WO2016152100A1 - 蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法 - Google Patents

蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法 Download PDF

Info

Publication number
WO2016152100A1
WO2016152100A1 PCT/JP2016/001498 JP2016001498W WO2016152100A1 WO 2016152100 A1 WO2016152100 A1 WO 2016152100A1 JP 2016001498 W JP2016001498 W JP 2016001498W WO 2016152100 A1 WO2016152100 A1 WO 2016152100A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
characteristic information
battery module
current value
full charge
Prior art date
Application number
PCT/JP2016/001498
Other languages
English (en)
French (fr)
Inventor
昂洋 吉松
晃 吉武
祐一郎 寺本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to AU2016238069A priority Critical patent/AU2016238069C1/en
Publication of WO2016152100A1 publication Critical patent/WO2016152100A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention generally relates to a storage battery management device, a control device, a storage battery module, and a storage battery management method, and more particularly to a storage battery management device, a control device, a storage battery module, and a storage battery management method for managing charging or discharging of the storage battery module. .
  • the charging circuit described in Patent Document 1 includes a power supply circuit and a control circuit.
  • the control circuit includes a storage unit that stores a voltage (threshold voltage) corresponding to the temperature of the storage battery, and acquires the threshold voltage corresponding to the temperature detected by the temperature detection circuit from the storage unit.
  • the power supply circuit controls charging of the storage battery based on the threshold voltage acquired by the control circuit.
  • the threshold voltage for the storage battery module before replacement may be different from the threshold voltage for the storage battery module after replacement.
  • the control circuit stores the threshold voltage in advance. Therefore, in order to appropriately charge the storage battery module after replacement, it is necessary to change the setting of the threshold voltage stored in the control circuit to the threshold voltage for the storage battery module after replacement. At this time, the operator may forget to reset the threshold voltage.
  • the present invention has been made in view of the above-mentioned reasons, and the purpose thereof is a storage battery management device capable of controlling charging and the like under appropriate conditions even when the operator forgets to set information. It is providing a control apparatus, a storage battery module, and a storage battery management method.
  • a storage battery management device is based on the characteristic information in a characteristic information acquisition unit that acquires characteristic information from the storage battery module and a power supply control device that controls at least one of charging and discharging of the storage battery module.
  • a notification unit for notifying the control condition.
  • a control device includes the above-described storage battery management device and the power supply control device.
  • the power supply control device receives the control condition from the storage battery management device, the control condition is satisfied. Based on this, the storage battery module is controlled.
  • the storage battery module outputs the characteristic information to a storage battery, a storage unit that stores characteristic information for at least one of charging and discharging, and a storage battery management device that manages the characteristic information. And an output unit.
  • the storage battery management method provides the characteristic information acquisition process for acquiring characteristic information from the storage battery module and the power supply control device that performs control on at least one of charging and discharging of the storage battery module. Notification processing for notifying control conditions based on the above.
  • FIG. It is a figure explaining the structure of the electrical storage system in Embodiment 1.
  • FIG. It is a flowchart explaining operation
  • the power storage system 1 in the present embodiment includes a storage battery system 10 including a plurality of storage battery modules 11 and a control device 20.
  • the power storage system 1 is a system in which the control device 20 controls at least one of charging and discharging of each of the plurality of storage battery modules 11 using characteristic information stored by each of the plurality of storage battery modules 11.
  • the storage battery module 11 outputs characteristic information representing the characteristics of the storage battery module 11 to the control device 20.
  • the characteristic information is information regarding at least one of charging and discharging.
  • the control device 20 controls at least one of charging and discharging of each storage battery module 11.
  • the control device 20 acquires the characteristic information from each of the plurality of storage battery modules 11, the control device 20 selects a control condition based on the acquired characteristic information.
  • the control device 20 controls at least one of charging and discharging of the storage battery module 11 based on the selected control condition.
  • the control condition is a condition related to charging.
  • each of the plurality of storage battery modules 11 includes a storage battery 12, a temperature sensor 13, a storage unit 14, and an output unit 15.
  • the some storage battery module 11 is the same kind and the same performance on specification.
  • the storage battery 12 is, for example, a lithium ion battery.
  • the temperature sensor 13 measures the battery temperature (environment information) of the storage battery 12 and outputs the result to the control device 20.
  • the storage unit 14 stores a voltage value of full charge when the battery temperature belongs to the first temperature range and a voltage value of full charge when the battery temperature belongs to the second temperature range.
  • the first temperature range is a range in which the battery temperature is higher than a predetermined threshold value, and is a range in which the performance of the storage battery module 11 is exhibited as usual without being limited by specifications.
  • a fully charged voltage value in the first temperature range is referred to as a normal voltage value.
  • the second temperature range is a range in which the temperature is equal to or lower than a predetermined threshold, and is a range where the performance of the storage battery module 11 is exhibited in a state where the specifications are limited.
  • a fully charged voltage value in the second temperature range is referred to as a limit voltage value.
  • the storage unit 14 stores the first voltage range in association with the normal voltage value and the second temperature range in association with the limit voltage value.
  • the limit voltage value is a value smaller than the normal voltage value.
  • the output unit 15 delivers (outputs) the characteristic information to the control device 20.
  • the characteristic information is information including a first full charge condition that is a set of a normal voltage value and a first temperature range, and a second full charge condition that is a set of a limit voltage value and a second temperature range. is there.
  • the some storage battery module 11 is electrically connected by connecting each of the storage battery 12 contained in the some storage battery module 11 in series.
  • the control device 20 is, for example, a power conditioner, and includes a storage battery management device 30 and a power supply control device 40 as shown in FIG.
  • the storage battery management device 30 is a device that manages characteristic information.
  • the characteristic information is information related to at least one of charging and discharging of the storage battery module 11.
  • the storage battery management device 30 acquires characteristic information from the plurality of storage battery modules 11 and uses the characteristic information to select a control condition that matches the plurality of storage battery modules 11.
  • the storage battery management device 30 includes a characteristic information acquisition unit 31, a discrimination information acquisition unit 32, a processing unit 33, and a notification unit 34.
  • the storage battery management device 30 has a processor or a computer-readable memory, and each function of the storage battery management device 30 is realized by the processor executing a program stored in the memory. This program is provided through a telecommunication line such as the Internet, or is provided by a computer-readable recording medium.
  • the characteristic information acquisition unit 31 acquires characteristic information including the first full charge condition and the second full charge condition from the plurality of storage battery modules 11 at the start of charging.
  • the discrimination information acquisition unit 32 acquires discrimination information for selecting a control condition (in this embodiment, a condition for controlling charging) of the plurality of storage battery modules 11 at the start of charging. Specifically, the discrimination information acquisition unit 32 acquires the battery temperatures of the plurality of storage battery modules 11 (storage batteries 12) from the corresponding temperature sensor 13 as discrimination information.
  • the processing unit 33 uses the characteristic information acquired by the characteristic information acquisition unit 31 to select a control condition suitable for the plurality of storage battery modules 11. Specifically, the processing unit 33 uses the determination information acquired by the determination information acquisition unit 32 to determine which of the first full charge condition and the second full charge condition for each of the plurality of storage battery modules 11. A plurality of full charge conditions (adaptation conditions) are acquired by selecting such full charge conditions (adaptation conditions). The processing unit 33 selects a full charge condition (adaptation condition) including the lowest voltage value as a control condition from among the plurality of acquired full charge conditions (adaptation conditions).
  • the notification unit 34 sets the control condition to the power control device 40 in order to cause the power control device to control each storage battery module 11 (storage battery 12) based on the voltage value included in the control condition selected by the processing unit 33. To notify.
  • the power supply control device 40 is a device that charges each storage battery module 11 (storage battery 12) using the power generated by the solar battery 50.
  • the power supply control device 40 controls at least one of charging and discharging for each storage battery module 11 (storage battery 12) based on the control condition notified from the storage battery management device 30.
  • the power supply control device 40 receives a control condition (full charge condition) from the storage battery management device 30.
  • the power supply control device 40 charges each storage battery module 11 using the generated power of the solar battery 50 so that the voltage value at the time of full charge of each storage battery module 11 becomes a voltage value represented by the received full charge condition. I do.
  • the power supply control device 40 measures the voltage value of each storage battery module 11 when each storage battery module 11 is charged, and when the measured voltage value matches the voltage value represented by the full charge condition. Stop charging.
  • the power supply control device 40 converts at least one of the electric power of each storage battery module 11 and the solar battery 50 into alternating current, and supplies the electric power to the load 51 provided in the facility.
  • the power supply control device 40 performs discharge control of each storage battery module 11 when supplying power to the load 51 using the power of each storage battery module 11.
  • the power supply control device 40 includes a processor and a memory, and each function of the power supply control device 40 is realized by the processor executing a program stored in the memory. This program is provided through a telecommunication line such as the Internet, or is provided by a computer-readable recording medium.
  • the characteristic information acquisition unit 31 of the storage battery management device 30 acquires characteristic information from the plurality of storage battery modules 11 (step S5). Specifically, the characteristic information acquisition unit 31 acquires characteristic information including the first full charge condition and the second full charge condition from each storage battery module 11.
  • the discrimination information acquisition unit 32 of the storage battery management device 30 acquires the battery temperatures (discrimination conditions) of the plurality of storage battery modules 11 (storage batteries 12) from the plurality of temperature sensors 13 (step S10).
  • the processing unit 33 of the storage battery management device 30 uses each characteristic information acquired by the characteristic information acquisition unit 31 to perform a selection process for selecting a control condition suitable for the plurality of storage battery modules 11 (step S15). For example, the processing unit 33 uses the battery temperature acquired from the storage battery module among the first full charge condition and the second full charge condition included in the characteristic information acquired from the storage battery module 11 for each of the plurality of storage battery modules 11. Select the full charge condition (conformity condition) according to. Specifically, the processing unit 33 selects the first full charge condition when the battery temperature is higher than a predetermined threshold, and selects the second full charge condition when the battery temperature is equal to or lower than the predetermined threshold. .
  • the processing unit 33 acquires a plurality of full charge conditions (adaptation conditions) by selecting full charge conditions (adaptation conditions) for all of the plurality of storage battery modules 11.
  • the processing unit 33 selects the first full charge condition as the control condition when the plurality of acquired full charge conditions (adaptation conditions) are the first full charge conditions.
  • the processing unit 33 selects the second full charge condition as a control condition.
  • the notification unit 34 of the storage battery management device 30 notifies the power supply control device 40 of the control condition (full charge condition) selected by the processing unit 33 (step S20).
  • the power supply control device 40 controls the voltage when each storage battery module 11 is fully charged based on the voltage value included in the control condition (full charge condition) notified by the notification unit 34.
  • the storage battery system 10 is composed of a plurality of storage battery modules 11, but is not limited thereto.
  • the storage battery system 10 may be configured by at least one storage battery module 11.
  • the storage battery management device 30 acquires characteristic information from the one storage battery module 11, and uses the acquired characteristic information to store the storage battery module 11. Select suitable control conditions.
  • the characteristic information includes the first full charge condition and the second full charge condition
  • the storage battery management device 30 acquires the first full charge condition acquired from the one storage battery module 11 when the battery temperature is higher than a predetermined threshold. Is set as a control condition.
  • the storage battery management device 30 uses the voltage value included in the second full charge condition acquired from the one storage battery module 11 as a control condition.
  • the storage battery management device 30 of the present embodiment acquires the characteristic information and the discrimination information at the start of charging, the present invention is not limited to this.
  • the storage battery management device 30 may acquire the characteristic information and the discrimination information at a predetermined cycle (for example, every 3 hours).
  • this numerical value is an example, Comprising: It is not the meaning limited to these numerical values.
  • the storage unit 14 of the storage battery module 11 of the present embodiment stores two types of voltage values (normal voltage value and limit voltage value), the present invention is not limited to this.
  • the storage unit 14 of the storage battery module 11 may store a plurality of types of voltage values. A plurality of different temperature ranges are associated one-to-one with a plurality of different voltage values.
  • the output unit 15 outputs characteristic information including a voltage value and a plurality of sets in a temperature range associated with the voltage value to the storage battery management device 30.
  • the storage battery management device 30 selects a voltage value corresponding to the battery temperature acquired by the determination information acquisition unit 32 from among the voltage values included in the characteristic information.
  • the plurality of storage battery modules 11 are of the same type and the same performance in terms of specifications, but are not limited thereto. Different types and performances may be mixed in the plurality of storage battery modules 11. In this case, the normal voltage value and the limit voltage value are different for each of the plurality of types.
  • the processing unit 33 of the storage battery management device 30 selects the first full charge condition from each of the plurality of storage battery modules 11, the first full charge condition including the lowest voltage value among the selected first full charge conditions. Is selected as the control condition.
  • the processing unit 33 selects the second full charge condition for at least one of the storage battery modules 11, the processing unit 33 controls the second full charge condition including the lowest voltage value among the selected second full charge conditions. Select as a condition.
  • the plurality of storage batteries 12 are connected in series, they may be connected in parallel, or may be a connection in which series connection and parallel connection are mixed.
  • the charging rate (SOC: State of Charge) of the storage battery module 11 may be used as a full charge condition.
  • the storage unit 14 of the storage battery module 11 stores a set of a first temperature range and a charging rate “100%” and a set of a second temperature range and a charging rate “80%”.
  • the output unit 15 outputs characteristic information including these sets to the storage battery management device 30.
  • the storage battery management device 30 selects 100% as the charging rate.
  • each of the plurality of storage battery modules 11 includes a measurement circuit that measures the charging rate of the storage battery 12.
  • the power supply control device 40 controls the charging of each storage battery module 11 so that the charging rate selected by the storage battery management device 30 is obtained based on the results measured by the respective measurement circuits of the plurality of storage battery modules 11.
  • the charging current value is a value of a current that the power supply control device 40 inputs to each storage battery module 11 when each storage battery module 11 is charged.
  • the discharge current value is a value of a current input from each storage battery module 11 when the power storage control module 40 discharges each storage battery module 11.
  • the power storage system 1 of the present modification includes a storage battery system 10 and a control device 20 as shown in FIG.
  • the storage battery system 10 includes a plurality of storage battery modules 11, and each storage battery module 11 includes a storage battery 12, a storage unit 14, and an output unit 15.
