WO2016152250A1 - モータ制御装置 - Google Patents
モータ制御装置 Download PDFInfo
- Publication number
- WO2016152250A1 WO2016152250A1 PCT/JP2016/052854 JP2016052854W WO2016152250A1 WO 2016152250 A1 WO2016152250 A1 WO 2016152250A1 JP 2016052854 W JP2016052854 W JP 2016052854W WO 2016152250 A1 WO2016152250 A1 WO 2016152250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wave
- harmonic
- carrier
- control device
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/50—Reduction of harmonics
Definitions
- the present invention relates to a motor control device and a drive system for reducing harmonic loss.
- the loss is divided into a loss generated in the motor (hereinafter referred to as motor loss) and a loss generated in the inverter (hereinafter referred to as inverter loss).
- the motor loss includes a loss due to the fundamental component (hereinafter referred to as fundamental loss) and a loss due to the harmonic component (hereinafter referred to as harmonic loss).
- the inverter loss includes a loss caused by the on / off operation of the switching element (hereinafter referred to as switching loss) and a loss generated when the switching element is conducted (hereinafter referred to as conduction loss).
- ⁇ Fundamental loss is reduced by adopting variable speed drive by inverter compared to constant speed drive by commercial power supply.
- the voltage and current are distorted by the switching operation, and harmonic components are generated, so that harmonic loss increases.
- Harmonic components and harmonic losses can be reduced by improving the carrier frequency of the inverter.
- switching loss increases at the same time, it is desirable to reduce harmonic loss while keeping the carrier frequency fixed.
- the harmonic component and harmonic loss increase significantly in the overmodulation drive of asynchronous PWM control, and its reduction is desired.
- Patent Document 1 in order to reduce harmonic components in overmodulation drive of asynchronous PWM control, an upper limit value K Hmax of the modulation rate is set, and the signal wave is corrected so that the modulation rate is smaller than this. As a result, the effective value of the harmonic component is reduced and the harmonic loss is also reduced.
- Patent Document 1 the problems of Patent Document 1 are that (1) the range of the inverter output is limited in order to set the upper limit value of the modulation factor, and (2) the frequency dependence of the harmonic loss is not considered. Therefore, the harmonic loss cannot be reduced sufficiently.
- the frequency dependence of harmonic loss means that the amount of harmonic loss generated depends not only on the harmonic rms value but also on the frequency. In other words, simply reducing the harmonic effective value does not necessarily reduce the harmonic loss. In order to sufficiently reduce the harmonic loss, it is necessary to optimize the frequency band of the harmonic component in consideration of this frequency dependence.
- an object of the present invention is to reduce harmonic loss generated when an AC motor is overmodulated using asynchronous PWM control without increasing the number of times of switching.
- a signal wave generation unit that generates a signal wave based on a frequency command and a voltage command, a carrier wave generation unit that generates a carrier wave based on a carrier frequency
- a PWM generator that compares the signal wave with the carrier wave and outputs a gate signal
- an inverter that controls a switching element based on the gate signal
- an offset amount calculator that adds an offset amount to the signal wave
- the inverter outputs a pulse voltage, the carrier frequency is fixed, and the offset calculator fixes the effective value of the fundamental wave of the pulse voltage, and the higher harmonics higher than the fundamental wave are effective.
- the signal is reduced within one period of the carrier including the voltage phases 0, 90, 180, and 270deg so that the value is reduced and the lower-order harmonic effective value is increased. Adding the offset amount to the waves.
- the present invention it is possible to reduce the harmonic loss in the overmodulation drive of the asynchronous PWM control without increasing the number of times of switching. As a result, effects such as higher output of the AC motor or downsizing of the cooling system can be obtained.
- Configuration diagram of motor control apparatus in embodiment 1 Element diagram of motor controller Pulse pattern by conventional synchronous PWM control Pulse pattern when the modulation rate is different by the conventional synchronous PWM control Pulse pattern of conventional synchronous PWM control and asynchronous PWM control Loss factor Asynchronous PWM control periodicity Pulse pattern of the present invention Regulation of switching width of the present invention Effects of the present invention Configuration diagram of Example 2
- Example 1 will be described with reference to FIGS. 1 to 10 and Table 1.
- FIG. 1
- Fig. 1 is a block diagram of the motor control device in the first embodiment, and Fig. 2 is an element of the system.
- the AC motor 1 is applied with a pulse voltage (U-phase pulse voltage Vu, V-phase pulse voltage Vv, W-phase pulse voltage Vw) from the inverter 2 so that a three-phase AC current (U-phase current Iu, V-phase current Iv , W-phase current Iw) flows and is driven at the drive frequency f.
- the voltage applied between the U-V phases of AC motor 1 is referred to as line voltage Vuv.
- the carrier wave generator 3 generates a carrier wave Vc * based on the carrier frequency fc.
- the carrier wave Vc * is a triangular wave having an amplitude of 1 (normalized by half the DC voltage VDC / 2) and a frequency fc.
- the signal wave generator 4 generates signal waves (U-phase signal wave Vu1 * , V-phase signal wave Vv1 * , W-phase signal wave Vw1 * ) based on the frequency command f1 * and the voltage command V1 * .
- the signal wave is a sine wave having a frequency f1 * as shown in FIG. 3 (a), and its amplitude is equal to the voltage command V1 * .
- the frequency command f1 * and the voltage command V1 * are determined based on the speed command F * by the V / f control unit 8 or the vector control unit 9 shown in FIG.
- the ratio of the amplitude of the signal wave and the carrier wave is called a modulation rate Kh.
- the offset amount calculation unit 5 calculates an offset amount A * of the signal wave and outputs it to the addition unit 6.
- the adder 6 adds correction signal waves Vu2 * , V2 * , and Vw2 *, which will be described later, by adding the offset amount A * to the signal wave.
- the PWM generator 7 generates the gate signals Gun, Gup, Gvn, Gvp, Gwn, Gwv by comparing the correction signal waves Vu2 * , Vv2 * , Vw2 * with the carrier wave, and outputs it to the inverter 2 To do.
- the inverter 2 turns on or off the switching element based on the gate signal and applies a pulse voltage to the AC motor 1.
- the waveform diagram of the pulse voltage is referred to as a pulse pattern.
- the carrier wave generation unit 3, the signal wave generation unit 4, and the PWM generation unit 7 realize PWM control.
- PWM control is a means for converting the DC voltage VDC into an arbitrary voltage and frequency, and is essential for variable speed driving.
- the on / off state of the switching element is determined by comparing the amplitude of the signal wave and carrier wave shown in Fig. 3 (a). For example, as shown in section A of FIG. 3, when the signal wave is smaller than the carrier wave, the pulse voltage Vu is turned off. If the carrier frequency is sufficiently high, the fundamental frequency and amplitude of the pulse voltages Vu, Vv, and Vw are equal to the original signal wave.
- FIG. 4 shows the pulse patterns for overmodulation and non-overmodulation.
- the number of pulses for one period of the fundamental wave decreases in the case of overmodulation compared to the case of non-overmodulation. This is because the signal wave becomes larger than the carrier wave at the phase of 90 deg and 270 deg at the peak, and the pulse voltage is connected.
- the effective value of the harmonic component increases and the harmonic loss increases.
- the 7th harmonic voltage is 0.105 p.u. in non-overmodulation, but is 0.258 p.u. in overmodulation, which is approximately doubled.
- the 13th harmonic voltage is 0.0080.00p.u. for non-overmodulation and 0.291 p.u for overmodulation, approximately 30 times.
- overmodulation has a problem that harmonic components increase.
- Asynchronous PWM control is a PWM control method that fixes the carrier frequency regardless of the fundamental frequency (drive frequency) of the motor.
- synchronous PWM control is a method of adjusting the carrier frequency to an integral multiple of the fundamental frequency.
- Figure 5 shows the pulse patterns when overmodulation drive is used for asynchronous PWM control and synchronous PWM control, respectively.
- synchronous PWM control as shown in Fig. 5 (b), only high-order harmonic components exist, and low-order harmonic components do not exist. This is because in the synchronous PWM control, the fundamental wave and the carrier wave are synchronized and have a periodicity based on one period of the fundamental wave. On the other hand, low-order harmonic components are generated in asynchronous PWM control.
- Harmonic loss is the sum of eddy currents generated in the magnet of AC motor 1 and hysteresis loss generated in electrical steel sheets. These harmonic losses are proportional to the square of the current harmonic In in (Equation 1), and are also proportional to the factorial of the frequency as shown in Table 1. Therefore, the harmonic loss Wh is approximated by (Equation 2) using a period T described later.
- K Loss coefficient H: Upper limit of harmonic order
- the loss coefficient K is a coefficient representing the characteristic of the harmonic loss Wh of the AC motor 1.
- the harmonic loss Wh of (Equation 2) is reduced or minimized by using the offset calculation unit 5 and the addition unit 6. The principle will be described below.
- the higher-order voltage harmonic It is effective to reduce the wave Vn.
- the voltage harmonic Vn is the effective value of the harmonic component determined by the pulse pattern. Since the period of the pulse pattern coincides with one period of the fundamental wave in the synchronous PWM control, the voltage harmonic Vn is calculated based on one period of the fundamental wave. In asynchronous PWM control, the period of the pulse pattern does not coincide with one period of the fundamental wave, but coincides with the period T1 of the signal wave shown in FIG. 7 and the period T corresponding to the least common multiple of the period Tc of the carrier wave. It is expressed by equation 3). In the present invention, in order to handle asynchronous PWM control, the voltage harmonic Vn is calculated based on the period T of (Equation 3).
- n1 and n2 are integer voltage harmonics Vn, as shown in (Equation 4), depends on the phase ⁇ k (hereinafter, switching phase angle ⁇ k) at which the pulse voltage switches. Therefore, a desired voltage harmonic Vn is obtained by adjusting the switching phase angle ⁇ k. Therefore, (Equation 4) is substituted into (Equation 2), and the obtained (Equation 5) is set as the objective function.
- the harmonic loss Wh can be reduced or minimized by adjusting the switching phase angle ⁇ k so as to reduce or minimize this objective function.
- the offset calculation unit 5 calculates the offset amount A * , and based on this, the addition unit 6 performs offset correction of the signal wave.
- the procedure of the present embodiment is shown below.
- the harmonic loss Wh can be reduced or minimized in this embodiment.
- the calculation of the offset amount A * does not have to be performed entirely, and may be partially omitted. For example, (1) When modulation factor Kh ⁇ 1 (2) When the carrier frequency fc is synchronized with the fundamental frequency f1, the offset amount A * is set to zero. This is because the harmonic loss is small in the above case. By omitting some functions under the conditions described above, the computational load on the microcomputer is reduced.
- FIG. 9 shows the relationship between the switching width ⁇ ′ in the zero-cross phase region and the switching width ⁇ in the peak phase region. From FIG. 9 (a) and FIG. 9 (b), in order to fix the fundamental wave amplitude A1, the switching phase angle ⁇ k needs to be set to have the relationship of (Equation 8).
- Figure 10 shows the effect of this example.
- the harmonic loss Wh can be reduced in the conventional method and the present invention even though the voltage harmonics Vn are equal.
- the harmonic loss Wh can be reduced despite the increase in the effective value of the voltage harmonic Vn.
- FIG. 11 is a configuration diagram of the second embodiment.
- the first embodiment is applied to a drive system for an AC motor 1.
- the speed command F * can be set by a host device such as the computer 10.
- This embodiment can realize high-precision speed control characteristics.
- V / f control unit 9 Vector control unit 10 ... Computer VDC ... DC voltage Vu, Vv, Vw... U phase pulse voltage, V phase pulse voltage, W phase pulse voltage Vu1 * , Vv1 * , Vw1 * ... U phase signal wave, V phase signal wave, W phase signal wave Vuv ... Line voltage Vu2 * , Vv2 * , Vw2 * ... U phase correction signal wave, V phase correction signal wave, W phase correction signal wave Vc * ... the carrier wave V1 * ... Voltage command Vn ... Voltage harmonic Guu, Gup ...
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
- Valve Device For Special Equipments (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本発明の課題は,スイッチング回数を増やすことなく,非同期PWM制御を用いて,交流モータを過変調駆動したときに生じる高調波損失を低減することである。 モータ制御装置において、周波数指令および電圧指令に基づいて,信号波を生成する信号波生成部と、キャリア周波数に基づいて.キャリア波を生成するキャリア波生成部と、前記信号波と前記キャリア波を比較し,ゲート信号を出力するPWM発生部と、前記ゲート信号に基づいて,スイッチング素子を制御するインバータと、前記信号波にオフセット量を加算するオフセット量演算部と、を備え,前記インバータは,パルス電圧を出力し、前記キャリア周波数は固定され、前記オフセット演算部は、前記パルス電圧の基本波の実効値を固定し,前記基本波より高次の高調波実効値を低減し,前記基本波より低次の高調波実効値を増加するように,電圧位相0, 90, 180, 270degを含むキャリア1周期内において,前記信号波にオフセット量を加算する。
Description
本発明は,高調波損失を低減するための,モータ制御装置および駆動システムに関する。
インバータを用いたPWM制御によるモータ駆動システムにおいて,各種損失の低減が望まれている。損失は,モータに発生する損失(以下,モータ損失)と,インバータで発生する損失(以下,インバータ損失)に分けられる。モータ損失は,基本波成分に起因した損失(以下,基本波損失)と,高調波成分に起因した損失(以下,高調波損失)がある。インバータ損失は,スイッチング素子のオンオフ動作に起因する損失(以下,スイッチング損失)と,スイッチング素子の導通時に発生する損失(以下,導通損失)がある。
基本波損失は,インバータによる可変速駆動を採用することによって,商用電源による一定速駆動に比べて低減される。しかし,スイッチング動作により電圧・電流が歪み,高調波成分が発生するため,高調波損失が増加する。高調波成分および高調波損失は,インバータのキャリア周波数の向上により低減できる。しかし,同時にスイッチング損失が増加するため,キャリア周波数を固定したまま,高調波損失を低減することが望まれる。特に,非同期PWM制御の過変調駆動では,高調波成分および高調波損失が顕著に増加することが知られており,その低減が望まれている。
特許文献1では,非同期PWM制御の過変調駆動において,高調波成分を低減するため,変調率の上限値KHmaxを設定し,変調率がこれより小さくなるよう信号波を補正している。
これにより,高調波成分の実効値が低減され,高調波損失も低減される。
これにより,高調波成分の実効値が低減され,高調波損失も低減される。
しかし、特許文献1の問題点は,(1)変調率の上限値を設定するために,インバータ出力の範囲が制限されること,(2)高調波損失の周波数依存性が考慮されておらず,高調波損失を十分に低減できないことである。高調波損失の周波数依存性とは,高調波損失の発生量が,高調波実効値だけではなく,周波数にも依存することである。つまり,高調波実効値を低減するだけでは,必ずしも高調波損失を低減できるとは限らない。高調波損失を十分に低減するには,この周波数依存性を考慮し,高調波成分の周波数帯域を最適化する必要がある。
そこで、本発明の課題は,スイッチング回数を増やすことなく,非同期PWM制御を用いて,交流モータを過変調駆動したときに生じる高調波損失を低減することである。
本発明は、その一例として、モータ制御装置において、周波数指令および電圧指令に基づいて,信号波を生成する信号波生成部と、キャリア周波数に基づいて.キャリア波を生成するキャリア波生成部と、前記信号波と前記キャリア波を比較し,ゲート信号を出力するPWM発生部と、前記ゲート信号に基づいて,スイッチング素子を制御するインバータと、前記信号波にオフセット量を加算するオフセット量演算部と、を備え,前記インバータは,パルス電圧を出力し、前記キャリア周波数は固定され、前記オフセット演算部は、前記パルス電圧の基本波の実効値を固定し,前記基本波より高次の高調波実効値を低減し,前記基本波より低次の高調波実効値を増加するように,電圧位相0, 90, 180, 270degを含むキャリア1周期内において,前記信号波にオフセット量を加算する。
本発明により,スイッチング回数を増やすことなく,非同期PWM制御の過変調駆動における高調波損失を低減することができる。これにより,交流モータの高出力化あるいは冷却系の小型化などの効果を得ることができる。
図1~図10および表1を用いて実施例1を説明する。
図1は,実施例1におけるモータ制御装置の構成図であり,図2はシステムの要素である。交流モータ1は,インバータ2よりパルス電圧(U相パルス電圧Vu,V相パルス電圧Vv,W相パルス電圧Vw)が印加されることで,三相交流電流(U相電流Iu,V相電流Iv,W相電流Iw)が流れ,駆動周波数fで駆動される。ここで,交流モータ1のU-V相の間にかかる電圧を,線間電圧Vuvと呼ぶ。
キャリア波生成部3は,キャリア周波数fcに基づいてキャリア波Vc*を生成する。キャリア波Vc*は,図3(a)に示すように振幅1(直流電圧の半分VDC/2で正規化)・周波数fcの三角波である。
信号波生成部4は,周波数指令f1*および,電圧指令V1*基づいて信号波(U相信号波Vu1*,V相信号波Vv1*,W相信号波Vw1*)を生成する。信号波は,図3(a)に示すような周波数f1*の正弦波であり,その振幅は,電圧指令V1*に等しい。周波数指令f1*および,電圧指令V1*は,図2に示すV/f制御部8あるいはベクトル制御部9により,速度指令F*を基に決定される。ここで,信号波とキャリア波の振幅の比を変調率Khと呼ぶ。
オフセット量演算部5では,信号波のオフセット量A*を算出し,加算部6に出力する。
加算部6は,オフセット量A*を信号波に加算することで,後述する補正信号波Vu2*,V2*,Vw2*を生成する。
PWM発生部7は,補正信号波Vu2*,Vv2*,Vw2*と,キャリア波を比較することで,ゲート信号Gun,Gup,Gvn,Gvp,Gwn,Gwvを生成し,それをインバータ2に出力する。インバータ2は,ゲート信号に基づいて,スイッチング素子をオンまたはオフ制御し,パルス電圧を交流モータ1に印加する。以下,パルス電圧の波形図を,パルスパターンと呼ぶ。
次に,PWM制御の動作原理および問題点である高調波損失について説明する。
キャリア波生成部3,信号波生成部4,PWM発生部7は,PWM制御を実現している。PWM制御は,直流電圧VDCを任意の電圧・周波数に変換する手段であり,可変速駆動に必須である。PWM制御では,図3(a)に示す信号波とキャリア波の振幅を比較することで,スイッチング素子のオン・オフを決定する。例えば,図3の区間Aに示すように,信号波がキャリア波よりも小さい場合,パルス電圧Vuはオフさせる。キャリア周波数が十分に高ければ,パルス電圧Vu,Vv,Vwの基本波周波数および振幅は,元の信号波と等しくなる。ゆえに,パルス電圧Vu,Vv,Vwを交流モータ1に印加することで,交流モータ1が同期機であれば,駆動周波数f=f1*,誘導機であれば,f=f1*-fs(fs:すべり)で駆動される。以上が,PWM制御の動作原理である。
次に,PWM制御の問題点である高調波損失について説明する。PWM制御では,インバータ2のスイッチング素子のオンオフ動作に伴い,電圧・電流に歪みが発生する。この歪みは,図3(d)に示す高調波成分として表すことができ,これにより高調波損失が発生する。特に,非同期PWM制御の過変調駆動では,高調波成分および高調波損失が顕著に増加することが知られている。
過変調とは,変調率Khが1(p.u.)を超えることである。図4に,過変調の場合と,非過変調の場合のパルスパターンを示す。図4(b)示すとおり,過変調の場合は非過変調の場合に比べ,基本波1周期分のパルス数が減少する。これは,信号波が,そのピークとなる位相90deg,270degにて,キャリア波より大きくなり,パルス電圧が連結されるからである。この結果,高調波成分の実効値が大きくなり,高調波損失が増加する。例えば,図4(c)に示すとおり,7次の高調波電圧は,非過変調では0.105 p.u.であるが,過変調では0.258 p.u.であり,およそ2倍となっている。また,13次の高調波電圧は,非過変調では0.008 p.u.,過変調では0.291 p.uであり,およそ30倍となっている。このように過変調では,高調波成分が増加する問題がある。
非同期PWM制御とは,モータの基本波周波数(駆動周波数)に関係なく,キャリア周波数を固定するPWM制御方式である。一方,同期PWM制御とは,基本周波数の整数倍にキャリア周波数を調整する方式である。図5に,非同期PWM制御と同期PWM制御をそれぞれ過変調駆動した場合のパルスパターンを示す。同期PWM制御では,図5(b)に示す通り,高次の高調波成分のみが存在し,低次の高調波成分は存在しない。これは,同期PWM制御では,基本波とキャリア波が同期しており,基本波1周期を基準とする周期性を有するためである。一方,非同期PWM制御では,低次の高調波成分が発生している。これは,非同期PWM制御では,基本波とキャリア波は同期せず,パルス電圧のスイッチング位相が,基本波1周期ごとにばらつくためである。特許文献1では,これをパルス電圧の位相誤差と呼び,図5(A)に示す通り,信号波の傾きが大きい位相(0deg, 180deg)の近傍で,位相誤差が発生することを示している。このように,非同期PWM制御では,低次の高調波成分が存在し,高次の高調波成分と合わせて,高調波損失の原因となる。
高調波損失は,交流モータ1の磁石に発生する渦電流や電磁鋼板に発生するヒステリシス損などの総和である。これらの高調波損失は,(数1)の電流高調波Inの2乗に比例し,かつ,表1に示すように周波数の階乗にも比例する。そこで,高調波損失Whは,後述する周期Tを用いて,(数2)で近似される。
ここで,損失係数Kとは,交流モータ1の高調波損失Whの特性を表す係数である。交流モータ1の高調波損失の主要因(表1)によって,以下のように定まる。
(1)K = 0:周波数依存性がなく,銅損が主となる場合
(2)K = 1:ヒステリシス損が主となる場合
(3)K = 2:渦電流損が主となる場合
結果として,損失係数Knは, 0以上2以下の値となり,図6の通り正の相関を持つ。以上が,PWM制御の問題点である高調波損失の原因および特徴である。
本実施例では,オフセット演算部5,加算部6を用いることによって,(数2)の高調波損失Whを低減あるいは最小化する。以下,その原理について説明する。
(数2)の高調波損失Whの低減あるいは最小化するためには,損失係数Knが正の相関を持つため,低次の電圧高調波Vnの増加を許容してでも,高次の電圧高調波Vnを低減することが有効である。電圧高調波Vnは,パルスパターンにより決定される高調波成分の実効値である。パルスパターンの周期は,同期PWM制御では,基本波1周期と一致するため,電圧高調波Vnは,基本波1周期を基準に算出される。非同期PWM制御では,パルスパターンの周期は,基本波1周期と一致せず,図7に示す信号波の周期T1と,キャリア波の周期Tcの最小公倍数分の周期Tに一致し,これは(数3)で表わされる。本発明では,非同期PWM制御を扱うため,電圧高調波Vnは,(数3)の周期Tを基準に電圧高調波Vnを算出する。
電圧高調波Vnは,(数4)に示す通り,パルス電圧がスイッチングする位相αk(以下,スイッチング位相角αk)に依存する。そこで,スイッチング位相角αkを調整することで,所望の電圧高調波Vnを得る。このため,(数4)を(数2)に代入し,得られた(数5)を目的関数に設定する。この目的関数を低減あるいは最小化するように,スイッチング位相角αkを調整することで,高調波損失Whを低減あるいは最小化できる。
PWM制御の原理より,上記のスイッチング位相各αkの調整において,パルス電圧の基本波成分である振幅V1および位相θ1を固定する必要がある。基本波振幅V1およびθ1は,スイッチング位相角αkを用いて(数6)および(数7)の通り表すことができる。このため,本発明では,(数6)および(数7)を一定に保つようなスイッチング位相角αkを設定する必要がある。
本実施例では,スイッチング位相角αkを調整するために,オフセット演算部5でオフセット量A*を演算し,これを基に,加算部6で信号波をオフセット補正する。以下,本実施例の手順を示す。
(1) 交流モータ1の駆動条件に応じて,目的関数(数5)の値を設定する
(2) スイッチング位相角αkを変化させる
(3) スイッチング位相角αkを(数5)に代入し,演算する
(4) (1)で設定した値になるまで,(2)(3)の手順を繰り返す
(5) スイッチング位相角αkに基づき,信号波のオフセット量A*を演算する
(6) オフセット量A*を用いて,信号波の振幅がピークとなる位相90, 270degおよび,
傾きが大きくなる位相0,180degを含むキャリア波1周期内(以下,ピーク位相領域およびゼロクロス位相領域)にオフセット補正し,図1に示す補正信号波Vu2*,Vv2*,Vw2*を生成する (7) 補正信号波とキャリア波を基にパルス電圧を生成し,交流モータ1に印加する
以上の手順によって生成されたパルスパターンを図8に示す。この結果,図8(cに示すとおり,基本波成分を固定したまま,高次の電圧高調波Vnを低減することができるため,(数2)に示す高調波損失Whの低減が可能となる。
(2) スイッチング位相角αkを変化させる
(3) スイッチング位相角αkを(数5)に代入し,演算する
(4) (1)で設定した値になるまで,(2)(3)の手順を繰り返す
(5) スイッチング位相角αkに基づき,信号波のオフセット量A*を演算する
(6) オフセット量A*を用いて,信号波の振幅がピークとなる位相90, 270degおよび,
傾きが大きくなる位相0,180degを含むキャリア波1周期内(以下,ピーク位相領域およびゼロクロス位相領域)にオフセット補正し,図1に示す補正信号波Vu2*,Vv2*,Vw2*を生成する (7) 補正信号波とキャリア波を基にパルス電圧を生成し,交流モータ1に印加する
以上の手順によって生成されたパルスパターンを図8に示す。この結果,図8(cに示すとおり,基本波成分を固定したまま,高次の電圧高調波Vnを低減することができるため,(数2)に示す高調波損失Whの低減が可能となる。
以上により,本実施例において,高調波損失Whを低減あるいは最小化できる。以下,本発明に関して補足する。
オフセット量A*の演算は,全て実施する必要はなく,一部省略しても良い。例えば,
(1) 変調率Kh <1の場合
(2) キャリア周波数fcが基本波周波数f1と同期している場合
においては,オフセット量A*を0とする。これは,上記の場合においては高調波損失が小さいためである。前述した条件で一部機能を省略することで,マイコンの演算負荷は低減される。
(1) 変調率Kh <1の場合
(2) キャリア周波数fcが基本波周波数f1と同期している場合
においては,オフセット量A*を0とする。これは,上記の場合においては高調波損失が小さいためである。前述した条件で一部機能を省略することで,マイコンの演算負荷は低減される。
図9に,ゼロクロス位相領域でのスイッチング幅α’と,ピーク位相領域でのスイッチング幅αの関係を示す。本図9(a)および図9(b)より,基本波振幅A1を固定するためには,スイッチング位相角αkは,(数8)の関係を持つように設定される必要がある。
図10に,本実施例による効果を示す。本図10(a)および図10(b)では,従来手法と本発明において,電圧高調波Vnが等しいにも関わらず,高調波損失Whを低減できている。また,図10(c)および図10(d)では,電圧高調波Vnの実効値が増加しているにも関わらず,高調波損失Whを低減できている。
図11は,実施例2の構成図である。本実施例は,実施例1を交流モータ1の駆動システムに適用したものである。図11において,実施例1と同一である部分の説明は省略する。本実施例においては,コンピュータ10,などの上位装置により,速度指令F*を設定できるようになっている。
本実施例によって,高精度速度制御特性を実現することができる。
1…交流モータ
2…インバータ
3…キャリア波生成部
4…信号波生成部
5…オフセット量演算部
6…加算部
7…PWM発生部
8…V/f制御部
9…ベクトル制御部
10…コンピュータ
VDC…直流電圧
Vu,Vv,Vw…U相パルス電圧,V相パルス電圧,W相パルス電圧
Vu1*,Vv1*,Vw1*…U相信号波,V相信号波,W相信号波
Vuv…線間電圧
Vu2*,Vv2*,Vw2*…U相補正信号波,V相補正信号波,W相補正信号波
Vc*…キャリア波
V1*…電圧指令
Vn…電圧高調波
Guu,Gup…U相ゲート信号
Gvu,Gvp…V相ゲート信号
Gwu,Gwp…W相ゲート信号
θ…電圧位相
F*…速度指令
f1*…周波数指令
f…駆動周波数
fc…キャリア波周波数
Iu,Iv,Iw…U相電流,V相電流,W相電流
Tc…キャリア波周期
T1…信号波周期
T…キャリア波と信号波の最小公倍数分の周期
In…電流高調波
Z…交流モータのインピーダンス
L…交流モータのインダクタンス
K…損失係数
n…高調波次数
Wh…高調波損失
V1…基本波振幅
θ1…基本波位相
A*…オフセット量
αk…スイッチング位相角
2…インバータ
3…キャリア波生成部
4…信号波生成部
5…オフセット量演算部
6…加算部
7…PWM発生部
8…V/f制御部
9…ベクトル制御部
10…コンピュータ
VDC…直流電圧
Vu,Vv,Vw…U相パルス電圧,V相パルス電圧,W相パルス電圧
Vu1*,Vv1*,Vw1*…U相信号波,V相信号波,W相信号波
Vuv…線間電圧
Vu2*,Vv2*,Vw2*…U相補正信号波,V相補正信号波,W相補正信号波
Vc*…キャリア波
V1*…電圧指令
Vn…電圧高調波
Guu,Gup…U相ゲート信号
Gvu,Gvp…V相ゲート信号
Gwu,Gwp…W相ゲート信号
θ…電圧位相
F*…速度指令
f1*…周波数指令
f…駆動周波数
fc…キャリア波周波数
Iu,Iv,Iw…U相電流,V相電流,W相電流
Tc…キャリア波周期
T1…信号波周期
T…キャリア波と信号波の最小公倍数分の周期
In…電流高調波
Z…交流モータのインピーダンス
L…交流モータのインダクタンス
K…損失係数
n…高調波次数
Wh…高調波損失
V1…基本波振幅
θ1…基本波位相
A*…オフセット量
αk…スイッチング位相角
Claims (6)
- モータ制御装置において、
周波数指令および電圧指令に基づいて,信号波を生成する信号波生成部と、
キャリア周波数に基づいて.キャリア波を生成するキャリア波生成部と、
前記信号波と前記キャリア波を比較し,ゲート信号を出力するPWM発生部と、
前記ゲート信号に基づいて,スイッチング素子を制御するインバータと、
前記信号波にオフセット量を加算するオフセット量演算部と、を備え,
前記インバータは,パルス電圧を出力し、
前記キャリア周波数は固定され、
前記オフセット演算部は、
前記パルス電圧の基本波の実効値を固定し,
前記基本波より高次の高調波実効値を低減し,
前記基本波より低次の高調波実効値を増加するように,電圧位相0, 90, 180, 270degを含むキャリア1周期内において,前記信号波にオフセット量を加算する、ことを特徴とするモータ制御装置。 - 請求項1または請求項2に記載するモータ制御装置において,
前記オフセット演算部は,前記オフセット量を演算するために,前記信号波と前記キャリア波の周期の最小公倍数である周期Tを基準に,高調波の実効値を演算することを特徴とするモータ制御装置。 - 請求項1に記載するモータ制御装置において,
前記オフセット演算部は,前記キャリア波の周波数が一定値以上,あるいは前記信号波の基本波周波数が一定値以下の際,前記オフセット量を0とすることを特徴とするモータ制御装置。 - 請求項1または2に記載するモータ制御装置において,
前記オフセット演算部は,前記基本波の実効値を固定するため,基本波振幅および基本波位相を一定とするようなスイッチング位相角αkで,前記パルス電圧をスイッチングさせることを特徴とするモータ制御装置。 - 請求項1または請求項2に記載するモータ制御装置において,
前記オフセット演算部は,90, 270degを含むキャリア波1周期内のスイッチング幅が,0, 180degを含むキャリア波1周期内のスイッチング幅より大きくなるように,前記スイッチング位相角αkを設定し,前記パルス電圧をスイッチングさせることを特徴とするモータ制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES16768153T ES2918338T3 (es) | 2015-03-24 | 2016-02-01 | Dispositivo de control de motor |
CN201680012298.5A CN107251412B (zh) | 2015-03-24 | 2016-02-01 | 电动机控制装置 |
EP16768153.5A EP3276820B1 (en) | 2015-03-24 | 2016-02-01 | Motor control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060305A JP6581373B2 (ja) | 2015-03-24 | 2015-03-24 | モータ制御装置 |
JP2015-060305 | 2015-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152250A1 true WO2016152250A1 (ja) | 2016-09-29 |
Family
ID=56978366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052854 WO2016152250A1 (ja) | 2015-03-24 | 2016-02-01 | モータ制御装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3276820B1 (ja) |
JP (1) | JP6581373B2 (ja) |
CN (1) | CN107251412B (ja) |
ES (1) | ES2918338T3 (ja) |
WO (1) | WO2016152250A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114465535A (zh) * | 2022-02-22 | 2022-05-10 | 北京航空航天大学 | 无刷直流电机的换相方法、装置和无刷直流电机系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11267503B2 (en) * | 2017-01-11 | 2022-03-08 | Mitsubishi Electric Cornoration | Motor control device |
JP2019161704A (ja) * | 2018-03-07 | 2019-09-19 | 本田技研工業株式会社 | モータ制御装置 |
CN110763914B (zh) * | 2019-10-21 | 2021-08-06 | 西安科技大学 | 一种pwm谐波有效值计算方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012120296A (ja) * | 2010-11-30 | 2012-06-21 | Aisin Aw Co Ltd | 駆動制御装置 |
WO2013118318A1 (ja) * | 2012-02-09 | 2013-08-15 | 三菱電機株式会社 | モータ駆動システムおよびモータ駆動方法 |
JP2014072935A (ja) * | 2012-09-28 | 2014-04-21 | Hitachi Ltd | 交流電動機のpwm制御法および駆動システム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3259571B2 (ja) * | 1995-03-14 | 2002-02-25 | 株式会社日立製作所 | Pwm制御装置とそれを用いたシステム |
JP3233005B2 (ja) * | 1996-03-01 | 2001-11-26 | 株式会社日立製作所 | Pwm制御装置 |
JP4417323B2 (ja) * | 2005-11-18 | 2010-02-17 | 三菱電機株式会社 | モータ制御装置 |
JP5299439B2 (ja) * | 2009-01-29 | 2013-09-25 | トヨタ自動車株式会社 | 交流電動機の制御装置 |
JP2010284017A (ja) * | 2009-06-05 | 2010-12-16 | Toyota Motor Corp | 交流電動機の制御装置 |
WO2011099122A1 (ja) * | 2010-02-10 | 2011-08-18 | 株式会社 日立製作所 | 電力変換装置 |
WO2011135696A1 (ja) * | 2010-04-28 | 2011-11-03 | 株式会社 日立製作所 | 電力変換装置 |
JPWO2011135695A1 (ja) * | 2010-04-28 | 2013-07-18 | 株式会社日立製作所 | 電力変換装置 |
JP2012151998A (ja) * | 2011-01-19 | 2012-08-09 | Mitsubishi Electric Corp | 電力変換器の制御装置 |
CN102223138B (zh) * | 2011-06-27 | 2013-04-03 | 株洲南车时代电气股份有限公司 | 一种电机同步调制方法及其控制系统 |
JP5993661B2 (ja) * | 2012-08-30 | 2016-09-14 | 日立オートモティブシステムズ株式会社 | 交流回転電機のインバータ制御装置 |
JP6204121B2 (ja) * | 2013-09-09 | 2017-09-27 | 株式会社日立製作所 | モータ駆動システムおよび該システムを搭載する電気鉄道車両 |
WO2015104820A1 (ja) * | 2014-01-09 | 2015-07-16 | 三菱電機株式会社 | 電力変換装置 |
-
2015
- 2015-03-24 JP JP2015060305A patent/JP6581373B2/ja active Active
-
2016
- 2016-02-01 ES ES16768153T patent/ES2918338T3/es active Active
- 2016-02-01 WO PCT/JP2016/052854 patent/WO2016152250A1/ja active Application Filing
- 2016-02-01 EP EP16768153.5A patent/EP3276820B1/en active Active
- 2016-02-01 CN CN201680012298.5A patent/CN107251412B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012120296A (ja) * | 2010-11-30 | 2012-06-21 | Aisin Aw Co Ltd | 駆動制御装置 |
WO2013118318A1 (ja) * | 2012-02-09 | 2013-08-15 | 三菱電機株式会社 | モータ駆動システムおよびモータ駆動方法 |
JP2014072935A (ja) * | 2012-09-28 | 2014-04-21 | Hitachi Ltd | 交流電動機のpwm制御法および駆動システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3276820A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114465535A (zh) * | 2022-02-22 | 2022-05-10 | 北京航空航天大学 | 无刷直流电机的换相方法、装置和无刷直流电机系统 |
CN114465535B (zh) * | 2022-02-22 | 2024-02-06 | 北京航空航天大学 | 无刷直流电机的换相方法、装置和无刷直流电机系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3276820A1 (en) | 2018-01-31 |
CN107251412B (zh) | 2019-07-19 |
EP3276820A4 (en) | 2018-12-05 |
CN107251412A (zh) | 2017-10-13 |
EP3276820B1 (en) | 2022-05-11 |
JP2016181968A (ja) | 2016-10-13 |
ES2918338T3 (es) | 2022-07-15 |
JP6581373B2 (ja) | 2019-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2594359C2 (ru) | Устройство преобразования мощности | |
KR102009509B1 (ko) | 3상 인버터의 옵셋 전압 생성 장치 및 방법 | |
Videt et al. | PWM strategy for the cancellation of common-mode voltage generated by three-phase back-to-back inverters | |
Laczynski et al. | Predictive stator current control for medium voltage drives with LC filters | |
WO2016152250A1 (ja) | モータ制御装置 | |
KR102009512B1 (ko) | 3상 인버터의 옵셋 전압 생성 장치 및 방법 | |
JP2014068498A (ja) | 電力変換装置の制御方法 | |
CN110120755B (zh) | 逆变器控制设备 | |
JP6076222B2 (ja) | 電力変換装置 | |
US9276487B2 (en) | Power-level waveform generation method | |
JP2013162658A (ja) | 電力変換装置 | |
JP6585872B1 (ja) | 電力変換装置 | |
Tariq et al. | Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation | |
WO2017159072A1 (ja) | モータの制御装置および駆動システム | |
Kang et al. | High power factor control of an inverter-controlled synchronous motor drive system with small DC-link capacitor | |
Neubert et al. | Performance comparison of inverter and drive configurations with open-end and star-connected windings | |
Jeong et al. | Model predictive current control with modified discrete space vector modulation for three-leg two-phase VSI | |
WO2018179234A1 (ja) | H型ブリッジ変換器およびパワーコンディショナ | |
Rajesh et al. | A shunt active power filter for 12 pulse converter using source current detection approach | |
JPH07213067A (ja) | Pwmコンバータの制御回路 | |
Mirazimi et al. | Space vector PWM method for two-phase three-leg inverters | |
Davari et al. | A smart current modulation scheme for harmonic reduction in three-phase motor drive applications | |
Nishizawa et al. | Reduction of dc-link current harmonics over wide power-factor range for three-phase VSI using single-carrier-comparison continuous PWM | |
JP6868927B1 (ja) | 三相インバータの3パルスpwm制御法 | |
Farhadi et al. | Comparative study of conventional SVPWM algorithms in terms of producing harmonics and the effect of the harmonics on induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768153 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016768153 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |