WO2016152392A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2016152392A1
WO2016152392A1 PCT/JP2016/056027 JP2016056027W WO2016152392A1 WO 2016152392 A1 WO2016152392 A1 WO 2016152392A1 JP 2016056027 W JP2016056027 W JP 2016056027W WO 2016152392 A1 WO2016152392 A1 WO 2016152392A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
polymer
acrylate
curable composition
Prior art date
Application number
PCT/JP2016/056027
Other languages
French (fr)
Japanese (ja)
Inventor
智洋 緑川
翔馬 河野
尚孝 河村
宏士 山家
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to KR1020177025167A priority Critical patent/KR102503389B1/en
Priority to CN201680015628.6A priority patent/CN107428891B/en
Priority to JP2017507640A priority patent/JP6979153B2/en
Publication of WO2016152392A1 publication Critical patent/WO2016152392A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5406Silicon-containing compounds containing elements other than oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a curable composition, and particularly to a curable composition having excellent adhesion to a substrate.
  • Patent Document 1 discloses an active energy ray-curable resin composition containing an unsaturated compound that is useful as a cladding material for optical fibers. On page 9 of Patent Document 1, glass or It is described that adhesion to a substrate such as plastic is improved.
  • Patent Document 2 discloses an active energy ray-curable resin composition containing a reactive monomer useful as an optical fiber cladding material, and a resin composition to which a coupling agent and a condensation reaction promoting catalyst are added. It is described that since the catalyst is used, the adhesion with the substrate is further improved.
  • Patent Document 3 and Patent Document 4 disclose a polymer having a (meth) acryloyl group useful as a bonding agent (adhesive) for an image display device member, (meth) acryloylsilane which is a coupling agent, and acceleration of condensation reaction.
  • a resin composition to which a catalyst has been added is described.
  • adhesion to the substrate is an extremely important characteristic and further improvement is desired.
  • JP 62-250047 A Japanese Patent Laid-Open No. 5-32712 JP 2013-088455 A JP 2013-129754 A
  • the problem to be solved by the present invention is a curable composition containing a radical polymerizable unsaturated compound, a coupling agent and a condensation reaction accelerating catalyst and having improved adhesion to a substrate. It is providing the curable composition which gives.
  • the curable composition of the present invention has (A) a polymer having a (meth) acryloyl group, (B) a silane coupling agent having a (meth) acryloyl group, and (C) (C1) having a Si—F bond.
  • a silicon compound and / or (C2) one or more fluorine compounds selected from the group consisting of boron trifluoride, boron trifluoride complexes, fluorinating agents and alkali metal salts of polyvalent fluoro compounds, and ( D) A radical initiator is contained.
  • the (A) is preferably a polyisobutylene polymer having a (meth) acryloyl group.
  • the polyisobutylene polymer having the (meth) acryloyl group moisture proof performance can be improved.
  • (D) is a photo radical initiator.
  • the sealing material of the present invention is a sealing material made of the curable composition of the present invention.
  • the electrical / electronic product of the present invention is an electrical / electronic product using the sealing material of the present invention.
  • the moisture-proof material of the present invention is a moisture-proof material comprising the curable composition of the present invention.
  • the product of the present invention is a product including a mirror or glass using the moisture-proof material of the present invention.
  • the curable composition of the present invention has an effect of giving a cured product having excellent substrate adhesion by using a specific fluorine compound as a condensation reaction promoting catalyst.
  • Examples of the polymer having a (meth) acryloyl group used in the composition of the present invention include a polymer having a (meth) acryloyloxy group, a polymer having a (meth) acrylamide group, or a (meth) acrylimide group.
  • the polymer which has is mentioned. In this, it is preferable to use the compound which has a (meth) acryloyloxy group.
  • the number of (meth) acryloyl groups in the polymer is preferably 1.0 or more, more preferably 1.1 or more, and particularly preferably 1.5 or more per molecule of the polymer. Moreover, two or more may be sufficient.
  • a (meth) acryloyl group shows an acryloyl group and / or a methacryloyl group.
  • Examples of the polymer having a (meth) acryloyloxy group include an acrylic polymer having a (meth) acryloyloxy group, a hydrocarbon polymer having a (meth) acryloyloxy group, and a polyester having a (meth) acryloyloxy group.
  • Examples thereof include an epoxy polymer, an epoxy resin having a (meth) acryloyloxy group, a polyurethane polymer having a (meth) acryloyloxy group, and a polyether polymer having a (meth) acryloyloxy group.
  • (meth) acryloyloxy groups into the polymer utilizes functional groups such as hydroxyl groups, epoxy groups and halogen atoms present at the ends of the polymer chain, such as (meth) acrylic acid and (meth) acrylic acid halides. This can be achieved by reacting a (meth) acrylic acid derivative.
  • An acrylic polymer having a (meth) acryloyloxy group is also referred to as an acrylic resin acrylate, and is a polymer having a (meth) acryloyloxy group in which the main chain is a (meth) acrylic ester polymer.
  • Such a polymer is preferably produced by anionic polymerization or radical polymerization, and radical polymerization is more preferable because of the versatility of the monomer or ease of control.
  • radical polymerizations living radical polymerization or radical polymerization using a chain transfer agent is preferable, living radical polymerization is more preferable, and atom transfer radical polymerization is particularly preferable.
  • living radical polymerization is used, a polymer having a (meth) acryloyloxy group at the end of the polymer chain can be produced.
  • MMA polymethyl methacrylate
  • HEMA (2-hydroxyethyl methacrylate
  • BMA butyl methacrylate
  • an acrylic polymer having a (meth) acryloyloxy group for example, poly (n-butyl acrylate) having an acryloyl group at both ends described in Production Example 1 of WO2012 / 008127 and the production of the same publication
  • acrylic polymers having a (meth) acryloyloxy group examples include macromonomers AA-6 and AB-6 manufactured by Toa Gosei Co., Ltd., RC-100C and RC-200C manufactured by Kaneka Corporation. RC-300C and the like.
  • hydrocarbon polymers examples include ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymers of butadiene and acrylonitrile and / or styrene.
  • hydrocarbon polymers include polymers, polybutadiene, isoprene, copolymers of butadiene and acrylonitrile and styrene, and hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers. .
  • saturated hydrocarbon polymers such as hydrogenated polyolefin polymers such as polyisobutylene, hydrogenated polyisoprene and hydrogenated polybutadiene have a large gas barrier property and are suitable for applications that require gas barrier properties.
  • polyisobutylene is preferable because of its high gas barrier properties.
  • Such a polymer can be suitably used for a moisture-proof coating of a mirror such as a mirror back surface coating or a mirror end surface coating.
  • a hydrocarbon-based polymer having a (meth) acryloyloxy group can introduce a (meth) acryloyloxy group using a polymer having a hydroxyl group.
  • a polyisobutylene polymer having a (meth) acryloyloxy group can be obtained by the methods described in JP2013-035901A and International Publication WO2013-047314A.
  • a polyester polymer having a (meth) acryloyloxy group is also called a polyester acrylate.
  • Such a polymer can be obtained by dehydrating and condensing a polyester polyol and (meth) acrylic acid.
  • examples of the polyester polyol include a reaction product of a polyol and a carboxylic acid, or an anhydride thereof.
  • Polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, tetramethylene glycol, hexamethylene glycol, neo Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, pentaerythritol and dipentaerythritol, and their alkylene oxide adducts Etc.
  • Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanedio
  • Carboxylic acid or anhydride thereof includes dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like.
  • dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like.
  • An anhydride etc. are mentioned.
  • An epoxy resin having a (meth) acryloyloxy group is also referred to as an epoxy acrylate, and (meth) acrylic acid can be added to the epoxy resin.
  • the epoxy resin include aromatic epoxy resins and aliphatic epoxy resins.
  • aromatic epoxy resins examples include resorcinol diglycidyl ether; di- or polyglycidyl ethers of bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene or its alkylene oxide adducts; phenol novolac type epoxy resins and cresol novolac type epoxy resins Novolak type epoxy resin; glycidyl phthalimide; o-phthalic acid diglycidyl ester and the like.
  • the document “Epoxy Resin-Recent Advances” (Shojodo, published in 1990), Chapter 2 and the document “Polymer Processing”, Vol. 9, Volume 22, Epoxy Resin [Polymer Press, Compounds published on pages 4 to 6 and 9 to 16 of "published in 1973” can be used as the aromatic epoxy resin.
  • aliphatic epoxy resins include diglycidyl ethers of alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol; polyalkylenes such as diglycidyl ethers of polyethylene glycol and polypropylene glycol Diglycidyl ether of glycol; diglycidyl ether of neopentyl glycol, dibromoneopentyl glycol and its alkylene oxide adducts; di- or triglycidyl ether of trimethylolethane, trimethylolpropane, glycerin and its alkylene oxide adducts, and pentaerythritol And polyglycidyl ethers of polyhydric alcohols such as di, tri or tetraglycidyl ethers of the alkylene oxide adducts thereof Ether; hydrogenated bisphenol A and di- or polyglycid
  • epoxy resin having a (meth) acryloyloxy group examples include bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, epichlorohydrin modified bisphenol A di (meth) acrylate, and ethylene oxide.
  • examples thereof include modified bisphenol S di (meth) acrylate.
  • a polyurethane-based polymer having a (meth) acryloyloxy group is also called a urethane (meth) acrylate, and further contains a hydroxyl group (meth) with respect to an isocyanate group-terminated polyurethane obtained by reacting a polyol with an excess of an organic polyisocyanate. It can be obtained by reacting acrylate.
  • examples of the polyol include a low molecular weight polyol, a polyether polyol, a polyester polyol, and a polycarbonate polyol.
  • examples of the low molecular weight polyol include ethylene glycol, propylene glycol, cyclohexanedimethanol and 3-methyl-1,5-pentanediol
  • examples of the polyether polyol include polyethylene glycol and polypropylene glycol.
  • organic polyisocyanate examples include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • hydroxyl group-containing (meth) acrylate examples include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • urethane (meth) acrylate polymers may be produced based on a known synthesis method. For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic isocyanate and a polyol component to be used are heated and stirred to cause an addition reaction, and further, a hydroxyalkyl (meth) acrylate is added, followed by heating and stirring to cause an addition reaction.
  • an addition catalyst such as dibutyltin dilaurate
  • an organic isocyanate and a polyol component to be used are heated and stirred to cause an addition reaction, and further, a hydroxyalkyl (meth) acrylate is added, followed by heating and stirring to cause an addition reaction.
  • Polyether (meth) acrylate polymers include polyalkylene glycol (meth) acrylate and polyalkylene glycol (meth) diacrylate. This polymer is polyalkylene glycol with (meth) acrylic acid and (meth) acrylic acid. It can obtain by making the derivative
  • polyalkylene glycol (meth) acrylates examples include methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, 2-ethylhexyl polyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate , Nonylphenyl polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate and the like.
  • polyalkylene glycol (meth) diacrylate examples include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di ( And (meth) acrylate, polypropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
  • a polymer having a (meth) acrylamide group uses a polymer having an amino group instead of the hydroxyl group of a polymer having a hydroxyl group such as a polyol as a raw material of the polymer having a (meth) acryloyloxy group. ) It can be obtained by reacting acrylic acid chloride.
  • the curable composition of the present invention uses a silane coupling agent having (B) (meth) acryloyl group.
  • a silane coupling agent having a (meth) acryloyl group is a compound having a (meth) acryloyl group and a crosslinkable silicon group.
  • the crosslinkable silicon group has a hydrolyzable group bonded to a silicon atom, and is a group that can be hydrolyzed by the action of water such as moisture in the air to form a siloxane bond.
  • Examples of the crosslinkable silicon group include groups in which an alkoxy group or a carboxyl group which is a hydrolyzable group is bonded to a silicon atom.
  • Specific examples of the crosslinkable silicon group include a trimethoxysilyl group and a methyldimethoxysilyl group.
  • the silane coupling agent acts as an adhesion promoter.
  • Examples of the (B) component silane coupling agent include compounds such as ⁇ -methacryloyloxypropyltrimethoxysilane and ⁇ -acryloyloxypropylmethyldimethoxysilane.
  • the silane coupling agent having a (meth) acryloyl group as the component (B) is 1 to 20 parts by mass, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the polymer having the (meth) acryloyl group as the component (A). Is preferred.
  • the curable composition of the present invention includes (C) (C1) a silicon compound having a Si—F bond, and / or (C2) boron trifluoride, a complex of boron trifluoride, a fluorinating agent, and a polyvalent fluoro compound. Containing one or more fluorine-based compounds selected from the group consisting of alkali metal salts of In the curable composition of this invention, the hardened
  • Component (C) acts as a condensation reaction promoting catalyst with which the crosslinkable silicon group of the silane coupling agent of component (B) reacts.
  • the (C1) silicon compound having a Si—F bond known compounds having a group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be widely used.
  • a fluorosilyl group organosilicon compounds having a fluorosilyl group are preferred, and organic polymers having a fluorosilyl group are more suitable because of high safety.
  • the low molecular organosilicon compound which has a fluoro silyl group from the point from which a compound becomes low viscosity is preferable.
  • Examples of the silicon compound having (C1) Si—F bond include an inorganic compound having a fluorosilyl group represented by the following formula (1), a low-molecular organic silicon compound having this fluorosilyl group, and an organic compound having this fluorosilyl group.
  • a polymer etc. are mentioned as a suitable example.
  • R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 2 3 SiO— (R 2 is independently substituted or unsubstituted having 1 to 20 carbon atoms. Or an organosiloxy group represented by a fluorine atom).
  • a is any one of 1 to 3, and a is preferably 3.
  • X is a hydroxyl group or a hydrolyzable group other than fluorine
  • b is any of 0 to 2
  • c is any of 0 to 2
  • a + b + c is 3.
  • a plurality of X are present, they may be the same or different.
  • R 1 in the formula (1) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or R 2
  • R 2 3 SiO— a triorganosiloxy group represented by R 2 3 SiO— which is a methyl group, a phenyl group or the like. Of these, a methyl group is particularly preferred.
  • the hydrolyzable group represented by X in the formula (1) includes a hydrogen atom, a halogen atom other than fluorine, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group. Group, mercapto group, alkenyloxy group and the like.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable.
  • fluorosilyl group represented by the formula (1) include silicon groups having no hydrolyzable group other than fluorine, such as fluorodimethylsilyl group, fluorodiethylsilyl group, fluorodipropylsilyl group, fluoro A silicon group in which one fluorine is substituted on a silicon group such as a diphenylsilyl group or a fluorodibenzylsilyl group; on a silicon group such as a difluoromethylsilyl group, a difluoroethylsilyl group, a difluorophenylsilyl group or a difluorobenzylsilyl group A silicon group in which two fluorine atoms are substituted; a silicon group in which three fluorine atoms are substituted on a silicon group which is a trifluorosilyl group.
  • silicon groups having no hydrolyzable group other than fluorine such as fluorodimethylsilyl group, fluorodiethy
  • silicon groups having both fluorine and other hydrolyzable groups fluoromethoxymethylsilyl group, fluoroethoxymethylsilyl group, fluoromethoxyethylsilyl group, fluoromethoxyphenylsilyl group, fluorodimethoxysilyl group, fluorodiethoxysilyl group , Fluorodipropoxysilyl group, fluorodiphenoxysilyl group, fluorobis (2-propenoxy) silyl group, difluoromethoxysilyl group, difluoroethoxysilyl group, difluorophenoxysilyl group, fluorodichlorosilyl group, difluorochlorosilyl group, etc. It is done. Among these, a silicon group having no hydrolyzable group other than fluorine and a fluorosilyl group in which R 1 is a methyl group are preferable, and a trifluorosilyl group is more preferable.
  • a silicon group in which 2 to 3 fluorine atoms are substituted on a silicon group such as a difluoromethylsilyl group, a difluoromethoxysilyl group, a difluoroethoxysilyl group, or a trifluorosilyl group, is preferable.
  • the group is most preferred.
  • the compound having a fluorosilyl group represented by the formula (1) may be a commercially available reagent, or may be synthesized from a raw material compound.
  • the synthesis method is not particularly limited, but a compound having a crosslinkable silicon group represented by the following formula (2) or a compound having a siloxane bond and a fluorinating agent are known methods (for example, Organometallics 1996, 15, 2478).
  • a compound obtained by reacting using a page (Ishikawa et al., Etc.) is preferably used.
  • -SiR 1 3-a X a (2) In Formula (2), R 1 and X are the same as in Formula (1), respectively, and a is any one of 1 to 3)
  • crosslinkable silicon group represented by the above formula (2) examples include halosilyl groups such as alkoxysilyl groups and chlorosilyl groups, hydrosilyl groups, and the like.
  • fluorinating agent used for fluorination of the alkoxysilyl group are not particularly limited.
  • fluorinating agent used for fluorination of the halosilyl group are not particularly limited.
  • the fluorinating agent used for fluorination of the hydrosilyl group are not particularly limited, and examples thereof include AgF, PF 5 , Ph 3 CBF 4 , SbF 3 , NOBF 4 , and NO 2 BF 4 .
  • a compound having a siloxane bond is cleaved with BF 3 or the like to obtain a fluorosilyl group.
  • BF 3 etherate, BF 3 alcohol complexes, BF 3 hydrate has high preferred reactive
  • BF 3 ether complex is particularly preferred.
  • silicon compound having a Si—F bond having no hydrolyzable group other than fluorine include, for example, fluorinated inorganic silicon compounds such as tetrafluorosilane and octafluorotrisilane; fluorotrimethylsilane, fluoro Triethylsilane, fluorotripropylsilane, fluorotributylsilane, fluorodimethylvinylsilane, fluorodimethylphenylsilane, fluorodimethylbenzylsilane, fluorodimethyl (3-methylphenyl) silane, fluorodimethyl (4-methylphenyl) silane, fluorodimethyl (4 -Chlorophenyl) silane, fluorotriphenylsilane, difluorodimethylsilane, difluorodiethylsilane, difluorodibutylsilane, difluoromethylphenylsilane, difluoro Pheny
  • silicon compounds having Si-F bonds having hydrolyzable groups other than fluorine include fluorotrimethoxysilane, difluorodimethoxysilane, trifluoromethoxysilane, fluorotriethoxysilane, and difluorodiethoxysilane.
  • fluorodimethylvinyl silane, fluorodimethylphenyl silane, fluorodimethylbenzyl silane, vinyl trifluorosilane, vinyl difluoromethyl silane, 3-mercaptopropyl trifluorosilane are available because of the availability of raw materials and the ease of synthesis.
  • Fluorosilane, octadecylfluorodimethylsilane, octadecyldifluoromethylsilane, octadecyltrifluorosilane, 1,3-difluoro-1,1,3,3-tetramethyldisiloxane and the like are preferable.
  • the organic polymer having a fluorosilyl group (also referred to herein as a fluorinated polymer) is not particularly limited as long as it is an organic polymer having a Si—F bond. Polymers can be widely used.
  • the position of the SiF bond in the organic polymer is not particularly limited, and the effect is exhibited regardless of the position in the polymer molecule.
  • Examples of the organic polymer having a Si—F bond include a polymer having a fluorosilyl group represented by the above formula (1), —Si (CH 3 ) F—, —Si (C 6 H 5 ) F—, — Examples thereof include polymers in which a fluorosilyl group such as SiF 2 — and ⁇ SiF is incorporated in the main chain of the polymer.
  • the fluorinated polymer is a single polymer having the same fluorosilyl group and main chain skeleton, that is, the number of fluorosilyl groups per molecule, the bonding position thereof, and the number of Fs that the fluorosilyl group has,
  • the polymer may be a single polymer having the same main chain skeleton, or may be a mixture of a plurality of polymers, any or all of which are different.
  • the average number of fluorosilyl groups contained in the fluorinated polymer should be at least 1, preferably 1.1-5, more preferably 1.2-3, per molecule of polymer. When the number of fluorosilyl groups contained in one molecule is less than 1 on average, the effect of imparting adhesion becomes insufficient.
  • the fluorinated polymer contains a substituent other than a fluorosilyl group such as a silicon group having only a hydrolyzable group other than fluorine as a hydrolyzable group (for example, a methyldimethoxysilyl group) together with a fluorosilyl group. It may be.
  • a fluorinated polymer for example, a polymer in which one main chain end is a fluorosilyl group and the other main chain end is a silicon group having only a hydrolyzable group other than fluorine as a hydrolyzable group.
  • fluorinated polymers are described in International Publication No. WO2008 / 032539.
  • any method may be used for introducing the fluorosilyl group, but the introduction method (method (i)) by the reaction of a low molecular silicon compound having a fluorosilyl group with a polymer, and other than fluorine.
  • a method (method (ii)) of modifying a silicon group of a polymer containing a crosslinkable silicon group having a hydrolyzable group (hereinafter sometimes referred to as “polymer (X)”) to a fluorosilyl group. can be mentioned.
  • the method (i) include the following methods.
  • a method in which a polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group in a molecule is reacted with a compound having a functional group and a fluorosilyl group that are reactive with the functional group.
  • a method of reacting a polymer having a hydroxyl group at the terminal with isocyanate propyldifluoromethylsilane or a method of reacting a polymer having a SiOH group at the terminal with difluorodiethoxysilane.
  • (B) A method of hydrosilylating a polymer having an unsaturated group in the molecule with a hydrosilane having a fluorosilyl group. For example, a method in which a polymer having an allyl group at a terminal is reacted with difluoromethylhydrosilane can be mentioned.
  • (C) A method of reacting a polymer containing an unsaturated group with a compound having a mercapto group and a fluorosilyl group. For example, a method in which a polymer having an allyl group at the terminal is reacted with mercaptopropyldifluoromethylsilane can be mentioned.
  • the polymer having a crosslinkable silicon group having a hydrolyzable group other than fluorine (polymer (X)) used in the method (ii) contains a crosslinkable silicon group having a hydrolyzable group other than fluorine.
  • Saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, (meth) acrylic acid ester polymers, and polysiloxane polymers are listed as preferred polymers. be able to.
  • a known method can be used as a method for converting a crosslinkable silicon group having a hydrolyzable group other than fluorine into a fluorosilyl group.
  • the method is represented by the above formula (2).
  • the hydrolyzable silicon group is converted to a fluorosilyl group with a fluorinating agent.
  • the fluorinating agent include the fluorinating agents described above.
  • the BF 3 ether complex, the BF 3 alcohol complex, and the BF 3 dihydrate have high activity, and the fluorination proceeds efficiently.
  • a salt or the like is not generated in the product, and post-treatment is easy, and thus a BF 3 ether complex is particularly preferable.
  • the reaction proceeds without heating, but heating is preferable for more efficient fluorination.
  • the heating temperature is preferably 50 ° C. or higher and 150 ° C. or lower, and more preferably 60 ° C. or higher and 130 ° C. If it is 50 ° C. or lower, the reaction does not proceed efficiently, and it may take time for fluorination. If the temperature is 150 ° C or higher, the fluorinated polymer may be decomposed.
  • fluorination with BF 3 complex is used although depending on the type of polymer (X) which may coloration occurs, from the viewpoint of suppression of coloring, BF 3 alcohol complexes, it is preferable to use BF 3 dihydrate.
  • the fluorinating agent used in the production of the fluorinated polymer may also act as a curing catalyst for the fluorinated polymer, and when water is present when producing the fluorinated polymer using the method (ii) above.
  • the silanol condensation reaction proceeds and the viscosity of the resulting fluorinated polymer may increase. For this reason, it is desirable that the production of the fluorinated polymer be performed in an environment free from water as much as possible.
  • the polymer (X) to be fluorinated is subjected to azeotropic dehydration using toluene, hexane or the like. It is preferable to perform a dehydration operation such as providing.
  • fluorination hardly progresses after the dehydration operation, and the reactivity tends to be improved by adding a small amount of water. Is preferably added.
  • BF 3 from components produced by BF 3 and reaction remaining fluorinated polymers produced is, 500 ppm than in B quantity It is preferable that it is less than 100 ppm, and it is especially preferable that it is less than 50 ppm.
  • the fluorination method using a BF 3 ether complex or a BF 3 alcohol complex is preferable because the boron component can be removed relatively easily by vacuum devolatilization, and the method using a BF 3 ether complex is particularly preferable. .
  • the polymer (X) has two or more hydrolyzable groups other than fluorine
  • all hydrolyzable groups may be fluorinated, or the amount of the fluorinating agent is reduced. May be partially fluorinated by adjusting the fluorination conditions.
  • the amount of the fluorinating agent is not particularly limited, and the moles of fluorine atoms in the fluorinating agent are not limited. The amount may be an amount that is at least equimolar with respect to the molar amount of the polymer (X).
  • the molar amount of fluorine atoms in the fluorinating agent is contained in the polymer (X). It is preferable to use the fluorinating agent in such an amount that it is equimolar or more with respect to the total molar amount of the hydrolyzable group in the crosslinkable silicon group.
  • the “fluorine atom in the fluorinating agent” means a fluorine atom effective for fluorination in the fluorinating agent, specifically, a hydrolyzable group in the crosslinkable silicon group of the polymer (X). A fluorine atom that can be substituted.
  • the low molecular compound having a fluorosilyl group in the above method (i) can also be synthesized from a general-purpose crosslinkable silicon group-containing low molecular compound using the above fluorination method.
  • the method (i) there is a reactive group for reacting the polymer and the silicon-containing low molecular weight compound together with the fluorosilyl group.
  • a fluorinated polymer is obtained by the method (ii). It is preferable.
  • the glass transition temperature of the fluorinated polymer is not particularly limited, but is preferably 20 ° C. or less, more preferably 0 ° C. or less, and particularly preferably ⁇ 20 ° C. or less. If the glass transition temperature exceeds 20 ° C., the viscosity in winter or in a cold region may increase, making it difficult to handle.
  • the glass transition temperature can be determined by DSC measurement.
  • the fluorinated polymer may be linear or branched.
  • the number average molecular weight of the fluorinated polymer is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene in GPC.
  • component (C) one or more fluorine compounds selected from the group consisting of boron trifluoride, boron trifluoride complexes, fluorinating agents and alkali metal salts of polyvalent fluoro compounds Can be used.
  • boron trifluoride complex examples include boron trifluoride amine complex, alcohol complex, ether complex, thiol complex, sulfide complex, carboxylic acid complex, and water complex.
  • boron trifluoride complexes an amine complex having both stability and catalytic activity is particularly preferable.
  • Examples of the amine compound used for the boron trifluoride amine complex include ammonia, monoethylamine, triethylamine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethanolamine, diethanolamine, triethanolamine, guanidine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N-methyl-3,3'-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2 , , 8,10-tetraoxaspiro [5.5] undecane), CTU
  • octane pyridine, N-alkylpiperidine, 1,5,7-tri
  • bicyclic tertiary amine compounds such as azabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, etc.
  • ⁇ -aminopropyltriethoxysilane ⁇ -aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ⁇ (Aminoethyl) - ⁇ -aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltriethoxysilane, N- (6-aminohexyl) ) Aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltriethoxysilane, N- (2-aminoethyl) Aminosilane compounds such as 11-amino-undecyl triethoxy
  • the fluorinating agent includes a nucleophilic fluorinating agent having a fluorine anion as an active species and an electrophilic fluorinating agent having an electron deficient fluorine atom as an active species.
  • nucleophilic fluorinating agent examples include 1,1,2,3,3,3-hexafluoro-1-such as 1,1,2,3,3,3-hexafluoro-1-diethylaminopropane.
  • examples thereof include dialkylaminopropane compounds, trialkylamine trishydrofluoride compounds such as triethylamine trishydrofluoride, and dialkylaminosulfur trifluoride compounds such as diethylaminosulfur trifluoride.
  • electrophilic fluorinating agent examples include N-fluoro such as bis (tetrafluoroboric acid) N, N′-difluoro-2,2′-bipyridinium salt compound and trifluoromethanesulfonic acid N-fluoropyridinium salt compound.
  • N-fluoro such as bis (tetrafluoroboric acid) N, N′-difluoro-2,2′-bipyridinium salt compound and trifluoromethanesulfonic acid N-fluoropyridinium salt compound.
  • 4-fluoro-1,4-diazoniabicyclo [2.2.pyridinium salt compounds such as bis (tetrafluoroboric acid) 4-fluoro-1,4-diazoniabicyclo [2.2.2] octane salts.
  • N-fluorobis (sulfonyl) amine compounds such as octane compounds and N-fluorobis (phenylsulfonyl) amines.
  • 1,1,2,3,3,3-hexafluoro-1-diethylaminopropane compounds are particularly preferable because they are liquid compounds and are easily available.
  • alkali metal salt of the polyvalent fluoro compound examples include sodium hexafluoroantimonate, potassium hexafluoroantimonate, sodium hexafluoroarsenate, potassium hexafluoroarsenate, lithium hexafluorophosphate, sodium hexafluorophosphate, Potassium hexafluorophosphate, sodium pentafluorohydroxoantimonate, potassium pentafluorohydroxoantimonate, lithium tetrafluoroborate, sodium tetrafluoroborate, potassium tetrafluoroborate, sodium tetrakis (trifluoromethylphenyl) borate, tri Sodium fluoro (pentafluorophenyl) borate, potassium trifluoro (pentafluorophenyl) borate, difluorobis (pentafluoro Eniru) sodium borate, difluoro (pentafluorophenyl)
  • tetrafluoroboric acid or hexafluorophosphoric acid is preferable as the polyvalent fluoro compound component in the alkali metal salt of the polyvalent fluoro compound.
  • the alkali metal in the alkali metal salt of the polyvalent fluoro compound is preferably at least one alkali metal selected from the group consisting of lithium, sodium and potassium.
  • the mixing ratio of the component (C) is not particularly limited, but is preferably 0.001 to 80 parts by mass, and 0.001 to 30 parts by mass with respect to 100 parts by mass of the polymer (A) having a (meth) acryloyl group. Is more preferable, and 0.005 to 20 parts by mass is even more preferable. In addition, it exists in the tendency for a small amount to mix
  • the curable composition of the present invention comprises one or more selected from the group consisting of the (C1) silicon compound having a Si—F bond and the (C2) fluorine-based compound, and (C1) and (C1) Either one of C2) or both may be used in combination.
  • the curable composition of the present invention preferably contains the silicon compound having the (C1) Si—F bond.
  • the curable composition of the present invention uses a radical polymerization initiator as the component (D).
  • radical polymerization initiators include organic peroxides such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and peroxycarbonates. be able to.
  • radical polymerization initiator examples include benzoyl peroxide, methyl ethyl ketone peroxide, lauryl peroxide, dicumyl peroxide, cumene hydroperoxide and the like. Most commonly, benzoyl peroxide is used.
  • photo radical initiator examples include benzoin ethers such as benzoin ethyl ether, benzoin butyl ether and benzoin isopropyl ether; benzophenones such as 4,4′-bisdimethylaminobenzophenone and 4,4′-bisdiethylaminobenzophenone; Acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl- Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2- Til-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one, 2-methyl-1- [4- (methylthio)
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 And ⁇ -aminoacetophenones such as 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one; 2,4,6-trimethylbenzoyl Acylphosphine oxides such as diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; and photoradicals having light absorption at long wavelengths (eg, wavelength 300 nm) such as amine synergists Initiators are preferred in terms of deep curability, acylphosphine oxides and amine synergists are more preferred. .
  • -Hydroxyacetophenones are preferred because they can improve surface curability.
  • Radical initiators are generally diluents such as inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbon, aromatic hydrocarbon, silicone oil, liquid paraffin, polymerizable monomer, water, etc. Diluted with inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbon, aromatic hydrocarbon, silicone oil, liquid paraffin, polymerizable monomer, water, etc. Diluted with inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbon, aromatic hydrocarbon, silicone oil, liquid paraffin, polymerizable monomer, water, etc. Diluted with inorganic substances such as calcium sulfate and calcium carbon
  • the radical initiator of component (D) is 0.01 parts by mass or more and 20 parts by mass or less, preferably 0.1 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the polymer having (A) (meth) acryloyl group. Part or less, more preferably 1 to 10 parts by weight.
  • a reactive diluent In the curable composition of the present invention, a reactive diluent, a co-catalyst, a silane coupling agent (adhesion imparting agent) other than the component (B), a photosensitizer, a bulking agent, and a diluent, if necessary.
  • Various additives such as an ultraviolet absorber, a solvent, a fragrance, a pigment, and a dye may be added.
  • a reactive diluent may be used.
  • various monomers such as a low molecular weight monofunctional monomer and / or a polyfunctional monomer can be used.
  • Specific examples of the monomer that can be used as the reactive diluent include a compound having a (meth) acryloyloxy group, a compound having a (meth) acrylamide group, and an N-vinyl compound.
  • the monomer having a (meth) acryloyloxy group is not particularly limited as long as it is a compound having one or more (meth) acryloyloxy groups, and examples thereof include monofunctional (meth) acrylates and polyfunctional (meth) acrylates. Can be used.
  • Examples of monofunctional (meth) acrylates include (meth) acrylic acid, ethyl (meth) acrylate, 1-methoxyethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate.
  • polyfunctional acrylates examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol diacrylate, neopentyl glycol modified trimethylol Propane di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, dicyclopentenyl diacrylate, ethylene oxide modified dicycle Pentenyl di (meth) acrylate, di (meth) acryloyl isocyanurate, trimethylolpropane tri
  • (meth) acrylamide and N-vinyl compounds include N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and Nn-butyl (meth) acrylamide.
  • the reactive diluent not only one kind of monomer but also a mixture of plural kinds of monomers can be used. Moreover, it is preferable that the addition amount of the reactive diluent with respect to the unit amount of the polymer which has (meth) acryloyl group of (A) component shall be below predetermined amount.
  • the application property and printability of the curable composition can be controlled by making the addition amount of the reactive diluent with respect to the unit amount of the polymer having the (meth) acryloyl group of the component (A) not more than a predetermined amount.
  • the reactive diluent is added in an amount of 0.1 to 50 parts by weight, preferably 0.5 parts by weight based on 100 parts by weight of the polymer having (meth) acryloyl group (A).
  • Part to 40 parts by weight more preferably 1 part to 35 parts by weight.
  • a base can be used.
  • C It acts as a co-catalyst for improving the catalytic action of the component fluorine-based compound.
  • Organic bases such as an amine compound, are preferable.
  • amidines such as tertiary amines such as 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) are used. preferable.
  • a photobase generator that generates a base when irradiated with light as a base can be used. Since the photobase generator does not act as a base before light irradiation, it is desirable to use a photobase generator when the base has an undesirable effect on the curable composition.
  • photobase generator photolatent tertiary amines such as benzylammonium salt derivatives, benzyl-substituted amine derivatives, ⁇ -aminoketone derivatives, ⁇ -ammonium ketone derivatives and the like are preferable.
  • the blending ratio thereof is not particularly limited, but is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the polymer having (A) (meth) acryloyl group.
  • the amount is more preferably 1 to 40 parts by mass, and further preferably 0.5 to 30 parts by mass.
  • the curable composition of the present invention can further contain a silane coupling agent other than the component (B), and epoxy group-containing silanes are particularly preferable.
  • the silane coupling agent acts as an adhesion promoter.
  • Examples of the silane coupling agent include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl).
  • Epoxy group-containing silanes such as ethyltrimethoxysilane; ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltri Amino groups such as methoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, 1,3-diaminoisopropyltrimethoxysilane Containing silanes; N- (1,3-dimethyl) Ketimine type silanes such as butylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-di
  • modified amino group-containing silanes modified by reacting the amino group-containing silanes with an epoxy group-containing compound, an isocyanate group-containing compound, and a (meth) acryloyl group-containing compound containing the silanes. It may be used.
  • the mixing ratio of the silane coupling agent is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.025 to 10% by mass in the composition. These silane coupling agents may be used alone or in combination of two or more.
  • a carbonyl compound having a triplet energy of 225 to 310 kJ / mol is preferable.
  • the blending ratio of the photosensitizer is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.025 to 2% by mass in the composition. These photosensitizers may be used independently and may use 2 or more types together.
  • extender examples include talc, clay, calcium carbonate, magnesium carbonate, anhydrous silicon, hydrated silicon, calcium silicate, titanium dioxide, and carbon black. These may be used alone or in combination of two or more.
  • the curable composition of the present invention can further contain a diluent.
  • a diluent By blending a diluent, physical properties such as viscosity can be adjusted.
  • known diluents can be widely used, and are not particularly limited.
  • such as saturated hydrocarbon solvents such as normal paraffin and isoparaffin, linearlen dimer (trade name of Idemitsu Kosan Co., Ltd.), etc.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • alcohol solvents such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, diacetone alcohol, ethyl acetate, butyl acetate, amyl acetate, acetic acid
  • solvents such as ester solvents such as cellosolve, citrate solvents such as acetyltriethyl citrate, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone.
  • the blending ratio of the diluent is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.025 to 10% by mass in the composition. These diluents may be used alone or in combination of two or more.
  • plasticizer examples include phosphoric esters such as tributyl phosphate and tricresyl phosphate, phthalic esters such as dioctyl phthalate, aliphatic monobasic esters such as glycerol monooleate, dioctyl adipate, and the like. And aliphatic dibasic acid esters, polypropylene glycols, liquid polybutene, liquid polyisobutylene, low molecular weight polybutadiene and other hydrocarbon plasticizers. These may be used alone or in combination of two or more.
  • the silane coupling agent and silicate described above are suitable.
  • the silicate is not particularly limited, and examples thereof include tetraalkoxysilane or a partial hydrolysis condensate thereof. More specifically, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, Tetraalkoxysilanes (tetraalkyl silicates) such as methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane, And those partial hydrolysis-condensation products are mentioned.
  • condensation reaction accelerating catalyst other than the component (C) known condensation reaction accelerating catalysts can be widely used and are not particularly limited, and examples thereof include organic metal compounds, bases such as acids and amines.
  • organometallic compounds include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate, Organic tin compounds such as dioctyltin dilaurate, dioctyltin diversate, tin octylate and tin naphthenate; dialkyltin oxides such as dimethyltin oxide, dibutyltin oxide and dioctyltin oxide; reactants of dibutyltin oxide and phthalate,
  • the method for producing the curable composition of the present invention is not particularly limited.
  • the components (A), (B), (C) and (D) are blended in a predetermined amount, and if necessary, other blends. It can be manufactured by blending substances and degassing and stirring. There is no particular limitation on the order of blending each component and other compounding substances, and it may be determined as appropriate.
  • the curable composition of the present invention can be a one-component type or a two-component type as required, but can be suitably used particularly as a one-component type.
  • the curable composition of the present invention is cured by active energy rays or heat. Therefore, it can be used as a photocurable composition that is cured by light irradiation and can be cured at room temperature (for example, 23 ° C.), but curing may be accelerated by heating as necessary.
  • the active energy rays include ultraviolet rays, visible
  • electromagnetic waves such as light rays, infrared rays
  • electromagnetic waves such as X-rays and ⁇ rays, electron rays, proton rays, neutron rays, etc.
  • curing by ultraviolet ray or electron beam irradiation is preferable, and curing by ultraviolet ray irradiation is more preferable.
  • the ultraviolet rays include g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), and the like.
  • the active energy ray source is not particularly limited, but may be, for example, a high pressure mercury lamp, a low pressure mercury lamp, an electron beam irradiation device, a halogen lamp, a light emitting diode, a semiconductor laser, or a metal halide depending on the nature of the photobase generator used. It is done.
  • the irradiation energy of ultraviolet rays for example, preferably 10 ⁇ 20,000mJ / cm 2, more preferably 50 ⁇ 10,000mJ / cm 2. If it is less than 10 mJ / cm 2 , the curability may be insufficient, and if it is greater than 20,000 mJ / cm 2 , it will not only waste time and cost, but also damage the substrate. May end up.
  • the curing temperature is preferably 30 to 200 ° C, more preferably 80 to 180 ° C.
  • the curable composition of the present invention is excellent in adhesion to a substrate and moisture resistance of a cured product, and is suitably used as a moisture proof material.
  • a polyisobutylene polymer having a (meth) acryloyl group as the polymer having a (A) (meth) acryloyl group, the moisture-proof performance of the coating film can be remarkably improved.
  • the moisture-proof material of the present invention consists of the curable composition of the present invention.
  • coating thickness to a to-be-adhered body is preferable 100 micrometers or more, and 200 micrometers or more are more preferable.
  • the moisture-proof material of the present invention is excellent in adhesion to substrates such as glass and metal in addition to moisture-proof performance, and is suitable for mirror or glass sealing, particularly sealing of the end and outer periphery of mirrors and laminated glass Is preferably used.
  • the laminated glass is a laminate of a plurality of glasses.
  • the laminated glass is sufficient if a plurality of transparent materials are laminated, but are usually laminated in the order of glass, resin layer, and glass.
  • the material constituting the resin layer is not particularly limited as long as it has adhesiveness with glass and the resin layer is transparent.
  • the laminated glass can be obtained as follows. First, using a moisture-proof material made of the curable composition of the present invention, the moisture-proof material is applied around a laminated glass whose outer periphery is unsealed.
  • the application method is not particularly limited, and examples thereof include methods known in the art using brush coating, extrusion, spraying, gravure, kiss roll, dispenser, and air knife. Subsequently, the moisture-proof material is cured.
  • the moisture-proof material of the present invention is cured by active energy rays or heat, and can be cured by the same method as the curable composition of the present invention described above.
  • the curable composition of the present invention can be suitably used as a sealing material, an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like.
  • the curable composition of the present invention includes, for example, a sealing material used for electrical / electronic products, for example, a sealing material used as an organic EL element protective agent for products including organic EL elements; Coating agent used for coating for insulation, mirror and solar power generation panel and outer peripheral part of panel; Sealing agent for multi-layer glass, sealing agent for vehicles, such as architectural and industrial sealing agent; Electrical and electronic component materials such as battery back surface sealing agents; electrical insulating materials such as insulation coating materials for electric wires and cables; pressure-sensitive adhesives; adhesives; elastic adhesives; contact adhesives and the like.
  • the curable composition of the present invention is used as a sealing material
  • examples include known methods such as brush coating, extrusion, spraying, gravure, kiss roll, dispenser, and air knife.
  • the coating method can be used.
  • the coating thickness is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more.
  • the curable composition of the present invention is used as an adhesive, there are no particular restrictions on the method of application to the adherend, but application methods such as screen printing, stencil printing, roll printing, and spin coating are preferably used.
  • application methods such as screen printing, stencil printing, roll printing, and spin coating are preferably used.
  • the curable composition of the present invention is used as a coating agent, there are no particular restrictions on the method of application to the adherend, but brush coating, extrusion, spraying, gravure, kiss roll, dispenser, air knife application, and disc A coating method such as a coating method (for example, International Publication No. 2010/137418) is preferably used.
  • the coating thickness is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more.
  • the number average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions unless otherwise specified.
  • GPC gel permeation chromatography
  • the maximum frequency molecular weight measured by GPC under the measurement conditions and converted with standard polyethylene glycol is referred to as the number average molecular weight.
  • the product is dissolved in 650 ml of n-hexane, washed with 500 ml of pure water three times, reprecipitated from methanol, and then the solvent is reduced in pressure. By distilling down, the obtained polymer was vacuum-dried at 80 degrees for 24 hours to obtain the desired acryloyl-terminated polyisobutylene polymer.
  • SEC size exclusion chromatography
  • a methanol solution of sodium methoxide was added to the obtained polyoxypropylene diol, methanol was distilled off under reduced pressure by heating, and the terminal hydroxyl group of the polyoxypropylene diol was converted to sodium alkoxide to obtain a polyoxyalkylene polymer. .
  • the polyoxyalkylene polymer was reacted with allyl chloride to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal.
  • This polyoxyalkylene polymer having an allyl group at the terminal is reacted with methyldimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and methyldimethoxysilyl at the terminal.
  • a polyoxyalkylene polymer having a group was obtained.
  • the peak top molecular weight was 15000 and the molecular weight distribution was 1.3.
  • the number of terminal methyldimethoxysilyl groups was 1.7 per molecule.
  • a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser is degassed under reduced pressure and then purged with nitrogen gas. Under a nitrogen stream, 2.4 g of BF 3 diethyl ether complex is added and heated to 50 ° C. Warm up. Subsequently, a mixture of 1.6 g of dehydrated methanol was slowly added dropwise and mixed. In a new flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser, 100 g of the obtained polymer and 5 g of toluene were placed. After stirring at 23 ° C. for 30 minutes, the mixture was heated to 110 ° C.
  • a polyoxyalkylene polymer having a fluorosilyl group at the terminal (hereinafter referred to as a fluorinated polymer) was obtained.
  • a 1H NMR spectrum of the obtained fluorinated polymer (measured in a CDCl 3 solvent using NMR 400 manufactured by Shimazu Co., Ltd.) was measured, and a peak corresponding to the polymer silylmethylene (—CH 2 —Si) as a raw material was measured. (M, 0.63 ppm) disappeared, and a broad peak appeared on the low magnetic field side (0.7 ppm-).
  • Examples 1 to 10 A polymer having a (meth) acryloyl group as the component (A) in a flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging pipe, and a water-cooled condenser at the blending ratio shown in Table 1, component (B) Other components such as silane coupling agent having (meth) acryloyl group, (C) component fluorine compound, (D) component radical initiator and reactive diluent are added, stirred, dissolved and curable composition I got a thing. The adhesion and moisture permeability to the adherend of the obtained curable composition were evaluated by the following methods.
  • IRGACURE 184 manufactured by BASF * 14: manufactured by IRGACURE 1173, manufactured by BASF * 15: 2- (dimethylamino) -2-[(4 -Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, IRGACURE 379EG, manufactured by BASF
  • Example 2 Evaluation of moisture permeability
  • the curable composition obtained in Example 1 was applied to a thickness of 220 ⁇ m, and UV irradiation (irradiation conditions: UV-LED 365 nm, illuminance: 1000 mW / cm 2, integrated light quantity: 3000mJ / cm 2) to cure the curable composition performed. After irradiation, it was cured at 23 ° C. and 50% RH for 2 days. After the curing, the cured film was used, and the moisture permeability of 50 ° C. and 85% RH was measured in accordance with the moisture permeability test method of JIS Z0208 moisture-proof packaging material. As a result, the moisture permeability was 10.5 g / m 2 24 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