  • the storage unit 14 has a maximum current value input during charging (maximum charging current value, hereinafter “first maximum charging current value”) and a maximum current value output during discharging (maximum discharging current value, hereinafter “ 1st maximum discharge current value ").
  • the output unit 15 outputs the first maximum charging current value and the first maximum discharging current value stored in the storage unit 14 to the storage battery management device 30 as characteristic information.
  • the some storage battery module 11 is electrically connected by connecting the some storage battery 12 in series.
  • the control device 20 includes a storage battery management device 30 and a power supply control device 40 as shown in FIG.
  • the storage battery management device 30 includes a characteristic information acquisition unit 31, a processing unit 33, a notification unit 34, and a current value acquisition unit 35.
  • the characteristic information acquisition unit 31 acquires a charging current value and a discharging current value as characteristic information from each storage battery module 11 when the control device 20 is activated.
  • the current value acquisition unit 35 is a maximum current value that can be output to each storage battery module 11 (maximum charging current value, hereinafter “second maximum charging”). Current value ") is acquired from the power supply control device 40 when the control device 20 is started. Further, the current value acquisition unit 35, when the power supply control device 40 controls the discharge of each storage battery module 11, the value of the maximum current that can be input from each storage battery module 11 (maximum discharge current value, hereinafter “second maximum discharge”). Current value ") is acquired from the power supply control device 40.
  • the processing unit 33 selects a control condition suitable for the plurality of storage battery modules using at least one of the first maximum charging current value and the first maximum discharging current value acquired by the characteristic information acquisition unit 31. For example, when the characteristic information acquisition unit 31 acquires the first maximum charging current value from each storage battery module 11, the processing unit 33 selects the minimum current value (charging limit value) among the acquired first maximum charging current values. To do. The processing unit 33 selects, as a control condition, a smaller current value (charging control current value) among the selected charging limit value and the second maximum charging current value acquired by the current value acquiring unit 35.
  • the processing unit 33 selects the minimum current value (discharge limit value) among the acquired first maximum discharge current values. To do. The processing unit 33 selects, as a control condition, a smaller current value (discharge control current value) among the selected discharge limit value and the second maximum discharge current value acquired by the current value acquisition unit 35.
  • the notification unit 34 notifies the power supply control device 40 of the control condition (charge control current value or discharge control current value) selected by the processing unit 33.
  • the power supply control device 40 controls the charging of each storage battery module 11 (storage battery 12) based on the current value for charge control.
  • the control condition is a discharge control current value
  • the power supply control device 40 controls the discharge of each storage battery module 11 (storage battery 12) based on the discharge control current value.
  • the characteristic information acquisition unit 31 acquires the first maximum charging current value from the plurality of storage battery modules 11 as characteristic information (step S50).
  • the current value acquisition unit 35 acquires the second maximum charging current value from the power supply control device 40 (step S55).
  • the processing unit 33 uses the characteristic information acquired by the characteristic information acquisition unit 31 to perform a selection process for selecting a control condition suitable for the plurality of storage battery modules 11 (step S60). Specifically, the processing unit 33 sets a smaller current value (charge control current value) between the minimum current value (charge limit value) of the first maximum charge current values and the second maximum charge current value. Select as a control condition.
  • the notification unit 34 notifies the power supply control device 40 of the control condition (current value for charge control) selected by the processing unit 33 (step S65).
  • the power supply control device 40 controls the current input to each storage battery module 11 during charging based on the control condition (current value for charge control) notified by the notification unit 34.
  • the characteristic information acquisition unit 31 acquires the first maximum discharge current value from the plurality of storage battery modules 11 as characteristic information (step S100).
  • the current value acquisition unit 35 acquires the second maximum discharge current value from the power supply control device 40 (step S105).
  • the processing unit 33 performs a selection process for selecting a control condition suitable for the plurality of storage battery modules 11 using each characteristic information acquired by the characteristic information acquisition unit 31 (step S110). Specifically, the processing unit 33 sets a smaller current value (discharge control current value) between the minimum current value (discharge limit value) and the second maximum discharge current value among the first maximum discharge current values. Select as a control condition.
  • the notification unit 34 notifies the power supply control device 40 of the control condition (discharge control current value) selected by the processing unit 33 (step S115).
  • the power supply control device 40 controls the current output by each storage battery module 11 during discharging based on the control condition (discharge control current value) notified by the notification unit 34.
  • the storage battery management apparatus 30 of this modification has a configuration that does not include the above-described discrimination information acquisition unit 32, the present invention is not limited to this.
  • the storage battery management device 30 of this modification may include a discrimination information acquisition unit 32, and the storage battery module 11 may include the temperature sensor 13.
  • the control device 20 performs both charge control based on the full charge condition and charge / discharge control based on the current value related to charge / discharge. Since the control of charging based on the full charge condition has already been described, description thereof is omitted here.
  • the storage battery system 10 of the present modification example is configured by a plurality of storage battery modules 11, it is not limited to this.
  • the storage battery system 10 may be configured by at least one storage battery module 11.
  • the storage battery management device 30 acquires characteristic information from the one storage battery module 11, and uses the acquired characteristic information to store the storage battery module 11. Select suitable control conditions.
  • the characteristic information is a charging current value
  • the storage battery management device 30 controls a smaller current value among the first maximum charging current value and the second maximum charging current value acquired from the one storage battery module 11. Select as a condition.
  • the characteristic information is a discharge current value
  • the storage battery management device 30 controls a smaller current value among the first maximum discharge current value and the second maximum discharge current value acquired from the storage battery module 11. Select as a condition.
  • the storage battery management device 30 of the present modification has selected the charging control current value using the plurality of first maximum charging current values and the second maximum charging current value
  • the storage battery management device 30 may select a charge control current value from a plurality of first maximum charge current values.
  • the power supply control device 40 compares the current value for charge control with the maximum charging current value stored in itself, selects a current value with a small value, and uses each selected storage battery to store each storage battery. Control charging of the module 11.
  • the storage battery management device 30 may select a current value for discharge control from each first maximum discharge current value. In this case, the power supply control device 40 compares the current value for discharge control with the maximum discharge current value stored in itself, selects a current value with a small value, and uses each selected storage battery for each storage battery. The discharge of the module 11 is controlled.
  • the storage battery management device 30 selects the fully charged voltage value according to the battery temperature, but is not limited thereto.
  • the storage battery management device 30 may select a fully charged voltage value according to the set control mode in addition to the function of selecting a fully charged voltage value according to the battery temperature.
  • the power supply control device 40 is set to one control mode among a plurality of control modes in order to control charging of each storage battery module 11.
  • the plurality of control modes include a normal mode, a long life mode, and a self-supporting mode.
  • the normal mode is a mode for always charging 100% of the power amount without limiting the amount of power charged in the storage battery module 11 regardless of the battery temperature of each storage battery module 11.
  • the long life mode is a mode in which the amount of power to be charged is limited in order to extend the life of the storage battery module 11. For example, in the long life mode, the upper limit of the amount of power to be charged is limited.
  • the self-supporting mode is a mode for achieving both the normal mode and the long life mode. As described in the first embodiment, the fully charged voltage value is selected according to the battery temperature.
  • the storage battery management device 30 determines the mode set as the control mode at the start of charging.
  • the control mode is the normal mode
  • the storage battery management device 30 selects the above-described normal voltage value as control information.
  • the control mode is the long life mode
  • the storage battery management device 30 selects the above-described limit voltage value as control information.
  • the control mode is the self-sustained mode, it is the same as that of the first embodiment, and thus description thereof is omitted here.
  • the control mode is the long life mode
  • the storage battery management device 30 uses the limit voltage value as the control information, but is not limited to this.
  • the storage battery management device 30 may select a voltage value lower than the normal voltage value as the control information.
  • the storage battery module 11 further includes the voltage value used in the normal mode as the third full charge condition and the voltage value used in the long life mode as the fourth full charge condition, further included in the characteristic information, It outputs to the storage battery management apparatus 30.
  • each storage battery module 11 outputs a plurality of full charge conditions (first full charge condition, second full charge condition) to the storage battery management device 30, but in this embodiment, each storage battery module 11 has one The point which outputs a full charge condition to the storage battery management apparatus 30 differs.
  • the power storage system 1 of the present embodiment includes a storage battery system 10 including a plurality of storage battery modules 11 and a control device 20.
  • Each of the storage battery modules 11 of the present embodiment outputs characteristic information representing the characteristics of the storage battery module 11 to the control device 20, which is information corresponding to its own battery temperature.
  • control device 20 When the control device 20 according to the present embodiment acquires the characteristic information from the plurality of storage battery modules 11, the control device 20 selects a control condition suitable for the storage battery module 11 from the acquired characteristic information.
  • the control device 20 controls at least one of charging and discharging of each storage battery module 11 based on the selected control condition.
  • the control condition is a condition related to charging.
  • Each of the plurality of storage battery modules 11 includes a storage battery 12, a temperature sensor 13, a storage unit 14, an output unit 15, and a determination unit 16, as shown in FIG.
  • the storage battery module 11 has a processor and a memory, and the function of the determination unit 16 of the storage battery module 11 is realized by the processor executing a program stored in the memory. This program is provided through a telecommunication line such as the Internet, or is provided by a computer-readable recording medium.
  • the determination unit 16 determines a full charge condition to be transmitted to the storage battery management device 30. Specifically, the determination unit 16 determines whether or not the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold value. The determination unit 16 determines the normal voltage value as the full charge condition when determining that the battery temperature is higher than the predetermined threshold value, and satisfies the limit voltage value when determining that the battery temperature is equal to or lower than the predetermined threshold value. Determine the charging conditions.
  • the output unit 15 outputs the full charge condition as characteristic information. Specifically, every time the full charge condition to be transmitted to the storage battery management device 30 is determined by the determination unit 16, the output unit 15 outputs the determined full charge condition to the control device 20 as characteristic information.
  • the some storage battery module 11 is electrically connected by connecting each storage battery 12 in series similarly to Embodiment 1.
  • the control device 20 is a power conditioner that charges each storage battery module 11 using external power, for example, generated power of the solar cell 50, and as shown in FIG. 6, the storage battery management device 30 and the power control device 40. With.
  • the storage battery management device 30 includes a characteristic information acquisition unit 31, a processing unit 33, and a notification unit 34.
  • the storage battery management device 30 includes a processor and a memory, and each function of the storage battery management device 30 is realized by the processor executing a program stored in the memory. This program is provided through a telecommunication line such as the Internet, or is provided by a computer-readable recording medium.
  • the characteristic information acquisition unit 31 acquires characteristic information that is a full charge condition from each storage battery module 11 at the start of charging.
  • the processing unit 33 uses the plurality of characteristic information acquired by the characteristic information acquisition unit 31 to select a control condition that is suitable for the plurality of storage battery modules. Specifically, the processing unit 33 selects, as the control condition, the lowest voltage value among the voltage values represented by each of the characteristic information (full charge condition) output for each storage battery module 11.
  • the notification unit 34 notifies the power supply control device 40 of the control condition in order to control each storage battery module 11 based on the control condition selected by the processing unit 33.
  • FIG. 8 is a flowchart for explaining the operation of determining the characteristic information that the storage battery module 11 should output to the storage battery management device 30.
  • the determination unit 16 of the storage battery module 11 determines the full charge condition to be transmitted to the storage battery management device 30 (step S150). Specifically, when the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold, the determination unit 16 determines the normal voltage value as the full charge condition, and the battery temperature is equal to or lower than the predetermined threshold. In this case, the limit voltage value is determined as a full charge condition.
  • the output unit 15 outputs the full charge condition determined by the determination unit 16 to the control device 20 as characteristic information (step S155).
  • FIG. 9 is a flowchart for explaining the operation of the storage battery management device 30 for determining the control conditions.
  • the characteristic information acquisition unit 31 of the storage battery management device 30 acquires characteristic information from the plurality of storage battery modules 11 (step S200).
  • the processing unit 33 of the storage battery management device 30 uses the characteristic information acquired by the characteristic information acquisition unit 31 to perform a selection process for selecting a control condition suitable for the plurality of storage battery modules 11 (step S205). Specifically, the processing unit 33 selects the lowest voltage value among the voltage values represented by each characteristic information (full charge condition) as a control condition.
  • the notification unit 34 of the storage battery management device 30 notifies the power supply control device 40 of the control condition selected by the processing unit 33 (step S210).
  • the power supply control device 40 controls the voltage when each storage battery module 11 is fully charged based on the control condition notified by the notification unit 34.
  • the storage battery management device 30 of the present embodiment acquires the characteristic information at the start of charging, but is not limited to this. Similarly to the first embodiment, the storage battery management device 30 of the present embodiment may acquire the characteristic information at a predetermined cycle (for example, every 3 hours). In addition, this numerical value is an example, Comprising: It is not the meaning limited to these numerical values.
  • the plurality of storage batteries 12 are connected in series, they may be connected in parallel, or may be a connection in which series connection and parallel connection are mixed.
  • the voltage value is used as the full charge condition, but the present invention is not limited to this.
  • a charging rate may be used as a full charge condition. For example, when the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold, the determination unit 16 determines the charging rate as 100%. When the battery temperature is equal to or lower than the predetermined threshold, the determination unit 16 determines the charging rate as 80%.
  • the storage battery management device 30 selects the lowest charging rate among the charging rates determined for each of the plurality of storage battery modules 11 and notifies the power supply control device 40 of the selected charging rate. At this time, each of the plurality of storage battery modules 11 includes a measurement circuit that measures the charging rate of the storage battery 12.
  • the power supply control device 40 controls the charging of each storage battery module 11 so that the charging rate notified from the storage battery management device 30 is obtained based on the results measured by the respective measurement circuits of the plurality of storage battery modules 11. .
  • the power storage system 1 of the present modification includes a storage battery system 10 including a plurality of storage battery modules 11 and a control device 20.
  • Each storage battery module 11 includes a storage battery 12, a temperature sensor 13, a storage unit 14, an output unit 15, and a determination unit 16 (see FIG. 7).
  • the storage battery module 11 has a processor and a memory, and the function of the determination unit 16 of the storage battery module 11 is realized by the processor executing a program stored in the memory. This program is provided through a telecommunication line such as the Internet, or is provided by a computer-readable recording medium.
