WO2016151970A1 - プラズマ発生方法及び殺菌水生成方法 - Google Patents

プラズマ発生方法及び殺菌水生成方法 Download PDF

Info

Publication number
WO2016151970A1
WO2016151970A1 PCT/JP2015/086329 JP2015086329W WO2016151970A1 WO 2016151970 A1 WO2016151970 A1 WO 2016151970A1 JP 2015086329 W JP2015086329 W JP 2015086329W WO 2016151970 A1 WO2016151970 A1 WO 2016151970A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma
generation method
pulse
input energy
Prior art date
Application number
PCT/JP2015/086329
Other languages
English (en)
French (fr)
Inventor
横山貴士
丹下正次
清水秀樹
山田和成
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2017507344A priority Critical patent/JPWO2016151970A1/ja
Priority to CN201580077983.1A priority patent/CN107409464A/zh
Priority to EP15886522.0A priority patent/EP3282819A4/en
Publication of WO2016151970A1 publication Critical patent/WO2016151970A1/ja
Priority to US15/707,062 priority patent/US20180002199A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • C02F2209/235O3 in the gas phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the present invention relates to a plasma generation method and a sterilizing water generation method using the plasma generation method.
  • Japanese Patent No. 4608513 does not discuss the degree of generation of active species (for example, active species as a bactericidal substance) generated by the generated plasma and the concentration of other substances.
  • the ozone concentration is regulated to a certain value or less, but it is difficult to adjust the ozone concentration because an alternating voltage is applied between the electrodes to generate ions. There's a problem. There is also a problem that it is difficult to adjust the concentration of nitrogen oxides.
  • the present invention has been made in consideration of such problems, and the degree of generation of active species generated by plasma can be easily adjusted, and the concentrations of ozone and nitrogen oxides can be set low.
  • An object is to provide a plasma generation method.
  • a voltage is applied between the first electrode and the second electrode to which gas is supplied to generate plasma between the first electrode and the second electrode.
  • a plasma generation method for generating active species in the plasma wherein a pulsed voltage is repeatedly applied between the first electrode and the second electrode, and an input energy necessary for generating the plasma is obtained. 1.8 W / cm 3 or more and 8.5 W / cm 3 or less.
  • the gas may be air.
  • the input energy may be set by adjusting any one or more of the pulse width, peak voltage, and pulse frequency of the pulse voltage.
  • the input energy by adjusting the pulse width to 50 to 5000 nsec, the peak voltage to 15 to 35 kV, and the pulse frequency to 0.5 to 50 kHz.
  • the input energy is set to such a magnitude that the concentration of ozone in the plasma is 50 ppm or less and the concentration of nitrogen oxide is 1000 ppm or less.
  • At least one of the first electrode and the second electrode is integrated with ceramics, but both may be metal.
  • the sterilizing water generating method generates a plasma between the first electrode and the second electrode by applying a voltage between the first electrode and the second electrode to which gas is supplied.
  • a sterilizing water generating method for generating sterilizing water by supplying plasma generated using a plasma generating method for generating active species in the plasma to water, wherein the first electrode and the second electrode A pulsed voltage is repeatedly applied between them, and an input energy necessary for generating the plasma is set to 1.8 W / cm 3 or more and 8.5 W / cm 3 or less.
  • the main sterilizing agent of the sterilizing water is preferably the active species dissolved in the water from the plasma.
  • the concentration in water is preferably 5 ppm or less for ozone and 80 mg / L or less for the total of nitrate nitrogen and nitrite nitrogen.
  • the generation of active species generated by plasma can be easily adjusted, and the concentrations of ozone and nitrogen oxide can be set low.
  • an active species in an amount proportional to the input energy can be obtained.
  • a high sterilizing power can be obtained by using an active species in an amount proportional to the input energy as a sterilizing agent. Moreover, it can be sterilized with almost no harm to the use environment, components, and the like.
  • FIG. 1A is a plan view showing an essential part of an electrode structure used in the plasma generation method according to the present embodiment as viewed from above, and FIG. 1B is a perspective view thereof.
  • 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1A, and FIG. 2B is an enlarged view showing a part of the first electrode (second electrode).
  • It is a graph which shows the change of the generation
  • 4A is a waveform diagram showing an example of a rectangular pulse voltage waveform
  • FIG. 4B is a waveform diagram showing an example of a triangular pulse voltage waveform.
  • FIG. 5 is a configuration diagram showing an outline of an experimental apparatus used in the first to fourth embodiments.
  • FIG. 7A is a diagram showing the configuration of the discharge electrode portion in the experimental apparatus as viewed from the front, and FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A.
  • It is a circuit diagram which shows the structure of the pulse power supply in an experimental apparatus.
  • It is a wave form diagram which shows the pulse voltage waveform and electric current waveform which are produced
  • the plasma generation method according to the present embodiment uses, for example, the electrode structure 10 shown in FIGS. 1A and 1B.
  • the electrode structure 10 includes a plurality of rod-shaped first electrodes 12A that extend in the first direction (y direction) and are arranged in a second direction (x direction) orthogonal to the first direction, and a second direction (x direction). ) And a plurality of rod-shaped second electrodes 12B arranged in the first direction (y direction).
  • the first electrode 12 ⁇ / b> A and the second electrode 12 ⁇ / b> B each have a rod-shaped conductor 14 and a ceramic 16 that covers the conductor 14.
  • the diameter of the conductor 14 is preferably 10 to 1000 ⁇ m, and the thickness of the ceramic 16 is preferably 10 to 500 ⁇ m.
  • copper, iron, tungsten, stainless steel, platinum, etc. can be used as the conductor 14.
  • As the ceramic 16, alumina, silica, titania, zirconia, or the like can be used.
  • the electrode structure 10 has a plurality of first electrodes 12A and a plurality of second electrodes 12B facing each other, and is viewed from the gas flow direction with respect to the electrode structure 10.
  • the first electrode 12A and the second electrode 12B are held in a positional relationship (twisted positional relationship).
  • pulse voltage Pv a pulsed voltage
  • plasma atmospheric plasma
  • FIG. 2A the intersecting portion becomes a plasma generation site 18.
  • the generated plasma travels in a direction away from the second electrode 12B along the gas flow.
  • active species are generated, and ozone and nitrogen oxides are generated.
  • FIG. 3 shows changes in the generation amount of active species and the concentrations of ozone and nitrogen oxide with respect to the input energy necessary for generating plasma.
  • the characteristics of active species are indicated by solid lines
  • the characteristics of ozone are indicated by alternate long and short dash lines
  • the characteristics of nitrogen oxides are indicated by broken lines.
  • the ozone concentration increases steeply as the input energy increases, reaches a peak at the initial stage of the input energy, and decreases sharply thereafter.
  • the concentration of nitrogen oxides increases gradually as the input energy increases, and increases steeply from the time when the ozone concentration gradually decreases.
  • the input energy is set as follows.
  • A The ozone concentration generated in the plasma is set to a magnitude that is equal to or less than the generation amount of active species. In FIG. 3, this is the range indicated by Za.