To provide a curable composition which contains a radically polymerizable unsaturated compound, a coupling agent and a condensation reaction promoting catalyst, and which produces a cured product having improved adhesion to a base. A curable composition which is characterized by containing (A) a polymer having a (meth)acryloyl group, (B) a silane coupling agent having a (meth)acryloyl group, (C) (C1) a silicon compound having an Si-F bond and/or (C2) one or more fluorine-based compounds selected from the group consisting of boron trifluoride, complexes of boron trifluoride, fluorinating agents and alkali metal salts of polyvalent fluoro compounds, and (D) a radical initiator.

Description

硬化性組成物Curable composition
 本発明は、硬化性組成物に関し、特に、基材に対する密着性に優れた硬化性組成物に関する。 The present invention relates to a curable composition, and particularly to a curable composition having excellent adhesion to a substrate.
 ラジカル重合性の不飽和化合物はラジカル開始剤及び/又は光の作用により重合硬化し、接着剤やコーティング材などに使用されている。特許文献1には光ファイバーのクラッド材として有用な不飽和化合物を含有する活性エネルギー線硬化型樹脂組成物が開示され、特許文献1の第9頁にはカップリング剤を添加することにより、ガラスやプラスチック等の基材との密着性が改善されることが記載されている。特許文献2には光ファイバーのクラッド材として有用な反応性モノマーを含有する活性エネルギー線硬化型樹脂組成物であってカップリング剤と縮合反応促進触媒を添加した樹脂組成物が開示され、縮合反応促進触媒を使用しているため基材との密着性がさらに改善されることが記載されている。 Radical polymerizable unsaturated compounds are polymerized and cured by the action of radical initiators and / or light, and are used in adhesives and coating materials. Patent Document 1 discloses an active energy ray-curable resin composition containing an unsaturated compound that is useful as a cladding material for optical fibers. On page 9 of Patent Document 1, glass or It is described that adhesion to a substrate such as plastic is improved. Patent Document 2 discloses an active energy ray-curable resin composition containing a reactive monomer useful as an optical fiber cladding material, and a resin composition to which a coupling agent and a condensation reaction promoting catalyst are added. It is described that since the catalyst is used, the adhesion with the substrate is further improved.
 また、特許文献3や特許文献4には画像表示装置部材の貼り合わせ剤(接着剤)として有用な(メタ)アクリロイル基を有する重合体、カップリング剤である(メタ)アクリロイルシラン及び縮合反応促進触媒を添加した樹脂組成物が記載されている。 Patent Document 3 and Patent Document 4 disclose a polymer having a (meth) acryloyl group useful as a bonding agent (adhesive) for an image display device member, (meth) acryloylsilane which is a coupling agent, and acceleration of condensation reaction. A resin composition to which a catalyst has been added is described.
 接着剤やコーティング材においては基材への密着性は極めて重要な特性であり、さらなる改善が望まれる。 In adhesives and coating materials, adhesion to the substrate is an extremely important characteristic and further improvement is desired.
特開昭62-250047号公報JP 62-250047 A 特開平5-32712号公報Japanese Patent Laid-Open No. 5-32712 特開2013-088455号公報JP 2013-088455 A 特開2013-129754号公報JP 2013-129754 A
 本発明が解決しようとする課題は、ラジカル重合性の不飽和化合物、カップリング剤及び縮合反応促進触媒を含有する硬化性組成物であって、改善された基材への密着性を有する硬化物を与える硬化性組成物を提供することである。 The problem to be solved by the present invention is a curable composition containing a radical polymerizable unsaturated compound, a coupling agent and a condensation reaction accelerating catalyst and having improved adhesion to a substrate. It is providing the curable composition which gives.
 本発明者等は縮合反応促進触媒として特定の化合物を使用することにより、基材密着性に優れる硬化物を与える硬化性組成物が得られることを見出した。すなわち本発明の硬化性組成物は、(A)(メタ)アクリロイル基を有する重合体、(B)(メタ)アクリロイル基を有するシランカップリング剤、(C)(C1)Si-F結合を有する珪素化合物、及び/又は(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物、及び(D)ラジカル開始剤を含有することを特徴とする。 The present inventors have found that a curable composition that gives a cured product having excellent substrate adhesion can be obtained by using a specific compound as a condensation reaction accelerating catalyst. That is, the curable composition of the present invention has (A) a polymer having a (meth) acryloyl group, (B) a silane coupling agent having a (meth) acryloyl group, and (C) (C1) having a Si—F bond. A silicon compound and / or (C2) one or more fluorine compounds selected from the group consisting of boron trifluoride, boron trifluoride complexes, fluorinating agents and alkali metal salts of polyvalent fluoro compounds, and ( D) A radical initiator is contained.
 前記(A)が(メタ)アクリロイル基を有するポリイソブチレン系重合体であることが好ましい。該(メタ)アクリロイル基を有するポリイソブチレン系重合体を用いることにより、防湿性能を向上させることができる。 The (A) is preferably a polyisobutylene polymer having a (meth) acryloyl group. By using the polyisobutylene polymer having the (meth) acryloyl group, moisture proof performance can be improved.
 前記(D)が光ラジカル開始剤であることが好適である。 It is preferable that (D) is a photo radical initiator.
 本発明の封止材は、本発明の硬化性組成物からなる封止材である。 The sealing material of the present invention is a sealing material made of the curable composition of the present invention.
 本発明の電気・電子製品は、本発明の封止材を用いてなる電気・電子製品である。 The electrical / electronic product of the present invention is an electrical / electronic product using the sealing material of the present invention.
 本発明の防湿材は、本発明の硬化性組成物からなる防湿材である。 The moisture-proof material of the present invention is a moisture-proof material comprising the curable composition of the present invention.
 本発明の製品は、本発明の防湿材を用いてなる鏡又はガラスを含む製品である。 The product of the present invention is a product including a mirror or glass using the moisture-proof material of the present invention.
 本発明の硬化性組成物は縮合反応促進触媒として特定のフッ素化合物を使用することにより、基材密着性に優れる硬化物を与えるという効果を有する。 The curable composition of the present invention has an effect of giving a cured product having excellent substrate adhesion by using a specific fluorine compound as a condensation reaction promoting catalyst.
 以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。 Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.
 本発明の組成物に使用する(メタ)アクリロイル基を有する重合体の例としては、(メタ)アクリロイルオキシ基を有する重合体、(メタ)アクリルアミド基を有する重合体、若しくは(メタ)アクリルイミド基を有する重合体が挙げられる。この中では、(メタ)アクリロイルオキシ基を有する化合物を用いることが好ましい。また、重合体中の(メタ)アクリロイル基は重合体1分子あたり平均して1.0個以上、さらには1.1個以上、特には1.5個以上が好ましい。また、2個以上であってもよい。なお、(メタ)アクリロイル基はアクリロイル基及び/又はメタクリロイル基を示す。 Examples of the polymer having a (meth) acryloyl group used in the composition of the present invention include a polymer having a (meth) acryloyloxy group, a polymer having a (meth) acrylamide group, or a (meth) acrylimide group. The polymer which has is mentioned. In this, it is preferable to use the compound which has a (meth) acryloyloxy group. The number of (meth) acryloyl groups in the polymer is preferably 1.0 or more, more preferably 1.1 or more, and particularly preferably 1.5 or more per molecule of the polymer. Moreover, two or more may be sufficient. In addition, a (meth) acryloyl group shows an acryloyl group and / or a methacryloyl group.
 (メタ)アクリロイルオキシ基を有する重合体の例としては(メタ)アクリロイルオキシ基を有するアクリル系重合体、(メタ)アクリロイルオキシ基を有する炭化水素系重合体、(メタ)アクリロイルオキシ基を有するポリエステル系重合体、(メタ)アクリロイルオキシ基を有するエポキシ系樹脂、(メタ)アクリロイルオキシ基を有するポリウレタン系重合体や(メタ)アクリロイルオキシ基を有するポリエーテル系重合体を挙げることができる。重合体への(メタ)アクリロイルオキシ基の導入は重合体鎖末端等に存在する水酸基、エポキシ基やハロゲン原子等の官能基を利用し、(メタ)アクリル酸や(メタ)アクリル酸ハライド等の(メタ)アクリル酸誘導体を反応させることによりなし得る。 Examples of the polymer having a (meth) acryloyloxy group include an acrylic polymer having a (meth) acryloyloxy group, a hydrocarbon polymer having a (meth) acryloyloxy group, and a polyester having a (meth) acryloyloxy group. Examples thereof include an epoxy polymer, an epoxy resin having a (meth) acryloyloxy group, a polyurethane polymer having a (meth) acryloyloxy group, and a polyether polymer having a (meth) acryloyloxy group. The introduction of (meth) acryloyloxy groups into the polymer utilizes functional groups such as hydroxyl groups, epoxy groups and halogen atoms present at the ends of the polymer chain, such as (meth) acrylic acid and (meth) acrylic acid halides. This can be achieved by reacting a (meth) acrylic acid derivative.
 (メタ)アクリロイルオキシ基を有するアクリル系重合体はアクリル樹脂アクリレートとも呼ばれ、主鎖が(メタ)アクリル酸エステル系重合体であって(メタ)アクリロイルオキシ基を有する重合体である。このような重合体はアニオン重合又はラジカル重合によって製造されることが好ましく、モノマーの汎用性あるいは制御の容易さからラジカル重合がより好ましい。ラジカル重合の中でも、リビングラジカル重合あるいは連鎖移動剤を用いたラジカル重合が好ましく、リビングラジカル重合がより好ましく、原子移動ラジカル重合が特に好ましい。リビングラジカル重合を用いると、重合体鎖末端に(メタ)アクリロイルオキシ基を有する重合体を製造することができる。 An acrylic polymer having a (meth) acryloyloxy group is also referred to as an acrylic resin acrylate, and is a polymer having a (meth) acryloyloxy group in which the main chain is a (meth) acrylic ester polymer. Such a polymer is preferably produced by anionic polymerization or radical polymerization, and radical polymerization is more preferable because of the versatility of the monomer or ease of control. Among radical polymerizations, living radical polymerization or radical polymerization using a chain transfer agent is preferable, living radical polymerization is more preferable, and atom transfer radical polymerization is particularly preferable. When living radical polymerization is used, a polymer having a (meth) acryloyloxy group at the end of the polymer chain can be produced.
 アクリル系重合体の骨格としては、ポリメタクリル酸メチル(MMA)、ポリ(メタクリル酸2-ヒドロキシエチル(HEMA)/MMA)、ポリ(HEMA/メタクリル酸ブチル(BMA))等の重合体も使用することができる。 As the skeleton of the acrylic polymer, polymers such as polymethyl methacrylate (MMA), poly (2-hydroxyethyl methacrylate (HEMA) / MMA), poly (HEMA / butyl methacrylate (BMA)) and the like are also used. be able to.
 また、(メタ)アクリロイルオキシ基を有するアクリル系重合体として、例えば、WO2012/008127号公報の製造例1に記載されている両末端にアクリロイル基を有するポリアクリル酸n-ブチルや同公報の製造例2に記載されている片末端にアクリロイル基を有するポリアクリル酸n-ブチル、WO2005/000927号公報の製造例1に記載されている両末端にアクリロイル基を有するポリ(アクリル酸n-ブチル/アクリル酸エチル/2-メトキシエチルアクリレート)、WO2006/112420号公報の製造例2に記載されている両末端にアクリロイル基を有するポリ(アクリル酸n-ブチル/アクリル酸2-エチルヘキシル)、同公報の製造例3に記載されている両末端にアクリロイル基を有するポリ(アクリル酸2-エチルヘキシル)等を用いることができる。 Further, as an acrylic polymer having a (meth) acryloyloxy group, for example, poly (n-butyl acrylate) having an acryloyl group at both ends described in Production Example 1 of WO2012 / 008127 and the production of the same publication The poly (n-butyl acrylate) having an acryloyl group at one end described in Example 2 and the poly (n-butyl acrylate / acrylic acid group having an acryloyl group at both ends described in Production Example 1 of WO2005 / 000927 Ethyl acrylate / 2-methoxyethyl acrylate), poly (n-butyl acrylate / 2-ethylhexyl acrylate) having acryloyl groups at both ends described in Production Example 2 of WO 2006/112420, Poly (acrylic group) having acryloyl groups at both ends described in Production Example 3 It can be used Le 2-ethylhexyl), and the like.
 (メタ)アクリロイルオキシ基を有するアクリル系重合体の市販品としては、例えば、東亜合成(株)製のマクロモノマーAA-6、AB-6、(株)カネカ製のRC-100C、RC-200C、RC-300C等が挙げられる。 Examples of commercially available acrylic polymers having a (meth) acryloyloxy group include macromonomers AA-6 and AB-6 manufactured by Toa Gosei Co., Ltd., RC-100C and RC-200C manufactured by Kaneka Corporation. RC-300C and the like.
 炭化水素系重合体の例としては、エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体を挙げることができる。 Examples of hydrocarbon polymers include ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymers of butadiene and acrylonitrile and / or styrene. Examples include polymers, polybutadiene, isoprene, copolymers of butadiene and acrylonitrile and styrene, and hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers. .
 これらの中でポリイソブチレンや水添ポリイソプレン、水添ポリブタジエン等の水添ポリオレフィン系重合体などの飽和炭化水素系重合体はガスバリアー性が大きく、ガスバリアー性が必要な用途に好適であり、特にポリイソブチレンはガスバリアー性が大きく好ましい。このような重合体の用途として鏡の裏面コーティングや鏡の端面コーティング等鏡の防湿コーティングに好適に使用することができる。 Among these, saturated hydrocarbon polymers such as hydrogenated polyolefin polymers such as polyisobutylene, hydrogenated polyisoprene and hydrogenated polybutadiene have a large gas barrier property and are suitable for applications that require gas barrier properties. In particular, polyisobutylene is preferable because of its high gas barrier properties. Such a polymer can be suitably used for a moisture-proof coating of a mirror such as a mirror back surface coating or a mirror end surface coating.
 (メタ)アクリロイルオキシ基を有する炭化水素系重合体は水酸基を有する重合体を用いて(メタ)アクリロイルオキシ基を導入することができる。また、(メタ)アクリロイルオキシ基を有するポリイソブチレン系重合体は特開2013-035901号公報や国際公開WO2013-047314号公報に記載されている方法により得ることができる。 A hydrocarbon-based polymer having a (meth) acryloyloxy group can introduce a (meth) acryloyloxy group using a polymer having a hydroxyl group. A polyisobutylene polymer having a (meth) acryloyloxy group can be obtained by the methods described in JP2013-035901A and International Publication WO2013-047314A.
 (メタ)アクリロイルオキシ基を有するポリエステル系重合体はポリエステルアクリレートとも呼ばれる。このような重合体はポリエステルポリオールと(メタ)アクリル酸とを脱水縮合させて得ることができる。ここで、ポリエステルポリオールとしては、ポリオールとカルボン酸、又はその無水物との反応物等が挙げられる。 A polyester polymer having a (meth) acryloyloxy group is also called a polyester acrylate. Such a polymer can be obtained by dehydrating and condensing a polyester polyol and (meth) acrylic acid. Here, examples of the polyester polyol include a reaction product of a polyol and a carboxylic acid, or an anhydride thereof.
 ポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ポリブチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びジペンタエリスリトール等の低分子量ポリオール、並びにこれらのアルキレンオキサイド付加物等が挙げられる。 Polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, tetramethylene glycol, hexamethylene glycol, neo Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, pentaerythritol and dipentaerythritol, and their alkylene oxide adducts Etc.
 カルボン酸又はその無水物としては、オルソフタル酸、イソフタル酸、テレフタル酸、アジピン酸、コハク酸、フマル酸、マレイン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、及びトリメリット酸等の二塩基酸又はその無水物等が挙げられる。 Carboxylic acid or anhydride thereof includes dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like. An anhydride etc. are mentioned.
 (メタ)アクリロイルオキシ基を有するエポキシ系樹脂はエポキシアクリレートとも呼ばれ、エポキシ樹脂に(メタ)アクリル酸を付加反応させ得ることができる。エポキシ樹脂としては、芳香族エポキシ樹脂及び脂肪族エポキシ樹脂等が挙げられる。 An epoxy resin having a (meth) acryloyloxy group is also referred to as an epoxy acrylate, and (meth) acrylic acid can be added to the epoxy resin. Examples of the epoxy resin include aromatic epoxy resins and aliphatic epoxy resins.
 芳香族エポキシ樹脂の例としては、レゾルシノールジグリシジルエーテル;ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン又はそのアルキレンオキサイド付加体のジ又はポリグリシジルエーテル;フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;グリシジルフタルイミド;o-フタル酸ジグリシジルエステル等が挙げられる。これら以外にも、文献「エポキシ樹脂-最近の進歩-」(昭晃堂、1990年発行)2章や、文献「高分子加工」別冊9・第22巻増刊号エポキシ樹脂〔高分子刊行会、昭和48年発行〕の4~6頁、9~16頁に記載されているような化合物を芳香族エポキシ樹脂として用いることができる。 Examples of aromatic epoxy resins include resorcinol diglycidyl ether; di- or polyglycidyl ethers of bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene or its alkylene oxide adducts; phenol novolac type epoxy resins and cresol novolac type epoxy resins Novolak type epoxy resin; glycidyl phthalimide; o-phthalic acid diglycidyl ester and the like. In addition to these, the document “Epoxy Resin-Recent Advances” (Shojodo, published in 1990), Chapter 2 and the document “Polymer Processing”, Vol. 9, Volume 22, Epoxy Resin [Polymer Press, Compounds published on pages 4 to 6 and 9 to 16 of "published in 1973" can be used as the aromatic epoxy resin.
 脂肪族エポキシ樹脂の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール及び1,6-ヘキサンジオール等のアルキレングリコールのジグリシジルエーテル;ポリエチレングリコール及びポリプロピレングリコールのジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル;ネオペンチルグリコール、ジブロモネオペンチルグリコール及びそのアルキレンオキサイド付加体のジグリシジルエーテル;トリメチロールエタン、トリメチロールプロパン、グリセリン及びそのアルキレンオキサイド付加体のジ又はトリグリシジルエーテル、並びにペンタエリスリトール及びそのアルキレンオキサイド付加体のジ、トリ又はテトラグリジジルエーテル等の多価アルコールのポリグリシジルエーテル;水素添加ビスフェノールA及びそのアルキレンオキシド付加体のジ又はポリグリシジルエーテル;テトラヒドロフタル酸ジグリシジルエーテル;ハイドロキノンジグリシジルエーテル等が挙げられる。 Examples of aliphatic epoxy resins include diglycidyl ethers of alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol; polyalkylenes such as diglycidyl ethers of polyethylene glycol and polypropylene glycol Diglycidyl ether of glycol; diglycidyl ether of neopentyl glycol, dibromoneopentyl glycol and its alkylene oxide adducts; di- or triglycidyl ether of trimethylolethane, trimethylolpropane, glycerin and its alkylene oxide adducts, and pentaerythritol And polyglycidyl ethers of polyhydric alcohols such as di, tri or tetraglycidyl ethers of the alkylene oxide adducts thereof Ether; hydrogenated bisphenol A and di- or polyglycidyl ethers of alkylene oxide adducts; tetrahydrophthalic acid diglycidyl ether; hydroquinone diglycidyl ether, and the like.
 これら以外にも、前述した文献「高分子加工」別冊エポキシ樹脂の3~6頁に記載されている化合物を挙げることができる。これら芳香族エポキシ樹脂及び脂肪族エポキシ樹脂以外にも、トリアジン核を骨格に持つエポキシ化合物、例えばTEPIC(日産化学(株))、デナコールEX-310(ナガセ化成(株))等が挙げられ、また、前述した文献「高分子加工」別冊エポキシ樹脂の289~296頁に記載されているような化合物等が挙げられる。 In addition to these, the compounds described on pages 3 to 6 of the above-mentioned document “Polymer Processing”, separate volume epoxy resin, can be mentioned. In addition to these aromatic epoxy resins and aliphatic epoxy resins, epoxy compounds having a triazine nucleus in the skeleton, such as TEPIC (Nissan Chemical Co., Ltd.), Denacol EX-310 (Nagase Kasei Co., Ltd.), etc. can be mentioned. And compounds described on pages 289 to 296 of the above-mentioned document “Polymer Processing”, separate volume epoxy resin.
 (メタ)アクリロイルオキシ基を有するエポキシ系樹脂の具体例としてはビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エピクロロヒドリン変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールSジ(メタ)アクリレート等をあげることができる。 Specific examples of the epoxy resin having a (meth) acryloyloxy group include bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, epichlorohydrin modified bisphenol A di (meth) acrylate, and ethylene oxide. Examples thereof include modified bisphenol S di (meth) acrylate.
 (メタ)アクリロイルオキシ基を有するポリウレタン系重合体はウレタン(メタ)アクリレートとも呼ばれ、ポリオールと過剰の有機ポリイソシアネートを反応させて得られるイソシアネート基末端ポリウレタンに対して、更にヒドロキシル基含有(メタ)アクリレートを反応させて得ることができる。 A polyurethane-based polymer having a (meth) acryloyloxy group is also called a urethane (meth) acrylate, and further contains a hydroxyl group (meth) with respect to an isocyanate group-terminated polyurethane obtained by reacting a polyol with an excess of an organic polyisocyanate. It can be obtained by reacting acrylate.
 ここで、ポリオールとしては、低分子量ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等がある。低分子量ポリオールとしては、エチレングリコール、プロピレングリコール、シクロヘキサンジメタノール及び3-メチル-1,5-ペンタンジオール等が挙げられ、ポリエーテルポリオールとしては、ポリエチレングリコール及びポリプロピレングリコール等が挙げられ、ポリエステルポリオールとしては、これら低分子量ポリオール又は/及びポリエーテルポリオールと、アジピン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸及びテレフタル酸等の二塩基酸、又はその無水物等の酸成分との反応物が挙げられる。 Here, examples of the polyol include a low molecular weight polyol, a polyether polyol, a polyester polyol, and a polycarbonate polyol. Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, cyclohexanedimethanol and 3-methyl-1,5-pentanediol, and examples of the polyether polyol include polyethylene glycol and polypropylene glycol. Is a reaction product of these low molecular weight polyols and / or polyether polyols and acid components such as adipic acid, succinic acid, phthalic acid, dihydroacids such as hexahydrophthalic acid and terephthalic acid, or anhydrides thereof. It is done.
 有機ポリイソシアネートとしては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート及びイソホロンジイソシアネート等が挙げられる。ヒドロキシル基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート及び2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。 Examples of the organic polyisocyanate include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate. Examples of the hydroxyl group-containing (meth) acrylate include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
 これらウレタン(メタ)アクリレート系重合体は、公知の合成法に基づいて製造されたものでよい。例えば、ジブチルスズジラウレート等の付加触媒存在下、使用する有機イソシアネートとポリオール成分とを加熱撹拌し付加反応させ、更にヒドロキシアルキル(メタ)アクリレートを添加し、加熱撹拌し付加反応させる方法等が挙げられる。 These urethane (meth) acrylate polymers may be produced based on a known synthesis method. For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic isocyanate and a polyol component to be used are heated and stirred to cause an addition reaction, and further, a hydroxyalkyl (meth) acrylate is added, followed by heating and stirring to cause an addition reaction.
 ポリエーテル(メタ)アクリレート系重合体としては、ポリアルキレングリコール(メタ)アクリレートやポリアルキレングリコール(メタ)ジアクリレートがあり、この重合体はポリアルキレングリコールに(メタ)アクリル酸や(メタ)アクリル酸の誘導体を反応させることにより得ることができる。 Polyether (meth) acrylate polymers include polyalkylene glycol (meth) acrylate and polyalkylene glycol (meth) diacrylate. This polymer is polyalkylene glycol with (meth) acrylic acid and (meth) acrylic acid. It can obtain by making the derivative | guide_body of this react.
 ポリアルキレングリコール(メタ)アクリレートの例としてはメトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、2-エチルヘキシルポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェニルポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of polyalkylene glycol (meth) acrylates include methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, 2-ethylhexyl polyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate , Nonylphenyl polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate and the like.
 ポリアルキレングリコール(メタ)ジアクリレートの例としてはジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等が挙げられる。 Examples of polyalkylene glycol (meth) diacrylate include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di ( And (meth) acrylate, polypropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
 (メタ)アクリルアミド基を有する重合体は上記した(メタ)アクリロイルオキシ基を有する重合体の原料であるポリオール等の水酸基を有する重合体の水酸基に代えてアミノ基を有する重合体を使用し(メタ)アクリル酸塩化物等を反応させることにより得ることができる。 A polymer having a (meth) acrylamide group uses a polymer having an amino group instead of the hydroxyl group of a polymer having a hydroxyl group such as a polyol as a raw material of the polymer having a (meth) acryloyloxy group. ) It can be obtained by reacting acrylic acid chloride.
 本発明の硬化性組成物は、(B)(メタ)アクリロイル基を有するシランカップリング剤を使用する。(メタ)アクリロイル基を有するシランカップリング剤は(メタ)アクリロイル基と架橋性珪素基を有する化合物である。架橋性珪素基は珪素原子に結合した加水分解性基を有し、空気中の湿分等の水の作用により加水分解し、シロキサン結合を形成し得る基である。架橋性珪素基の例としては珪素原子に加水分解性基であるアルコキシ基やカルボキシル基が結合した基をあげることができる。架橋性珪素基の具体例としてはトリメトキシシリル基やメチルジメトキシシリル基をあげることができる。シランカップリング剤は接着性付与剤として作用する。 The curable composition of the present invention uses a silane coupling agent having (B) (meth) acryloyl group. A silane coupling agent having a (meth) acryloyl group is a compound having a (meth) acryloyl group and a crosslinkable silicon group. The crosslinkable silicon group has a hydrolyzable group bonded to a silicon atom, and is a group that can be hydrolyzed by the action of water such as moisture in the air to form a siloxane bond. Examples of the crosslinkable silicon group include groups in which an alkoxy group or a carboxyl group which is a hydrolyzable group is bonded to a silicon atom. Specific examples of the crosslinkable silicon group include a trimethoxysilyl group and a methyldimethoxysilyl group. The silane coupling agent acts as an adhesion promoter.
 (B)成分のシランカップリング剤の例としては、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン等の化合物を挙げることができる。(B)成分の(メタ)アクリロイル基を有するシランカップリング剤は(A)成分の(メタ)アクリロイル基を有する重合体100質量部に対して1~20質量部、さらには2~10質量部が好ましい。 Examples of the (B) component silane coupling agent include compounds such as γ-methacryloyloxypropyltrimethoxysilane and γ-acryloyloxypropylmethyldimethoxysilane. The silane coupling agent having a (meth) acryloyl group as the component (B) is 1 to 20 parts by mass, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the polymer having the (meth) acryloyl group as the component (A). Is preferred.
 本発明の硬化性組成物は、(C)(C1)Si-F結合を有するケイ素化合物、及び/又は(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物を含有する。本発明の硬化性組成物において、(C)成分を含有することで基材密着性に優れる硬化物が生成する。(C)成分は(B)成分のシランカップリング剤の架橋性珪素基が反応する縮合反応促進触媒として作用する。 The curable composition of the present invention includes (C) (C1) a silicon compound having a Si—F bond, and / or (C2) boron trifluoride, a complex of boron trifluoride, a fluorinating agent, and a polyvalent fluoro compound. Containing one or more fluorine-based compounds selected from the group consisting of alkali metal salts of In the curable composition of this invention, the hardened | cured material which is excellent in base-material adhesiveness by containing (C) component produces | generates. Component (C) acts as a condensation reaction promoting catalyst with which the crosslinkable silicon group of the silane coupling agent of component (B) reacts.
 前記(C1)Si-F結合を有する珪素化合物としては、Si-F結合を有する基(以下、フルオロシリル基と称することがある)を有する公知の化合物を広く使用することができ、特に制限はなく、低分子化合物及び高分子化合物のいずれも使用可能であるが、フルオロシリル基を有する有機珪素化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。また、配合物が低粘度となる点からフルオロシリル基を有する低分子有機珪素化合物が好ましい。 As the (C1) silicon compound having a Si—F bond, known compounds having a group having a Si—F bond (hereinafter sometimes referred to as a fluorosilyl group) can be widely used. However, although both low molecular compounds and high molecular compounds can be used, organosilicon compounds having a fluorosilyl group are preferred, and organic polymers having a fluorosilyl group are more suitable because of high safety. Moreover, the low molecular organosilicon compound which has a fluoro silyl group from the point from which a compound becomes low viscosity is preferable.
 前記(C1)Si-F結合を有する珪素化合物としては、下記式(1)で示されるフルオロシリル基を有する無機化合物、このフルオロシリル基を有する低分子有機珪素化合物、このフルオロシリル基を有する有機重合体等が好適な例として挙げられる。 Examples of the silicon compound having (C1) Si—F bond include an inorganic compound having a fluorosilyl group represented by the following formula (1), a low-molecular organic silicon compound having this fluorosilyl group, and an organic compound having this fluorosilyl group. A polymer etc. are mentioned as a suitable example.
 -SiF ・・・(1)
式(1)中、Rは置換あるいは非置換の炭素原子数1~20の炭化水素基、またはR SiO-(Rはそれぞれ独立に、炭素原子数1~20の置換あるいは非置換の炭化水素基、又はフッ素原子である)で示されるオルガノシロキシ基のいずれかを示す。aは1~3のいずれかであり、aが3であることが好ましい。R及びRが複数存在する場合、それらは同じであっても異なっていてもよい。Xは水酸基又はフッ素以外の加水分解性基であり、bは0~2のいずれかであり、cは0~2のいずれかであり、a+b+cは3である。Xが複数存在する場合、それらは同じであっても異なっていてもよい。
-SiF a R 1 b X c (1)
In the formula (1), R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or R 2 3 SiO— (R 2 is independently substituted or unsubstituted having 1 to 20 carbon atoms. Or an organosiloxy group represented by a fluorine atom). a is any one of 1 to 3, and a is preferably 3. When a plurality of R 1 and R 2 are present, they may be the same or different. X is a hydroxyl group or a hydrolyzable group other than fluorine, b is any of 0 to 2, c is any of 0 to 2, and a + b + c is 3. When a plurality of X are present, they may be the same or different.
 前記式(1)中のRとしては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、Rがメチル基、フェニル基等であるR SiO-で示されるトリオルガノシロキシ基等が挙げられる。これらの中ではメチル基が特に好ましい。 R 1 in the formula (1) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or R 2 Examples thereof include a triorganosiloxy group represented by R 2 3 SiO— which is a methyl group, a phenyl group or the like. Of these, a methyl group is particularly preferred.
 また、前記式(1)中のXで示される加水分解性基としては、水素原子、フッ素以外のハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましい。 The hydrolyzable group represented by X in the formula (1) includes a hydrogen atom, a halogen atom other than fluorine, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group. Group, mercapto group, alkenyloxy group and the like. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable.
 前記式(1)で表されるフルオロシリル基を具体的に例示すると、フッ素以外に加水分解性基を持たない珪素基として、フルオロジメチルシリル基、フルオロジエチルシリル基、フルオロジプロピルシリル基、フルオロジフェニルシリル基、フルオロジベンジルシリル基等の珪素基上に1個のフッ素が置換した珪素基;ジフルオロメチルシリル基、ジフルオロエチルシリル基、ジフルオロフェニルシリル基、ジフルオロベンジルシリル基等の珪素基上に2個のフッ素が置換した珪素基;トリフルオロシリル基である珪素基上に3個のフッ素が置換した珪素基;が挙げられる。 Specific examples of the fluorosilyl group represented by the formula (1) include silicon groups having no hydrolyzable group other than fluorine, such as fluorodimethylsilyl group, fluorodiethylsilyl group, fluorodipropylsilyl group, fluoro A silicon group in which one fluorine is substituted on a silicon group such as a diphenylsilyl group or a fluorodibenzylsilyl group; on a silicon group such as a difluoromethylsilyl group, a difluoroethylsilyl group, a difluorophenylsilyl group or a difluorobenzylsilyl group A silicon group in which two fluorine atoms are substituted; a silicon group in which three fluorine atoms are substituted on a silicon group which is a trifluorosilyl group.
 フッ素とその他の加水分解性基の双方を有する珪素基として、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロメトキシフェニルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、フルオロジプロポキシシリル基、フルオロジフェノキシシリル基、フルオロビス(2-プロペノキシ)シリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、ジフルオロフェノキシシリル基、フルオロジクロロシリル基、ジフルオロクロロシリル基などが挙げられる。これらの中ではフッ素以外に加水分解性基を持たない珪素基やRがメチル基であるフルオロシリル基が好ましく、トリフルオロシリル基がより好ましい。 As silicon groups having both fluorine and other hydrolyzable groups, fluoromethoxymethylsilyl group, fluoroethoxymethylsilyl group, fluoromethoxyethylsilyl group, fluoromethoxyphenylsilyl group, fluorodimethoxysilyl group, fluorodiethoxysilyl group , Fluorodipropoxysilyl group, fluorodiphenoxysilyl group, fluorobis (2-propenoxy) silyl group, difluoromethoxysilyl group, difluoroethoxysilyl group, difluorophenoxysilyl group, fluorodichlorosilyl group, difluorochlorosilyl group, etc. It is done. Among these, a silicon group having no hydrolyzable group other than fluorine and a fluorosilyl group in which R 1 is a methyl group are preferable, and a trifluorosilyl group is more preferable.
 また、合成の容易さからフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基がより好ましい。安定性の観点からフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基などのフッ素以外に加水分解性基を持たない珪素基がさらに好ましい。活性の高さからは、ジフルオロメチルシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、トリフルオロシリル基など、珪素基上に2個ないし3個のフッ素が置換した珪素基が好ましく、トリフルオロシリル基が最も好ましい。 In addition, because of ease of synthesis, fluorodimethylsilyl group, difluoromethylsilyl group, trifluorosilyl group, fluoromethoxymethylsilyl group, fluoroethoxymethylsilyl group, fluoromethoxyethylsilyl group, fluorodimethoxysilyl group, fluorodiethoxysilyl group More preferred are a difluoromethoxysilyl group and a difluoroethoxysilyl group. From the viewpoint of stability, a silicon group having no hydrolyzable group other than fluorine, such as a fluorodimethylsilyl group, a difluoromethylsilyl group, and a trifluorosilyl group, is more preferable. From the standpoint of high activity, a silicon group in which 2 to 3 fluorine atoms are substituted on a silicon group, such as a difluoromethylsilyl group, a difluoromethoxysilyl group, a difluoroethoxysilyl group, or a trifluorosilyl group, is preferable. The group is most preferred.
 前記式(1)で示されるフルオロシリル基を有する化合物は、市販の試薬を用いても良いし、原料化合物から合成してもよい。合成方法としても特に制限はないが、下記式(2)で示される架橋性珪素基を有する化合物やシロキサン結合を有する化合物と、フッ素化剤とを公知の方法(例えば、Organometallics1996年,15,2478頁(Ishikawaほか)等)を用いて反応させることにより得られる化合物が好適に用いられる。
 -SiR 3-a・・・(2)
(式(2)中、R及びXはそれぞれ式(1)と同じであり、aは1~3のいずれかである。)
The compound having a fluorosilyl group represented by the formula (1) may be a commercially available reagent, or may be synthesized from a raw material compound. The synthesis method is not particularly limited, but a compound having a crosslinkable silicon group represented by the following formula (2) or a compound having a siloxane bond and a fluorinating agent are known methods (for example, Organometallics 1996, 15, 2478). A compound obtained by reacting using a page (Ishikawa et al., Etc.) is preferably used.
-SiR 1 3-a X a (2)
(In Formula (2), R 1 and X are the same as in Formula (1), respectively, and a is any one of 1 to 3)
 上記式(2)で示される架橋性珪素基としては、例えば、アルコキシシリル基、クロロシリル基等のハロシリル基、ヒドロシリル基等が挙げられる。 Examples of the crosslinkable silicon group represented by the above formula (2) include halosilyl groups such as alkoxysilyl groups and chlorosilyl groups, hydrosilyl groups, and the like.
 アルコキシシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、NHF、BuNF、HF、BF、EtNSF、HSOF、SbF、VOF、CFCHFCFNEtなどが挙げられる。ハロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgBF、SbF、ZnF、NaF、KF、CsF、NHF、CuF、NaSiF、NaPF、NaSbF、NaBF、MeSnF、KF(HF)1.5~5などが挙げられる。ヒドロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgF、PF、PhCBF、SbF、NOBF、NOBFなどが挙げられる。シロキサン結合を有する化合物はBFなどにより開裂し、フルオロシリル基が得られる。 Specific examples of the fluorinating agent used for fluorination of the alkoxysilyl group are not particularly limited. For example, NH 4 F, Bu 4 NF, HF, BF 3 , Et 2 NSF 3 , HSO 3 F, SbF 5 , VOF 3 , CF 3 CHFCF 2 NEt 2 and the like. Specific examples of the fluorinating agent used for fluorination of the halosilyl group are not particularly limited. For example, AgBF 4 , SbF 3 , ZnF 2 , NaF, KF, CsF, NH 4 F, CuF 2 , NaSiF 6 , NaPF 6 , NaSbF 6 , NaBF 4 , Me 3 SnF, KF (HF) 1.5 to 5 and the like can be mentioned. Specific examples of the fluorinating agent used for fluorination of the hydrosilyl group are not particularly limited, and examples thereof include AgF, PF 5 , Ph 3 CBF 4 , SbF 3 , NOBF 4 , and NO 2 BF 4 . A compound having a siloxane bond is cleaved with BF 3 or the like to obtain a fluorosilyl group.
 これらのフッ素化剤を用いたフルオロシリル基の合成方法のなかでも、反応が簡便であること、反応効率が高いこと、安全性が高いことなどから、BFを用いたアルコキシシランのフッ素化法、CuFまたはZnFを用いたクロロシランのフッ素化法が好ましい。 Among the methods for synthesizing fluorosilyl groups using these fluorinating agents, a method for fluorinating alkoxysilanes using BF 3 because the reaction is simple, the reaction efficiency is high, and the safety is high. , CuF 2 or ZnF 2 fluorination method of chlorosilanes with are preferred.
 BFとしては、BFガス、BFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BFリン酸錯体、BF水和物、BFピペリジン錯体、BFフェノール錯体等が使用できるが、取扱いが容易であることなどからBFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BF水和物が好ましい。中でもBFエーテル錯体、BFアルコール錯体、BF水和物は反応性が高く好ましく、BFエーテル錯体が特に好ましい。 The BF 3, BF 3 gas, BF 3 ether complex, BF 3 thioether complexes, BF 3 amine complexes, BF 3 alcohol complexes, BF 3 carboxylic acid complex, BF 3 phosphate complex, BF 3 hydrate, BF 3 piperidine complex, although BF 3 phenol complex and the like can be used, BF 3 ether complex and the like that is easy to handle, BF 3 thioether complexes, BF 3 amine complexes, BF 3 alcohol complexes, BF 3 carboxylic acid complex, BF 3 hydrate Things are preferred. Among them BF 3 etherate, BF 3 alcohol complexes, BF 3 hydrate has high preferred reactive, BF 3 ether complex is particularly preferred.
 前記Si-F結合を有する珪素化合物のうちフッ素以外に加水分解性基を持たないものの具体例としては、例えば、テトラフルオロシラン、オクタフルオロトリシラン等のフッ素化無機珪素化合物;フルオロトリメチルシラン、フルオロトリエチルシラン、フルオロトリプロピルシラン、フルオロトリブチルシラン、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、フルオロジメチル(3-メチルフェニル)シラン、フルオロジメチル(4-メチルフェニル)シラン、フルオロジメチル(4-クロロフェニル)シラン、フルオロトリフェニルシラン、ジフルオロジメチルシラン、ジフルオロジエチルシラン、ジフルオロジブチルシラン、ジフルオロメチルフェニルシラン、ジフルオロジフェニルシラン、トリフルオロエチルシラン、トリフルオロプロピルシラン、トリフルオロブチルシラン、トリフルオロフェニルシラン、γ-グリシドキシプロピルトリフルオロシラン、γ-グリシドキシプロピルジフルオロメチルシラン、ビニルトリフルオロシラン、ビニルジフルオロメチルシラン、3-メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラフルオロ-1,3,5,7-テトラシラトリシクロ[3.3.1.1(3,7)]デカン、1,1-ジフルオロ-1-シラシクロ-3-ペンテン、フルオロトリス(トリメチルシロキシ)シラン等のフッ素化低分子有機珪素化合物などが挙げられる。 Specific examples of the silicon compound having a Si—F bond having no hydrolyzable group other than fluorine include, for example, fluorinated inorganic silicon compounds such as tetrafluorosilane and octafluorotrisilane; fluorotrimethylsilane, fluoro Triethylsilane, fluorotripropylsilane, fluorotributylsilane, fluorodimethylvinylsilane, fluorodimethylphenylsilane, fluorodimethylbenzylsilane, fluorodimethyl (3-methylphenyl) silane, fluorodimethyl (4-methylphenyl) silane, fluorodimethyl (4 -Chlorophenyl) silane, fluorotriphenylsilane, difluorodimethylsilane, difluorodiethylsilane, difluorodibutylsilane, difluoromethylphenylsilane, difluoro Phenylsilane, trifluoroethylsilane, trifluoropropylsilane, trifluorobutylsilane, trifluorophenylsilane, γ-glycidoxypropyl trifluorosilane, γ-glycidoxypropyldifluoromethylsilane, vinyltrifluorosilane, vinyldifluoro Methylsilane, 3-mercaptopropyltrifluorosilane, octadecylfluorodimethylsilane, octadecyldifluoromethylsilane, octadecyltrifluorosilane, 1,3-difluoro-1,1,3,3-tetramethyldisiloxane, 1,3,5 , 7-tetrafluoro-1,3,5,7-tetrasilatricyclo [3.3.1.1 (3,7)] decane, 1,1-difluoro-1-silacyclo-3-pentene, fluorotris ( Trimethyl white ) Fluorinated low molecular organic silicon compound such as silane, and the like.
 また、Si-F結合を有する珪素化合物のうちフッ素以外に加水分解性基を持つものの具体例としては、フルオロトリメトキシシラン、ジフルオロジメトキシシラン、トリフルオロメトキシシラン、フルオロトリエトキシシラン、ジフルオロジエトキシシラン、トリフルオロエトキシシラン、メチルフルオロジメトキシシラン、メチルジフルオロメトキシシラン、メチルトリフルオロシラン、メチルフルオロジエトキシシラン、メチルジフルオロエトキシシラン、ビニルフルオロジメトキシシラン、ビニルジフルオロメトキシシラン、ビニルトリフルオロシラン、ビニルフルオロジエトキシシラン、ビニルジフルオロエトキシシラン、フェニルフルオロジメトキシシラン、フェニルジフルオロメトキシシラン、フェニルトリフルオロシラン、フェニルフルオロジエトキシシラン、フェニルジフルオロエトキシシラン等のフッ素化低分子有機珪素化合物;が挙げられる。 Specific examples of silicon compounds having Si-F bonds having hydrolyzable groups other than fluorine include fluorotrimethoxysilane, difluorodimethoxysilane, trifluoromethoxysilane, fluorotriethoxysilane, and difluorodiethoxysilane. , Trifluoroethoxysilane, methylfluorodimethoxysilane, methyldifluoromethoxysilane, methyltrifluorosilane, methylfluorodiethoxysilane, methyldifluoroethoxysilane, vinylfluorodimethoxysilane, vinyldifluoromethoxysilane, vinyltrifluorosilane, vinylfluorodi Ethoxysilane, vinyl difluoroethoxysilane, phenylfluorodimethoxysilane, phenyldifluoromethoxysilane, phenyltrifluorosilane Phenylfluorone diethoxy silane, fluorinated and phenyl difluoro silane low molecular organic silicon compound; and the like.
 これらのなかでも、原料の入手が容易なこと、合成が容易なことなどから、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、ビニルトリフルオロシラン、ビニルジフルオロメチルシラン、3-メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン等が好ましい。 Among these, fluorodimethylvinyl silane, fluorodimethylphenyl silane, fluorodimethylbenzyl silane, vinyl trifluorosilane, vinyl difluoromethyl silane, 3-mercaptopropyl trifluorosilane are available because of the availability of raw materials and the ease of synthesis. Fluorosilane, octadecylfluorodimethylsilane, octadecyldifluoromethylsilane, octadecyltrifluorosilane, 1,3-difluoro-1,1,3,3-tetramethyldisiloxane and the like are preferable.
 前記フルオロシリル基を有する有機重合体(本明細書では、フッ素化ポリマーとも称する)としては、Si-F結合を有する有機重合体であれば特に制限はなく、公知のSi-F結合を有する有機重合体を広く使用可能である。有機重合体中のSiF結合の位置も特に制限はなく、重合体分子内のいずれの部位にあっても効果を発揮する。Si-F結合を有する有機重合体としては、前述した式(1)で示されるフルオロシリル基を有する重合体や-Si(CH)F-、-Si(C)F-、-SiF-、≡SiF等のフルオロシリル基が重合体の主鎖中に組み込まれた重合体などが挙げられる。 The organic polymer having a fluorosilyl group (also referred to herein as a fluorinated polymer) is not particularly limited as long as it is an organic polymer having a Si—F bond. Polymers can be widely used. The position of the SiF bond in the organic polymer is not particularly limited, and the effect is exhibited regardless of the position in the polymer molecule. Examples of the organic polymer having a Si—F bond include a polymer having a fluorosilyl group represented by the above formula (1), —Si (CH 3 ) F—, —Si (C 6 H 5 ) F—, — Examples thereof include polymers in which a fluorosilyl group such as SiF 2 — and ≡SiF is incorporated in the main chain of the polymer.
 前記フッ素化ポリマーは、フルオロシリル基および主鎖骨格が同種である単一の重合体、すなわち、1分子あたりのフルオロシリル基の数、その結合位置、および該フルオロシリル基が有するFの数、ならびに主鎖骨格が同種である単一の重合体であってもよく、これらのいずれか、またはすべてが異なる、複数の重合体の混合物であってもよい。フッ素化ポリマーに含有されるフルオロシリル基は、重合体1分子あたり平均して少なくとも1個、好ましくは1.1~5個、さらに好ましくは1.2~3個存在するのがよい。1分子中に含まれるフルオロシリル基の数が平均して1個未満になると、接着性付与効果が不十分になる。 The fluorinated polymer is a single polymer having the same fluorosilyl group and main chain skeleton, that is, the number of fluorosilyl groups per molecule, the bonding position thereof, and the number of Fs that the fluorosilyl group has, In addition, the polymer may be a single polymer having the same main chain skeleton, or may be a mixture of a plurality of polymers, any or all of which are different. The average number of fluorosilyl groups contained in the fluorinated polymer should be at least 1, preferably 1.1-5, more preferably 1.2-3, per molecule of polymer. When the number of fluorosilyl groups contained in one molecule is less than 1 on average, the effect of imparting adhesion becomes insufficient.
 また、フッ素化ポリマーは、フルオロシリル基とともに、加水分解性基としてフッ素以外の加水分解性基のみを有する珪素基(たとえば、メチルジメトキシシリル基等)などのフルオロシリル基以外の置換基を含有していてもよい。このようなフッ素化ポリマーとしては、たとえば一方の主鎖末端がフルオロシリル基であり、他方の主鎖末端が、加水分解性基としてフッ素以外の加水分解性基のみを有する珪素基である重合体を挙げることができる。フッ素化ポリマーの例は国際公開特許WO2008/032539号公報に記載されている。 Further, the fluorinated polymer contains a substituent other than a fluorosilyl group such as a silicon group having only a hydrolyzable group other than fluorine as a hydrolyzable group (for example, a methyldimethoxysilyl group) together with a fluorosilyl group. It may be. As such a fluorinated polymer, for example, a polymer in which one main chain end is a fluorosilyl group and the other main chain end is a silicon group having only a hydrolyzable group other than fluorine as a hydrolyzable group. Can be mentioned. Examples of fluorinated polymers are described in International Publication No. WO2008 / 032539.
 フッ素化ポリマーにおいて、フルオロシリル基の導入は、いかなる方法を用いてもよいが、フルオロシリル基を有する低分子珪素化合物と重合体との反応による導入方法(方法(i))と、フッ素以外の加水分解性基を有する架橋性珪素基を含有する重合体(以下、「重合体(X)」と称することがある。)の珪素基をフルオロシリル基に変性する方法(方法(ii))が挙げられる。 In the fluorinated polymer, any method may be used for introducing the fluorosilyl group, but the introduction method (method (i)) by the reaction of a low molecular silicon compound having a fluorosilyl group with a polymer, and other than fluorine. A method (method (ii)) of modifying a silicon group of a polymer containing a crosslinkable silicon group having a hydrolyzable group (hereinafter sometimes referred to as “polymer (X)”) to a fluorosilyl group. Can be mentioned.
 方法(i)の具体例として、以下の方法が挙げられる。
(イ)分子中に水酸基、エポキシ基やイソシアネート基等の官能基を有する重合体に、この官能基に対して反応性を示す官能基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端に水酸基を有する重合体とイソシアネートプロピルジフルオロメチルシランを反応させる方法や、末端にSiOH基を有する重合体とジフルオロジエトキシシランを反応させる方法が挙げられる。
(ロ)分子中に不飽和基を有する重合体に、フルオロシリル基を有するヒドロシランを作用させてヒドロシリル化する方法。たとえば、末端にアリル基を有する重合体に、ジフルオロメチルヒドロシランを反応させる方法が挙げられる。
(ハ)不飽和基を含有する重合体に、メルカプト基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端にアリル基を有する重合体に、メルカプトプロピルジフルオロメチルシランを反応させる方法が挙げられる。
Specific examples of the method (i) include the following methods.
(A) A method in which a polymer having a functional group such as a hydroxyl group, an epoxy group or an isocyanate group in a molecule is reacted with a compound having a functional group and a fluorosilyl group that are reactive with the functional group. For example, a method of reacting a polymer having a hydroxyl group at the terminal with isocyanate propyldifluoromethylsilane, or a method of reacting a polymer having a SiOH group at the terminal with difluorodiethoxysilane.
(B) A method of hydrosilylating a polymer having an unsaturated group in the molecule with a hydrosilane having a fluorosilyl group. For example, a method in which a polymer having an allyl group at a terminal is reacted with difluoromethylhydrosilane can be mentioned.
(C) A method of reacting a polymer containing an unsaturated group with a compound having a mercapto group and a fluorosilyl group. For example, a method in which a polymer having an allyl group at the terminal is reacted with mercaptopropyldifluoromethylsilane can be mentioned.
