股份公司 照相机和校准照相机的方法
CN102143321A (zh) * 2010-02-01 2011-08-03 卡西欧计算机株式会社 摄影装置及控制方法
US20120140037A1 (en) * 2010-12-06 2012-06-07 Lensvector, Inc. Motionless adaptive stereoscopic scene capture with tuneable liquid crystal lenses and stereoscopic auto-focusing methods
US20140146141A1 (en) * 2012-11-27 2014-05-29 Canon Kabushiki Kaisha Three-dimensional image pickup lens system and image pickup system including the same
CN103246130A (zh) * 2013-04-16 2013-08-14 广东欧珀移动通信有限公司 一种对焦方法及装置
CN104184928A (zh) * 2013-05-22 2014-12-03 索尼公司 信息处理设备、信息处理方法以及程序
CN103344213A (zh) * 2013-06-28 2013-10-09 三星电子(中国)研发中心 一种双摄像头测量距离的方法和装置

Also Published As

Publication number Publication date
CN104730802B (zh) 2017-10-17
CN104730802A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2016155074A1 (zh) 光轴夹角的校准、对焦方法和系统和双摄像头设备
CN108028887B (zh) 一种终端的拍照对焦方法、装置及设备
US8648918B2 (en) Method and system for obtaining a point spread function using motion information
US9369695B2 (en) Method and apparatus for three-dimensional measurement and image processing device
CN111263142B (zh) 一种摄像模组光学防抖的测试方法、装置、设备及介质
CN109855603B (zh) 一种聚焦测量方法及终端
WO2022037633A1 (zh) 双目摄像头的标定及图像矫正方法、装置、存储介质、终端、智能设备
CN107967701B (zh) 一种深度摄像设备的标定方法、装置及设备
CN109887041B (zh) 一种机械臂控制数字相机摄影中心位置和姿态的方法
CN104111059A (zh) 一种测距和定位装置、方法及终端
CN106352797B (zh) 利用双摄像头测量物体长度的方法及终端
WO2018076529A1 (zh) 场景深度计算方法、装置及终端
CN117288151B (zh) 一种投影设备的三维姿态确定方法、装置和电子设备
TW201326738A (zh) 相機模組檢測裝置及檢測方法
CN113822920A (zh) 结构光相机获取深度信息的方法、电子设备及存储介质
CN111145247B (zh) 基于视觉的位置度检测方法及机器人、计算机存储介质
CN109064517B (zh) 一种光轴垂直度调整方法及装置
CN111044039A (zh) 基于imu的单目目标区域自适应高精度测距装置和方法
CN105783733B (zh) 摄影测量中长度测量相对误差的绝对评价方法
CN109682312A (zh) 一种基于摄像头测量长度的方法及装置
CN111457884B (zh) 一种车载立体视觉传感器水平视场角的测试方法及系统
CN112762829A (zh) 基于联动偏转式主动视觉系统的目标坐标测量方法及系统
US9546860B2 (en) Method and system for contactless dimensional measurement of articles
CN114674276B (zh) 测距方法、机器视觉系统及存储介质
TWI630371B (zh) Parameter measuring device of camera and parameter measuring method of camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15887042

Country of ref document: EP

Kind code of ref document: A1