  • B The concentration of nitrogen oxides generated in the plasma is set to a magnitude that is equal to or less than the amount of active species generated. In FIG. 3, this is the range indicated by Zb.
  • C Both the concentration of ozone generated in the plasma and the concentration of nitrogen oxides are set to a level that is equal to or less than the generation amount of active species. In FIG. 3, this is the range indicated by Zc.
  • the input energy may be set to a size at which ozone generated in the plasma is decomposed by the plasma gas temperature.
  • the input energy is set to such a magnitude that the concentration of ozone generated in the plasma is 50 ppm or less and the concentration of nitrogen oxide is 1000 ppm or less.
  • the pulse voltage Pv is repeatedly applied between the first electrode 12A and the second electrode 12B, it is preferable to set the input energy as described above as follows.
  • examples of the waveform of the pulse voltage Pv include a rectangular shape (see FIG. 4A), a triangular shape (see FIG. 4B), and the like. Therefore, the input energy is set by adjusting one or more of the frequency of the pulse voltage Pv (1 / pulse period Ta), the peak voltage Vm of the pulse voltage Pv, and the voltage width (pulse width W) of the pulse voltage Pv. To do.
  • the half width is given as the pulse width W.
  • the input energy is set by adjusting the pulse width W to 50 to 5000 nsec, the peak voltage Vm to 15 to 35 kV, and the pulse frequency (1 / Ta) to 0.5 to 50 kHz.
  • the pulse voltage Pv since the pulse voltage Pv is repeatedly applied between the first electrode 12A and the second electrode 12B, electrons in a high energy state are generated, and plasma can be generated at a low temperature. it can. Further, since the input energy can be set by adjusting any one or more of the pulse frequency (1 / Ta), peak voltage Vm, and voltage width (pulse width W) of the pulse voltage Pv, the plasma generation site 18 (see FIG. 2A) can be easily controlled. That is, the input energy can be easily adjusted so that ozone in the plasma generated in the atmosphere (atmospheric plasma) is decomposed at the gas temperature and reaches and maintains a gas temperature range where almost no nitrogen oxides are generated. Can do.
  • This sterilizing water generation method uses the plasma generation method described above. Specifically, as shown in FIG. 5, the electrode structure 10 is disposed so as to introduce plasma generated between the first electrode 12 ⁇ / b> A and the second electrode 12 ⁇ / b> B into the water 20.
  • gas atmosphere
  • Pv pulse voltage between the first electrode 12A and the second electrode 12B
  • plasma is generated at the intersection (plasma generation site 18) of the first electrode 12A and the second electrode 12B.
  • the plasma instantaneously enters the water 20 along the gas flow, and bubbles containing the plasma are generated in the water 20. That is, the plasma is dissolved in the water 20.
  • an active species in an amount proportional to the input energy can be used as a sterilizing agent, and sterilizing water having a high sterilizing effect can be generated.
  • Tap water may be used as the water 20.
  • the experimental apparatus 50 includes a plasma processing apparatus 52, a hot plate 54, and an exhaust gas measuring unit 56.
  • the exhaust gas measuring unit 56 includes an ozone measuring device 58 that measures ozone in the exhaust gas and a NOx measuring device 60 that measures nitrogen oxide (hereinafter referred to as NOx) in the exhaust gas.
  • a NOx measuring instrument 60 an ozone monitor EG-700EIII manufactured by Sugawara Jitsugyo Co., Ltd. was used, and as the NOx measuring instrument 60, NOA-7000 manufactured by Shimadzu Corporation was used.
  • a processing object 62 to be sterilized or sterilized is placed on a hot plate 54 as a heating or heat retaining means.
  • the hot plate 54 keeps the temperature of the processing object 62 at a temperature higher than room temperature.
  • a heater may be used in place of the hot plate 54.
  • the plasma processing apparatus 52 is installed on a pulse power source 64 that generates a high voltage pulse, a reactor 66 that generates plasma by applying a high voltage pulse from the pulse power source 64, and a hot plate 54 that is separated from the reactor 66.
  • the processing unit 68 includes a cylindrical pipe 70 that connects the reactor 66 and the processing unit 68.
  • the pipe 70 is installed between the reactor 66 and the processing unit 68 so that air does not enter the fluid (fluid containing active species) that passes through the reactor 66.
  • the pipe 70 and the processing unit 68 may be manufactured integrally with resin (for example, acrylic), or may be manufactured separately and the pipe 70 and the processing unit 68 may be coupled to each other.
  • the processing unit 68 has, for example, a dome shape with an opening on the lower surface, and is installed on the hot plate 54 so as to cover the processing object 62 placed on the hot plate 54.
  • An exhaust hole 72 is provided on the side surface of the processing unit 68.
  • a conduit 74 is connected from the exhaust hole 72 of the processing unit 68 to the ozone measuring instrument 58 and the NOx measuring instrument 60.
  • the conduit 74 is bifurcated from the middle, of which the first conduit 74 a is connected to the ozone meter 58 and the second conduit 74 b is connected to the NOx meter 60.
  • the reactor 66 includes a first electrode 12A and a second electrode 12B (see FIGS. 7A and 7B), and the first electrode 12A and the second electrode 12B are connected based on the supply of a high voltage pulse from the pulse power source 64.
  • the discharge electrode portion 76 includes six first electrodes 12A that extend in the first direction (y direction) and are arranged in a second direction (x direction) orthogonal to the first direction, There are six second electrodes 12B extending in the second direction and arranged in the first direction, and a case 80 for holding the first electrode 12A and the second electrode 12B in a predetermined positional relationship.
  • the case 80 has a circular through hole 82 in the center, and the first electrode 12A and the second electrode 12B are exposed through the through hole 82.
  • the through hole 82 has a diameter Da (see FIG. 7B) of 30 mm.
  • the first electrode 12A and the second electrode 12B each have a rod-shaped conductor 14 and a ceramic 16 covering the conductor 14 as shown in FIG. 7B.
  • the diameter Db of the first electrode 12A and the second electrode 12B is 1 mm.
  • the distance d1 between the first electrodes 12A and the distance d2 between the second electrodes 12B are 2 mm (see FIG. 7A).
  • the gap g between the first electrode 12A and the second electrode 12B is 4 mm (see FIG. 7B).
  • the pulse power source 64 includes a pulse generator 84 that applies a pulse voltage Pv between the first electrode 12A and the second electrode 12B (see FIG. 6), and the first electrode 12A and the second electrode. And a pulse control unit 86 for controlling the pulse generation unit 84 so as to generate a discharge between 12B.
  • the pulse generation unit 84 includes a pulse generation circuit 88 and a magnetic pulse compression circuit 90.
  • the pulse generation circuit 88 includes a DC power source 92, a transformer 94 that stores inductive energy, a MOSFET (metal oxide semiconductor field effect transistor) 100 that opens and closes a DC supply path 98 to the primary winding 96 of the transformer 94, and SI. And a thyristor 102.
  • the pulse generation circuit 88 is connected in parallel to the resistor 106 connected to the bias applying path 104 to the gate of the SI thyristor 102 and the resistor 106, and current flows into the gate of the SI thyristor 102.
  • a diode 108 that suppresses and allows current to flow out of the gate of the SI thyristor 102.
  • the magnetic pulse compression circuit 90 includes a diode 112 that regulates an output current flowing in the secondary winding 110 of the transformer 94 in one direction, a reset circuit 116 that includes a saturable reactor 114 connected in series to the diode 112, and a reset circuit.