 上記方法(ii)で用いる、フッ素以外の加水分解性基を有する架橋性珪素基を有する重合体(重合体(X))としては、フッ素以外の加水分解性基を有する架橋性珪素基を含有するポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、ポリシロキサン系重合体が好ましい重合体として挙げることができる。 The polymer having a crosslinkable silicon group having a hydrolyzable group other than fluorine (polymer (X)) used in the method (ii) contains a crosslinkable silicon group having a hydrolyzable group other than fluorine. Saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, (meth) acrylic acid ester polymers, and polysiloxane polymers are listed as preferred polymers. be able to.
 また、方法(ii)において、フッ素以外の加水分解性基を有する架橋性珪素基をフルオロシリル基に変換する方法としては、公知の方法が使用でき、例えば、前述した前記式(2)で示される加水分解性珪素基を、フッ素化剤でフルオロシリル基に変換する方法が挙げられる。フッ素化剤としては、例えば、前述したフッ素化剤が挙げられ、中でも、BFエーテル錯体、BFアルコール錯体、BF二水和物は活性が高く、効率よくフッ素化が進行し、さらに副生成物に塩等が生じず、後処理が容易であるためにより好ましく、BFエーテル錯体が特に好ましい。さらに、BFエーテル錯体によるフッ素化は、加熱しなくても反応が進行するが、より効率よくフッ素化を行なうためには、加熱することが好ましい。加熱温度としては50℃以上150℃以下が好ましく、60℃以上130℃がより好ましい。50℃以下であると反応が効率よく進行せず、フッ素化に時間がかかる場合がある。150℃以上であるとフッ素化ポリマーが分解する虞がある。BF錯体によるフッ素化において、用いる重合体(X)の種類によっては着色が起こる場合があるが、着色の抑制の点から、BFアルコール錯体、BF二水和物を用いることが好ましい。 In the method (ii), a known method can be used as a method for converting a crosslinkable silicon group having a hydrolyzable group other than fluorine into a fluorosilyl group. For example, the method is represented by the above formula (2). The hydrolyzable silicon group is converted to a fluorosilyl group with a fluorinating agent. Examples of the fluorinating agent include the fluorinating agents described above. Among them, the BF 3 ether complex, the BF 3 alcohol complex, and the BF 3 dihydrate have high activity, and the fluorination proceeds efficiently. A salt or the like is not generated in the product, and post-treatment is easy, and thus a BF 3 ether complex is particularly preferable. Furthermore, in the fluorination with a BF 3 ether complex, the reaction proceeds without heating, but heating is preferable for more efficient fluorination. The heating temperature is preferably 50 ° C. or higher and 150 ° C. or lower, and more preferably 60 ° C. or higher and 130 ° C. If it is 50 ° C. or lower, the reaction does not proceed efficiently, and it may take time for fluorination. If the temperature is 150 ° C or higher, the fluorinated polymer may be decomposed. In fluorination with BF 3 complex is used although depending on the type of polymer (X) which may coloration occurs, from the viewpoint of suppression of coloring, BF 3 alcohol complexes, it is preferable to use BF 3 dihydrate.
 フッ素化ポリマーの製造に使用されるフッ素化剤は、フッ素化ポリマーの硬化触媒としても作用する可能性があり、上記(ii)の方法を用いてフッ素化ポリマーを製造するときに水分が存在すると、シラノール縮合反応が進行し、得られるフッ素化ポリマーの粘度が上昇してしまう虞がある。このため、フッ素化ポリマーの製造は、できるだけ水分が存在しない環境下で行なわれることが望ましく、フッ素化前に、フッ素化する重合体(X)をトルエンやヘキサン等を利用して共沸脱水に供するなどの脱水操作を行なうことが好ましい。但し、BFアミン錯体を用いる場合には、脱水操作後にはフッ素化が進行し難く、微量の水分を添加することで反応性が向上する傾向があるため、粘度上昇が許容される範囲で水分を添加することが好ましい。また、フッ素化ポリマーの安定性の点で、フッ素化後にフッ素化剤および副生したフッ素化剤由来成分を、濾過、デカンテーション、分液、減圧脱揮などで除去することが好ましい。上記したBF系のフッ素化剤を用いてフッ素化ポリマーを製造する場合には、製造されたフッ素化ポリマー中に残存するBFおよび反応によって生成したBF由来成分が、B量で500ppm未満であることが好ましく、100ppm未満であることがより好ましく、50ppm未満であることが特に好ましい。BFおよびBF由来成分を除去することで、得られたフッ素化ポリマー自身およびフッ素化ポリマーと重合体(X)との混合物の粘度上昇などが抑制できる。この点を考慮すると、BFエーテル錯体、BFアルコール錯体を用いたフッ素化法は、ホウ素成分を真空脱揮により比較的簡便に除去できるため好ましく、BFエーテル錯体を用いた方法が特に好ましい。 The fluorinating agent used in the production of the fluorinated polymer may also act as a curing catalyst for the fluorinated polymer, and when water is present when producing the fluorinated polymer using the method (ii) above. The silanol condensation reaction proceeds and the viscosity of the resulting fluorinated polymer may increase. For this reason, it is desirable that the production of the fluorinated polymer be performed in an environment free from water as much as possible. Before the fluorination, the polymer (X) to be fluorinated is subjected to azeotropic dehydration using toluene, hexane or the like. It is preferable to perform a dehydration operation such as providing. However, when a BF 3 amine complex is used, fluorination hardly progresses after the dehydration operation, and the reactivity tends to be improved by adding a small amount of water. Is preferably added. In view of the stability of the fluorinated polymer, it is preferable to remove the fluorinating agent and by-product fluorinating agent-derived components after fluorination by filtration, decantation, liquid separation, vacuum devolatilization, or the like. When producing a fluorinated polymer with a fluorinating agent of BF 3 systems described above, BF 3 from components produced by BF 3 and reaction remaining fluorinated polymers produced is, 500 ppm than in B quantity It is preferable that it is less than 100 ppm, and it is especially preferable that it is less than 50 ppm. By removing BF 3 and the component derived from BF 3 , an increase in viscosity of the obtained fluorinated polymer itself and a mixture of the fluorinated polymer and the polymer (X) can be suppressed. In view of this point, the fluorination method using a BF 3 ether complex or a BF 3 alcohol complex is preferable because the boron component can be removed relatively easily by vacuum devolatilization, and the method using a BF 3 ether complex is particularly preferable. .
 ここで、重合体(X)が、フッ素以外の加水分解性基を2個以上有する場合は、全ての加水分解性基をフッ素化してもよいし、フッ素化剤の量を減量するなどの方法によって、フッ素化の条件を調整することにより、部分的にフッ素化してもよい。たとえば、上記(ii)の方法において、重合体(X)を用いてフッ素化ポリマーを製造する場合、フッ素化剤の使用量は特に制限されるものではなく、フッ素化剤中のフッ素原子のモル量が、重合体(X)のモル量に対して等モル以上になる量であればよい。(ii)の方法により、重合体(X)が含有する加水分解性基のすべてをフッ素化しようとする場合には、フッ素化剤中のフッ素原子のモル量が、重合体(X)が含有する架橋性珪素基中の加水分解性基の総モル量に対して等モル以上となるような量のフッ素化剤を使用することが好ましい。ここで、「フッ素化剤中のフッ素原子」とは、フッ素化剤中のフッ素化に有効なフッ素原子、具体的には、重合体(X)の架橋性珪素基中の加水分解性基を置換できるフッ素原子をいう。 Here, when the polymer (X) has two or more hydrolyzable groups other than fluorine, all hydrolyzable groups may be fluorinated, or the amount of the fluorinating agent is reduced. May be partially fluorinated by adjusting the fluorination conditions. For example, in the above method (ii), when the fluorinated polymer is produced using the polymer (X), the amount of the fluorinating agent is not particularly limited, and the moles of fluorine atoms in the fluorinating agent are not limited. The amount may be an amount that is at least equimolar with respect to the molar amount of the polymer (X). When all the hydrolyzable groups contained in the polymer (X) are to be fluorinated by the method (ii), the molar amount of fluorine atoms in the fluorinating agent is contained in the polymer (X). It is preferable to use the fluorinating agent in such an amount that it is equimolar or more with respect to the total molar amount of the hydrolyzable group in the crosslinkable silicon group. Here, the “fluorine atom in the fluorinating agent” means a fluorine atom effective for fluorination in the fluorinating agent, specifically, a hydrolyzable group in the crosslinkable silicon group of the polymer (X). A fluorine atom that can be substituted.
 上記方法(i)におけるフルオロシリル基を有する低分子化合物も、上記フッ素化方法を利用して、汎用な架橋性珪素基含有低分子化合物から合成することができる。 The low molecular compound having a fluorosilyl group in the above method (i) can also be synthesized from a general-purpose crosslinkable silicon group-containing low molecular compound using the above fluorination method.
 方法(i)では、フルオロシリル基とともに、重合体と珪素含有低分子化合物を反応させるための反応性基があるため、反応が複雑になる場合には、方法(ii)によってフッ素化ポリマーを得ることが好ましい。 In the method (i), there is a reactive group for reacting the polymer and the silicon-containing low molecular weight compound together with the fluorosilyl group. When the reaction becomes complicated, a fluorinated polymer is obtained by the method (ii). It is preferable.
 フッ素化ポリマーのガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、-20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり取り扱い難くなる場合がある。ガラス転移温度はDSC測定により求めることができる。 The glass transition temperature of the fluorinated polymer is not particularly limited, but is preferably 20 ° C. or less, more preferably 0 ° C. or less, and particularly preferably −20 ° C. or less. If the glass transition temperature exceeds 20 ° C., the viscosity in winter or in a cold region may increase, making it difficult to handle. The glass transition temperature can be determined by DSC measurement.
 フッ素化ポリマーは直鎖状であってもよく、または分岐を有してもよい。フッ素化ポリマーの数平均分子量は、GPCにおけるポリスチレン換算において3,000~100,000が好ましく、より好ましくは3,000~50,000であり、特に好ましくは3,000~30,000である。 The fluorinated polymer may be linear or branched. The number average molecular weight of the fluorinated polymer is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene in GPC.
 本発明において、(C)成分として(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物を使用することができる。 In the present invention, as component (C), (C2) one or more fluorine compounds selected from the group consisting of boron trifluoride, boron trifluoride complexes, fluorinating agents and alkali metal salts of polyvalent fluoro compounds Can be used.
 前記三フッ化ホウ素の錯体としては、例えば、三フッ化ホウ素のアミン錯体、アルコール錯体、エーテル錯体、チオール錯体、スルフィド錯体、カルボン酸錯体、水錯体等が例示される。上記三フッ化ホウ素の錯体の中では、安定性と触媒活性を兼ね備えたアミン錯体が特に好ましい。 Examples of the boron trifluoride complex include boron trifluoride amine complex, alcohol complex, ether complex, thiol complex, sulfide complex, carboxylic acid complex, and water complex. Among the boron trifluoride complexes, an amine complex having both stability and catalytic activity is particularly preferable.
 前記三フッ化ホウ素のアミン錯体に用いられるアミン化合物としては、例えば、アンモニア、モノエチルアミン、トリエチルアミン、ピペリジン、アニリン、モルホリン、シクロヘキシルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、グアニジン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、N-メチル-3,3′-イミノビス(プロピルアミン)、エチレンジアミン、ジエチレントリアミン、トリエチレンジアミン、ペンタエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,4-ジアミノブタン、1,9-ジアミノノナン、ATU(3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)、CTUグアナミン、ドデカン酸ジヒドラジド、ヘキサメチレンジアミン、m-キシリレンジアミン、ジアニシジン、4,4′-ジアミノ-3,3′-ジエチルジフェニルメタン、ジアミノジフェニルエーテル、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、トリジンベース、m-トルイレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、メラミン、1,3-ジフェニルグアニジン、ジ-o-トリルグアニジン、1,1,3,3-テトラメチルグアニジン、ビス(アミノプロピル)ピペラジン、N-(3-アミノプロピル)-1,3-プロパンジアミン、ビス(3-アミノプロピル)エーテル、サンテクノケミカル社製ジェファーミン等の複数の第一級アミノ基を有する化合物、ピペラジン、シス-2,6-ジメチルピペラジン、シス-2,5-ジメチルピペラジン、2-メチルピペラジン、N,N′-ジ-t-ブチルエチレンジアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、1,3-ジ-(4-ピペリジル)-プロパン、4-アミノプロピルアニリン、ホモピペラジン、N,N′-ジフェニルチオ尿素、N,N′-ジエチルチオ尿素、N-メチル-1,3-プロパンジアミン等の複数の第二級アミノ基を有する化合物、更に、メチルアミノプロピルアミン、エチルアミノプロピルアミン、エチルアミノエチルアミン、ラウリルアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、1-(2-アミノエチル)ピペラジン、N-アミノプロピルピペラジン、3-アミノピロリジン、1-o-トリルビグアニド、2-アミノメチルピペラジン、N-アミノプロピルアニリン、エチルアミンエチルアミン、2-ヒドロキシエチルアミノプロピルアミン、ラウリルアミノプロピルアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、式H2N(C2H4NH)nH(n≒5)で表わされる化合物(商品名:ポリエイト、東ソー社製)、N-アルキルモルホリン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5、1,4-ジアザビシクロ[2.2.2]オクタン、ピリジン、N-アルキルピペリジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等の複環状第三級アミン化合物等の他、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、4-アミノ-3-ジメチルブチルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-3-[アミノ(ジプロピレンオキシ)]アミノプロピルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリエトキシシラン等のアミノシラン化合物が挙げられる。前記三フッ化ホウ素のアミン錯体の市販品としては、例えば、エアプロダクツジャパン株式会社製のアンカー1040、アンカー1115、アンカー1170、アンカー1222、BAK1171等が挙げられる。 Examples of the amine compound used for the boron trifluoride amine complex include ammonia, monoethylamine, triethylamine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethanolamine, diethanolamine, triethanolamine, guanidine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N-methyl-3,3'-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2 , , 8,10-tetraoxaspiro [5.5] undecane), CTU guanamine, dodecanoic acid dihydrazide, hexamethylenediamine, m-xylylenediamine, dianisidine, 4,4'-diamino-3,3'-diethyldiphenylmethane, Diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, tolidine base, m-toluylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, melamine, 1,3-diphenylguanidine , Di-o-tolylguanidine, 1,1,3,3-tetramethylguanidine, bis (aminopropyl) piperazine, N- (3-aminopropyl) -1,3-propanediamine, bis (3-aminopropyl) Ether, manufactured by Sun Techno Chemical Co., Ltd. Compounds having a plurality of primary amino groups such as farmin, piperazine, cis-2,6-dimethylpiperazine, cis-2,5-dimethylpiperazine, 2-methylpiperazine, N, N'-di-t-butylethylenediamine 2-aminomethylpiperidine, 4-aminomethylpiperidine, 1,3-di- (4-piperidyl) -propane, 4-aminopropylaniline, homopiperazine, N, N'-diphenylthiourea, N, N'- Compounds having a plurality of secondary amino groups such as diethylthiourea and N-methyl-1,3-propanediamine, and methylaminopropylamine, ethylaminopropylamine, ethylaminoethylamine, laurylaminopropylamine, 2-hydroxy Ethylaminopropylamine, 1- (2-aminoethyl) piperazine, N-aminopropylpiperazine, 3-aminopyrrolidine, 1-o-tolylbiguanide, 2-aminomethylpiperazine, N-aminopropylaniline, ethylamine ethylamine, 2-hydroxyethylaminopropylamine, laurylaminopropylamine, 2-aminomethyl Piperidine, 4-aminomethylpiperidine, a compound represented by the formula H2N (C2H4NH) nH (n≈5) (trade name: Polyate, manufactured by Tosoh Corporation), N-alkylmorpholine, 1,8-diazabicyclo [5.4.0] ] Undecene-7,6-dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7,1,5-diazabicyclo [4.3.0] nonene-5, 1,4-diazabicyclo [2. 2.2] octane, pyridine, N-alkylpiperidine, 1,5,7-tri Such as bicyclic tertiary amine compounds such as azabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, etc. Other, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (Aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltriethoxysilane, N- (6-aminohexyl) ) Aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N- (2-aminoethyl) Aminosilane compounds such as 11-amino-undecyl triethoxy silane. Examples of the commercially available amine complex of boron trifluoride include Anchor 1040, Anchor 1115, Anchor 1170, Anchor 1222, and BAK 1171 manufactured by Air Products Japan.
 前記フッ素化剤には、フッ素アニオンを活性種とする求核的フッ素化剤と、電子欠乏性のフッ素原子を活性種とする求電子的フッ素化剤が含まれる。 The fluorinating agent includes a nucleophilic fluorinating agent having a fluorine anion as an active species and an electrophilic fluorinating agent having an electron deficient fluorine atom as an active species.
 前記求核的フッ素化剤としては、例えば、1,1,2,3,3,3-ヘキサフルオロ-1-ジエチルアミノプロパン等の1,1,2,3,3,3-ヘキサフルオロ-1-ジアルキルアミノプロパン系化合物、トリエチルアミントリスヒドロフルオライド等のトリアルキルアミントリスヒドロフルオライド系化合物、ジエチルアミノサルファートリフルオライド等のジアルキルアミノサルファートリフルオライド系化合物等が挙げられる。 Examples of the nucleophilic fluorinating agent include 1,1,2,3,3,3-hexafluoro-1-such as 1,1,2,3,3,3-hexafluoro-1-diethylaminopropane. Examples thereof include dialkylaminopropane compounds, trialkylamine trishydrofluoride compounds such as triethylamine trishydrofluoride, and dialkylaminosulfur trifluoride compounds such as diethylaminosulfur trifluoride.
 前記求電子的フッ素化剤としては、例えば、ビス(テトラフルオロホウ酸)N,N’-ジフルオロ-2,2’-ビピリジニウム塩化合物,トリフルオロメタンスルホン酸N-フルオロピリジニウム塩化合物等のN-フルオロピリジニウム塩系化合物、ビス(テトラフルオロホウ酸)4-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタン塩等の4-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタン系化合物、N-フルオロビス(フェニルスルホニル)アミン等のN-フルオロビス(スルホニル)アミン系化合物等が挙げられる。これらの中では、1,1,2,3,3,3-ヘキサフルオロ-1-ジエチルアミノプロパン系化合物が液状化合物である上、入手が容易なため特に好ましい。 Examples of the electrophilic fluorinating agent include N-fluoro such as bis (tetrafluoroboric acid) N, N′-difluoro-2,2′-bipyridinium salt compound and trifluoromethanesulfonic acid N-fluoropyridinium salt compound. 4-fluoro-1,4-diazoniabicyclo [2.2.pyridinium salt compounds, such as bis (tetrafluoroboric acid) 4-fluoro-1,4-diazoniabicyclo [2.2.2] octane salts. 2] N-fluorobis (sulfonyl) amine compounds such as octane compounds and N-fluorobis (phenylsulfonyl) amines. Among these, 1,1,2,3,3,3-hexafluoro-1-diethylaminopropane compounds are particularly preferable because they are liquid compounds and are easily available.
 前記多価フルオロ化合物のアルカリ金属塩としては、例えば、ヘキサフルオロアンチモン酸ナトリウム、ヘキサフルオロアンチモン酸カリウム、ヘキサフルオロヒ酸ナトリウム、ヘキサフルオロヒ酸カリウム、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、ペンタフルオロヒドロキソアンチモン酸ナトリウム、ペンタフルオロヒドロキソアンチモン酸カリウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム、テトラキス(トリフルオロメチルフェニル)ホウ酸ナトリウム、トリフルオロ(ペンタフルオロフェニル)ホウ酸ナトリウム、トリフルオロ(ペンタフルオロフェニル)ホウ酸カリウム、ジフルオロビス(ペンタフルオロフェニル)ホウ酸ナトリウム、ジフルオロビス(ペンタフルオロフェニル)ホウ酸カリウム等が挙げられる。これらの中でも、多価フルオロ化合物のアルカリ金属塩における多価フルオロ化合物成分としては、テトラフルオロホウ酸又はヘキサフルオロリン酸が好ましい。また、多価フルオロ化合物のアルカリ金属塩におけるアルカリ金属としては、リチウム、ナトリウム及びカリウムからなる群から選ばれる一種以上のアルカリ金属であることが好ましい。 Examples of the alkali metal salt of the polyvalent fluoro compound include sodium hexafluoroantimonate, potassium hexafluoroantimonate, sodium hexafluoroarsenate, potassium hexafluoroarsenate, lithium hexafluorophosphate, sodium hexafluorophosphate, Potassium hexafluorophosphate, sodium pentafluorohydroxoantimonate, potassium pentafluorohydroxoantimonate, lithium tetrafluoroborate, sodium tetrafluoroborate, potassium tetrafluoroborate, sodium tetrakis (trifluoromethylphenyl) borate, tri Sodium fluoro (pentafluorophenyl) borate, potassium trifluoro (pentafluorophenyl) borate, difluorobis (pentafluoro Eniru) sodium borate, difluoro (pentafluorophenyl) potassium borate, and the like. Among these, tetrafluoroboric acid or hexafluorophosphoric acid is preferable as the polyvalent fluoro compound component in the alkali metal salt of the polyvalent fluoro compound. The alkali metal in the alkali metal salt of the polyvalent fluoro compound is preferably at least one alkali metal selected from the group consisting of lithium, sodium and potassium.
 (C)成分の配合割合は特に制限はないが、(A)(メタ)アクリロイル基を有する重合体100質量部に対して、0.001~80質量部が好ましく、0.001~30質量部がより好ましく、0.005~20質量部がさらに好ましい。なお、(C)成分中のフッ素原子の含量が大きいものほど少量の配合で足りる傾向にある。 The mixing ratio of the component (C) is not particularly limited, but is preferably 0.001 to 80 parts by mass, and 0.001 to 30 parts by mass with respect to 100 parts by mass of the polymer (A) having a (meth) acryloyl group. Is more preferable, and 0.005 to 20 parts by mass is even more preferable. In addition, it exists in the tendency for a small amount to mix | blend, so that the content of the fluorine atom in (C) component is large.
 本発明の硬化性組成物は、前記(C1)Si-F結合を有する珪素化合物及び前記(C2)フッ素系化合物からなる群から選択される1種以上を含むものであり、(C1)及び(C2)のいずれかのみでもよく、両者を併用してもよい。特に、本発明の硬化性組成物が前記(C1)Si-F結合を有するケイ素化合物を含むことが好ましい。 The curable composition of the present invention comprises one or more selected from the group consisting of the (C1) silicon compound having a Si—F bond and the (C2) fluorine-based compound, and (C1) and (C1) Either one of C2) or both may be used in combination. In particular, the curable composition of the present invention preferably contains the silicon compound having the (C1) Si—F bond.
 本発明の硬化性組成物は(D)成分としてラジカル重合開始剤を使用する。ラジカル重合開始剤としては、ジアシルパーオキサイド類、ケトンパーオキサイド類、ヒドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、及びパーオキシカーボネート類等の有機過酸化物を挙げることができる。また、開始剤として、光照射によりラジカルを発生する光ラジカル開始剤等他のラジカル重合開始剤を用いてもよい。 The curable composition of the present invention uses a radical polymerization initiator as the component (D). Examples of radical polymerization initiators include organic peroxides such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and peroxycarbonates. be able to. Moreover, you may use other radical polymerization initiators, such as a photoradical initiator which generate | occur | produces a radical by light irradiation as an initiator.
 ラジカル重合開始剤の具体例として、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ラウリルパーオキサイド、ジクミルパーオキサイド、クメンヒドロパーオキサイド等が挙げられる。最も一般的にはベンゾイルパーオキサイドが用いられる。 Specific examples of the radical polymerization initiator include benzoyl peroxide, methyl ethyl ketone peroxide, lauryl peroxide, dicumyl peroxide, cumene hydroperoxide and the like. Most commonly, benzoyl peroxide is used.
 また、光ラジカル開始剤の例としては、ベンゾインエチルエーテル、ベンゾインブチルエーテル及びベンゾインイソプロピルエーテル等のベンゾインエーテル類;4,4’-ビスジメチルアミノベンゾフェノン及び4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル-]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン、及びN,N-ジメチルアミノアセトフェノン等のアセトフェノン類;2,4-ジエチルチオキサントン、2-クロロチオキサントン及び2-イソプロピルチオキサントン等のチオキサントン類;ベンジルジメチルケタール、アセトフェノンジメチルケタール等のケタール類;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のフォスフィンオキサイド類;エチル-p-ジメチルアミノベンゾエート、(2-ジメチルアミノ)エチルベンゾエート、ビス-4,4’-ジメチルアミノベンゾフェノン等のアミン相乗剤等が挙げられる。 Examples of the photo radical initiator include benzoin ethers such as benzoin ethyl ether, benzoin butyl ether and benzoin isopropyl ether; benzophenones such as 4,4′-bisdimethylaminobenzophenone and 4,4′-bisdiethylaminobenzophenone; Acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl- Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2- Til-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2 -Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one And acetophenones such as N, N-dimethylaminoacetophenone; thioxanthones such as 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2-isopropylthioxanthone; ketals such as benzyldimethyl ketal and acetophenone dimethyl ketal; , 6-Trimethylbenzoyldiphenylphosphine oxide, bi Phosphine oxides such as (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; ethyl-p-dimethylaminobenzoate, (2-dimethylamino) ethylbenzoate, bis-4,4′-dimethylaminobenzophenone, etc. And amine synergists.
 これらの中でも、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1及び2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン等のα-アミノアセトフェノン類;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド類;及びアミン相乗剤等の長波長(例えば、波長300nm)に光吸収を持つ光ラジカル開始剤が深部硬化性の点で好ましく、アシルフォスフィンオキサイド類及びアミン相乗剤がより好ましい。 Among these, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 And α-aminoacetophenones such as 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one; 2,4,6-trimethylbenzoyl Acylphosphine oxides such as diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; and photoradicals having light absorption at long wavelengths (eg, wavelength 300 nm) such as amine synergists Initiators are preferred in terms of deep curability, acylphosphine oxides and amine synergists are more preferred. .
 また、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル-]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のα-ヒドロキシアセトフェノン類は表面硬化性を向上させることができ、好適である。 Also, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl Α such as -1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, etc. -Hydroxyacetophenones are preferred because they can improve surface curability.
 ラジカル開始剤は一般的に硫酸カルシウム、炭酸カルシウム等の無機物、ジメチルフタレート、ジブチルフタレート、ジシクロヘキシルフタレート、脂肪族炭化水素、芳香族炭化水素、シリコーンオイル、流動パラフィン、重合性モノマー、水等の希釈剤で希釈して用いられる。 Radical initiators are generally diluents such as inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbon, aromatic hydrocarbon, silicone oil, liquid paraffin, polymerizable monomer, water, etc. Diluted with
 (D)成分のラジカル開始剤は、(A)(メタ)アクリロイル基を有する重合体100質量部に対して、0.01質量部以上20質量部以下、好ましくは0.1質量部以上10質量部以下、より好ましくは1質量部以上10質量部以下の量で用いることが好ましい。 The radical initiator of component (D) is 0.01 parts by mass or more and 20 parts by mass or less, preferably 0.1 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the polymer having (A) (meth) acryloyl group. Part or less, more preferably 1 to 10 parts by weight.
 本発明の硬化性組成物には、必要に応じて、反応性希釈剤、助触媒、(B)成分以外のシランカップリング剤(接着性付与剤)、光増感剤、増量剤、希釈剤、可塑剤、水分吸収剤、(C)成分以外の縮合反応促進触媒、引張特性等を改善する物性調整剤、補強剤、着色剤、難燃剤、タレ防止剤、酸化防止剤、老化防止剤、紫外線吸収剤、溶剤、香料、顔料、染料等の各種添加剤を加えてもよい。 In the curable composition of the present invention, a reactive diluent, a co-catalyst, a silane coupling agent (adhesion imparting agent) other than the component (B), a photosensitizer, a bulking agent, and a diluent, if necessary. , A plasticizer, a moisture absorbent, a condensation reaction promoting catalyst other than the component (C), a physical property modifier for improving tensile properties, a reinforcing agent, a colorant, a flame retardant, an anti-sagging agent, an antioxidant, an anti-aging agent, Various additives such as an ultraviolet absorber, a solvent, a fragrance, a pigment, and a dye may be added.
 本発明の組成物は反応性希釈剤を使用してもよい。反応性希釈剤としては低分子量の単官能モノマー及び/又は多官能モノマー等の各種モノマーを使用することができる。反応性希釈剤として使用できるモノマーの具体例としては(メタ)アクリロイルオキシ基を有する化合物、(メタ)アクリルアミド基を有する化合物やN-ビニル化合物を挙げることができる。 In the composition of the present invention, a reactive diluent may be used. As the reactive diluent, various monomers such as a low molecular weight monofunctional monomer and / or a polyfunctional monomer can be used. Specific examples of the monomer that can be used as the reactive diluent include a compound having a (meth) acryloyloxy group, a compound having a (meth) acrylamide group, and an N-vinyl compound.
 (メタ)アクリロイルオキシ基を有するモノマーとしては、(メタ)アクリロイルオキシ基を1個以上有する化合物であれば特に制限はなく、例えば、単官能(メタ)アクリレート類、多官能(メタ)アクリレート類等を用いることができる。 The monomer having a (meth) acryloyloxy group is not particularly limited as long as it is a compound having one or more (meth) acryloyloxy groups, and examples thereof include monofunctional (meth) acrylates and polyfunctional (meth) acrylates. Can be used.
 単官能(メタ)アクリレート類としては、例えば、(メタ)アクリル酸、エチル(メタ)アクリレート、1-メトキシエチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート 、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ノニルフェノキシテトラエチレングリコール(メタ)アクリレート、ジメチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、エピクロロヒドリン変性ブチル(メタ)アクリレート、エピクロロヒドリン変性フェノキシ(メタ)アクリレート、エチレンオキサイド変性フタル酸(メタ)アクリレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth) acrylates include (meth) acrylic acid, ethyl (meth) acrylate, 1-methoxyethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate. , Hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate , Dodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, caprolactone modified tetrahydrofurfuryl (meth) Chlorate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth ) Acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, nonylphenoxyethyl (meth) acrylate, nonylphenoxytetraethylene glycol (meth) acrylate, dimethyl (meth) acrylamide, Dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, butoxyethyl (meth) Acrylate, butoxytriethylene glycol (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, glycerol (meth) acrylate, Epichlorohydrin modified butyl (meth) acrylate, epichlorohydrin modified phenoxy (meth) acrylate, ethylene oxide modified phthalic acid (meth) acrylate, ethylene oxide modified succinic acid (meth) acrylate, caprolactone modified 2-hydroxyethyl (meth) ) Acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, Chi alkylene oxide-modified phosphoric acid (meth) acrylate.
 多官能アクリレート類としては、例えば、1、3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレ-ト、プロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ジシクロペンテニルジアクリレート、エチレンオキサイド変性ジシクロペンテニルジ(メタ)アクリレート、ジ(メタ)アクリロイルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート等が挙げられる。多官能アクリレート類は、空気中の酸素による重合阻害が生じにくい点から好ましい。 Examples of the polyfunctional acrylates include 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol diacrylate, neopentyl glycol modified trimethylol Propane di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, dicyclopentenyl diacrylate, ethylene oxide modified dicycle Pentenyl di (meth) acrylate, di (meth) acryloyl isocyanurate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipenta Examples include erythritol monohydroxypenta (meth) acrylate. Polyfunctional acrylates are preferred from the viewpoint that polymerization inhibition due to oxygen in the air hardly occurs.
 (メタ)アクリルアミドやN-ビニル化合物の具体例としては、N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-n-ヘキシル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド、N,N-ジヘキシル(メタ)アクリルアミド、N,N-ジベンジル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体、アクリル酸フタルイミドエチル、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。 Specific examples of (meth) acrylamide and N-vinyl compounds include N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and Nn-butyl (meth) acrylamide. N-sec-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, Nn-hexyl (meth) acrylamide, N-benzyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n- Propyl (meth) acrylamide, N, N-diisopropyl (Meth) acrylamide derivatives such as (meth) acrylamide, N, N-di-n-butyl (meth) acrylamide, N, N-dihexyl (meth) acrylamide, N, N-dibenzyl (meth) acrylamide, phthalimidoethyl acrylate N-vinylpyrrolidone, N-vinylcaprolactam and the like.
 反応性希釈剤は、1種類のモノマーを用いることだけでなく、複数種類のモノマーを混合して用いることもできる。また、(A)成分の(メタ)アクリロイル基を有する重合体の単位量に対する反応性希釈剤の添加量は、所定量以下にすることが好ましい。(A)成分の(メタ)アクリロイル基を有する重合体の単位量に対する反応性希釈剤の添加量を所定量以下にすることにより硬化性組成物の塗布性や印刷性を制御することができる。例えば、反応性希釈剤は、(A)成分の(メタ)アクリロイル基を有する重合体100質量部に対し、モノマーの添加量を0.1質量部以上50質量部以下、好ましくは0.5質量部以上40質量部以下、より好ましくは1質量部以上35質量部以下の量で用いることが好ましい。 As the reactive diluent, not only one kind of monomer but also a mixture of plural kinds of monomers can be used. Moreover, it is preferable that the addition amount of the reactive diluent with respect to the unit amount of the polymer which has (meth) acryloyl group of (A) component shall be below predetermined amount. The application property and printability of the curable composition can be controlled by making the addition amount of the reactive diluent with respect to the unit amount of the polymer having the (meth) acryloyl group of the component (A) not more than a predetermined amount. For example, the reactive diluent is added in an amount of 0.1 to 50 parts by weight, preferably 0.5 parts by weight based on 100 parts by weight of the polymer having (meth) acryloyl group (A). Part to 40 parts by weight, more preferably 1 part to 35 parts by weight.
 本発明において、塩基を使用することができる。(C)成分のフッ素系化合物の触媒作用を向上させる助触媒として作用する。塩基としては特に限定されないが、アミン化合物等の有機塩基が好ましい。特に、第3級アミンである1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)などのアミジン類が好ましい。 In the present invention, a base can be used. (C) It acts as a co-catalyst for improving the catalytic action of the component fluorine-based compound. Although it does not specifically limit as a base, Organic bases, such as an amine compound, are preferable. In particular, amidines such as tertiary amines such as 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) are used. preferable.
 また、塩基として光を照射すると塩基を発生する光塩基発生剤を使用することができる。光塩基発生剤は光照射前には塩基として作用しないので、硬化性組成物に塩基が望ましくない作用をする場合に光塩基発生剤を使用するのが望ましい。光塩基発生剤としてベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体、α-アミノケトン誘導体、α-アンモニウムケトン誘導体等の光潜在性第3級アミンが好ましい。 Also, a photobase generator that generates a base when irradiated with light as a base can be used. Since the photobase generator does not act as a base before light irradiation, it is desirable to use a photobase generator when the base has an undesirable effect on the curable composition. As the photobase generator, photolatent tertiary amines such as benzylammonium salt derivatives, benzyl-substituted amine derivatives, α-aminoketone derivatives, α-ammonium ketone derivatives and the like are preferable.
 塩基あるいは塩基発生剤を使用する場合その配合割合は特に制限はないが、(A)(メタ)アクリロイル基を有する重合体100質量部に対して、0.01~50質量部が好ましく、0.1~40質量部がより好ましく、0.5~30質量部がさらに好ましい。 When a base or a base generator is used, the blending ratio thereof is not particularly limited, but is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the polymer having (A) (meth) acryloyl group. The amount is more preferably 1 to 40 parts by mass, and further preferably 0.5 to 30 parts by mass.
 本発明の硬化性組成物は、(B)成分以外のシランカップリング剤をさらに含むことができ、特に、エポキシ基含有シラン類が好ましい。シランカップリング剤は接着性付与剤として作用する。前記シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、1,3-ジアミノイソプロピルトリメトキシシラン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン等のケチミン型シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等の塩素原子含有シラン類;γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン等のイソシアネート含有シラン類;ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン等のアルキルシラン類;フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のフェニル基含有シラン類等が挙げられるが、これらに限定されるものではない。また、前記アミノ基含有シラン類と前記のシラン類を含むエポキシ基含有化合物、イソシアネート基含有化合物、(メタ)アクリロイル基含有化合物とを反応させて、アミノ基を変性した変性アミノ基含有シラン類を用いてもよい。 The curable composition of the present invention can further contain a silane coupling agent other than the component (B), and epoxy group-containing silanes are particularly preferable. The silane coupling agent acts as an adhesion promoter. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl). Epoxy group-containing silanes such as ethyltrimethoxysilane; γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltri Amino groups such as methoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, 1,3-diaminoisopropyltrimethoxysilane Containing silanes; N- (1,3-dimethyl) Ketimine type silanes such as butylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine; γ-mercapto Mercapto group-containing silanes such as propyltrimethoxysilane and γ-mercaptopropylmethyldimethoxysilane; Vinyl-type unsaturated group-containing silanes such as vinyltrimethoxysilane and vinyltriethoxysilane; Chlorine such as γ-chloropropyltrimethoxysilane Atom-containing silanes; isocyanate-containing silanes such as γ-isocyanatopropyltriethoxysilane and γ-isocyanatopropylmethyldimethoxysilane; alkyl silanes such as hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane; Silane, phenyltriethoxysilane, diphenyldimethoxysilane, but phenyl group-containing silanes such as diphenyl diethoxy silane, etc., but is not limited thereto. Further, modified amino group-containing silanes modified by reacting the amino group-containing silanes with an epoxy group-containing compound, an isocyanate group-containing compound, and a (meth) acryloyl group-containing compound containing the silanes. It may be used.
 前記シランカップリング剤の配合割合は特に制限はないが、組成物中に0.01~20質量%が好ましく、0.025~10質量%がより好ましい。これらシランカップリング剤は単独で用いてもよく、2種以上を併用してもよい。 The mixing ratio of the silane coupling agent is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.025 to 10% by mass in the composition. These silane coupling agents may be used alone or in combination of two or more.
 前記光増感剤としては、225-310kJ/molの三重項エネルギーをもつカルボニル化合物が好ましく、例えば、キサントン、チオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン、フタルイミド、アントラキノン、9,10-ジブトキシアントラセン、アセトフェノン、プロピオフェノン、ベンゾフェノン、アシルナフタレン、2(アシルメチレン)チアゾリン、3-アシルクマリンおよび3,3′-カルボニルビスクマリン、ペリレン、コロネン、テトラセン、ベンズアントラセン、フェノチアジン、フラビン、アクリジン、ケトクマリン等が挙げられ、チオキサントン、3-アシルクマリンおよび2(アロイルメチレン)-チアゾリンが好ましく、チオキサントンおび3-アシルクマリンがより好ましい。 As the photosensitizer, a carbonyl compound having a triplet energy of 225 to 310 kJ / mol is preferable. For example, xanthone, thioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2 , 4-diisopropylthioxanthone, isopropylthioxanthone, phthalimide, anthraquinone, 9,10-dibutoxyanthracene, acetophenone, propiophenone, benzophenone, acylnaphthalene, 2 (acylmethylene) thiazoline, 3-acylcoumarin and 3,3'-carbonyl Biscumarin, perylene, coronene, tetracene, benzanthracene, phenothiazine, flavin, acridine, ketocoumarin, etc., thioxanthone, 3-acylcoumarin And 2 (aroylmethylene) - thiazoline, and more preferably a thioxanthone Obi 3 acylcoumarin.
 光増感剤の配合割合は特に制限はないが、組成物中に0.01~5質量%が好ましく、0.025~2質量%がより好ましい。これら光増感剤は単独で用いてもよく、2種以上を併用してもよい。 The blending ratio of the photosensitizer is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.025 to 2% by mass in the composition. These photosensitizers may be used independently and may use 2 or more types together.
 前記増量剤としては、例えば、タルク、クレー、炭酸カルシウム、炭酸マグネシウム、無水珪素、含水珪素、ケイ酸カルシウム、二酸化チタン、カーボンブラック等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the extender include talc, clay, calcium carbonate, magnesium carbonate, anhydrous silicon, hydrated silicon, calcium silicate, titanium dioxide, and carbon black. These may be used alone or in combination of two or more.
 本発明の硬化性組成物は、希釈剤をさらに含有することができる。希釈剤を配合することにより、粘度等の物性を調整することができる。希釈剤としては、公知の希釈剤を広く用いることができ、特に制限はないが、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤,リニアレンダイマー(出光興産株式会社商品名)等のα-オレフィン誘導体,トルエン、キシレン等の芳香族炭化水素系溶剤,エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ダイアセトンアルコール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤,クエン酸アセチルトリエチル等のクエン酸エステル系溶剤,メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等の各種溶剤が挙げられる。希釈剤の配合割合は特に制限はないが、組成物中に0.01~20質量%が好ましく、0.025~10質量%がより好ましい。これら希釈剤は単独で用いてもよく、2種以上を併用してもよい。 The curable composition of the present invention can further contain a diluent. By blending a diluent, physical properties such as viscosity can be adjusted. As the diluent, known diluents can be widely used, and are not particularly limited. For example, α, such as saturated hydrocarbon solvents such as normal paraffin and isoparaffin, linearlen dimer (trade name of Idemitsu Kosan Co., Ltd.), etc. -Olefin derivatives, aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, diacetone alcohol, ethyl acetate, butyl acetate, amyl acetate, acetic acid Examples include various solvents such as ester solvents such as cellosolve, citrate solvents such as acetyltriethyl citrate, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. The blending ratio of the diluent is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.025 to 10% by mass in the composition. These diluents may be used alone or in combination of two or more.
 前記可塑剤としては、例えば、リン酸トリブチル、リン酸トリクレジル等のリン酸エステル類,フタル酸ジオクチル等のフタル酸エステル類,グリセリンモノオレイル酸エステル等の脂肪族一塩基酸エステル類,アジピン酸ジオクチル等の脂肪族二塩基酸エステル類,ポリプロピレングリコール類,液状ポリブテン、液状ポリイソブチレン、低分子量ポリブタジエン等の炭化水素系可塑剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the plasticizer include phosphoric esters such as tributyl phosphate and tricresyl phosphate, phthalic esters such as dioctyl phthalate, aliphatic monobasic esters such as glycerol monooleate, dioctyl adipate, and the like. And aliphatic dibasic acid esters, polypropylene glycols, liquid polybutene, liquid polyisobutylene, low molecular weight polybutadiene and other hydrocarbon plasticizers. These may be used alone or in combination of two or more.
 前記水分吸収剤としては、前述したシランカップリング剤やシリケートが好適である。前記シリケートとしては、特に限定されず、例えば、テトラアルコキシシランまたはその部分加水分解縮合物があげられ、より具体的には、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物が挙げられる。 As the moisture absorbent, the silane coupling agent and silicate described above are suitable. The silicate is not particularly limited, and examples thereof include tetraalkoxysilane or a partial hydrolysis condensate thereof. More specifically, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, Tetraalkoxysilanes (tetraalkyl silicates) such as methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane, And those partial hydrolysis-condensation products are mentioned.
 前記(C)成分以外の縮合反応促進触媒としては、公知の縮合反応促進触媒を広く用いることができ、特に制限はないが、例えば、有機金属化合物、酸やアミン等の塩基が挙げられる。有機金属化合物の例としては、スタナスオクトエート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジアセチルアセトナート、ジブチル錫オキサイド、ジブチル錫ビストリエトキシシリケート、ジブチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、オクチル酸錫及びナフテン酸錫等の有機錫化合物;ジメチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のジアルキルスズオキサイド;ジブチル錫オキサイドとフタル酸エステルとの反応物等;テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナート、チタンテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛及びナフテン酸鉛等の有機酸鉛;オクチル酸ビスマス、ネオデカン酸ビスマス及びロジン酸ビスマス等の有機酸ビスマスが挙げられる。;シラノール縮合触媒として公知のその他の酸性触媒及び塩基性触媒等が挙げられる。しかしながら、有機錫化合物は添加量に応じて、得られる硬化性組成物の毒性が強くなる場合がある。 As the condensation reaction accelerating catalyst other than the component (C), known condensation reaction accelerating catalysts can be widely used and are not particularly limited, and examples thereof include organic metal compounds, bases such as acids and amines. Examples of organometallic compounds include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate, Organic tin compounds such as dioctyltin dilaurate, dioctyltin diversate, tin octylate and tin naphthenate; dialkyltin oxides such as dimethyltin oxide, dibutyltin oxide and dioctyltin oxide; reactants of dibutyltin oxide and phthalate, etc .; Titanic acid esters such as tetrabutyl titanate and tetrapropyl titanate; aluminum trisacetylacetonate, aluminum trisethylacetoacetate Organo-aluminum compounds such as zinc and diisopropoxyaluminum ethyl acetoacetates; Chelate compounds such as zirconium tetraacetylacetonate and titanium tetraacetylacetonate; Leads of organic acids such as lead octylate and lead naphthenate; Bismuth octylate And organic acid bismuth such as bismuth neodecanoate and bismuth rosinate. Other known acidic catalysts and basic catalysts as silanol condensation catalysts may be mentioned. However, the toxicity of the resulting curable composition may increase depending on the amount of the organotin compound added.
 本発明の硬化性組成物を製造する方法は特に制限はなく、例えば、前記成分(A)、(B)、(C)並びに(D)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造することができる。各成分及び他の配合物質の配合順は特に制限はなく、適宜決定すればよい。 The method for producing the curable composition of the present invention is not particularly limited. For example, the components (A), (B), (C) and (D) are blended in a predetermined amount, and if necessary, other blends. It can be manufactured by blending substances and degassing and stirring. There is no particular limitation on the order of blending each component and other compounding substances, and it may be determined as appropriate.
 本発明の硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。
 本発明の硬化性組成物は活性エネルギー線又は熱によって硬化される。よって、光照射により硬化する光硬化性組成物として用いることができ、常温(例えば、23℃)で硬化することが可能であるが、必要に応じて加熱により硬化を促進してもよい。
The curable composition of the present invention can be a one-component type or a two-component type as required, but can be suitably used particularly as a one-component type.
The curable composition of the present invention is cured by active energy rays or heat. Therefore, it can be used as a photocurable composition that is cured by light irradiation and can be cured at room temperature (for example, 23 ° C.), but curing may be accelerated by heating as necessary.
 本発明の硬化性組成物を光硬化性組成物として使用する場合、光を照射する条件としては特に制限はないが、硬化時に活性エネルギー線を照射する場合、活性エネルギー線としては、紫外線、可視光線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のしやすさ及び価格、太陽光や一般照明下での取扱の容易性等から紫外線または電子線照射による硬化が好ましく、紫外線照射による硬化がより好ましい。なお、紫外線には、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)等も含まれるものである。活性エネルギー線源としては、特に限定されないが、使用する光塩基発生剤の性質に応じて、例えば、高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライド等があげられる。 When the curable composition of the present invention is used as a photocurable composition, there are no particular limitations on the conditions for irradiating light, but when activating active energy rays during curing, the active energy rays include ultraviolet rays, visible In addition to electromagnetic waves such as light rays, infrared rays, electromagnetic waves such as X-rays and γ rays, electron rays, proton rays, neutron rays, etc. can be used. From the viewpoint of ease of handling under illumination, etc., curing by ultraviolet ray or electron beam irradiation is preferable, and curing by ultraviolet ray irradiation is more preferable. The ultraviolet rays include g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), and the like. The active energy ray source is not particularly limited, but may be, for example, a high pressure mercury lamp, a low pressure mercury lamp, an electron beam irradiation device, a halogen lamp, a light emitting diode, a semiconductor laser, or a metal halide depending on the nature of the photobase generator used. It is done.