  • the storage unit 14 stores a maximum charging current value (first charging current value) and a maximum discharging current value (first discharging current value) when the battery temperature is higher than a predetermined threshold.
  • the storage unit 14 further stores a maximum charging current value (second charging current value) and a maximum discharging current value (second discharging current value) when the battery temperature is equal to or lower than a predetermined threshold.
  • the determination unit 16 determines characteristic information to be transmitted to the storage battery management device 30. Specifically, the determination unit 16 determines whether or not the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold value. When determining that the battery temperature is higher than the predetermined threshold, the determining unit 16 acquires the first charging current value and the first discharging current value from the storage unit 14. When determining that the battery temperature is equal to or lower than the predetermined threshold, the determination unit 16 acquires the second charging current value and the second discharging current value from the storage unit 14. In addition, when it is not necessary to distinguish between the first charging current value and the second charging current value, these are collectively referred to as a first maximum charging current value. In addition, when it is not necessary to distinguish the first discharge current value and the second discharge current value, these are collectively referred to as a first maximum discharge current value.
  • the output unit 15 outputs each of the first maximum charging current value and the first maximum discharging current value acquired by the determination unit 16 to the control device 20 as characteristic information.
  • the control device 20 includes a storage battery management device 30 and a power supply control device 40.
  • the storage battery management device 30 includes a characteristic information acquisition unit 31, a processing unit 33, a notification unit 34, and a current value acquisition unit 35.
  • the characteristic information acquisition unit 31 acquires the charging current value and the discharging current value output from each storage battery module 11 as characteristic information.
  • the current value acquisition unit 35 acquires a second maximum charging current value from the power supply control device 40 when the power supply control device 40 controls the charging of each storage battery module 11. In addition, the current value acquisition unit 35 acquires a second maximum discharge current value from the power supply control device 40 when the power supply control device 40 controls the discharge of each storage battery module 11.
  • the processing unit 33 uses the first maximum charging current value acquired by the characteristic information acquisition unit 31 to set a control condition suitable for the plurality of storage battery modules 11. select.
  • the processing unit 33 uses the first maximum discharge current value acquired by the characteristic information acquisition unit 31 to set a control condition suitable for the plurality of storage battery modules 11. select. For example, the processing unit 33 selects a minimum current value (charge limit value) from among the first maximum charge current values, and a smaller current value (charge) between the selected charge limit value and the second maximum charge current value. Control current value) is selected as a control condition.
  • the processing unit 33 selects a minimum discharge current value (discharge limit value) among the first maximum discharge current values, and a smaller current value (discharge) between the selected discharge limit value and the second maximum discharge current value. Control current value) is selected as a control condition.
  • the notification unit 34 notifies the power supply control device 40 of the control condition in order to control each storage battery module 11 based on the control condition selected by the processing unit 33.
  • the power supply control device 40 controls the charging of each storage battery module 11 based on the current value represented by the control condition.
  • the control condition is the current value for discharge control
  • the power supply control device 40 controls the discharge of each storage battery module 11 based on the current value represented by the control condition.
  • the determination unit 16 of the storage battery module 11 determines the first maximum charging current value to be transmitted to the storage battery management device 30 (step S250). Specifically, when the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold, the determination unit 16 determines the first charging current value as the first maximum charging current value to be transmitted. When the battery temperature is equal to or lower than the predetermined threshold, the determination unit 16 determines the second charging current value as the first maximum charging current value to be transmitted.
  • the output unit 15 outputs the first maximum charging current value determined by the determination unit 16 to the control device 20 as characteristic information (step S255).
  • the determination unit 16 of the storage battery module 11 determines the first maximum discharge current value to be transmitted to the storage battery management device 30 (step S300). Specifically, when the battery temperature measured by the temperature sensor 13 is higher than a predetermined threshold, the determination unit 16 determines the first discharge current value as the first maximum discharge current value to be transmitted. When the battery temperature is equal to or lower than a predetermined threshold, the determination unit 16 determines the second discharge current value as the first maximum discharge current value to be transmitted.
  • the output unit 15 outputs the first maximum discharge current value determined by the determination unit 16 to the control device 20 as characteristic information (step S305).
  • the storage battery management device 30 controls the charge control current value from the plurality of first maximum charge current values and the discharge control from the plurality of first maximum discharge current values. Each current value may be selected.
  • the power supply control device 40 in this case is the same as the power supply control device 40 described in the second modification of the first embodiment, and thus description thereof is omitted here.
  • each storage battery module 11 outputs the full charge condition determined according to the battery temperature as characteristic information to the storage battery management device 30, but is not limited thereto.
  • Each storage battery module 11 includes the full charge condition determined according to the battery temperature in the characteristic information, and as described in the second modification of the first embodiment, the full charge according to each of the normal mode and the long life mode.
  • the voltage value of the hour may be included.
  • the storage battery management device 30 selects, for example, a normal voltage value as control information when the control mode is the normal mode, as in the second modification of the first embodiment.
  • the control mode is the long life mode
  • the storage battery management device 30 selects, for example, a limit voltage value as control information.
  • the control mode is the self-sustained mode, it is the same as that of the second embodiment, and thus description thereof is omitted here.
  • the storage battery management device 30 uses the limit voltage value as the control information, but is not limited to this.
  • the storage battery management device 30 may select a voltage value lower than the normal voltage value as the control information.
  • the storage battery module 11 outputs the voltage value used in the normal mode and the voltage value used in the long life mode to the storage battery management device 30 by further including the characteristic information.
  • the power supply control device 40 charges each storage battery module 11 using the generated power of the solar cell 50, but is not limited thereto.
  • the power supply control device 40 charges each storage battery module 11 using electric power other than the solar battery 50, for example, electric power generated using natural energy such as wind power, hydraulic power, geothermal heat, or commercial power obtained from a commercial power source. May be.
  • each storage battery module 11 includes the temperature sensor 13, but the present invention is not limited to this.
  • the storage battery system 10 may include one temperature sensor 13.
  • the storage battery management device 30 sets the battery temperature acquired from one temperature sensor 13 as the temperature of each storage battery module 11 (storage battery 12).
  • the storage battery management device 30 includes a characteristic information acquisition unit 31 and a notification unit 34.
  • the characteristic information acquisition unit 31 acquires characteristic information from the storage battery module 11.
  • the notification unit 34 notifies the power supply control device 40 that controls at least one of charging and discharging of the storage battery module 11 of the control condition based on the characteristic information.
  • the storage battery management device 30 acquires characteristic information from the storage battery module 11 and notifies the power supply control device 40 of control conditions based on the characteristic information. Therefore, the storage battery management device 30 can control charging and the like under appropriate conditions (control conditions) even when the operator forgets the information setting operation.
  • the power supply control device 40 controls the plurality of storage battery modules 11.
  • the characteristic information acquisition unit 31 acquires characteristic information from each of the plurality of storage battery modules 11.
  • the storage battery management device 30 further includes a processing unit 33 that selects control conditions suitable for the plurality of storage battery modules 11 using the plurality of characteristic information acquired by the characteristic information acquisition unit 31.
  • the storage battery management device 30 can control charging and the like under appropriate conditions (control conditions) for the plurality of storage battery modules 11 even when the operator forgets the information setting operation. it can.
  • each of the plurality of characteristic information includes a plurality of full charge conditions related to full charge determination.
  • the storage battery management device 30 further includes a discrimination information acquisition unit 32 that acquires discrimination information for selecting one full charge condition from a plurality of full charge conditions for each of the plurality of characteristic information.
  • the processing unit 33 selects one full charge condition as a suitable condition from among the plurality of full charge conditions using the determination information corresponding to the storage battery module 11. Get conformance conditions.
  • the processing unit 33 selects one matching condition that matches the plurality of storage battery modules 11 among the plurality of acquired matching conditions as a control condition.
  • the storage battery management device 30 can set the full charge condition related to the determination of the full charge suitable for the plurality of storage battery modules 11.
  • the storage battery management device 30 can control charging for all of the plurality of storage battery modules 11 by selecting the strictest condition as the control condition among the full charge conditions selected using the determination condition. .
  • the discrimination information is operating environment information related to the operating environment of the storage battery module 11.
  • Each of the plurality of full charge conditions is a voltage value at the time of full charge according to the operating environment of the storage battery module 11.
  • the processing unit 33 selects one full charge condition from among the plurality of full charge conditions as the matching condition using the operation environment information corresponding to the storage battery module 11. Get the conformance condition of.
  • the processing unit 33 selects one adaptation condition, which is a full charge condition representing the lowest voltage value, from among the plurality of obtained adaptation conditions as a control condition.
  • the storage battery management device 30 can set a voltage value at the time of full charge suitable for the plurality of storage battery modules 11.
  • the operation environment information is the battery temperature of the storage battery module 11 in the storage battery management device 30 according to the fourth aspect.
  • the discrimination information acquisition unit 32 acquires the battery temperature for each of the plurality of storage battery modules 11.
  • the processing unit 33 selects a full charge condition corresponding to the battery temperature of the storage battery module 11 as the adaptation condition, thereby acquiring a plurality of adaptation conditions.
  • the storage battery management device 30 selects the full charge condition corresponding to the battery temperature for each storage battery module 11. Therefore, the storage battery management device 30 can select an optimum voltage value for each storage battery module when the battery temperature of each storage battery module 11 is acquired.
  • each of the plurality of characteristic information represents a full charge condition regarding determination of the full charge of the storage battery module 11.
  • the processing unit 33 selects one full charge condition suitable for the plurality of storage battery modules 11 among the plurality of full charge conditions as a control condition.
  • the storage battery management device 30 can set the full charge condition related to the determination of the full charge suitable for the plurality of storage battery modules 11.
  • each of the plurality of full charge conditions is a condition representing a voltage value at the time of full charge.
  • the processing unit 33 selects a full charge condition representing the lowest voltage value among the plurality of full charge conditions acquired by the characteristic information acquisition unit 31.
  • the storage battery management device 30 can set a voltage value at the time of full charge that matches all of the plurality of storage battery modules 11.
  • each of the plurality of characteristic information is the maximum charging current value that can be input by the storage battery module 11 during charging ( 1st maximum charging current value).
  • the processing unit 33 selects the minimum charging current value among the plurality of maximum charging current values acquired by the characteristic information acquisition unit 31 as the charging limit value.
  • the storage battery management device 30 can select a charging current value suitable for all of the plurality of storage battery modules 11.
  • each of the plurality of characteristic information is a maximum discharge current value that can be output by the storage battery module 11 during discharge ( 1st maximum discharge current value).
  • the processing unit 33 selects the minimum discharge current value among the plurality of maximum discharge current values acquired by the characteristic information acquisition unit 31 as the discharge limit value.
  • the storage battery management device 30 can select a discharge current value suitable for all of the plurality of storage battery modules 11.
  • the storage battery management device 30 according to the tenth aspect of the present invention is further provided with a current value acquisition unit 35 in the storage battery management device 30 according to the eighth aspect.
  • the current value acquisition unit 35 supplies the maximum charge current value (second maximum charge current value) that can be input to each of the plurality of storage battery modules 11 when the power supply control device 40 charges the plurality of storage battery modules 11. Get from.
  • the processing unit 33 selects a smaller current value as a control condition from the selected charging limit value and the maximum charging current value.
  • the storage battery management device 30 can set an optimal current value when charging the plurality of storage battery modules 11.
  • the storage battery management device 30 of the eleventh aspect according to the present invention is further provided with a current value acquisition unit 35 in the storage battery management apparatus 30 of the ninth aspect.
  • the current value acquisition unit 35 supplies a maximum discharge current value (second maximum discharge current value) that can be input from each of the plurality of storage battery modules 11 when the power supply control apparatus 40 discharges the plurality of storage battery modules 11. Get from 40.
  • the processing unit 33 selects a small current value as a control condition from the selected discharge limit value and the maximum discharge current value.
  • the storage battery management device 30 can set an optimal current value when discharging the plurality of storage battery modules 11.
  • a control device 20 includes the storage battery management device 30 according to any one of the first to eleventh aspects and a power supply control device 40.
  • the power supply control device 40 receives the control condition from the storage battery management device 30, the power supply control device 40 controls the storage battery module 11 based on the control condition.
  • control device 20 can reduce the setting work of information related to control such as charging.
  • the storage battery module 11 includes the storage battery 12, a storage unit 14 storing characteristic information for at least one of charging and discharging, and the storage battery management apparatus that manages the characteristic information. Is provided.
  • the storage battery module 11 can cause the storage battery management device 30 to perform control such as charging under appropriate conditions even when the operator forgets the information setting operation.
  • the storage unit 14 stores a plurality of characteristic information.
  • Each of the plurality of characteristic information is a value related to the determination of full charge, and is a voltage value according to the operating environment.
  • the storage battery module 11 further includes a determination unit 16 that determines one voltage value from a plurality of voltage values stored in the storage unit 14 according to the operating environment.
  • the output unit 15 outputs the voltage value determined by the determination unit 16.
  • the storage battery module 11 can output an optimum voltage value at full charge according to the operating environment.
  • the operating environment is the battery temperature of the storage battery module 11.
  • the determination unit 16 determines one voltage value corresponding to the battery temperature among the plurality of voltage values stored in the storage unit 14.
  • the storage battery module 11 can output an optimum voltage value at full charge according to the battery temperature.
  • the storage battery management method includes characteristic information acquisition processing and notification processing.
  • the characteristic information acquisition process acquires characteristic information from the storage battery module 11.
  • the notification process notifies the power supply control device 40 that controls at least one of charging and discharging of the storage battery module 11 of the control condition based on the characteristic information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 充電等の制御に関する情報の設定作業を軽減することのできる蓄電池管理装置を提供する。蓄電池管理装置(30)は、蓄電池モジュール(11)から特性情報を取得する特性情報取得部(31)と、蓄電池モジュール(11)の充電および放電の少なくとも一方に対する制御を行う電源制御装置(40)に、特性情報に基づいた制御条件を通知する通知部(34)とを備えることを特徴とする。これにより、蓄電池管理装置(30)は、作業者が情報の設定作業を忘れた場合であっても適切な条件で充電等の制御を行うことができる。

Description

蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法
 本発明は、一般に蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法であって、より詳細には蓄電池モジュールの充電または放電を管理する蓄電池管理装置、制御装置、蓄電池モジュールおよび蓄電池管理方法に関する。
 従来、リチウムイオン二次電池(以下、蓄電池という)の充電を行う際に、電池の温度に応じて充電電圧を制御する充電回路が存在する(特許文献1参照)。
 特許文献1に記載された充電回路は、電源回路と制御回路とを備えている。制御回路は、蓄電池の温度に応じた電圧(閾値電圧)を記憶している記憶部を備え、温度検出回路で検出された温度に応じた閾値電圧を記憶部から取得している。そして、電源回路は、制御回路が取得した閾値電圧に基づいて、蓄電池の充電を制御している。
 蓄電池モジュールは、充放電を繰り返すことで、その性能が低下するため、ある時点で、新しい蓄電池モジュールに交換する必要がある。交換前の蓄電池モジュールと交換後の蓄電池モジュールとにおいて、交換前の蓄電池モジュールに対する閾値電圧と、交換後の蓄電池モジュールに対する閾値電圧とが異なる場合がある。
 上述したように、特許文献1の充電回路では、制御回路が閾値電圧を予め記憶している。そのため、交換後の蓄電池モジュールに対して適正な充電を行うために、制御回路に記憶されている閾値電圧を、交換後の蓄電池モジュールに対する閾値電圧へと設定を変更する必要がある。このとき、作業者が閾値電圧の再設定を忘れる可能性がある。
特開2009-22078号公報
 そこで、本発明は、上記事由に鑑みてなされており、その目的は、作業者が情報の設定作業を忘れた場合であっても適切な条件で充電等の制御を行うことのできる蓄電池管理装置、制御装置、蓄電池モジュールおよび蓄電池管理方法を提供することにある。
 本発明の一態様である蓄電池管理装置は、蓄電池モジュールから特性情報を取得する特性情報取得部と、前記蓄電池モジュールの充電および放電の少なくとも一方に対する制御を行う電源制御装置に、前記特性情報に基づいた制御条件を通知する通知部とを備える。
 また、本発明の一態様である制御装置は、上述した蓄電池管理装置と、前記電源制御装置とを備え、前記電源制御装置は、前記制御条件を前記蓄電池管理装置から受け取ると、前記制御条件に基づいて前記蓄電池モジュールに対する制御を行う。
 また、本発明の一態様である蓄電池モジュールは、蓄電池と、充電および放電の少なくとも一方に対する特性情報を記憶している記憶部と、前記特性情報を管理する蓄電池管理装置へ前記特性情報を出力する出力部とを備える。
 また、本発明の一態様である蓄電池管理方法は、蓄電池モジュールから特性情報を取得する特性情報取得処理と、前記蓄電池モジュールの充電および放電の少なくとも一方に対する制御を行う電源制御装置に、前記特性情報に基づいた制御条件を通知する通知処理とを含む。
 上述した蓄電池管理装置、制御装置、蓄電池モジュールおよび蓄電池管理方法によると、作業者が情報の設定作業を忘れた場合であっても適切な条件で充電等の制御を行うことができる。
実施形態1における蓄電システムの構成を説明する図である。 同上の蓄電システムにおける蓄電池管理装置の動作を説明する流れ図である。 同上の蓄電システムの変形例1の構成を説明する図である。 同上の蓄電システムの変形例1における蓄電池管理装置が制御条件として最小充電電流値を決定する動作を説明する流れ図である。 同上の蓄電システムの変形例1における蓄電池管理装置が制御条件として最小放電電流値を決定する動作を説明する流れ図である。 実施形態2における蓄電システムの構成を説明する図である。 同上の蓄電システムにおける蓄電池モジュールの構成を説明する図である。 同上の蓄電システムにおける蓄電池モジュールの動作を説明する流れ図である。 同上の蓄電システムにおける蓄電池管理装置の動作を説明する流れ図である。 同上の蓄電システムの変形例1における蓄電システムの構成を説明する図である。 同上の蓄電システムの変形例1における蓄電池モジュールが特性情報として充電電流値を決定する動作を説明する流れ図である。 同上の蓄電システムの変形例1における蓄電池モジュールが特性情報として放電電流値を決定する動作を説明する流れ図である。
 1 実施形態1
 以下、本実施形態における蓄電システム1について説明する。
 本実施形態における蓄電システム1は、図1に示すように、複数の蓄電池モジュール11からなる蓄電池システム10と、制御装置20とを備える。蓄電システム1は、複数の蓄電池モジュール11のそれぞれが記憶する特性情報を用いて、制御装置20が複数の蓄電池モジュール11のそれぞれの充電および放電の少なくとも一方を制御するシステムである。
 蓄電池モジュール11は、当該蓄電池モジュール11の特性を表す特性情報を、制御装置20に出力する。本実施形態では、特性情報は、充電および放電の少なくとも一方に関する情報である。
 制御装置20は、各蓄電池モジュール11の充電および放電の少なくとも一方の制御を行う。制御装置20は、複数の蓄電池モジュール11のそれぞれから特性情報を取得すると、取得した特性情報に基づいた制御条件を選択する。制御装置20は、選択した制御条件に基づいて、蓄電池モジュール11の充電および放電の少なくとも一方を制御する。以下、制御条件が充電に関する条件である場合について説明する。
 (蓄電池モジュール11)
 複数の蓄電池モジュール11のそれぞれは、図1に示すように、蓄電池12と温度センサ13と記憶部14と出力部15とを備える。本実施形態では、複数の蓄電池モジュール11は、仕様上、同一種類、同一性能である。
 蓄電池12は、例えばリチウムイオン電池である。
 温度センサ13は、蓄電池12の電池温度(環境情報)を計測し、その結果を制御装置20へ出力する。
 記憶部14は、電池温度が第1温度範囲に属する場合における満充電の電圧値と、電池温度が第2温度範囲に属する場合における満充電の電圧値とを記憶している。ここで、第1温度範囲とは、電池温度が所定の閾値より高くなる範囲であり、蓄電池モジュール11の性能が仕様上制限されることなく通常通りに発揮される範囲である。以下、第1温度範囲に属する場合の満充電の電圧値を通常電圧値という。また、第2温度範囲とは、温度が所定の閾値以下となる範囲であり、蓄電池モジュール11の性能が仕様上制限された状態で発揮される範囲である。以下、第2温度範囲に属する場合の満充電の電圧値を制限電圧値という。記憶部14は、具体的には、通常電圧値に第1温度範囲を、制限電圧値に第2温度範囲を、それぞれ対応付けて記憶している。また、本実施形態では、制限電圧値は、通常電圧値よりも小さい値である。これにより、電池温度が所定の閾値以下である場合には、通常時(電池温度が所定の閾値より高い場合)での充電と比べて充電された電力量が小さくなり、長寿命化を図ることができる。また、上述したように、複数の蓄電池モジュール11は、仕様上、同一種類、同一性能である。そのため、複数の蓄電池モジュール11のそれぞれの記憶部14で記憶される通常電圧値は、各蓄電池モジュール11について同一であり、制限電圧値も各蓄電池モジュール11について同一である。
 出力部15は、特性情報を、制御装置20へ引き渡す(出力する)。本実施形態では、特性情報は、通常電圧値と第1温度範囲との組からなる第1満充電条件および制限電圧値と第2温度範囲との組からなる第2満充電条件を含む情報である。
 なお、複数の蓄電池モジュール11は、複数の蓄電池モジュール11に含まれる蓄電池12のそれぞれを直列接続することで、電気的に接続されている。
 (制御装置20)
 制御装置20は、例えばパワーコンディショナであり、図1に示すように、蓄電池管理装置30と電源制御装置40とを備える。
 蓄電池管理装置30は、特性情報を管理する装置である。本実施形態では、特性情報は、蓄電池モジュール11の充電および放電の少なくとも一方に関する情報である。蓄電池管理装置30は、複数の蓄電池モジュール11から特性情報を取得し、これら特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する。蓄電池管理装置30は、図1に示すように、特性情報取得部31、判別情報取得部32、処理部33および通知部34を備える。蓄電池管理装置30は、プロセッサやコンピュータで読み取りが可能なメモリを有しており、蓄電池管理装置30の各機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。このプログラムは、インターネットのような電気通信回線を通して提供されるか、あるいは、コンピュータで読み取りが可能な記録媒体により提供される。
 特性情報取得部31は、充電開始時に、複数の蓄電池モジュール11から第1満充電条件および第2満充電条件を含む特性情報を取得する。
 判別情報取得部32は、充電開始時に、複数の蓄電池モジュール11の制御条件(本実施形態では、充電を制御するための条件)を選択するための判別情報を取得する。具体的には、判別情報取得部32は、複数の蓄電池モジュール11(蓄電池12)のそれぞれの電池温度を、対応する温度センサ13から判別情報として取得する。
 処理部33は、特性情報取得部31で取得した各特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する。具体的には、処理部33は、判別情報取得部32で取得した各判別情報を用いて、複数の蓄電池モジュール11のそれぞれに対して、第1満充電条件および第2満充電条件のうち何れかの満充電条件(適合条件)を選択することで複数の満充電条件(適合条件)を取得する。処理部33は、取得した複数の満充電条件(適合条件)のうち、最も低い電圧値を含む満充電条件(適合条件)を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件に含まれる電圧値に基づいて各蓄電池モジュール11(蓄電池12)に対する制御を電源制御装置に行わせるために、当該制御条件を電源制御装置40へ通知する。
 電源制御装置40は、太陽電池50の発電電力を用いて、各蓄電池モジュール11(蓄電池12)を充電する装置である。電源制御装置40は、蓄電池管理装置30から通知された制御条件に基づいて、各蓄電池モジュール11(蓄電池12)に対して充電および放電の少なくとも一方の制御を行う。例えば、電源制御装置40は、制御条件(満充電条件)を蓄電池管理装置30から受け取る。電源制御装置40は、各蓄電池モジュール11の満充電時の電圧値が、受け取った満充電条件で表される電圧値となるように、太陽電池50の発電電力を用いて各蓄電池モジュール11の充電を行う。具体的には、電源制御装置40は、各蓄電池モジュール11の充電時に、各蓄電池モジュール11の電圧値を計測し、計測した電圧値が満充電条件で表される電圧値と一致する場合には充電を中止する。
 また、電源制御装置40は、各蓄電池モジュール11および太陽電池50のうち少なくとも一方の電力を交流に変換し、施設内に設けられた負荷51に電力を供給する。電源制御装置40は、各蓄電池モジュール11の電力を用いて負荷51に電力を供給する場合には、各蓄電池モジュール11の放電制御を行う。
 なお、電源制御装置40は、プロセッサやメモリを有しており、電源制御装置40の各機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。このプログラムは、インターネットのような電気通信回線を通して提供されるか、あるいは、コンピュータで読み取りが可能な記録媒体により提供される。
 次に、蓄電池管理装置30が制御条件を決定する動作について、図2に示す流れ図を用いて説明する。
 蓄電池管理装置30の特性情報取得部31は、複数の蓄電池モジュール11から特性情報を取得する(ステップS5)。具体的には、特性情報取得部31は、各蓄電池モジュール11から、第1満充電条件および第2満充電条件を含む特性情報を取得する。蓄電池管理装置30の判別情報取得部32は、複数の蓄電池モジュール11(蓄電池12)の電池温度(判別条件)を、複数の温度センサ13から取得する(ステップS10)。
 蓄電池管理装置30の処理部33は、特性情報取得部31で取得された各特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する選択処理を行う(ステップS15)。例えば、処理部33は、複数の蓄電池モジュール11のそれぞれについて、当該蓄電池モジュール11から取得した特性情報に含まれる第1満充電条件および第2満充電条件のうち、当該蓄電池モジュールから取得した電池温度に応じた満充電条件(適合条件)を選択する。具体的には、処理部33は、電池温度が所定の閾値より高い場合には第1満充電条件を選択し、電池温度が所定の閾値以下である場合には第2満充電条件を選択する。処理部33は、複数の蓄電池モジュール11のすべてに対して満充電条件(適合条件)の選択を行うことで、複数の満充電条件(適合条件)を取得する。処理部33は、取得した複数の満充電条件(適合条件)が第1満充電条件である場合には、当該第1満充電条件を制御条件として選択する。複数の蓄電池モジュール11のうち少なくとも1つの蓄電池モジュール11について第2満充電条件が選択されると、処理部33は、第2満充電条件を制御条件として選択する。
 蓄電池管理装置30の通知部34は、処理部33で選択された制御条件(満充電条件)を電源制御装置40へ通知する(ステップS20)。電源制御装置40は、通知部34で通知された制御条件(満充電条件)に含まれる電圧値に基づいて、各蓄電池モジュール11の満充電時の電圧を制御する。
 本実施形態では、蓄電池システム10は、複数の蓄電池モジュール11で構成されるとしたが、これに限定されない。蓄電池システム10は、少なくとも1つの蓄電池モジュール11で構成されていればよい。例えば、蓄電池システム10が1つの蓄電池モジュール11で構成されている場合、蓄電池管理装置30は、この1つの蓄電池モジュール11から特性情報を取得し、取得した特性情報を用いて、この蓄電池モジュール11に適合する制御条件を選択する。特性情報が第1満充電条件および第2満充電条件を含んでいる場合、蓄電池管理装置30は、電池温度が所定の閾値より高いときには、この1つの蓄電池モジュール11から取得した第1満充電条件に含まれる電圧値を制御条件とする。電池温度が所定の閾値以下であるときには、蓄電池管理装置30は、この1つの蓄電池モジュール11から取得した第2満充電条件に含まれる電圧値を制御条件とする。
 また、本実施形態の蓄電池管理装置30は、充電開始時に、特性情報および判別情報を取得するとしたが、これに限定されない。蓄電池管理装置30は、所定の周期(例えば3時間ごと)に、特性情報および判別情報を取得してもよい。なお、この数値は一例であって、これらの数値に限定する趣旨ではない。
 本実施形態の蓄電池モジュール11の記憶部14は、2種類の電圧値(通常電圧値、制限電圧値)を記憶しているとしたが、これに限定されない。蓄電池モジュール11の記憶部14は、複数種類の電圧値を記憶してもよい。複数種類の電圧値には、互いに異なる複数の温度範囲が1対1に対応付けられている。出力部15は、電圧値と当該電圧値に対応付けられた温度範囲となる複数の組を含む特性情報を蓄電池管理装置30へ出力する。蓄電池管理装置30は、特性情報に含まれる各電圧値のうち判別情報取得部32が取得した電池温度に応じた電圧値を選択する。
 また、複数の蓄電池モジュール11は、仕様上、同一種類、同一性能であるとしたが、これに限定されない。複数の蓄電池モジュール11において、異なる種類、性能が混在してもよい。この場合、複数の種類ごとに、通常電圧値および制限電圧値は異なる。蓄電池管理装置30の処理部33は、複数の蓄電池モジュール11のそれぞれから第1満充電条件を選択した場合には、選択した第1満充電条件のうち最も低い電圧値を含む第1満充電条件を制御条件として選択する。処理部33は、複数の蓄電池モジュール11のうち少なくとも1つの蓄電池モジュール11について第2満充電条件を選択すると、選択した第2満充電条件のうち最も低い電圧値を含む第2満充電条件を制御条件として選択する。
 また、複数の蓄電池12は、直列接続されるとしたが、並列接続であってもよいし、直列接続および並列接続が混在した接続であってもよい。
 なお、本実施形態では、満充電の条件として電圧値を用いたが、これに限定されない。満充電の条件として蓄電池モジュール11の充電率(SOC:State of Charge)を用いてもよい。例えば、蓄電池モジュール11の記憶部14は、第1温度範囲と充電率「100%」とからなる組と、第2温度範囲と充電率「80%」とからなる組とを記憶している。出力部15は、これら組を含む特性情報を蓄電池管理装置30に出力する。蓄電池管理装置30は、複数の蓄電池モジュール11のそれぞれの電池温度が第1温度範囲に属する場合、充電率として100%を選択する。少なくとも1つの蓄電池モジュール11の電池温度が第2温度範囲に属している場合、蓄電池管理装置30の処理部33は、充電率として80%を選択する。このとき、複数の蓄電池モジュール11のそれぞれは、蓄電池12の充電率を計測する計測回路を備えている。電源制御装置40は、複数の蓄電池モジュール11のそれぞれの計測回路で計測された結果を基に、蓄電池管理装置30で選択された充電率となるように各蓄電池モジュール11の充電の制御を行う。
 2 実施形態1の変形例1
 ここでは、満充電条件を制御条件とするのではなく、充電電流値および放電電流値のすくなくとも一方を制御条件として用いる。ここで、充電電流値とは、各蓄電池モジュール11を充電する際に、電源制御装置40が各蓄電池モジュール11に入力する電流の値である。また、放電電流値とは、各蓄電池モジュール11を放電する際に、電源制御装置40が各蓄電池モジュール11から入力される電流の値である。
 以下、実施形態1とは異なる点を中心に説明する。なお、本変形例では、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本変形例の蓄電システム1は、図3に示すように、蓄電池システム10と制御装置20とを備える。
 蓄電池システム10は、図3に示すように、複数の蓄電池モジュール11を備え、各蓄電池モジュール11は、蓄電池12と記憶部14と出力部15とを備える。記憶部14は、充電時に入力される最大の電流の値(最大充電電流値、以下「第1最大充電電流値」)と、放電時に出力される最大電流の値(最大放電電流値、以下「第1最大放電電流値」)とを記憶している。出力部15は、記憶部14で記憶されている第1最大充電電流値および第1最大放電電流値を、それぞれ特性情報として蓄電池管理装置30へ出力する。なお、複数の蓄電池モジュール11は、複数の蓄電池12を直列接続することで、電気的に接続されている。
 制御装置20は、図3に示すように、蓄電池管理装置30と電源制御装置40とを備える。蓄電池管理装置30は、図3に示すように、特性情報取得部31、処理部33、通知部34および電流値取得部35を備える。
 特性情報取得部31は、制御装置20の起動時に各蓄電池モジュール11から、充電電流値および放電電流値をそれぞれ特性情報として取得する。
 電流値取得部35は、電源制御装置40が各蓄電池モジュール11の充電を制御する際に、各蓄電池モジュール11に対して出力可能な最大電流の値(最大充電電流値、以下「第2最大充電電流値」)を、制御装置20の起動時に電源制御装置40から取得する。また、電流値取得部35は、電源制御装置40が各蓄電池モジュール11の放電を制御する際に、各蓄電池モジュール11から入力可能な最大電流の値(最大放電電流値、以下「第2最大放電電流値」)を、電源制御装置40から取得する。
 処理部33は、特性情報取得部31で取得された第1最大充電電流値および第1最大放電電流値の少なくとも一方を用いて、複数の蓄電池モジュールに対して適合する制御条件を選択する。例えば、処理部33は、特性情報取得部31が第1最大充電電流値を各蓄電池モジュール11から取得すると、取得した各第1最大充電電流値のうち最小の電流値(充電制限値)を選択する。処理部33は、選択した充電制限値と、電流値取得部35が取得した第2最大充電電流値とのうち小さい電流値(充電制御用電流値)を制御条件として選択する。また、処理部33は、特性情報取得部31が第1最大放電電流値を各蓄電池モジュール11から取得すると、取得した各第1最大放電電流値のうち最小の電流値(放電制限値)を選択する。処理部33は、選択した放電制限値と、電流値取得部35が取得した第2最大放電電流値とのうち小さい電流値(放電制御用電流値)を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件(充電制御用電流値または放電制御用電流値)を電源制御装置40へ通知する。
 電源制御装置40は、制御条件が充電制御用電流値である場合には、充電制御用電流値に基づいて各蓄電池モジュール11(蓄電池12)の充電に対する制御を行う。電源制御装置40は、制御条件が放電制御用電流値である場合には、放電制御用電流値に基づいて各蓄電池モジュール11(蓄電池12)の放電に対する制御を行う。
 次に、本変形例の蓄電池管理装置30が制御条件を決定する動作について、図4、図5に示す流れ図を用いて説明する。
 本変形例の蓄電池管理装置30が制御条件として充電制御用電流値を決定する動作を、図4に示す流れ図を用いて説明する。
 特性情報取得部31は、複数の蓄電池モジュール11から第1最大充電電流値を特性情報として取得する(ステップS50)。電流値取得部35は、第2最大充電電流値を、電源制御装置40から取得する(ステップS55)。
 処理部33は、特性情報取得部31で取得された各特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する選択処理を行う(ステップS60)。具体的には、処理部33は、各第1最大充電電流値のうち最小の電流値(充電制限値)と、第2最大充電電流値とのうち小さい電流値(充電制御用電流値)を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件(充電制御用電流値)を、電源制御装置40へ通知する(ステップS65)。電源制御装置40は、通知部34で通知された制御条件(充電制御用電流値)に基づいて、各蓄電池モジュール11に充電時に入力される電流を制御する。
 次に、本変形例の蓄電池管理装置30が制御条件として放電制御用電流値を決定する動作を、図5に示す流れ図を用いて説明する。
 特性情報取得部31は、複数の蓄電池モジュール11から第1最大放電電流値を特性情報として取得する(ステップS100)。電流値取得部35は、第2最大放電電流値を、電源制御装置40から取得する(ステップS105)。
 処理部33は、特性情報取得部31で取得された各特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する選択処理を行う(ステップS110)。具体的には、処理部33は、各第1最大放電電流値のうち最小の電流値(放電制限値)と、第2最大放電電流値とのうち小さい電流値(放電制御用電流値)を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件(放電制御用電流値)を、電源制御装置40へ通知する(ステップS115)。電源制御装置40は、通知部34で通知された制御条件(放電制御用電流値)に基づいて、各蓄電池モジュール11が放電時に出力する電流を制御する。
 なお、本変形例の蓄電池管理装置30は、上述した判別情報取得部32を備えていない構成となっているが、これに限定されない。本変形例の蓄電池管理装置30は、判別情報取得部32を備え、蓄電池モジュール11が温度センサ13を備えていてもよい。この場合、制御装置20は、満充電条件に基づいた充電の制御、充放電に関する電流値に基づいた充放電の制御の双方を行うこととなる。満充電条件に基づいた充電の制御については、既に説明しているので、ここでの説明は省略する。
 また、本変形例の蓄電池システム10は、複数の蓄電池モジュール11で構成されるとしたが、これに限定されない。蓄電池システム10は、少なくとも1つの蓄電池モジュール11で構成されていればよい。例えば、蓄電池システム10が1つの蓄電池モジュール11で構成されている場合、蓄電池管理装置30は、この1つの蓄電池モジュール11から特性情報を取得し、取得した特性情報を用いて、この蓄電池モジュール11に適合する制御条件を選択する。特性情報が、充電電流値である場合には、蓄電池管理装置30は、この1つの蓄電池モジュール11から取得した第1最大充電電流値と、第2最大充電電流値とのうち小さい電流値を制御条件として選択する。さらに、特性情報が、放電電流値である場合には、蓄電池管理装置30は、この蓄電池モジュール11から取得した第1最大放電電流値と、第2最大放電電流値とのうち小さい電流値を制御条件として選択する。
 また、本変形例の蓄電池管理装置30が、複数の第1最大充電電流値と、第2最大充電電流値とを用いて、充電制御用電流値を選択したが、これに限定されない。蓄電池管理装置30は、複数の第1最大充電電流値から充電制御用電流値を選択してもよい。この場合、電源制御装置40は、充電制御用電流値と、自身が記憶している最大充電電流値とを比較して、値が小さい電流値を選択し、選択した電流値を用いて各蓄電池モジュール11の充電を制御する。また、蓄電池管理装置30は、各第1最大放電電流値から放電制御用電流値を選択してもよい。この場合、電源制御装置40は、放電制御用電流値と、自身が記憶している最大放電電流値とを比較して、値が小さい電流値を選択し、選択した電流値を用いて各蓄電池モジュール11の放電を制御する。
 3 実施形態1の変形例2
 実施形態1では、蓄電池管理装置30は、電池温度に応じて満充電の電圧値を選択するとしているが、これに限定されない。蓄電池管理装置30は、電池温度に応じて満充電の電圧値を選択する機能の他、設定された制御モードに応じて、満充電の電圧値を選択してもよい。
 電源制御装置40は、各蓄電池モジュール11の充電を制御するために、複数の制御モードのうち1つの制御モードが設定されている。ここで、複数の制御モードとして、通常モード、長寿命モード、自立モード等がある。通常モードとは、各蓄電池モジュール11の電池温度に関係なく、蓄電池モジュール11に充電される電力量を制限することなく、常に100%の電力量を充電するためのモードである。長寿命モードとは、蓄電池モジュール11の長寿命化を図るために、充電される電力量を制限するモードである。例えば、長寿命モードでは、充電される電力量の上限が制限される。自立モードとは、通常モードと長寿命モードとの両立を図るためのモードであり、実施形態1で説明したように、電池温度に応じて満充電の電圧値を選択する。
 蓄電池管理装置30は、充電開始時に、制御モードとして設定されているモードを判別する。蓄電池管理装置30は、制御モードが通常モードである場合には、上述した通常電圧値を制御情報として選択する。蓄電池管理装置30は、制御モードが長寿命モードである場合には、上述した制限電圧値を制御情報として選択する。制御モードが自立モードである場合には、実施形態1と同様であるので、ここでの説明は省略する。なお、制御モードが長寿命モードである場合、蓄電池管理装置30は、制限電圧値を制御情報としたが、これに限定されない。蓄電池管理装置30は、制御情報として、通常電圧値より低い電圧値を選択してもよい。
 また、本変形例では、蓄電池モジュール11は、通常モードで用いられる電圧値を第3満充電条件とし、長寿命モードで用いられる電圧値を第4満充電条件として、特性情報にさらに含めて、蓄電池管理装置30に出力する。
 4 実施形態2
 実施形態1では、各蓄電池モジュール11は複数の満充電条件(第1満充電条件、第2満充電条件)を蓄電池管理装置30へ出力したが、本実施形態では、各蓄電池モジュール11は1つの満充電条件を蓄電池管理装置30へ出力する点が異なる。
 以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本実施形態の蓄電システム1は、図6に示すように、複数の蓄電池モジュール11からなる蓄電池システム10と、制御装置20とを備える。
 本実施形態の蓄電池モジュール11のそれぞれは、自身の電池温度に応じた情報であって当該蓄電池モジュール11の特性を表す特性情報を制御装置20に出力する。
 本実施形態の制御装置20は、複数の蓄電池モジュール11から特性情報を取得すると、取得した特性情報から蓄電池モジュール11に対して適合する制御条件を選択する。制御装置20は、選択した制御条件に基づいて、各蓄電池モジュール11の充電および放電の少なくとも一方を制御する。以下、制御条件が充電に関する条件である場合について説明する。
 (蓄電池モジュール11)
 複数の蓄電池モジュール11のそれぞれは、図7に示すように、蓄電池12、温度センサ13、記憶部14、出力部15および決定部16を備えている。蓄電池モジュール11は、プロセッサやメモリを有しており、蓄電池モジュール11の決定部16の機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。このプログラムは、インターネットのような電気通信回線を通して提供されるか、あるいは、コンピュータで読み取りが可能な記録媒体により提供される。
 決定部16は、蓄電池管理装置30へ送信すべき満充電条件を決定する。具体的には、決定部16は、温度センサ13で計測された電池温度が所定の閾値より高いか否かを判断する。決定部16は、電池温度が所定の閾値より高いと判断する場合には通常電圧値を満充電条件と決定し、電池温度が所定の閾値以下であると判断する場合には制限電圧値を満充電条件と決定する。
 出力部15は、満充電条件を特性情報として出力する。具体的には、出力部15は、蓄電池管理装置30へ送信すべき満充電条件が決定部16で決定される度に、決定された満充電条件を、特性情報として制御装置20へ出力する。
 なお、複数の蓄電池モジュール11は、実施形態1と同様に、各蓄電池12を直列接続することで、電気的に接続されている。
 (制御装置20)
 制御装置20は、外部からの電力、例えば太陽電池50の発電電力を用いて、各蓄電池モジュール11を充電するパワーコンディショナであり、図6に示すように、蓄電池管理装置30と電源制御装置40とを備える。
 蓄電池管理装置30は、図6に示すように、特性情報取得部31、処理部33および通知部34を備える。蓄電池管理装置30は、プロセッサやメモリを有しており、蓄電池管理装置30の各機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。このプログラムは、インターネットのような電気通信回線を通して提供されるか、あるいは、コンピュータで読み取りが可能な記録媒体により提供される。
 特性情報取得部31は、充電開始時に、各蓄電池モジュール11から満充電条件である特性情報を取得する。
 処理部33は、特性情報取得部31で取得された複数の特性情報を用いて、複数の蓄電池モジュールに対して適合する制御条件を選択する。具体的には、処理部33は、蓄電池モジュール11ごとに出力された特性情報(満充電条件)のそれぞれで表される電圧値のうち最も低い電圧値を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件に基づいて各蓄電池モジュール11に対する制御を行うために、制御条件を電源制御装置40へ通知する。
 本実施形態の電源制御装置40の機能については、実施形態1と同様であるので、ここでの説明は省略する。
 次に、蓄電池モジュール11が蓄電池管理装置30へ出力すべき特性情報を決定する動作と、蓄電池管理装置30が制御条件を決定する動作とについて、図8及び図9に示す流れ図を用いて説明する。
 図8は、蓄電池モジュール11が蓄電池管理装置30へ出力すべき特性情報を決定する動作を説明する流れ図である。
 蓄電池モジュール11の決定部16は、蓄電池管理装置30へ送信すべき満充電条件を決定する(ステップS150)。具体的には、決定部16は、温度センサ13で計測された電池温度が所定の閾値より高い場合には、通常電圧値を満充電条件と決定し、電池温度が所定の閾値以下である場合には制限電圧値を満充電条件と決定する。出力部15は、決定部16で決定された満充電条件を、特性情報として制御装置20へ出力する(ステップS155)。
 図9は、蓄電池管理装置30が制御条件を決定する動作を説明する流れ図である。
 蓄電池管理装置30の特性情報取得部31は、複数の蓄電池モジュール11から特性情報を取得する(ステップS200)。蓄電池管理装置30の処理部33は、特性情報取得部31で取得された各特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する選択処理を行う(ステップS205)。具体的には、処理部33は、各特性情報(満充電条件)のそれぞれで表される電圧値のうち最も低い電圧値を制御条件として選択する。蓄電池管理装置30の通知部34は、処理部33で選択された制御条件を、電源制御装置40へ通知する(ステップS210)。電源制御装置40は、通知部34で通知された制御条件に基づいて、各蓄電池モジュール11の満充電時の電圧を制御する。
 本実施形態の蓄電池管理装置30は、充電開始時に、特性情報を取得するとしたが、これに限定されない。実施形態1と同様に、本実施形態の蓄電池管理装置30は、所定の周期(例えば3時間ごと)に、特性情報を取得してもよい。なお、この数値は一例であって、これらの数値に限定する趣旨ではない。
 また、複数の蓄電池12は、直列接続されるとしたが、並列接続であってもよいし、直列接続および並列接続が混在した接続であってもよい。
 なお、本実施形態では、満充電の条件として電圧値を用いたが、これに限定されない。満充電の条件として充電率(SOC)を用いてもよい。例えば、決定部16は、温度センサ13で計測された電池温度が所定の閾値より高い場合には、充電率を100%と決定する。電池温度が所定の閾値以下である場合には、決定部16は、充電率を80%と決定する。蓄電池管理装置30は、複数の蓄電池モジュール11のそれぞれで決定された充電率のうち、最も低い充電率を選択し、電源制御装置40へ通知する。このとき、複数の蓄電池モジュール11のそれぞれは、蓄電池12の充電率を計測する計測回路を備えている。電源制御装置40は、複数の蓄電池モジュール11のそれぞれの計測回路で計測された結果を基に、蓄電池管理装置30から通知された充電率となるように、各蓄電池モジュール11の充電の制御を行う。
 5 実施形態2の変形例1
 ここでは、実施形態1の変形例1と同様に、充電電流値および放電電流値の少なくとも一方を制御条件として用いる。以下、実施形態2とは異なる点を中心に説明する。なお、本変形例では、実施形態2と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本変形例の蓄電システム1は、図10に示すように、複数の蓄電池モジュール11からなる蓄電池システム10と制御装置20とを備える。
 各蓄電池モジュール11は、蓄電池12、温度センサ13、記憶部14、出力部15および決定部16を備えている(図7参照)。蓄電池モジュール11は、プロセッサやメモリを有しており、蓄電池モジュール11の決定部16の機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。このプログラムは、インターネットのような電気通信回線を通して提供されるか、あるいは、コンピュータで読み取りが可能な記録媒体により提供される。
 記憶部14は、電池温度が所定の閾値より高い場合における最大充電電流値(第1充電電流値)および最大放電電流値(第1放電電流値)を記憶している。記憶部14は、さらに、電池温度が所定の閾値以下である場合における最大充電電流値(第2充電電流値)および最大放電電流値(第2放電電流値)を記憶している。
 決定部16は、蓄電池管理装置30へ送信すべき特性情報を決定する。具体的には、決定部16は、温度センサ13で計測された電池温度が所定の閾値より高いか否かを判断する。決定部16は、電池温度が所定の閾値より高いと判断する場合には、第1充電電流値および第1放電電流値を記憶部14から取得する。決定部16は、電池温度が所定の閾値以下であると判断する場合には、第2充電電流値および第2放電電流値を記憶部14から取得する。なお、第1充電電流値および第2充電電流値を区別する必要がない場合には、これらを総称して第1最大充電電流値という。また、第1放電電流値および第2放電電流値を区別する必要がない場合には、これらを総称して第1最大放電電流値という。
 出力部15は、決定部16で取得された第1最大充電電流値および第1最大放電電流値のそれぞれを、特性情報として制御装置20へ出力する。
 次に、本変形例の制御装置20について説明する。
 制御装置20は、図10に示すように、蓄電池管理装置30と電源制御装置40とを備える。蓄電池管理装置30は、図10に示すように、特性情報取得部31、処理部33、通知部34および電流値取得部35を備える。
 特性情報取得部31は、各蓄電池モジュール11から出力された充電電流値および放電電流値を、それぞれ特性情報として取得する。
 電流値取得部35は、電源制御装置40が各蓄電池モジュール11の充電を制御する際の第2最大充電電流値を電源制御装置40から取得する。また、電流値取得部35は、電源制御装置40が各蓄電池モジュール11の放電を制御する際の第2最大放電電流値を電源制御装置40から取得する。
 処理部33は、各蓄電池モジュール11の充電を制御する場合には、特性情報取得部31で取得された第1最大充電電流値を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する。処理部33は、各蓄電池モジュール11の放電を制御する場合には、特性情報取得部31で取得された第1最大放電電流値を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する。例えば、処理部33は、各第1最大充電電流値のうち最小の電流値(充電制限値)を選択し、選択した充電制限値と、第2最大充電電流値とのうち小さい電流値(充電制御用電流値)を制御条件として選択する。また、処理部33は、各第1最大放電電流値のうち最小の放電電流値(放電制限値)を選択し、選択した放電制限値と第2最大放電電流値とのうち小さい電流値(放電制御用電流値)を制御条件として選択する。
 通知部34は、処理部33で選択された制御条件に基づいて各蓄電池モジュール11に対する制御を行うために、制御条件を電源制御装置40へ通知する。
 電源制御装置40は、制御条件が充電制御用電流値である場合、制御条件で表される電流値に基づいて各蓄電池モジュール11の充電に対する制御を行う。電源制御装置40は、制御条件が放電制御用電流値である場合、制御条件で表される電流値に基づいて各蓄電池モジュール11の放電に対する制御を行う。
 次に、本変形例の各蓄電池モジュール11が蓄電池管理装置30へ出力すべき特性情報を決定する動作について、図11および図12に示す流れ図を用いて説明する。なお、本変形例の蓄電池管理装置30が制御条件を決定する動作について、上述した図4、図5のそれぞれに示す動作により実現できるため、ここでの説明は省略する。
 先ず、充電電流値を特性情報として決定する動作を、図11に示す流れ図を用いて説明する。
 蓄電池モジュール11の決定部16は、蓄電池管理装置30へ送信すべき第1最大充電電流値を決定する(ステップS250)。具体的には、決定部16は、温度センサ13で測定された電池温度が所定の閾値より高い場合には、第1充電電流値を、送信すべき第1最大充電電流値として決定する。決定部16は、電池温度が所定の閾値以下である場合には、第2充電電流値を、送信すべき第1最大充電電流値として決定する。
 出力部15は、決定部16で決定された第1最大充電電流値を、特性情報として制御装置20へ出力する(ステップS255)。
 次に、放電電流値を特性情報として決定する動作を、図12に示す流れ図を用いて説明する。
 蓄電池モジュール11の決定部16は、蓄電池管理装置30へ送信すべき第1最大放電電流値を決定する(ステップS300)。具体的には、決定部16は、温度センサ13で計測された電池温度が所定の閾値より高い場合には、第1放電電流値を、送信すべき第1最大放電電流値として決定する。決定部16は、電池温度が所定の閾値以下である場合には、第2放電電流値を、送信すべき第1最大放電電流値として決定する。
 出力部15は、決定部16で決定された第1最大放電電流値を、特性情報として制御装置20へ出力する(ステップS305)。
 本変形例の蓄電池管理装置30は、実施形態1の変形例1で説明したように、複数の第1最大充電電流値から充電制御用電流値を、複数の第1最大放電電流値から放電制御用電流値を、それぞれ選択してもよい。この場合の電源制御装置40は、実施形態1の変形例2で説明した電源制御装置40と同様であるので、ここでの説明は省略する。
 6 実施形態2の変形例2
 実施形態2では、各蓄電池モジュール11は、電池温度に応じて決定された満充電条件を特性情報として、蓄電池管理装置30へ出力したが、これに限定されない。各蓄電池モジュール11は、特性情報に電池温度に応じて決定された満充電条件を含める他、実施形態1の変形例2で説明したように、通常モードおよび長寿命モードのそれぞれに応じた満充電時の電圧値を含めてもよい。
 この場合、本変形例の蓄電池管理装置30は、実施形態1の変形例2と同様に、制御モードが通常モードである場合には、例えば通常電圧値を制御情報として選択する。蓄電池管理装置30は、制御モードが長寿命モードである場合には、例えば制限電圧値を制御情報として選択する。制御モードが自立モードである場合には、実施形態2と同様であるので、ここでの説明は省略する。なお、制御モードが長寿命モードである場合、蓄電池管理装置30は、制限電圧値を制御情報としたが、これに限定されない。蓄電池管理装置30は、制御情報として、通常電圧値より低い電圧値を選択してもよい。
 また、本変形例では、蓄電池モジュール11は、通常モードで用いられる電圧値、および長寿命モードで用いられる電圧値を、特性情報にさらに含めて、蓄電池管理装置30に出力する。
 7 その他の変形例
 以上、各実施形態に基づいて本発明について説明したが、本発明は上述した実施形態および変形例に限られない。例えば、以下のような変形例が考えられる。
 (1)上記各実施形態において、電源制御装置40は、太陽電池50の発電電力を用いて、各蓄電池モジュール11を充電したが、これに限定されない。
 電源制御装置40は、太陽電池50以外の電力、例えば風力、水力、地熱などの自然エネルギーを用いて発電された電力、または商用電源から得られる商用電力を用いて、各蓄電池モジュール11を充電してもよい。
 (2)上記各実施形態において、各蓄電池モジュール11が温度センサ13を備えるとしたが、これに限定されない。蓄電池システム10が、1つの温度センサ13を備えていてもよい。この場合、蓄電池管理装置30は、1つの温度センサ13から取得した電池温度を、蓄電池モジュール11(蓄電池12)のそれぞれの温度とする。
 (3)上記実施形態および変形例を組み合わせてもよい。
 8 まとめ
 以上述べた各実施形態から明らかなように、本発明に係る第1の態様の蓄電池管理装置30は、特性情報取得部31と通知部34とを備える。特性情報取得部31は、蓄電池モジュール11から特性情報を取得する。通知部34は、蓄電池モジュール11の充電および放電の少なくとも一方に対する制御を行う電源制御装置40に、特性情報に基づいた制御条件を通知する。
 この構成によると、蓄電池管理装置30は、蓄電池モジュール11から特性情報を取得し、特性情報に基づいた制御条件を電源制御装置40へ通知している。そのため、蓄電池管理装置30は、作業者が情報の設定作業を忘れた場合であっても適切な条件(制御条件)で充電等の制御を行うことができる。
 また、電源制御装置40は複数の蓄電池モジュール11に対して制御を行っている。本発明に係る第2の態様の蓄電池管理装置30では、第1の態様の蓄電池管理装置30において、特性情報取得部31は、複数の蓄電池モジュール11のそれぞれから特性情報を取得する。蓄電池管理装置30は、さらに、特性情報取得部31が取得した複数の特性情報を用いて、複数の蓄電池モジュール11に対して適合する制御条件を選択する処理部33を備える。
 この構成によると、蓄電池管理装置30は、作業者が情報の設定作業を忘れた場合であっても複数の蓄電池モジュール11に対して適切な条件(制御条件)で充電等の制御を行うことができる。
 本発明に係る第3の態様の蓄電池管理装置30では、第2の態様の蓄電池管理装置30において、複数の特性情報のそれぞれは、満充電の判定に関する複数の満充電条件を含んでいる。蓄電池管理装置30は、さらに、複数の特性情報のそれぞれに対して、複数の満充電条件から1つの満充電条件を選択するための判別情報を取得する判別情報取得部32を備えている。処理部33は、複数の蓄電池モジュール11のそれぞれに対して、当該蓄電池モジュール11に対応する判別情報を用いて複数の満充電条件のうち1つの満充電条件を適合条件として選択することで複数の適合条件を取得する。処理部33は、取得した複数の適合条件のうち複数の蓄電池モジュール11に対して適合する1つの適合条件を、制御条件として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11に対して適合する満充電の判定に関する満充電条件を設定することができる。蓄電池管理装置30は、判別条件を用いて選択した各満充電条件のうち、最も厳しい条件を制御条件として選択することで、複数の蓄電池モジュール11のすべてに対して充電の制御を行うことができる。
 本発明に係る第4の態様の蓄電池管理装置30では、第3の態様の蓄電池管理装置30において、判別情報は、蓄電池モジュール11の動作環境に関する動作環境情報である。複数の満充電条件のそれぞれは、蓄電池モジュール11の動作環境に応じた満充電時の電圧値である。処理部33は、複数の蓄電池モジュール11のそれぞれに対して、当該蓄電池モジュール11に対応する動作環境情報を用いて複数の満充電条件のうち1つの満充電条件を適合条件として選択することで複数の適合条件を取得する。処理部33は、取得した複数の適合条件のうち、最も低い電圧値を表す満充電条件である1つの適合条件を制御条件として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11に対して適合する満充電時の電圧値を設定することができる。
 本発明に係る第5の態様の蓄電池管理装置30では、第4の態様の蓄電池管理装置30において、動作環境情報は、蓄電池モジュール11の電池温度である。判別情報取得部32は、複数の蓄電池モジュール11ごとに電池温度を取得する。処理部33は、複数の蓄電池モジュール11のそれぞれについて、当該蓄電池モジュール11の電池温度に応じた満充電条件を適合条件として選択することで、複数の適合条件を取得する。
 この構成によると、蓄電池管理装置30は、蓄電池モジュール11ごとに、電池温度に応じた満充電条件を選択している。そのため、蓄電池管理装置30は、各蓄電池モジュール11の電池温度を取得したときでの各蓄電池モジュール対して最適な電圧値を選択することができる。
 本発明に係る第6の態様の蓄電池管理装置30では、第2の態様の蓄電池管理装置30において、複数の特性情報のそれぞれは、蓄電池モジュール11の満充電の判定に関する満充電条件を表す。処理部33は、複数の満充電条件のうち、複数の蓄電池モジュール11に対して適合する1つの満充電条件を制御条件として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11に対して適合する満充電の判定に関する満充電条件を設定することができる。
 本発明に係る第7の態様の蓄電池管理装置30では、第6の態様の蓄電池管理装置30において、複数の満充電条件のそれぞれは、満充電時の電圧値を表す条件である。処理部33は、特性情報取得部31で取得された複数の満充電条件のうち、最も低い電圧値を表す満充電条件を選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11のすべてに対して適合する満充電時の電圧値を設定することができる。
 本発明に係る第8の態様の蓄電池管理装置30では、第2の態様の蓄電池管理装置30において、複数の特性情報のそれぞれは、充電の際に蓄電池モジュール11で入力可能な最大充電電流値(第1最大充電電流値)を表す。処理部33は、特性情報取得部31で取得した複数の最大充電電流値のうち、最小の充電電流値を充電制限値として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11のすべてに対して適合する充電電流値を選択することができる。
 本発明に係る第9の態様の蓄電池管理装置30では、第2の態様の蓄電池管理装置30において、複数の特性情報のそれぞれは、放電の際に蓄電池モジュール11で出力可能な最大放電電流値(第1最大放電電流値)を表す。処理部33は、特性情報取得部31で取得した複数の最大放電電流値のうち、最小の放電電流値を放電制限値として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11のすべてに対して適合する放電電流値を選択することができる。
 本発明に係る第10の態様の蓄電池管理装置30は、第8の態様の蓄電池管理装置30において、さらに、電流値取得部35を備える。電流値取得部35は、電源制御装置40が複数の蓄電池モジュール11の充電の際に複数の蓄電池モジュール11のそれぞれに入力可能な最大充電電流値(第2最大充電電流値)を、電源制御装置から取得する。処理部33は、選択した充電制限値と最大充電電流値とのうち小さい電流値を制御条件として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11の充電時に最適な電流値を設定することができる。
 本発明に係る第11の態様の蓄電池管理装置30は、第9の態様の蓄電池管理装置30において、さらに、電流値取得部35を備える。電流値取得部35は、電源制御装置40が複数の蓄電池モジュール11の放電の際に複数の蓄電池モジュール11のそれぞれから入力可能な最大放電電流値(第2最大放電電流値)を、電源制御装置40から取得する。処理部33は、選択した放電制限値と最大放電電流値とのうち小さい電流値を制御条件として選択する。
 この構成によると、蓄電池管理装置30は、複数の蓄電池モジュール11の放電時に最適な電流値を設定することができる。
 本発明に係る第12の態様の制御装置20は、第1~第11の態様のいずれかの蓄電池管理装置30と、電源制御装置40とを備える。電源制御装置40は、制御条件を蓄電池管理装置30から受け取ると、制御条件に基づいて蓄電池モジュール11に対する制御を行う。
 この構成によると、制御装置20は、充電等の制御に関する情報の設定作業を軽減することができる。
 本発明に係る第13の態様の蓄電池モジュール11は、蓄電池12と、充電および放電の少なくとも一方に対する特性情報を記憶している記憶部14と、前記特性情報を管理する蓄電池管理装置へ前記特性情報を出力する出力部15とを備える。
 この構成によると、蓄電池モジュール11は、作業者が情報の設定作業を忘れた場合であっても適切な条件で充電等の制御を蓄電池管理装置30に行わせることができる。
 本発明に係る第14の態様の蓄電池モジュール11では、第13の態様の蓄電池モジュール11において、記憶部14は、特性情報を複数記憶している。複数の特性情報のそれぞれは、満充電の判定に関する値であって動作環境に応じた電圧値である。蓄電池モジュール11は、動作環境に応じて、記憶部14で記憶している複数の電圧値から1つの電圧値を決定する決定部16を、さらに備える。出力部15は、決定部16で決定された電圧値を出力する。
 この構成によると、蓄電池モジュール11は、動作環境に応じた最適な満充電時の電圧値を出力することができる。
 本発明に係る第15の態様の蓄電池モジュール11では、第14の態様の蓄電池モジュール11において、動作環境は、蓄電池モジュール11の電池温度である。決定部16は、記憶部14で記憶している複数の電圧値のうち電池温度に応じた1つの電圧値を決定する。
 この構成によると、蓄電池モジュール11は、電池温度に応じた最適な満充電時の電圧値を出力することができる。
 本発明に係る第15の態様の蓄電池管理方法は、特性情報取得処理と、通知処理とを含む。特性情報取得処理は、蓄電池モジュール11から特性情報を取得する。通知処理は、蓄電池モジュール11の充電および放電の少なくとも一方に対する制御を行う電源制御装置40に、特性情報に基づいた制御条件を通知する。
 この蓄電池管理方法によると、充電等の制御に関する情報の設定作業を軽減することができる。
   11  蓄電池モジュール
   12  蓄電池
   14  記憶部
   15  出力部
   16  決定部
   30  蓄電池管理装置
   31  特性情報取得部
   32  判別情報取得部
   33  処理部
   34  通知部
   35  電流値取得部
   40  電源制御装置

Claims (16)

  1.  蓄電池モジュールから特性情報を取得する特性情報取得部と、
     前記蓄電池モジュールの充電および放電の少なくとも一方に対する制御を行う電源制御装置に、前記特性情報に基づいた制御条件を通知する通知部とを
     備えることを特徴とする蓄電池管理装置。
  2.  前記電源制御装置は、複数の蓄電池モジュールに対して前記制御を行い、
     前記特性情報取得部は、前記複数の蓄電池モジュールのそれぞれから前記特性情報を取得し、
     さらに、前記特性情報取得部が取得した複数の特性情報を用いて、前記複数の蓄電池モジュールに対して適合する制御条件を選択する処理部を備える
     ことを特徴とする請求項1に記載の蓄電池管理装置。
  3.  前記複数の特性情報のそれぞれは、満充電の判定に関する複数の満充電条件を含み、
     さらに、前記複数の特性情報のそれぞれに対して、前記複数の満充電条件から1つの満充電条件を選択するための判別情報を取得する判別情報取得部を備え、
     前記処理部は、前記複数の蓄電池モジュールのそれぞれに対して、当該蓄電池モジュールに対応する前記判別情報を用いて前記複数の満充電条件のうち1つの満充電条件を適合条件として選択することで複数の適合条件を取得し、取得した前記複数の適合条件のうち前記複数の蓄電池モジュールに対して適合する1つの適合条件を、前記制御条件として選択する
     ことを特徴とする請求項2に記載の蓄電池管理装置。
  4.  前記判別情報は、蓄電池モジュールの動作環境に関する動作環境情報であり、
     前記複数の満充電条件のそれぞれは、蓄電池モジュールの動作環境に応じた満充電時の電圧値であり、
     前記処理部は、前記複数の蓄電池モジュールのそれぞれに対して、当該蓄電池モジュールに対応する前記動作環境情報を用いて前記複数の満充電条件のうち1つの満充電条件を前記適合条件として選択することで前記複数の適合条件を取得し、取得した前記複数の適合条件のうち、最も低い電圧値を表す満充電条件である1つの適合条件を前記制御条件として選択する
     ことを特徴とする請求項3に記載の蓄電池管理装置。
  5.  前記動作環境情報は、蓄電池モジュールの電池温度であり、
     前記判別情報取得部は、前記複数の蓄電池モジュールごとに電池温度を前記動作環境情報として取得し、
     前記処理部は、前記複数の蓄電池モジュールのそれぞれについて、当該蓄電池モジュールの電池温度に応じた前記適合条件を選択することで前記複数の適合条件を取得する
     ことを特徴とする請求項4に記載の蓄電池管理装置。
  6.  前記複数の特性情報のそれぞれは、蓄電池モジュールの満充電の判定に関する満充電条件を表し、
     前記処理部は、複数の満充電条件のうち、前記複数の蓄電池モジュールに対して適合する1つの満充電条件を前記制御条件として選択する
     ことを特徴とする請求項2に記載の蓄電池管理装置。
  7.  前記複数の満充電条件のそれぞれは、満充電時の電圧値を表す条件であり、
     前記処理部は、前記特性情報取得部で取得された複数の満充電条件のうち、最も低い電圧値を表す満充電条件を選択する
     ことを特徴とする請求項6に記載の蓄電池管理装置。
  8.  前記複数の特性情報のそれぞれは、充電の際に蓄電池モジュールで入力可能な最大充電電流値を表し、
     前記処理部は、前記特性情報取得部で取得した複数の最大充電電流値のうち、最小の充電電流値を充電制限値として選択する
     ことを特徴とする請求項2に記載の蓄電池管理装置。
  9.  前記複数の特性情報のそれぞれは、放電の際に蓄電池モジュールで出力可能な最大放電電流値を表し、
     前記処理部は、前記特性情報取得部で取得した複数の放電電流値のうち、最小の放電電流値を放電制限値として選択する
     ことを特徴とする請求項2に記載の蓄電池管理装置。
  10.  さらに、前記電源制御装置が前記複数の蓄電池モジュールの充電の際に前記複数の蓄電池モジュールのそれぞれに入力可能な最大充電電流値を、前記電源制御装置から取得する電流値取得部を備え、
     前記処理部は、選択した前記充電制限値と前記最大充電電流値とのうち小さい電流値を前記制御条件として選択する
     ことを特徴とする請求項8に記載の蓄電池管理装置。
  11.  さらに、前記電源制御装置が前記複数の蓄電池モジュールの放電の際に前記複数の蓄電池モジュールのそれぞれから入力可能な最大放電電流値を、前記電源制御装置から取得する電流値取得部を備え、
     前記処理部は、選択した前記放電制限値と前記最大放電電流値とのうち小さい電流値を前記制御条件として選択する
     ことを特徴とする請求項9に記載の蓄電池管理装置。
  12.  請求項1~11のいずれかに記載の蓄電池管理装置と、前記電源制御装置とを備え、
     前記電源制御装置は、前記制御条件を前記蓄電池管理装置から受け取ると、前記制御条件に基づいて前記蓄電池モジュールに対する制御を行う
     ことを特徴とする制御装置。
  13.  蓄電池と、
     充電および放電の少なくとも一方に対する特性情報を記憶している記憶部と、
     前記特性情報を管理する蓄電池管理装置へ前記特性情報を出力する出力部とを
     備える蓄電池モジュール。
  14.  前記記憶部は、複数の特性情報を記憶しており、
     前記複数の特性情報のそれぞれは、満充電の判定に関する値であって動作環境に応じた電圧値であり、
     前記動作環境に応じて、前記記憶部で記憶している複数の電圧値から1つの電圧値を決定する決定部を、さらに備え、
     前記出力部は、前記決定部で決定された前記電圧値を出力する
     ことを特徴とする請求項13に記載の蓄電池モジュール。
  15.  前記動作環境は、蓄電池モジュールの電池温度であり、
     前記決定部は、前記記憶部で記憶している複数の電圧値のうち前記電池温度に応じた1つの電圧値を決定する
     ことを特徴とする請求項14に記載の蓄電池モジュール。
  16.  蓄電池モジュールから特性情報を取得する特性情報取得処理と、
     前記蓄電池モジュールの充電および放電の少なくとも一方に対する制御を行う電源制御装置に、前記特性情報に基づいた制御条件を通知する通知処理とを
     含むことを特徴とする蓄電池管理方法。
PCT/JP2016/001498 2015-03-26 2016-03-16 蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法 WO2016152100A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016238069A AU2016238069C1 (en) 2015-03-26 2016-03-16 Storage battery management device, control device, storage battery module, and storage battery management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065023 2015-03-26
JP2015065023A JP2016185044A (ja) 2015-03-26 2015-03-26 蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法

Publications (1)

Publication Number Publication Date
WO2016152100A1 true WO2016152100A1 (ja) 2016-09-29

Family

ID=56979068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001498 WO2016152100A1 (ja) 2015-03-26 2016-03-16 蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法

Country Status (3)

Country Link
JP (1) JP2016185044A (ja)
AU (1) AU2016238069C1 (ja)
WO (1) WO2016152100A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201991A2 (en) 2020-02-10 2021-10-07 Wisk Aero Llc Aircarft with pusher propeller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044946A (ja) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd 組電池の充電方法
JP2011113759A (ja) * 2009-11-25 2011-06-09 Diamond Electric Mfg Co Ltd バッテリー管理装置とバッテリー管理方法
JP2016073009A (ja) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 蓄電システムおよび制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044946A (ja) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd 組電池の充電方法
JP2011113759A (ja) * 2009-11-25 2011-06-09 Diamond Electric Mfg Co Ltd バッテリー管理装置とバッテリー管理方法
JP2016073009A (ja) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 蓄電システムおよび制御装置

Also Published As

Publication number Publication date
JP2016185044A (ja) 2016-10-20
AU2016238069C1 (en) 2019-06-20
AU2016238069B2 (en) 2019-01-17
AU2016238069A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5857247B2 (ja) 電力管理システム
EP3078073B1 (en) Device and method for controlling a plurality of cells of a battery
JP5838313B2 (ja) 蓄電池充放電制御装置および蓄電池充放電制御方法
KR102286780B1 (ko) 이차전지 충전 방법
US10505375B2 (en) Method for controlling an energy storage system
WO2012050014A1 (ja) 電力管理システム
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
JP2008134060A (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
JP2006311798A (ja) バッテリの充電器
JP2013236492A (ja) 電池モジュール、及び電池管理システム
JP2011053097A (ja) 放電管理回路、及び電池パック
WO2012049955A1 (ja) 電力管理システム
JP2012088086A (ja) 電力管理システム
WO2016152100A1 (ja) 蓄電池管理装置、制御装置、蓄電池モジュール、および蓄電池管理方法
JP2012023849A (ja) 二次電池の充電方法および充電装置
KR20180049545A (ko) 멀티 충전이 가능한 배터리팩과 배터리팩 확장성을 고려한 에너지 저장 시스템
JP2017147898A (ja) 蓄電装置及びマイクロバッテリ
JP2019198169A (ja) ニッケル亜鉛電池の制御方法
WO2012049973A1 (ja) 電力管理システム
WO2012043133A1 (ja) 蓄電池充放電制御装置および蓄電池充放電制御方法
KR20180049543A (ko) 배터리팩 확장성을 고려한 에너지 저장 시스템 및 그 제어 방법
JP7064266B2 (ja) 蓄電制御装置、蓄電制御方法、および蓄電制御プログラム
JP3913206B2 (ja) 二次電池の劣化判定回路
JP2020137131A (ja) 蓄電池システム
JP6984460B2 (ja) 蓄電制御装置、蓄電制御方法、および蓄電制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016238069

Country of ref document: AU

Date of ref document: 20160316

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768007

Country of ref document: EP

Kind code of ref document: A1