  • Capacitor 118 connected in parallel with secondary winding 110 at the front stage of 116, and resistor 120 connected in parallel with secondary winding 110 at the rear stage of reset circuit 116.
  • a discharge electrode portion 76 is connected between the output terminals on the secondary side.
  • the pulse control unit 86 includes a drive circuit 122 that drives the MOSFET 100.
  • the SI thyristor 102 and the MOSFET 100 are inserted in series in the supply path 98 so as to close the supply path 98 when turned on and open the supply path 98 when turned off.
  • One end 124a of the primary winding 96 is connected to the positive electrode of the DC power source 92
  • the anode of the SI thyristor 102 is connected to the other end 124b of the primary winding 96
  • the cathode of the SI thyristor 102 is connected to the drain of the MOSFET 100
  • the MOSFET 100 Are connected to the negative electrode of the DC power source 92.
  • the gate of the SI thyristor 102 is connected to one end 124 a of the primary winding 96 through a parallel circuit of the diode 108 and the resistor 106 by the bias applying path 104.
  • the cathode of the diode 108 is connected to one end 124 a of the primary winding 96, and the anode of the diode 108 is connected to the gate of the SI thyristor 102.
  • the gate of the SI thyristor 102 is negatively biased by the induced electromotive force generated in the primary winding 96, and the SI thyristor 102 is also turned off at high speed.
  • the supply path 98 is opened at high speed.
  • an induced electromotive force is generated in the secondary winding 110 due to mutual induction, and the voltage V at the time of rise between the secondary winding 110 and the first electrode 12A and the second electrode 12B.
  • a pulse voltage Pv having a remarkably large time increase rate dV / dt is output.
  • pulse power supply 64 The more detailed operation principle of the pulse power supply 64 is described in, for example, Katsuji Iida, Ken Sakuma: “Ultra-short pulse generation circuit (IES circuit) using SI thyristors”, SI Device Symposium Proceedings (2002).
  • the pulse width of the pulse voltage Pv can be adjusted by changing the inductance of the saturable reactor 114, the capacitance value of the capacitor 118, and the resistance value of the resistor 120 of the magnetic pulse compression circuit 90.
  • the peak voltage of the pulse voltage Pv can be adjusted by changing the cutoff current value of the SI thyristor 102.
  • the pulse frequency of the pulse voltage Pv can be adjusted by changing the switching frequency of the drive circuit 122.
  • FIG. 9 shows a waveform of the pulse voltage Pv when the peak voltage of the pulse voltage Pv is 14 kV and the pulse width is 500 nsec.
  • the plasma treatment time was 20 minutes.
  • Sample 1 was adjusted to a pulse width of 50 nsec, a peak voltage of 15 kV, a pulse frequency of 1 kHz, and a power of 5 W. That is, the input energy (power / discharge volume) was 1.8 W / cm 3 .
  • sample 2 In sample 2, the pulse width was 500 nsec, the peak voltage was 21 kV, the pulse frequency was adjusted to 1 kHz, and the power was 13 W. That is, the input energy was 4.6 W / cm 3 .
  • Sample 3 was adjusted to a pulse width of 5000 nsec, a peak voltage of 35 kV, a pulse frequency of 1 kHz, and a power of 24 W. That is, the input energy was set to 8.5 W / cm 3 .
  • the input energy is preferably set to 1.8 W / cm 3 or more and 8.5 W / cm 3 or less. It can also be seen that the preferable range of the pulse width is 50 to 5000 nsec.
  • Colonies were counted according to the following procedure using a stainless biological indicator (manufactured by Mesa labs) coated with 2.4 ⁇ 10 6 CFU of Geobacillus stearothermophilus ATCC 7953 as the treatment target 62.
  • A Transfer 5 ml of 0.1% Polyoxyethylene (20) Sorbitan Monooleate (manufactured by Wako Pure Chemical Industries, Ltd.) to a test tube.
  • B Place biological indicators (sterilized or sterilized) one by one in the test tube containing 0.1% Polyoxyethylene (20) Sorbitan Monooleate, sonicate for 3 to 5 minutes, and then stir for 5 minutes.
  • C Add 5 ml of purified water and stir for 5 minutes, then heat shock the tube at 95-100 ° C. for 15 minutes, then immediately cool at 0-4 ° C.
  • the ozone concentration and the nitrogen oxide concentration when the input energy is changed by adjusting the pulse width of the pulse voltage Pv applied between the first electrode 12A and the second electrode 12B.
  • the plasma treatment time was 20 minutes.
  • samples 4 In samples 4, 5 and 6, the pulse width, peak voltage and pulse frequency are adjusted to the same pulse width, peak voltage and pulse frequency as in samples 1, 2 and 3 of the first embodiment, and the power is 5 W, 13 W. And 24W. That is, the input energy (power / discharge volume) was 1.8 W / cm 3 , 4.6 W / cm 3 and 8.5 W / cm 3 .
  • the survival number of bacteria to below 250CFU is the input energy 1.8 W / cm 3 or more 8.5 W / cm 3 it can be seen that it is preferable to below.
  • the pulse width is preferably in the range of 50 to 5000 nsec.
  • Sample 7 was adjusted to a power of 5 W by adjusting the peak voltage to 15 kV, the pulse width to 500 nsec, and the pulse frequency to 1 kHz. That is, the input energy was 1.8 W / cm 3 .
  • Samples 8 and 9 were the same as Sample 7 except that the peak voltages were 21 kV and 35 kV, and the power was 13 W and 24 W. That is, the input energy was 4.6 W / cm 3 and 8.5 W / cm 3 .
  • the peak voltage range is preferably 15 to 35 kV in order to reduce the ozone concentration to 50 ppm or less and the NOx concentration to 1000 ppm or less.
  • Example 10 In Sample 10, the pulse frequency was adjusted to 0.5 kHz, the peak voltage was adjusted to 15 kV, the pulse width was adjusted to 500 nsec, and the power was set to 5 W. That is, the input energy was 1.8 W / cm 3 .
  • Samples 11 and 12 were the same as Sample 10 except that the pulse frequencies were 1 kHz and 50 kHz, and the power was 13 W and 24 W. That is, the input energy was 4.6 W / cm 3 and 8.5 W / cm 3 .
  • the pulse frequency range is preferably 0.5 to 50 kHz in order to reduce the ozone concentration to 50 ppm or less and the NOx concentration to 1000 ppm or less.
  • the experimental apparatus 50a of the fifth example prepared a beaker 126 in which 50 cc of water 20 was placed. Then, the NOx measuring device 60 (see FIG. 6) is removed from the second conduit 74b, the tip of the second conduit 74b is put into the water 20 in the beaker 126, and the gas from the reactor 66 (active species due to plasma are included). Gas) was injected into the water 20 to produce sterilized water 128.
  • the experiment was performed without placing the processing object 62 on the processing unit 68.
  • the ozone concentration of the gas from the reactor 66 when the input energy is changed and the concentrations of nitrate nitrogen and nitrite nitrogen in the sterilized water 128 in the beaker 126 The change of the total value (hereinafter referred to as nitric acid concentration) was confirmed.
  • the plasma treatment time was 20 minutes.
  • Sample 13 In Sample 13, the pulse frequency was adjusted to 1 kHz, the peak voltage was adjusted to 20 kV, the pulse width was adjusted to 500 nsec, and the power was set to 5 W. That is, the input energy was 1.8 W / cm 3 .
  • Sample 14 was adjusted to a pulse frequency of 5 kHz, a peak voltage of 21 kV, a pulse width of 500 nsec, and a power of 13 W. That is, the input energy was 4.6 W / cm 3 .
  • Sample 15 was adjusted to a pulse frequency of 10 kHz, a peak voltage of 22 kV, a pulse width of 500 nsec, and a power of 24 W. That is, the input energy was set to 8.5 W / cm 3 .
  • the plasma generation method and the sterilizing water generation method according to the present invention are not limited to the above-described embodiments, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma Technology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 本発明は、プラズマ発生方法及び殺菌水生成方法に関する。本発明は、ガスが供給される第1電極(12A)と第2電極(12B)間にパルス電圧(Pv)を繰り返し印加して、第1電極(12A)及び第2電極(12B)間にプラズマを発生させて、プラズマ中に活性種を生成する。そして、プラズマを発生させるのに必要な投入エネルギーを、1.8W/cm3以上8.5W/cm3以下に設定する。