 照射エネルギーとしては例えば紫外線の場合、10~20,000mJ/cmが好ましく、50~10,000mJ/cmがより好ましい。10mJ/cm未満では硬化性が不十分となる場合があり、20,000mJ/cmより大きいと、必要以上に光を当てても時間とコストの無駄となるばかりか、基材を傷めてしまう場合がある。 If the irradiation energy of ultraviolet rays for example, preferably 10 ~ 20,000mJ / cm 2, more preferably 50 ~ 10,000mJ / cm 2. If it is less than 10 mJ / cm 2 , the curability may be insufficient, and if it is greater than 20,000 mJ / cm 2 , it will not only waste time and cost, but also damage the substrate. May end up.
 本発明の硬化性組成物を熱により硬化させる場合、硬化温度は30~200℃が好ましく、80~180℃がより好ましい。 When the curable composition of the present invention is cured by heat, the curing temperature is preferably 30 to 200 ° C, more preferably 80 to 180 ° C.
 本発明の硬化性組成物は、基材への密着性、及び硬化物の防湿性に優れており、防湿材として好適に用いられる。特に(A)(メタ)アクリロイル基を有する重合体として(メタ)アクリロイル基を有するポリイソブチレン系重合体を用いることにより、塗膜の防湿性能を著しく向上させることができる。 The curable composition of the present invention is excellent in adhesion to a substrate and moisture resistance of a cured product, and is suitably used as a moisture proof material. In particular, by using a polyisobutylene polymer having a (meth) acryloyl group as the polymer having a (A) (meth) acryloyl group, the moisture-proof performance of the coating film can be remarkably improved.
 本発明の防湿材は、本発明の硬化性組成物からなる。本発明の防湿材の使用方法は特に制限はないが、高い防湿性を求める場合、被着体への塗布厚さは100μm以上が好ましく、200μm以上がより好ましい。本発明の防湿材は、防湿性能に加えて、ガラスや金属等の基材に対する密着性に優れ、鏡又はガラスの封止に好適であり、特に鏡や合わせガラスの端部や外周の封止に好適に用いられる。 The moisture-proof material of the present invention consists of the curable composition of the present invention. Although there is no restriction | limiting in particular in the usage method of the moisture-proof material of this invention, When calculating | requiring high moisture-proof property, the application | coating thickness to a to-be-adhered body is preferable 100 micrometers or more, and 200 micrometers or more are more preferable. The moisture-proof material of the present invention is excellent in adhesion to substrates such as glass and metal in addition to moisture-proof performance, and is suitable for mirror or glass sealing, particularly sealing of the end and outer periphery of mirrors and laminated glass Is preferably used.
 前記合わせガラスは、複数のガラスが積層されたものである。合わせガラスは、複数の透明材料が積層されていれば足りるが、通常、ガラス、樹脂層、ガラスの順で積層されている。樹脂層を構成する材料は、ガラスとの接着性を有し、樹脂層が透明であれば特に限定されるものでない。 The laminated glass is a laminate of a plurality of glasses. The laminated glass is sufficient if a plurality of transparent materials are laminated, but are usually laminated in the order of glass, resin layer, and glass. The material constituting the resin layer is not particularly limited as long as it has adhesiveness with glass and the resin layer is transparent.
 本発明において、合わせガラスは次のようにして得ることができる。まず、本発明の硬化性組成物からなる防湿材を用い、外周が未封止の合わせガラスの周囲に、該防湿材を塗布する。塗布方法は特に限定されるものでなく、例えば、刷毛塗り、押し出し、吹きつけ、グラビア、キスロール、ディスペンサー及びエアーナイフによる、当該技術分野で公知の手法が挙げられる。
 続いて、前記防湿材を硬化させる。本発明の防湿材は活性エネルギー線又は熱によって硬化され、前述した本発明の硬化性組成物と同様の方法により硬化させることができる。
In the present invention, the laminated glass can be obtained as follows. First, using a moisture-proof material made of the curable composition of the present invention, the moisture-proof material is applied around a laminated glass whose outer periphery is unsealed. The application method is not particularly limited, and examples thereof include methods known in the art using brush coating, extrusion, spraying, gravure, kiss roll, dispenser, and air knife.
Subsequently, the moisture-proof material is cured. The moisture-proof material of the present invention is cured by active energy rays or heat, and can be cured by the same method as the curable composition of the present invention described above.
 本発明の硬化性組成物は、封止材、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材及びプライマー等として好適に用いることができる。本発明の硬化性組成物は、例えば、電気・電子製品に用いられる封止材、例えば、有機EL素子を含む製品の有機EL素子保護剤として用いられる封止材;実装回路基板等の防湿や絶縁を目的とするコーティング、鏡やソーラー発電のパネルやパネルの外周部分のコーティング等に用いられるコーティング剤;複層ガラス用シーリング剤、車両用シーリング剤等、建築用および工業用のシーリング剤;太陽電池裏面封止剤などの電気・電子部品材料;電線・ケーブル用絶縁被覆材などの電気絶縁材料;粘着剤;接着剤;弾性接着剤;コンタクト接着剤などの用途に好適に利用可能である。 The curable composition of the present invention can be suitably used as a sealing material, an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like. The curable composition of the present invention includes, for example, a sealing material used for electrical / electronic products, for example, a sealing material used as an organic EL element protective agent for products including organic EL elements; Coating agent used for coating for insulation, mirror and solar power generation panel and outer peripheral part of panel; Sealing agent for multi-layer glass, sealing agent for vehicles, such as architectural and industrial sealing agent; Electrical and electronic component materials such as battery back surface sealing agents; electrical insulating materials such as insulation coating materials for electric wires and cables; pressure-sensitive adhesives; adhesives; elastic adhesives; contact adhesives and the like.
 本発明の硬化性組成物を封止材として使用する場合、被着体への塗布方法は特に制限はなく、例えば、刷毛塗り、押し出し、吹きつけ、グラビア、キスロール、ディスペンサー及びエアーナイフ等の公知の塗布方法を用いることができる。封止材に防湿性を求める場合、塗布厚さは100μm以上が好ましく、200μm以上であることがより好ましい。 When the curable composition of the present invention is used as a sealing material, there are no particular restrictions on the method of application to the adherend, and examples include known methods such as brush coating, extrusion, spraying, gravure, kiss roll, dispenser, and air knife. The coating method can be used. In the case where moisture resistance is required for the sealing material, the coating thickness is preferably 100 μm or more, and more preferably 200 μm or more.
 本発明の硬化性組成物を接着剤として使用する場合、被着体への塗布方法は特に制限はないが、スクリーン印刷、ステンシル印刷、ロール印刷、スピンコート等の塗布方法が好適に用いられる。光硬化性組成物として使用する場合には被着体への塗布厚さは薄いほうが硬化させ易く、500μm以下、好ましくは200μm以下、さらに好ましくは100μm以下、特に好ましくは50μm以下である。 When the curable composition of the present invention is used as an adhesive, there are no particular restrictions on the method of application to the adherend, but application methods such as screen printing, stencil printing, roll printing, and spin coating are preferably used. When used as a photocurable composition, the thinner the coating thickness on the adherend, the easier it is to cure, and it is 500 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 50 μm or less.
 本発明の硬化性組成物をコーティング剤として使用する場合、被着体への塗布方法は特に制限はないが、刷毛塗り、押出し、吹きつけ、グラビア、キスロール、ディスペンサー、エアーナイフ塗布及び、円盤によって塗布する方法(例えば、国際公開2010/137418号公報)等の塗布方法が好適に用いられる。コーティング剤に防湿性を求める場合、塗布厚さは100μm以上が好ましく、200μm以上であることがより好ましい。 When the curable composition of the present invention is used as a coating agent, there are no particular restrictions on the method of application to the adherend, but brush coating, extrusion, spraying, gravure, kiss roll, dispenser, air knife application, and disc A coating method such as a coating method (for example, International Publication No. 2010/137418) is preferably used. In the case where moisture resistance is required for the coating agent, the coating thickness is preferably 100 μm or more, and more preferably 200 μm or more.
 以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, it is needless to say that these examples are shown by way of example and should not be interpreted in a limited manner.
1)数平均分子量の測定
 数平均分子量は、特に指定がない限りゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。本発明において、該測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量と称する。
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:PlgelGUARD+5μmMixed-C×3本(50×7.5mm,300×7.5mm:PolymerLab社製)
・流速:1mL/分
・換算したポリマー:ポリエチレングリコール
・測定温度:40℃
・GPC測定時の溶媒:THF
1) Measurement of number average molecular weight The number average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions unless otherwise specified. In the present invention, the maximum frequency molecular weight measured by GPC under the measurement conditions and converted with standard polyethylene glycol is referred to as the number average molecular weight.
・ Analyzer: Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processor (manufactured by Waters)
Column: PlgelGUARD + 5 μmMixed-C × 3 (50 × 7.5 mm, 300 × 7.5 mm: manufactured by PolymerLab)
・ Flow rate: 1 mL / min ・ Converted polymer: Polyethylene glycol ・ Measurement temperature: 40 ° C.
・ Solvent for GPC measurement: THF
2)NMRの測定
 NMRの測定は、下記測定装置を用いて行った。
FT-NMR測定装置:日本電子(株)製JNM-ECA500(500MHz)
2) Measurement of NMR Measurement of NMR was performed using the following measuring apparatus.
FT-NMR measuring device: JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
(合成例1)末端にアクリロイル基を有するポリイソブチレン重合体の合成
 5Lのセパラブルフラスコの容器内を窒素置換した後、n-ヘキサン(モレキュラーシーブスで乾燥したもの)280mL及び塩化ブチル(モレキュラーシーブスで乾燥したもの)2500mLを加え、窒素雰囲気下で攪拌しながら-70℃まで冷却した。次いで、イソブチレン1008mL(10.7mol))、p-ジクミルクロライド27.4g(0.119mol)及びα-ピコリン1.33g(0.014mol)を加えた。反応混合物が-70度まで冷却された後で、四塩化チタン5.2mL(0.047mol)を加えて重合を開始した。重合開始後、ガスクロマトグラフィーで残存イソブチレン濃度を測定して、イソブチレン残存量が0.5%を下回った段階で、約200gのメタノールを加えた。反応溶液から溶剤等を留去した後、生成物をn-ヘキサン2Lに溶解させ、1Lの純水で3回水洗を行った。溶媒を減圧下に留去して、得られた重合体を80度で24時間真空乾燥することにより塩素末端ポリイソブチレン系重合体A-1を得た。サイズ排除クロマトグラフィー(SEC)法により得られた重合体A-1の分子量をポリスチレン換算で測定したところ、Mw:5,800、Mn:5,200、Mw/Mn:1.12であった。
(Synthesis Example 1) Synthesis of polyisobutylene polymer having an acryloyl group at the end After replacing the inside of a 5 L separable flask with nitrogen, 280 mL of n-hexane (dried with molecular sieves) and butyl chloride (with molecular sieves) 2500 mL) was added and the mixture was cooled to −70 ° C. with stirring under a nitrogen atmosphere. Subsequently, 1008 mL (10.7 mol) of isobutylene), 27.4 g (0.119 mol) of p-dicumyl chloride and 1.33 g (0.014 mol) of α-picoline were added. After the reaction mixture was cooled to −70 ° C., 5.2 mL (0.047 mol) of titanium tetrachloride was added to initiate polymerization. After the initiation of polymerization, the residual isobutylene concentration was measured by gas chromatography. When the residual amount of isobutylene was less than 0.5%, about 200 g of methanol was added. After the solvent and the like were distilled off from the reaction solution, the product was dissolved in 2 L of n-hexane and washed with 1 L of pure water three times. The solvent was distilled off under reduced pressure, and the resulting polymer was vacuum dried at 80 ° C. for 24 hours to obtain a chlorine-terminated polyisobutylene polymer A-1. When the molecular weight of the polymer A-1 obtained by size exclusion chromatography (SEC) was measured in terms of polystyrene, it was Mw: 5,800, Mn: 5,200, and Mw / Mn: 1.12.
 次に、得られたポリイソブチレン系重合体A-1を100g、塩化ブチル540ml、n-ヘキサン60ml、アクリル酸2-フェノキシエチル(東京化成工業株式会社製)15.2gを1Lセパラブルフラスコに入れ、攪拌しながら-70度に冷却した。-70度以下に冷却が完了した後、四塩化チタン22mlを添加した。その後、-70度で6時間攪拌を続けた後、メタノール200mlを添加して反応を停止させた。反応溶液から上澄み液を分取し、溶剤等を留去した後、生成物をn-ヘキサン650mlに溶解させ、500mlの純水で3回水洗を行い、メタノールから再沈殿した後、溶媒を減圧下に留去して、得られた重合体を80度で24時間真空乾燥することにより目的のアクリロイル末端ポリイソブチレン系重合体を得た。サイズ排除クロマトグラフィー(SEC)法により得られた重合体の分子量をポリスチレン換算で測定したところ、Mw:6,000、Mn:5,400、Mw/Mnが1.11であった。また、得られたアクリロイル末端ポリイソブチレンの末端に導入されたアクリロイル基のFn(ポリイソブチレン重合体1分子当たりのアクリロイル基の個数)は1.93であった。 Next, 100 g of the obtained polyisobutylene polymer A-1, 540 ml of butyl chloride, 60 ml of n-hexane, and 15.2 g of 2-phenoxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) are placed in a 1 L separable flask. The mixture was cooled to -70 degrees with stirring. After cooling to below −70 ° C., 22 ml of titanium tetrachloride was added. Thereafter, stirring was continued at −70 ° C. for 6 hours, and then 200 ml of methanol was added to stop the reaction. The supernatant liquid is separated from the reaction solution, and the solvent is distilled off. The product is dissolved in 650 ml of n-hexane, washed with 500 ml of pure water three times, reprecipitated from methanol, and then the solvent is reduced in pressure. By distilling down, the obtained polymer was vacuum-dried at 80 degrees for 24 hours to obtain the desired acryloyl-terminated polyisobutylene polymer. When the molecular weight of the polymer obtained by size exclusion chromatography (SEC) was measured in terms of polystyrene, Mw: 6,000, Mn: 5,400, and Mw / Mn were 1.11. Further, Fn (the number of acryloyl groups per molecule of the polyisobutylene polymer) of the acryloyl group introduced into the terminal of the obtained acryloyl-terminated polyisobutylene was 1.93.
(合成例2)フッ素化ポリマーの合成
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えた新しいフラスコに、分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量14500、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレンジオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体を得た。
(Synthesis Example 2) Synthesis of fluorinated polymer A new flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser was charged with zinc hexacyanocobaltate using polyoxypropylene diol having a molecular weight of about 2,000 as an initiator. -A polyoxypropylene diol having a hydroxyl value-converted molecular weight of 14500 and a molecular weight distribution of 1.3 obtained by reacting propylene oxide in the presence of a glyme complex catalyst was obtained. A methanol solution of sodium methoxide was added to the obtained polyoxypropylene diol, methanol was distilled off under reduced pressure by heating, and the terminal hydroxyl group of the polyoxypropylene diol was converted to sodium alkoxide to obtain a polyoxyalkylene polymer. .
 次に、ポリオキシアルキレン系重合体に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるメチルジメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体を得た。
 得られた末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体の分子量をGPCにより測定した結果、ピークトップ分子量は15000、分子量分布1.3であった。H1-NMR測定により末端のメチルジメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer was reacted with allyl chloride to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. This polyoxyalkylene polymer having an allyl group at the terminal is reacted with methyldimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and methyldimethoxysilyl at the terminal. A polyoxyalkylene polymer having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer having a methyldimethoxysilyl group at the terminal by GPC, the peak top molecular weight was 15000 and the molecular weight distribution was 1.3. As a result of H1-NMR measurement, the number of terminal methyldimethoxysilyl groups was 1.7 per molecule.
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、減圧脱気後、窒素ガス置換して、窒素気流下にてBFジエチルエーテル錯体2.4g入れ、50℃に加温した。続いて脱水メタノール1.6gの混合物をゆっくりと滴下し混合させた。撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えた新たなフラスコに、前記得られた重合体を100g、トルエン5g入れた。23℃にて30分間撹拌後、110℃に加温し減圧撹拌を2時間行い、トルエンを除去した。この容器に先ほど得られた混合物を窒素気流下にて4.0gゆっくりと滴下し、滴下終了後、反応温度を120℃に昇温し、30分間反応させた。反応終了後、減圧脱気を行い未反応物の除去を行った。末端にフルオロシリル基を有するポリオキシアルキレン系重合体(以下、フッ素化ポリマーと称する)を得た。得られたフッ素化ポリマーの1HNMRスペクトル(Shimazu社製のNMR400を用いて、CDCl溶媒中で測定)を測定したところ、原料である重合体のシリルメチレン(-CH-Si)に対応するピーク(m,0.63ppm)が消失し、低磁場側(0.7ppm~)にブロードピークが現れた。 A flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser is degassed under reduced pressure and then purged with nitrogen gas. Under a nitrogen stream, 2.4 g of BF 3 diethyl ether complex is added and heated to 50 ° C. Warm up. Subsequently, a mixture of 1.6 g of dehydrated methanol was slowly added dropwise and mixed. In a new flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser, 100 g of the obtained polymer and 5 g of toluene were placed. After stirring at 23 ° C. for 30 minutes, the mixture was heated to 110 ° C. and stirred under reduced pressure for 2 hours to remove toluene. 4.0 g of the mixture obtained previously was slowly dropped into this container under a nitrogen stream, and after completion of the dropping, the reaction temperature was raised to 120 ° C. and reacted for 30 minutes. After completion of the reaction, vacuum degassing was performed to remove unreacted substances. A polyoxyalkylene polymer having a fluorosilyl group at the terminal (hereinafter referred to as a fluorinated polymer) was obtained. A 1H NMR spectrum of the obtained fluorinated polymer (measured in a CDCl 3 solvent using NMR 400 manufactured by Shimazu Co., Ltd.) was measured, and a peak corresponding to the polymer silylmethylene (—CH 2 —Si) as a raw material was measured. (M, 0.63 ppm) disappeared, and a broad peak appeared on the low magnetic field side (0.7 ppm-).
(実施例1~10)
 表1に示す配合割合にて、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着したフラスコに、(A)成分の(メタ)アクリロイル基を有する重合体、(B)成分の(メタ)アクリロイル基を有するシランカップリング剤、(C)成分のフッ素系化合物、(D)成分のラジカル開始剤及び反応性希釈剤等その他の成分を添加し撹拌し、溶解させ硬化性組成物を得た。得られた硬化性組成物の被着体への接着性及び透湿度を下記の方法で評価した。
(Examples 1 to 10)
A polymer having a (meth) acryloyl group as the component (A) in a flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging pipe, and a water-cooled condenser at the blending ratio shown in Table 1, component (B) Other components such as silane coupling agent having (meth) acryloyl group, (C) component fluorine compound, (D) component radical initiator and reactive diluent are added, stirred, dissolved and curable composition I got a thing. The adhesion and moisture permeability to the adherend of the obtained curable composition were evaluated by the following methods.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、各配合物質の配合量はgで示され、配合物質の詳細は下記の通りである。
*1:合成例1で得られた重合体
*2:紫光UV3700B、日本合成化学工業(株)製、ウレタンアクリレート系重合体
*3:IBXA、共栄社化学(株)製
*4:KAYARAD R-684、日本化薬社製
*5:3-アクリロイルプロピルトリメトキシシラン、KBM5103、信越化学社製
*6:3-メタクリロイルプロピルトリメトキシシラン、KBM503、信越化学社製
*7:3-グリシドキシプロピルトリエトキシシラン、KBM403、信越化学社製
*8:トリス-(トリメトキシシリルプロピル)イソシアヌレート、KBM9659、信越化学社製
*9:合成例2で得られたSiF結合を有する有機重合体
*10:BFエーテル錯体
*11:ジオクチル錫、ネオスタンU830、日東化成社製
*12:アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート、アルミキレートD、川研ファインケミカル社製
*13:IRGACURE 184、BASF社製
*14:IRGACURE 1173、BASF社製
*15:2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、IRGACURE379EG、BASF社製
In Table 1, the compounding quantity of each compounding substance is shown by g, and the details of the compounding substance are as follows.
* 1: Polymer obtained in Synthesis Example 1 * 2: Purple light UV3700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., urethane acrylate polymer * 3: IBXA, manufactured by Kyoeisha Chemical Co., Ltd. * 4: KAYARAD R-684 * 5: 3-acryloylpropyltrimethoxysilane, KBM5103, Shin-Etsu Chemical * 6: 3-methacryloylpropyltrimethoxysilane, KBM503, Shin-Etsu Chemical * 7: 3-glycidoxypropyltri Ethoxysilane, KBM403, manufactured by Shin-Etsu Chemical Co., Ltd. * 8: Tris- (trimethoxysilylpropyl) isocyanurate, KBM9659, manufactured by Shin-Etsu Chemical Co., Ltd. * 9: Organic polymer having SiF bond obtained in Synthesis Example 2 * 10: BF 3 ether complex * 11: dioctyltin, NEOSTANN U830, Nitto Kasei Co., Ltd. * 12: aluminum bis ethyl Acetoacetate monoacetylacetonate, aluminum chelate D, manufactured by Kawaken Fine Chemical Co., Ltd. * 13: IRGACURE 184, manufactured by BASF * 14: manufactured by IRGACURE 1173, manufactured by BASF * 15: 2- (dimethylamino) -2-[(4 -Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, IRGACURE 379EG, manufactured by BASF
1)基材密着性(接着性)評価
 被着材(15cm角ガラス板)に、ガラス棒を用いて硬化性組成物を厚さ100μmになるように塗布し、UV照射(照射条件:UV-LED365nm、照度:1000mW/cm、積算光量:3000mJ/cm)を行い硬化性組成物を硬化させた。照射後23℃、50%RH下で2日間養生した。前記養生後、JISK5600塗料一般試験方法に準拠し、2mm角の100マス碁盤目試験を行った。結果を表1に示す。
1) Evaluation of substrate adhesion (adhesiveness) A curable composition was applied to an adherend (15 cm square glass plate) to a thickness of 100 μm using a glass rod, and UV irradiation (irradiation conditions: UV- LED365nm, illuminance: 1000mW / cm 2, integrated light quantity: 3000mJ / cm 2) to cure the curable composition performed. After irradiation, it was cured at 23 ° C. and 50% RH for 2 days. After the curing, a 2 mm square 100 square grid test was performed in accordance with the JISK5600 paint general test method. The results are shown in Table 1.
2)透湿度評価
 15cm角テフロン(登録商標)シート上に、実施例1で得られた硬化性組成物を厚さ220μmになるように塗布し、UV照射(照射条件:UV-LED365nm、照度:1000mW/cm、積算光量:3000mJ/cm)を行い硬化性組成物を硬化させた。照射後23℃、50%RH下で2日間養生した。前記養生後、硬化皮膜を用い、JIS Z0208防湿包装材料の透湿度試験方法に準拠し、50℃85%RHの透湿度を測定した結果、10.5g/m 24hの透湿度となった。
2) Evaluation of moisture permeability On a 15 cm square Teflon (registered trademark) sheet, the curable composition obtained in Example 1 was applied to a thickness of 220 μm, and UV irradiation (irradiation conditions: UV-LED 365 nm, illuminance: 1000 mW / cm 2, integrated light quantity: 3000mJ / cm 2) to cure the curable composition performed. After irradiation, it was cured at 23 ° C. and 50% RH for 2 days. After the curing, the cured film was used, and the moisture permeability of 50 ° C. and 85% RH was measured in accordance with the moisture permeability test method of JIS Z0208 moisture-proof packaging material. As a result, the moisture permeability was 10.5 g / m 2 24 h.
(比較例1~8)
 表1に示す配合割合にて、実施例1~10と同様に硬化性組成物を調製し接着性を評価した。評価結果を表1に示す。
(Comparative Examples 1 to 8)
A curable composition was prepared in the same manner as in Examples 1 to 10 at the blending ratio shown in Table 1, and the adhesion was evaluated. The evaluation results are shown in Table 1.

Claims (7)

  1. (A)(メタ)アクリロイル基を有する重合体、
    (B)(メタ)アクリロイル基を有するシランカップリング剤、
    (C)(C1)Si-F結合を有する珪素化合物、及び/又は(C2)三フッ化ホウ素、三フッ化ホウ素の錯体、フッ素化剤及び多価フルオロ化合物のアルカリ金属塩からなる群から選択される1種以上のフッ素系化合物、及び、
    (D)ラジカル開始剤
    を含有することを特徴とする硬化性組成物。
    (A) a polymer having a (meth) acryloyl group,
    (B) a silane coupling agent having a (meth) acryloyl group,
    (C) (C1) selected from the group consisting of a silicon compound having a Si—F bond, and / or (C2) boron trifluoride, a complex of boron trifluoride, a fluorinating agent and an alkali metal salt of a polyvalent fluoro compound. One or more fluorine-based compounds, and
    (D) A curable composition containing a radical initiator.
  2.  前記(A)が(メタ)アクリロイル基を有するポリイソブチレン系重合体であることを特徴とする請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein (A) is a polyisobutylene polymer having a (meth) acryloyl group.
  3.  前記(D)が光ラジカル開始剤であることを特徴とする請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein (D) is a photo radical initiator.
  4.  請求項1~3のいずれか1項記載の硬化性組成物からなる封止材。 A sealing material comprising the curable composition according to any one of claims 1 to 3.
  5.  請求項4記載の封止材を用いてなる電気・電子製品。 An electrical / electronic product using the sealing material according to claim 4.
  6.  請求項1~3のいずれか1項記載の硬化性組成物からなる防湿材。 A moisture-proof material comprising the curable composition according to any one of claims 1 to 3.
  7.  請求項6記載の防湿材を用いてなる鏡又はガラスを含む製品。 A product containing a mirror or glass using the moisture-proof material according to claim 6.
PCT/JP2016/056027 2015-03-24 2016-02-29 Curable composition WO2016152392A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177025167A KR102503389B1 (en) 2015-03-24 2016-02-29 curable composition
CN201680015628.6A CN107428891B (en) 2015-03-24 2016-02-29 Curable composition
JP2017507640A JP6979153B2 (en) 2015-03-24 2016-02-29 Curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061039 2015-03-24
JP2015061039 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152392A1 true WO2016152392A1 (en) 2016-09-29

Family

ID=56978338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056027 WO2016152392A1 (en) 2015-03-24 2016-02-29 Curable composition

Country Status (4)

Country Link
JP (2) JP6979153B2 (en)
KR (1) KR102503389B1 (en)
CN (1) CN107428891B (en)
WO (1) WO2016152392A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124252A1 (en) * 2017-12-18 2019-06-27 株式会社スリーボンド Curable resin composition, and fuel cell and sealing method using same
WO2020080309A1 (en) * 2018-10-18 2020-04-23 株式会社スリーボンド Photocurable composition
WO2023167197A1 (en) * 2022-03-01 2023-09-07 ダイキン工業株式会社 Article and method for manufacturing same, and surface treatment agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102503389B1 (en) * 2015-03-24 2023-02-24 세메다인 가부시키 가이샤 curable composition
CN110698452A (en) * 2019-10-27 2020-01-17 淮安瀚康新材料有限公司 Preparation method of chlorinated ethylene carbonate by using novel initiator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191912A (en) * 1998-10-08 2000-07-11 Kanegafuchi Chem Ind Co Ltd Curable composition
JP2002188002A (en) * 2000-12-20 2002-07-05 Asahi Glass Co Ltd Curable composition
JP2009531516A (en) * 2006-03-29 2009-09-03 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション Radiation-curable rubber adhesive / sealant
WO2011062167A1 (en) * 2009-11-18 2011-05-26 味の素株式会社 Resin composition
JP2012188550A (en) * 2011-03-10 2012-10-04 Kaneka Corp Curable composition and cured product obtained from the same
JP2012241113A (en) * 2011-05-19 2012-12-10 Kaneka Corp Curable composition containing (meth)acrylic polymer
JP5500824B2 (en) * 2006-09-13 2014-05-21 株式会社カネカ Moisture curable polymer having SiF group and curable composition containing the same
JP5555170B2 (en) * 2008-10-02 2014-07-23 株式会社カネカ Photocurable composition and cured product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819313B2 (en) 1986-04-24 1996-02-28 大日本インキ化学工業株式会社 Fluorine resin composition
JP3152688B2 (en) 1991-07-29 2001-04-03 旭硝子株式会社 Resin composition and method for producing optical fiber using the same
CA2346357A1 (en) * 1998-10-08 2000-04-13 Kaneka Corporation Curable compositions
DE102006044143A1 (en) * 2006-09-15 2008-03-27 Evonik Degussa Gmbh Silane-containing, chlorine-free composition
DE102007060334A1 (en) * 2007-08-17 2009-02-19 Evonik Degussa Gmbh Silane-based and aqueous coating system, its preparation and use
JP2009215331A (en) * 2008-03-06 2009-09-24 Kaneka Corp CURABLE COMPOSITION CONTAINING POLYMER HAVING SiF GROUP
JP5767971B2 (en) * 2009-09-29 2015-08-26 電気化学工業株式会社 Curable resin composition
KR101337164B1 (en) 2012-01-31 2013-12-05 중앙대학교 산학협력단 Cannula device
KR20130129754A (en) 2012-05-21 2013-11-29 김윤옥 Multi layered glass spacer
CN102746449B (en) * 2012-07-05 2015-04-29 广州秀珀化工股份有限公司 Fluorine-silicon modified hydroxy acrylic resin and preparation method thereof
WO2015008709A1 (en) * 2013-07-18 2015-01-22 セメダイン株式会社 Photocurable composition
KR102503389B1 (en) * 2015-03-24 2023-02-24 세메다인 가부시키 가이샤 curable composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191912A (en) * 1998-10-08 2000-07-11 Kanegafuchi Chem Ind Co Ltd Curable composition
JP2002188002A (en) * 2000-12-20 2002-07-05 Asahi Glass Co Ltd Curable composition
JP2009531516A (en) * 2006-03-29 2009-09-03 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション Radiation-curable rubber adhesive / sealant
JP5500824B2 (en) * 2006-09-13 2014-05-21 株式会社カネカ Moisture curable polymer having SiF group and curable composition containing the same
JP5555170B2 (en) * 2008-10-02 2014-07-23 株式会社カネカ Photocurable composition and cured product
WO2011062167A1 (en) * 2009-11-18 2011-05-26 味の素株式会社 Resin composition
JP2012188550A (en) * 2011-03-10 2012-10-04 Kaneka Corp Curable composition and cured product obtained from the same
JP2012241113A (en) * 2011-05-19 2012-12-10 Kaneka Corp Curable composition containing (meth)acrylic polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124252A1 (en) * 2017-12-18 2019-06-27 株式会社スリーボンド Curable resin composition, and fuel cell and sealing method using same
WO2020080309A1 (en) * 2018-10-18 2020-04-23 株式会社スリーボンド Photocurable composition
JPWO2020080309A1 (en) * 2018-10-18 2021-09-16 株式会社スリーボンド Photocurable composition
JP7368738B2 (en) 2018-10-18 2023-10-25 株式会社スリーボンド photocurable composition
WO2023167197A1 (en) * 2022-03-01 2023-09-07 ダイキン工業株式会社 Article and method for manufacturing same, and surface treatment agent
JP7393705B2 (en) 2022-03-01 2023-12-07 ダイキン工業株式会社 Articles and their manufacturing methods, and surface treatment agents

Also Published As

Publication number Publication date
JP6979153B2 (en) 2021-12-08
JPWO2016152392A1 (en) 2018-01-18
KR102503389B1 (en) 2023-02-24
KR20170129725A (en) 2017-11-27
CN107428891A (en) 2017-12-01
JP2021143338A (en) 2021-09-24
CN107428891B (en) 2021-04-20

Similar Documents

Publication Publication Date Title
JP2021143338A (en) Curable composition
CN105392845B (en) Photocurable composition
JP6409784B2 (en) Photocurable composition having adhesiveness
JP2013088455A (en) Image display device, manufacturing method of the same, and electric/electronic device
JP4847704B2 (en) Curable resin composition
US10844251B2 (en) Pressure-sensitive adhesive
CN107148453B (en) Photocurable composition
JP6545482B2 (en) Photo- or thermosetting resin composition, cured product and laminate
JP2016132705A (en) Photocurable composition
JP6557041B2 (en) Laminate comprising light or thermosetting resin composition
JP2006199906A (en) Curable resin composition
JP2016094530A (en) Manufacturing method of display panel laminate
JP6273759B2 (en) Photocurable composition
JP2012082341A (en) Light/moisture dual-cure system curable composition for laminating fpd
JP2015078314A (en) Photocurable composition
JP6541585B2 (en) (Meth) acrylic epoxy isocyanurate compounds, synthesis method thereof and use of the isocyanurate compounds
JP6672789B2 (en) Photocurable composition
JP6259657B2 (en) Sealant for liquid crystal display elements
JP6562378B2 (en) Liquid gasket for electronic equipment
JP2016132703A (en) Photocurable composition
JP2016047912A (en) Curable composition having excellent preservation stability
JP2012185313A (en) Manufacturing method of image display device
JP2017218526A (en) Pressure-sensitive adhesive
JP2017048289A (en) Curable composition, cured product, and module
JP2015086341A (en) Photocurable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025167

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768295

Country of ref document: EP

Kind code of ref document: A1