Description

プラズマ発生方法及び殺菌水生成方法
 本発明は、プラズマ発生方法及びプラズマ発生方法を利用した殺菌水生成方法に関する。
 従来、大気中で水を霧化(粒子径3~100nm)し、ヒドロキシラジカル、スーパーオキサイド、一酸化窒素ラジカル、酸素ラジカルのうち、いずれか1つ以上のラジカルと、硝酸、硝酸水和物、亜硝酸、亜硝酸水和物のいずれか1つ以上のラジカルを含む帯電微粒子水を生成する方法が提案されている(特許第4608513号公報参照)。
 また、大気で生成したイオン:H+(H2O)m(mは任意の自然数)、O2-(H2O)n(nは任意の自然数)を放出して空気中の浮遊菌を殺菌する殺菌方法及びイオン発生装置が提案されている(特許第3680121号公報参照)。この特許第3680121号公報に記載の技術は、電極間に実効値1.1kV~1.4kVの交流電圧を印加してイオンを発生する。さらに、特許第3680121号公報には、オゾンセンサをイオン発生装置の近傍に設け、オゾン濃度が一定値以下(オゾン濃度0.1ppm以下)になるように交流電圧の実効値又は空気の送出量の少なくとも一方を可変にした空気調節装置も提案されている。
 しかしながら、特許第4608513号公報には、発生したプラズマによって生成される活性種(例えば殺菌作用物質としての活性種)の発生度合いとそれ以外の物質の濃度についての検討がなされていない。
 特許第3680121号公報には、オゾンの濃度を一定値以下に規制するようにしているが、電極間に交流電圧を印加してイオンを生成することから、オゾンの濃度を調整するのが難しいという問題がある。また、窒素酸化物の濃度調整が難しいという問題もある。
 本発明はこのような課題を考慮してなされたものであり、プラズマによって生成される活性種の発生度合いを容易に調整することができ、オゾン及び窒素酸化物の濃度を低く設定することができるプラズマ発生方法を提供することを目的とする。
 また、本発明の他の目的は、上述したプラズマ発生方法を利用することで、投入エネルギーに比例した量の活性種を殺菌作用物質として使用することで高い殺菌力を得られ、しかも、使用環境や構成物等をほとんど害することなく殺菌することができる殺菌水生成方法を提供することにある。
[1] 第1の本発明に係るプラズマ発生方法は、ガスが供給される第1電極と第2電極間に電圧を印加して、前記第1電極及び前記第2電極間にプラズマを発生させて、前記プラズマ中に活性種を生成するプラズマ発生方法であって、前記第1電極と前記第2電極間にパルス状の電圧を繰り返し印加し、前記プラズマを発生させるのに必要な投入エネルギーを、1.8W/cm3以上8.5W/cm3以下に設定することを特徴とする。
[2] 第1の本発明において、前記ガスが大気であってもよい。
[3] 第1の本発明において、前記パルス状の電圧のパルス幅、ピーク電圧及びパルス周波数のうち、いずれか1つ以上を調整して、前記投入エネルギーを設定してもよい。
[4] この場合、前記パルス幅を50~5000nsec、前記ピーク電圧を15~35kV、前記パルス周波数を0.5~50kHzに調整して前記投入エネルギーを設定することが好ましい。
[5] 第1の本発明において、前記投入エネルギーを、前記プラズマ中のオゾンの濃度が50ppm以下、窒素酸化物の濃度が1000ppm以下となる大きさに設定することが好ましい。
[6] 第1の本発明において、前記第1電極及び前記第2電極のうち、少なくとも一方の電極がセラミックスと一体化されていることが好ましいが、両方が金属であっても構わない。
[7] 第2の本発明に係る殺菌水生成方法は、ガスが供給される第1電極と第2電極間に電圧を印加して、前記第1電極及び前記第2電極間にプラズマを発生させて、前記プラズマ中に活性種を生成するプラズマ発生方法を使用して発生したプラズマを水に供給して殺菌水を生成する殺菌水生成方法であって、前記第1電極と前記第2電極間にパルス状の電圧を繰り返し印加し、前記プラズマを発生させるのに必要な投入エネルギーを、1.8W/cm3以上8.5W/cm3以下に設定することを特徴とする。
[8] 第2の本発明において、前記殺菌水の主な殺菌作用物質は、前記プラズマから前記水に溶け込んだ前記活性種であることが好ましい。
[9] 第2の本発明において、前記水中での濃度は、オゾンが5ppm以下、硝酸態窒素と亜硝酸態窒素の合計が80mg/L以下であることが好ましい。
 本発明に係るプラズマ発生方法によれば、プラズマによって生成される活性種の発生度合いを容易に調整することができ、オゾン及び窒素酸化物の濃度を低く設定することができる。また、投入エネルギーに比例した量の活性種を得ることができる。
 また、本発明に係る殺菌水生成方法によれば、上述したプラズマ発生方法を利用することで、投入エネルギーに比例した量の活性種を殺菌作用物質として使用することで高い殺菌力を得られ、しかも、使用環境や構成物等をほとんど害することなく殺菌することができる。
図1Aは本実施の形態に係るプラズマ発生方法で使用される電極構造体の要部を上面から見て示す平面図であり、図1Bはその斜視図である。 図2Aは図1AにおけるIIA-IIA線上の断面図であり、図2Bは第1電極(第2電極)を一部省略して示す拡大図である。 プラズマを発生させるのに必要な投入エネルギーに対する活性種の発生度合い(発生量)並びにオゾン及び窒素酸化物の濃度の変化を示すグラフである。 図4Aは矩形状のパルス電圧波形の一例を示す波形図であり、図4Bは三角形状のパルス電圧波形の一例を示す波形図である。 電極構造体を使用した本実施の形態に係る殺菌水生成方法の一例を示す説明図である。 第1実施例~第4実施例で用いる実験装置の概要を示す構成図である。 図7Aは実験装置における放電電極部の構成を正面から見て示す図であり、図7Bは図7AにおけるVIIB-VIIB線上の断面図である。 実験装置におけるパルス電源の構成を示す回路図である。 パルス電源にて生成されるパルス電圧波形と電流波形を示す波形図である。 第1実施例の評価結果、すなわち、投入エネルギーに対するオゾン濃度とNOx濃度の変化を示すグラフである。 第2実施例の評価結果、すなわち、投入エネルギーに対する生残菌数の変化を示すグラフである。 第3実施例の評価結果、すなわち、投入エネルギーに対するオゾン濃度とNOx濃度の変化を示すグラフである。 第4実施例の評価結果、すなわち、投入エネルギーに対するオゾン濃度とNOx濃度の変化を示すグラフである。 第5実施例で用いる実験装置の概要を示す構成図である。 第5実施例の評価結果、すなわち、投入エネルギーに対するオゾン濃度と硝酸系濃度の変化を示すグラフである。
 以下、本発明に係るプラズマ発生方法及び殺菌水生成方法の実施の形態例を図1A~図15を参照しながら説明する。
 本実施の形態に係るプラズマ発生方法は、例えば図1A及び図1Bに示す電極構造体10を使用する。
 電極構造体10は、第1方向(y方向)に延び、且つ、第1方向と直交する第2方向(x方向)に配列した棒状の複数の第1電極12Aと、第2方向(x方向)に延び、且つ、第1方向(y方向)に配列した棒状の複数の第2電極12Bとを有する。第1電極12A及び第2電極12Bは、図2A及び図2Bに示すように、それぞれ棒状の導体14と導体14を被覆するセラミックス16とを有する。導体14の径は10~1000μmが好ましく、セラミックス16の厚みは10~500μmが好ましい。なお、導体14としては、銅、鉄、タングステン、ステンレス、白金等を用いることができる。セラミックス16としては、アルミナ、シリカ、チタニア、ジルコニア等を用いることができる。
 また、図1A及び図1Bに示すように、電極構造体10は、複数の第1電極12Aと複数の第2電極12Bとが互いに対向し、且つ、電極構造体10に対するガスの流通方向から見たときに、第1電極12Aと第2電極12Bとが交差した位置関係(ねじれの位置関係)で保持される。
 この位置関係にて、ガスを例えば第1電極12Aから第2電極12Bに向かう方向に供給し、第1電極12A及び第2電極12B間にパルス状の電圧(以下、パルス電圧Pvと記す)を繰り返し印加することで、第1電極12Aと第2電極12B間の空間、すなわち、図2Aに示すように、第1電極12Aと第2電極12Bとの交差部分の大気中でプラズマ(大気プラズマ)が発生する。上記交差部分がプラズマ発生部位18となる。発生したプラズマは、ガスの流れに沿って、第2電極12Bから離間する方向に進行する。プラズマ中には、活性種が生成されるほか、オゾンや窒素酸化物が生成される。
 ここで、プラズマを発生させるのに必要な投入エネルギーに対する活性種の発生量並びにオゾン及び窒素酸化物の濃度の変化を図3に示す。図3において、活性種の特性を実線で示し、オゾンの特性を一点鎖線で示し、窒素酸化物の特性を破線で示す。図3に示すように、投入エネルギーの増加に伴って、活性種の発生量がほぼ線形的に増加する。一方、オゾンの濃度は、投入エネルギーの増加に伴って急峻に増加し、投入エネルギーの初期段階においてピークとなり、それ以降は急峻に減少する。窒素酸化物の濃度は、投入エネルギーの増加に伴って緩やかに増加し、オゾンの濃度が緩やかに低下するあたりから、急峻に増加する。
 そして、本実施の形態に係るプラズマ発生方法では、投入エネルギーを以下のように設定する。
 (a) プラズマ中に発生するオゾンの濃度が活性種の発生量以下になる大きさに設定する。図3中、Zaで示す範囲である。
 (b) プラズマ中に発生する窒素酸化物の濃度が活性種の発生量以下になる大きさに設定する。図3中、Zbで示す範囲である。
 (c) プラズマ中に発生するオゾンの濃度及び窒素酸化物の濃度が共に活性種の発生量以下になる大きさに設定する。図3中、Zcで示す範囲である。
 なお、上述の(a)又は(c)において、投入エネルギーを、プラズマ中で発生したオゾンが、プラズマガス温度によって分解する大きさに設定してもよい。
 そして、好ましくは、投入エネルギーを、プラズマ中に発生するオゾンの濃度が50ppm以下で、且つ、窒素酸化物の濃度が1000ppm以下になる大きさに設定する。
 本実施の形態では、第1電極12A及び第2電極12B間にパルス電圧Pvを繰り返し印加することから、投入エネルギーを上述のように設定するには、以下のようにすることが好ましい。
 すなわち、パルス電圧Pvの波形は、矩形状(図4A参照)、三角形状(図4B参照)等が挙げられる。そこで、パルス電圧Pvの周波数(1/パルス周期Ta)、パルス電圧Pvのピーク電圧Vm、パルス電圧Pvの電圧幅(パルス幅W)のうち、いずれか1つ以上を調整して投入エネルギーを設定する。三角形状の場合は、パルス幅Wとして例えば半値幅が挙げられる。
 好ましくは、パルス幅Wを50~5000nsec、ピーク電圧Vmを15~35kV、パルス周波数(1/Ta)を0.5~50kHzに調整して投入エネルギーを設定する。
 このように、本実施の形態では、第1電極12Aと第2電極12B間にパルス電圧Pvを繰り返し印加するようにしたので、高エネルギー状態の電子が生成され、低温でプラズマを発生させることができる。また、パルス電圧Pvのパルス周波数(1/Ta)、ピーク電圧Vm、電圧幅(パルス幅W)のうち、いずれか1つ以上を調整して投入エネルギーを設定することができるため、プラズマ発生部位18(図2A参照)のガス温度(投入エネルギー)の制御が容易になる。すなわち、大気中で発生するプラズマ(大気プラズマ)中のオゾンがガス温度で分解され、且つ、窒素酸化物がほとんど発生しないガス温度領域まで到達、維持するように、投入エネルギーを容易に調整することができる。その結果、使用者に影響を及ぼすことがほとんどなくなり、しかも、高エネルギー状態の電子を多く発生させることができるため、例えば殺菌に有効な高エネルギーを有する活性種を多く発生させることができる。また、投入エネルギーに比例した量の活性種を得ることができる。
 次に、本実施の形態に係る殺菌水生成方法について説明する。この殺菌水生成方法は、上述したプラズマ発生方法を利用する。具体的には、図5に示すように、電極構造体10は、第1電極12A及び第2電極12B間に発生したプラズマを水20中に導入するように配置される。
 そして、先ず、ガス(大気)を電極構造体10を介して水20中へ供給する。この状態で、第1電極12A及び第2電極12B間にパルス電圧Pvを繰り返し印加することで、第1電極12Aと第2電極12Bの交差部分(プラズマ発生部位18)でプラズマが発生する。プラズマは、ガスの流れに沿って瞬時に水20中に進入し、水20中にプラズマを内包した気泡が生成される。すなわち、水20中にプラズマが溶解することとなる。
 この場合、上述したプラズマ発生方法を利用しているため、投入エネルギーに比例した量の活性種を殺菌作用物質として使用することができ、殺菌効果の高い殺菌水を生成することができる。水20として水道水を使用するようにしてもよい。
 しかも、オゾンをほとんど含まないことから、金属の腐食や樹脂の劣化がほとんど進まなくなり、使用環境や構成物等をほとんど害することなく殺菌することができる。
 以下、第1実施例~第5実施例について説明するが、その前に、これらの実施例で使用される実験装置50について図6~図9を参照しながら説明する。
[実験装置50]
 実験装置50は、図6に示すように、プラズマ処理装置52と、ホットプレート54と、排出ガス計測部56とを有する。
 排出ガス計測部56は、排出ガス中のオゾンを計測するオゾン計測器58と、排出ガス中の窒素酸化物(以下、NOxと記す)を計測するNOx計測器60とを有する。オゾン計測器58として、荏原実業株式会社製のオゾンモニタEG-700EIIIを用い、NOx計測器60として、島津製作所製のNOA-7000を用いた。
 加熱や保温手段としてのホットプレート54には、殺菌又は滅菌処理される処理対象物62が載置される。ホットプレート54は、例えば処理対象物62の温度を室温よりも高い温度に保つ。ホットプレート54に代えてヒーターを用いてもよい。
 プラズマ処理装置52は、高電圧パルスを発生するパルス電源64と、パルス電源64からの高電圧パルスの印加によってプラズマを発生するリアクタ66と、該リアクタ66から離間したホットプレート54上に設置された処理部68と、リアクタ66と処理部68とをつなぐ筒状のパイプ70とを有する。
 パイプ70は、リアクタ66を通過する流体(活性種を含む流体)に空気が混入しないように、リアクタ66と処理部68間に設置される。パイプ70と処理部68は、樹脂製(例えばアクリル)にて一体に作製してもよいし、それぞれ別体で作製してパイプ70と処理部68間を結合してもよい。
 処理部68は、下面開口の例えばドーム状を有し、ホットプレート54に載置された処理対象物62を覆うようにホットプレート54上に設置される。処理部68の側面には排気孔72が設けられている。処理部68の排気孔72からオゾン計測器58及びNOx計測器60にかけて導管74が配管されている。導管74は、途中から二股に分かれ、そのうちの第1導管74aがオゾン計測器58に接続され、第2導管74bがNOx計測器60に接続される。
(リアクタ66)
 リアクタ66は、第1電極12A及び第2電極12B(図7A及び図7B参照)を有し、且つ、パルス電源64からの高電圧パルスの供給に基づいて第1電極12A及び第2電極12B間に放電を発生させる放電電極部76と、外部から供給される空気を放電電極部76に流すための整流部78とを有する。
 放電電極部76は、図7Aに示すように、第1方向(y方向)に延び、且つ、第1方向と直交する第2方向(x方向)に配列した6本の第1電極12Aと、第2方向に延び、且つ、第1方向に配列した6本の第2電極12Bと、これら第1電極12A及び第2電極12Bを所定の位置関係で保持するケース80とを有する。ケース80は、中央に円形の貫通孔82を有し、この貫通孔82を通して第1電極12A及び第2電極12Bが露出するようになっている。この貫通孔82の直径Da(図7B参照)は30mmである。
 第1電極12A及び第2電極12Bは、図7Bに示すように、それぞれ棒状の導体14と導体14を被覆するセラミックス16とを有する。第1電極12A及び第2電極12Bの直径Dbは1mmである。第1電極12Aの間隔d1並びに第2電極12Bの間隔d2はそれぞれ2mm(図7A参照)である。第1電極12Aと第2電極12B間のギャップgは4mm(図7B参照)である。
 従って、放電電極部76のうち、放電が行われる部分の体積、すなわち、放電体積は、ケース80の貫通孔82の開口面積に、第1電極12Aと第2電極12B間のギャップg(=0.4cm)を乗算することで求めることができる。この例では、放電体積は、1.5×1.5×π×0.4=2.83cm3である。
(パルス電源64)
 パルス電源64は、図8に示すように、上述した第1電極12A及び第2電極12B間(図6参照)にパルス電圧Pvを印加するパルス発生部84と、第1電極12A及び第2電極12B間に放電を発生させるようにパルス発生部84を制御するパルス制御部86とを有する。
 パルス発生部84は、パルス発生回路88と、磁気パルス圧縮回路90とを有する。パルス発生回路88は、直流電源92と、誘導エネルギーを蓄積するトランス94と、トランス94の一次巻線96への直流の供給経路98を開閉するMOSFET(金属酸化物半導体電界効果トランジスタ)100及びSIサイリスタ102とを有する。また、このパルス発生回路88は、SIサイリスタ102のゲートへのバイアス付与経路104に接続された抵抗106と、抵抗106に並列に接続され、且つ、SIサイリスタ102のゲートへ電流が流入することを抑制し、SIサイリスタ102のゲートから電流が流出することを許容するダイオード108とを有する。
 磁気パルス圧縮回路90は、トランス94の二次巻線110に流れる出力電流を一方向に規制するダイオード112と、ダイオード112に直列に接続された可飽和リアクトル114を含むリセット回路116と、リセット回路116の前段において二次巻線110と並列に接続されたコンデンサ118と、リセット回路116の後段において二次巻線110と並列に接続された抵抗120とを有する。二次側の出力端子間には放電電極部76が接続される。
 一方、パルス制御部86は、MOSFET100を駆動する駆動回路122を有する。
 SIサイリスタ102及びMOSFET100は、ターンオンしたときに供給経路98を閉じ、ターンオフしたときに供給経路98を開くように、供給経路98に直列に挿入される。一次巻線96の一端124aは、直流電源92の正極に接続され、SIサイリスタ102のアノードは一次巻線96の他端124bに接続され、SIサイリスタ102のカソードはMOSFET100のドレインに接続され、MOSFET100のソースは直流電源92の負極に接続される。SIサイリスタ102のゲートは、バイアス付与経路104によりダイオード108と抵抗106の並列回路を経由して一次巻線96の一端124aに接続される。ダイオード108のカソードは、一次巻線96の一端124aに接続され、ダイオード108のアノードは、SIサイリスタ102のゲートに接続される。
 そして、駆動回路122からMOSFET100へのオン信号の入力が始まり、MOSFET100がターンオンすると、SIサイリスタ102のゲートが正バイアスされ、SIサイリスタ102もターンオンする。これにより、供給経路98が閉じられる。供給経路98が閉じられると、一次巻線96への直流の供給が始まり、トランス94への誘導エネルギーの蓄積が始まる。
 駆動回路122からMOSFET100へのオン信号の入力が終わり、MOSFET100がターンオフすると、一次巻線96に発生した誘導起電力により、SIサイリスタ102のゲートが負バイアスされ、SIサイリスタ102も高速にターンオフする。これにより、供給経路98が高速に開かれる。供給経路98が高速に開かれると、相互誘導により二次巻線110に誘導起電力が発生し、二次巻線110から第1電極12Aと第2電極12Bとの間に立ち上がり時の電圧Vの時間上昇率dV/dtが著しく大きいパルス電圧Pvが出力される。
 パルス電源64のより詳細な動作原理は、例えば飯田克二、佐久間健:「SIサイリスタによる極短パルス発生回路(IES回路)」、SIデバイスシンポジウム講演論文集(2002)に記載されている。
 そして、パルス電圧Pvのパルス幅は、磁気パルス圧縮回路90の可飽和リアクトル114のインダクタンス、コンデンサ118の容量値、抵抗120の抵抗値を変化させることで調整することができる。パルス電圧Pvのピーク電圧は、SIサイリスタ102の遮断電流値を変化させることで調整することができる。パルス電圧Pvのパルス周波数は、駆動回路122のスイッチング周波数を変化させることで調整することができる。
 なお、パルス電源64にて生成される電圧波形(パルス電圧Pvの波形)及び電流波形を図9に示す。この図9では、パルス電圧Pvのピーク電圧が14kV、パルス幅が500nsecの場合のパルス電圧Pvの波形を示す。
[第1実施例](パルス幅)
<実験方法>
 処理部68に処理対象物62を載置しない状態で、放電電極部76に空気を導入し、放電電極部76において放電によりプラズマを発生させ、その励起物(活性種)を空気と共に処理部68へ導いた。このときに発生するオゾンとNOxをそれぞれオゾン計測器58とNOx計測器60にて測定した。
 第1実施例では、サンプル1~3について、第1電極12A及び第2電極12B間に印加するパルス電圧Pvのパルス幅を調整して投入エネルギーを変化させたときのオゾン濃度と窒素酸化物濃度の変化を確認した。プラズマ処理時間は20分間とした。
(サンプル1)
 サンプル1は、パルス幅を50nsec、ピーク電圧を15kV、パルス周波数を1kHzに調整して電力を5Wとした。すなわち、投入エネルギー(電力/放電体積)を1.8W/cm3とした。
(サンプル2)
 サンプル2は、パルス幅を500nsec、ピーク電圧を21kV、パルス周波数を1kHzに調整して電力を13Wとした。すなわち、投入エネルギーを4.6W/cm3とした。
(サンプル3)
 サンプル3は、パルス幅を5000nsec、ピーク電圧を35kV、パルス周波数を1kHzに調整して電力を24Wとした。すなわち、投入エネルギーを8.5W/cm3とした。
(評価)
 サンプル1~3の内訳及び評価結果(オゾン濃度及びNOx濃度)を下記表1及び図10に示す。
Figure JPOXMLDOC01-appb-T000001
 オゾン濃度を50ppm以下、NOx濃度を1000ppm以下にするには、表1及び図10から、投入エネルギーを1.8W/cm3以上8.5W/cm3以下に設定することが好ましいことがわかる。また、パルス幅の好ましい範囲は、50~5000nsecであることがわかる。
[第2実施例](生残菌数)
<実験方法>
 今度は、処理部68に処理対象物62を載置した状態で、放電電極部76に空気を導入し、放電電極部76において放電によりプラズマを発生させ、その励起物(活性種)を空気と共に処理対象物62に当てて、処理対象物62を殺菌又は滅菌処理する。このときに発生するオゾンとNOxをそれぞれオゾン計測器58とNOx計測器60にて測定し、さらに、処理対象物62に生残する菌数を計数した。
<生残菌数の評価>
 処理対象物62として、菌数2.4×106CFUのGeobacillus stearothermophilus ATCC7953を塗布したステンレス製のバイオロジカルインジケーター(Mesa labs社製)を用い、下記手順に従ってコロニーを計数した。
(a) 0.1%Polyoxyethylene(20) Sorbitan Monooleate(和光純薬工業株式会社製)5mlを試験管に移す。
(b) 上記の0.1%Polyoxyethylene(20) Sorbitan Monooleate入り試験管に1枚ずつバイオロジカルインジケーター(殺菌又は滅菌済み)を入れ、3~5分間超音波処理した後、5分間攪拌する。
(c) 5mlの精製水を加えて5分間攪拌し、続いて15分間95~100℃で試験管をヒートショックした後、すぐに0~4℃で冷却する。
(d) 試験管内の菌液(試料)を2μlだけ寒天培地にガラス棒で塗布し、インキュベータにて55~60℃で、48時間培養する。
(e) 寒天培地上に形成されたコロニーを計数する。
(f) 形成されたコロニー数と希釈倍率に基づいて生残菌数を算出する。
 第2実施例では、サンプル4~6について、第1電極12A及び第2電極12B間に印加するパルス電圧Pvのパルス幅を調整して投入エネルギーを変化させたときのオゾン濃度と窒素酸化物濃度の変化と、生残菌数(CFU)の変化を確認した。プラズマ処理時間は20分間とした。
(サンプル4~6)
 サンプル4、5及び6は、パルス幅、ピーク電圧及びパルス周波数を上述した第1実施例のサンプル1、2及び3と同じパルス幅、ピーク電圧及びパルス周波数に調整して、電力を5W、13W及び24Wとした。すなわち、投入エネルギー(電力/放電体積)を1.8W/cm3、4.6W/cm3及び8.5W/cm3とした。
(評価)
 サンプル4~6の内訳及び評価結果(オゾン濃度、NOx濃度及び生残菌数)を下記表2に示す。オゾン濃度及びNOx濃度は上述した第1実施例のサンプル1~3の結果と同じであった。従って、生残菌数の結果のみを図11に示す。
Figure JPOXMLDOC01-appb-T000002
 表2及び図11から、生残菌数を250CFU以下にするには、投入エネルギーを1.8W/cm3以上8.5W/cm3以下にすることが好ましいことがわかる。この場合、パルス幅は、50~5000nsecの範囲であることが好ましい。
[第3実施例](ピーク電圧)
 上述した第1実施例と同様に、処理部68に処理対象物62を載置しない状態で実験を行った。そして、この第3実施例では、サンプル7~9について、第1電極12A及び第2電極12B間に印加するパルス電圧Pvのピーク電圧を調整して投入エネルギーを変化させたときのオゾン濃度と窒素酸化物濃度の変化を確認した。プラズマ処理時間は20分間とした。
(サンプル7)
 サンプル7は、ピーク電圧を15kV、パルス幅を500nsec、パルス周波数を1kHzに調整して電力を5Wとした。すなわち、投入エネルギーを1.8W/cm3とした。
(サンプル8、9)
 サンプル8及び9は、ピーク電圧を21kV及び35kVとしたこと以外は、サンプル7と同じにして、電力を13W及び24Wとした。すなわち、投入エネルギーを4.6W/cm3及び8.5W/cm3とした。
(評価)
 サンプル7~9の内訳及び評価結果(オゾン濃度及びNOx濃度)を下記表3及び図12に示す。
Figure JPOXMLDOC01-appb-T000003
 オゾン濃度を50ppm以下、NOx濃度を1000ppm以下にするには、表3及び図12から、ピーク電圧の範囲を15~35kVとすることが好ましいことがわかる。
[第4実施例](パルス周波数)
 上述した第1実施例と同様に、処理部68に処理対象物62を載置しない状態で実験を行った。そして、この第4実施例では、サンプル10~12について、第1電極12A及び第2電極12B間に印加するパルス電圧Pvのパルス周波数を調整して投入エネルギーを変化させたときのオゾン濃度と窒素酸化物濃度の変化を確認した。プラズマ処理時間は20分間とした。
(サンプル10)
 サンプル10は、パルス周波数を0.5kHz、ピーク電圧を15kV、パルス幅を500nsecに調整して電力を5Wとした。すなわち、投入エネルギーを1.8W/cm3とした。
(サンプル11、12)
 サンプル11及び12は、パルス周波数を1kHz及び50kHzとしたこと以外は、サンプル10と同じにして、電力を13W及び24Wとした。すなわち、投入エネルギーを4.6W/cm3及び8.5W/cm3とした。
(評価)
 サンプル10~12の内訳及び評価結果(オゾン濃度及びNOx濃度)を下記表4及び図13に示す。
Figure JPOXMLDOC01-appb-T000004
 オゾン濃度を50ppm以下、NOx濃度を1000ppm以下にするには、表4及び図12から、パルス周波数の範囲を0.5~50kHzにすることが好ましいことがわかる。
[第5実施例](殺菌水)
 第5実施例の実験装置50aは、図14に示すように、50ccの水20が入れられたビーカー126を用意した。そして、第2導管74bからNOx計測器60(図6参照)を取り外し、第2導管74bの先端部をビーカー126内の水20に入れて、リアクタ66からのガス(プラズマによる活性種が含まれたガス)を水20中に注入することで、殺菌水128を生成した。
 上述した第1実施例と同様に、処理部68に処理対象物62を載置しない状態で実験を行った。そして、この第5実施例では、サンプル13~15について、投入エネルギーを変化させたときのリアクタ66からのガスのオゾン濃度とビーカー126内の殺菌水128の硝酸態窒素と亜硝酸態窒素の濃度の合計値(以下、硝酸系濃度と記す)の変化を確認した。プラズマ処理時間は20分間とした。
(サンプル13)
 サンプル13は、パルス周波数を1kHz、ピーク電圧を20kV、パルス幅を500nsecに調整して電力を5Wとした。すなわち、投入エネルギーを1.8W/cm3とした。
(サンプル14)
 サンプル14は、パルス周波数を5kHz、ピーク電圧を21kV、パルス幅を500nsecに調整して電力を13Wとした。すなわち、投入エネルギーを4.6W/cm3とした。
(サンプル15)
 サンプル15は、パルス周波数を10kHz、ピーク電圧を22kV、パルス幅を500nsecに調整して電力を24Wとした。すなわち、投入エネルギーを8.5W/cm3とした。
(評価)
 サンプル13~15の内訳及び評価結果(オゾン濃度及び硝酸系濃度)を下記表5及び図15に示す。
Figure JPOXMLDOC01-appb-T000005
 オゾン濃度を5ppm以下、硝酸系濃度を80mg/L以下にするには、表5及び図15から、投入エネルギーを1.8W/cm3以上8.5W/cm3以下に設定することが好ましく、さらに好ましくは1.8W/cm3以上4.6W/cm3以下である。
 なお、本発明に係るプラズマ発生方法及び殺菌水生成方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (9)

  1.  ガスが供給される第1電極(12A)と第2電極(12B)間に電圧を印加して、前記第1電極(12A)及び前記第2電極(12B)間にプラズマを発生させて、前記プラズマ中に活性種を生成するプラズマ発生方法であって、
     前記第1電極(12A)と前記第2電極(12B)間にパルス状の電圧(Pv)を繰り返し印加し、
     前記プラズマを発生させるのに必要な投入エネルギーを、1.8W/cm3以上8.5W/cm3以下に設定することを特徴とするプラズマ発生方法。
  2.  請求項1記載のプラズマ発生方法において、
     前記ガスが大気であることを特徴とするプラズマ発生方法。
  3.  請求項1又は2記載のプラズマ発生方法において、
     前記パルス状の電圧(Pv)のパルス幅(W)、ピーク電圧(Vm)及びパルス周波数(1/Ta)のうち、いずれか1つ以上を調整して、前記投入エネルギーを設定することを特徴とするプラズマ発生方法。
  4.  請求項3記載のプラズマ発生方法において、
     前記パルス幅(W)を50~5000nsec、前記ピーク電圧(Vm)を15~35kV、前記パルス周波数(1/Ta)を0.5~50kHzに調整して前記投入エネルギーを設定することを特徴とするプラズマ発生方法。
  5.  請求項1~4のいずれか1項に記載のプラズマ発生方法において、
     前記投入エネルギーを、前記プラズマ中のオゾンの濃度が50ppm以下、窒素酸化物の濃度が1000ppm以下となる大きさに設定することを特徴とするプラズマ発生方法。
  6.  請求項1~5のいずれか1項に記載のプラズマ発生方法において、
     前記第1電極(12A)及び前記第2電極(12B)のうち、少なくとも一方の電極がセラミックスと一体化されていることを特徴とするプラズマ発生方法。
  7.  ガスが供給される第1電極(12A)と第2電極(12B)間に電圧を印加して、前記第1電極(12A)及び前記第2電極(12B)間にプラズマを発生させて、前記プラズマ中に活性種を生成するプラズマ発生方法を使用して発生したプラズマを水に供給して殺菌水を生成する殺菌水生成方法であって、
     前記第1電極(12A)と前記第2電極(12B)間にパルス状の電圧(Pv)を繰り返し印加し、
     前記プラズマを発生させるのに必要な投入エネルギーを、1.8W/cm3以上8.5W/cm3以下に設定することを特徴とする殺菌水生成方法。
  8.  請求項7記載の殺菌水生成方法において、
     前記殺菌水の主な殺菌作用物質は、前記プラズマから前記水に溶け込んだ前記活性種であることを特徴とする殺菌水生成方法。
  9.  請求項7又は8記載の殺菌水生成方法において、
     前記水中での濃度は、オゾンが5ppm以下、硝酸態窒素と亜硝酸態窒素の合計が80mg/L以下であることを特徴とする殺菌水生成方法。
PCT/JP2015/086329 2015-03-20 2015-12-25 プラズマ発生方法及び殺菌水生成方法 WO2016151970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017507344A JPWO2016151970A1 (ja) 2015-03-20 2015-12-25 プラズマ発生方法及び殺菌水生成方法
CN201580077983.1A CN107409464A (zh) 2015-03-20 2015-12-25 等离子发生方法及杀菌水生成方法
EP15886522.0A EP3282819A4 (en) 2015-03-20 2015-12-25 Plasma generation method and sterile water production method
US15/707,062 US20180002199A1 (en) 2015-03-20 2017-09-18 Plasma generation method and sterile water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015058015 2015-03-20
JP2015-058015 2015-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/707,062 Continuation US20180002199A1 (en) 2015-03-20 2017-09-18 Plasma generation method and sterile water production method

Publications (1)

Publication Number Publication Date
WO2016151970A1 true WO2016151970A1 (ja) 2016-09-29

Family

ID=56977329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086329 WO2016151970A1 (ja) 2015-03-20 2015-12-25 プラズマ発生方法及び殺菌水生成方法

Country Status (5)

Country Link
US (1) US20180002199A1 (ja)
EP (1) EP3282819A4 (ja)
JP (1) JPWO2016151970A1 (ja)
CN (1) CN107409464A (ja)
WO (1) WO2016151970A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280098B2 (en) 2011-12-15 2019-05-07 Clear Wave Ltd. Submerged arc removal of contaminants from liquids
JP6529705B1 (ja) * 2018-07-24 2019-06-12 三菱電機株式会社 水処理システム及び水処理方法
JP2022016559A (ja) * 2018-08-02 2022-01-21 株式会社Fuji 大気圧プラズマ発生装置
WO2022260836A1 (en) * 2021-06-09 2022-12-15 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11618695B2 (en) 2019-02-20 2023-04-04 Sharp Kabushiki Kaisha Liquid treatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832697B1 (en) * 2018-08-02 2023-06-07 Fuji Corporation Atmospheric-pressure plasma generator
DE102019006536B3 (de) * 2019-09-16 2020-12-31 Blv Licht- Und Vakuumtechnik Gmbh Vorrichtung und Verfahren zur Haut- und insbesondere Wundbehandlung unter Verwendung von Plasma
US20220028663A1 (en) * 2020-07-23 2022-01-27 Applied Materials, Inc. Plasma source for semiconductor processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054359A (ja) * 2007-08-24 2009-03-12 Tohoku Univ プラズマ発生装置およびプラズマ発生方法
WO2011065171A1 (ja) * 2009-11-27 2011-06-03 日本碍子株式会社 プラズマ処理装置
JP2013158657A (ja) * 2012-02-01 2013-08-19 Sharp Corp 活性種発生装置、空気清浄装置、汚水浄化装置、及びスチームクリーナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650932B2 (ja) * 2001-11-22 2005-05-25 株式会社大高商事 ダークプラズマによる有機気体分解装置と、その装置を用いた生鮮農産物の鮮度保持装置
JP2005137781A (ja) * 2003-11-10 2005-06-02 Marcom:Kk プラズマ発生装置
WO2010018783A1 (ja) * 2008-08-11 2010-02-18 日本碍子株式会社 ガス改質装置
JP2012069448A (ja) * 2010-09-27 2012-04-05 Ngk Insulators Ltd プラズマ処理装置
US9149551B2 (en) * 2010-11-09 2015-10-06 Samsung Electronics Co., Ltd. Plasma generating device, plasma generating method, and method for suppressing ozone generation
JP5224560B2 (ja) * 2011-11-24 2013-07-03 国立大学法人京都大学 プラズマ生成装置、表面処理装置、表示装置、および流体改質装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054359A (ja) * 2007-08-24 2009-03-12 Tohoku Univ プラズマ発生装置およびプラズマ発生方法
WO2011065171A1 (ja) * 2009-11-27 2011-06-03 日本碍子株式会社 プラズマ処理装置
JP2013158657A (ja) * 2012-02-01 2013-08-19 Sharp Corp 活性種発生装置、空気清浄装置、汚水浄化装置、及びスチームクリーナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282819A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280098B2 (en) 2011-12-15 2019-05-07 Clear Wave Ltd. Submerged arc removal of contaminants from liquids
JP6529705B1 (ja) * 2018-07-24 2019-06-12 三菱電機株式会社 水処理システム及び水処理方法
WO2020021635A1 (ja) * 2018-07-24 2020-01-30 三菱電機株式会社 水処理システム及び水処理方法
JP2022016559A (ja) * 2018-08-02 2022-01-21 株式会社Fuji 大気圧プラズマ発生装置
JP7200337B2 (ja) 2018-08-02 2023-01-06 株式会社Fuji 大気圧プラズマ発生装置
US11618695B2 (en) 2019-02-20 2023-04-04 Sharp Kabushiki Kaisha Liquid treatment device
WO2022260836A1 (en) * 2021-06-09 2022-12-15 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods

Also Published As

Publication number Publication date
US20180002199A1 (en) 2018-01-04
JPWO2016151970A1 (ja) 2018-01-11
CN107409464A (zh) 2017-11-28
EP3282819A1 (en) 2018-02-14
EP3282819A4 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2016151970A1 (ja) プラズマ発生方法及び殺菌水生成方法
US8383038B2 (en) Method and apparatus for supplying liquid with ions, sterilization method and apparatus
Georgescu et al. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets
US9101043B2 (en) Microplasma source and sterilization system including the same
Al-Rawaf et al. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination
CN110461080A (zh) 一种低温等离子体发生装置及其制备活化水的方法
Sharma et al. Sterilization of microorganisms contaminated surfaces and its treatment with dielectric barrier discharge plasma
Rutberg et al. Electric discharges and the prolonged microbial resistance of water
JP6917597B2 (ja) 接触する被処理物を殺菌する殺菌水を生成する装置および接触する被処理物を殺菌する殺菌水を生成する方法
Sigmond et al. Action of corona discharges on bacteria and spores
Liu et al. Characteristics of DC or pulsed-type high-electric field plasma and its application to air cleaning system
JP2009022391A (ja) プラズマ滅菌装置及びプラズマ滅菌方法
de Souza et al. G. stearothermophilus Spores' Inactivation by a Single Dielectric Barrier Discharge in Air at Atmospheric Pressure
Sulyman et al. Generation of non-thermal plasma jet using ZVS Driver with flyback transformer
Barinov et al. Antimicrobial action of a discharge with a liquid cathode on the electrode liquid
Sen et al. Medical applications of plasma technology
IL101565A (en) A device for the production of defined ionizing gases or of ionization products
Sulaiman et al. The effect of non-thermal plasma Jet on bacterial biofilms and plasmid DNA
Veeraiah et al. Characterization of plasma based on the electrode size of atmospheric pressure plasma jet (APPJ)
CN113692100B (zh) 应用于内窥镜内壁消毒的多段电极等离子体射流触发方法
Feng et al. Ar plasma jet generation and its application for water and surface sterilization
US20230262867A1 (en) Low-temperature dielectric barrier discharge devices
KR102568541B1 (ko) 구강질환 치료기 및 구강질환 치료 방법
CN212727527U (zh) 一种等离子体空气杀菌消毒设备
Kučerová et al. Biological and chemical effect of dc transient spark discharge on Escherichia Coli

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507344

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015886522

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE