WO2016151914A1 - 位置検出システム及び誘導システム - Google Patents
位置検出システム及び誘導システム Download PDFInfo
- Publication number
- WO2016151914A1 WO2016151914A1 PCT/JP2015/079868 JP2015079868W WO2016151914A1 WO 2016151914 A1 WO2016151914 A1 WO 2016151914A1 JP 2015079868 W JP2015079868 W JP 2015079868W WO 2016151914 A1 WO2016151914 A1 WO 2016151914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- detection
- unit
- guidance
- value
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00006—Operational features of endoscopes characterised by electronic signal processing of control signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00011—Operational features of endoscopes characterised by signal transmission
- A61B1/00016—Operational features of endoscopes characterised by signal transmission using wireless means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00025—Operational features of endoscopes characterised by power management
- A61B1/00027—Operational features of endoscopes characterised by power management characterised by power supply
- A61B1/00029—Operational features of endoscopes characterised by power management characterised by power supply externally powered, e.g. wireless
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00158—Holding or positioning arrangements using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/041—Capsule endoscopes for imaging
Definitions
- the present invention relates to a position detection system that detects the position of a capsule medical device introduced into a subject, and a guidance system that guides the capsule medical device.
- capsule-type medical devices that have been introduced into a subject to acquire various information related to the inside of the subject or administer drugs or the like into the subject have been developed.
- a capsule endoscope is known that is formed in a size that can be introduced into the digestive tract (intraluminal) of a subject.
- a capsule endoscope has an imaging function and a wireless communication function inside a capsule-shaped casing. After being swallowed by a subject, the capsule endoscope performs imaging while moving in the digestive tract, Image data of an internal organ image (hereinafter also referred to as an in-vivo image) is sequentially wirelessly transmitted.
- Patent Document 1 A system for detecting the position of such a capsule medical device in the subject has been developed.
- a magnetic field generating coil that generates a magnetic field is provided in a capsule medical device, and a magnetic field generated from the magnetic field generating coil is detected by a detection coil provided outside the subject.
- a position detection system for performing position detection calculation of a capsule medical device is disclosed.
- the detection accuracy of the capsule medical device introduced into the subject depends on the S / N ratio of the magnetic field detected by the detection coil and the arrangement conditions of the detection coil. For this reason, even if it is a case where SN ratio is low, it is desired to implement
- the position detection calculation may be performed by regarding the noise as an output signal from the capsule medical device.
- the capsule medical device does not exist in the position detection target space, it is recognized that the capsule medical device exists in the space, and an inappropriate position detection result of the capsule medical device (so-called ghost) ) Is output.
- the present invention has been made in view of the above, and a position where an inappropriate output of the position detection result of the capsule medical device can be prevented when the capsule medical device does not exist in the position detection target space.
- An object is to provide a detection system and a guidance system.
- a position detection system includes a capsule medical device in which a magnetic field generation unit that generates a magnetic field is provided, and a magnetic field generated by the magnetic field generation unit.
- a position for calculating the position of the capsule medical device using at least one of a plurality of magnetic field detection units that detect detection and output detection signals, and a plurality of detection signals output by the plurality of magnetic field detection units, respectively A detection calculation unit; a determination unit that determines whether or not an appropriate position of the capsule medical device can be detected based on the plurality of detection signals; and a threshold value holding unit that holds a threshold value used in the determination by the determination unit;
- the threshold value is a value based on at least one output value of a plurality of detection signals respectively output from the plurality of magnetic field detection units under a predetermined condition, and the determination unit includes: When at least one of the output values of the plurality of detection signals output by at least a part of the plurality of magnetic field detection units determines
- the threshold is set under a condition in which the capsule medical device is disposed at a position where the output value levels of the plurality of detection signals output from the plurality of magnetic field detection units are lowest. It is characterized by that.
- the threshold is set under a condition that the capsule medical device is positioned at a boundary of a detection target region of the capsule medical device.
- the determination unit determines the determination value based on output values from all of the plurality of magnetic field detection units.
- the determination unit determines the determination value based on an output value from a preset magnetic field detection unit group among the plurality of magnetic field detection units.
- each of the plurality of magnetic field detection units is a cylindrical coil wound with a coil wire.
- each magnetic field detection unit has a rotation center axis that is mutually It arrange
- each of the plurality of magnetic field detection units is a cylindrical coil wound with a coil wire, and in the preset magnetic field detection unit group, at least one magnetic field detection unit has a rotation center axis. Is directed in a different direction from the other magnetic field detectors.
- the determination unit is selected in advance from the plurality of magnetic field detection units based on an output value of a detection signal under a condition not affected by the magnetic field generated by the magnetic field generation unit.
- the determination value is determined based on an output value from at least one magnetic field detection unit.
- the at least one magnetic field detection unit selected in advance is a magnetic field generation unit in which an output value of a detection signal under the condition is a predetermined value or less.
- the at least one magnetic field detection unit selected in advance is a magnetic field generation unit that is within a predetermined number from the smaller output value of the detection signal under the condition.
- the determination unit determines a maximum value of output values of the plurality of detection signals when the position of the capsule medical device is detected as the determination value.
- the determination unit uses the predetermined number of output values from a larger value among the output values of the plurality of detection signals when detecting the position of the capsule medical device. It is characterized by determining.
- the determination unit uses output values of a plurality of detection signals output from a magnetic field detection unit having the maximum detection signal output value and a predetermined number of magnetic field detection units adjacent to the magnetic field detection unit. And determining the determination value.
- the position detection calculation unit does not calculate the position of the capsule medical device.
- the position detection system indicates that the position of the capsule medical device calculated by the position detection calculation unit is an error when the determination unit determines that proper position detection of the capsule medical device is impossible.
- the display device further includes a display unit for displaying information.
- the position detection system further includes a display unit that displays the position of the capsule medical device calculated by the position detection calculation unit, and the determination unit determines that proper detection of the capsule medical device is impossible. In this case, the display unit stops displaying the position of the capsule medical device calculated by the position detection calculation unit.
- the capsule medical device further includes a permanent magnet, the position detection system, a guidance magnetic field generation unit that generates a magnetic field that acts on the permanent magnet, and the guidance magnetic field generation unit
- a guidance magnetic field control unit that performs guidance control to change at least one of a position and a posture of the capsule medical device by controlling the capsule medical device.
- the guidance system further includes a shielding unit capable of shielding a magnetic field generated by the guidance magnetic field generation unit, and the guidance magnetic field control unit is configured such that the determination unit cannot detect an appropriate position of the capsule medical device. If it is determined that the magnetic field generated by the guidance magnetic field generation unit is shielded by the shielding means, control is performed.
- the guidance magnetic field control unit is configured to enable and disable the guidance control depending on whether or not the determination unit can detect an appropriate position of the capsule medical device. And switching between.
- the guidance magnetic field control unit stops the guidance control.
- the guidance magnetic field control unit performs control to enable the guidance control to start. It is characterized by performing.
- the guidance magnetic field control unit cannot start the guidance control. Control is performed.
- the present invention it is determined using at least one of the output values from the plurality of magnetic field detection units with reference to a threshold value based on the output values from the plurality of magnetic field detection units under a predetermined condition. Therefore, it is possible to appropriately determine whether or not an appropriate position of the capsule medical device can be detected. Therefore, even when the capsule medical device is not present in the position detection target space, it is possible to prevent an inappropriate output of the position detection result of the capsule medical device.
- FIG. 1 is a schematic diagram showing a configuration example of a guidance system according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope shown in FIG.
- FIG. 3 is a schematic diagram showing a configuration example of the guidance magnetic field generator shown in FIG.
- FIG. 4 is a flowchart showing the operation of the guidance system shown in FIG.
- FIG. 5 is a schematic diagram for explaining a determination method by the determination unit.
- FIG. 6 is a schematic diagram for explaining a determination method by the determination unit.
- FIG. 7 is a schematic diagram for explaining the threshold setting method (1).
- FIG. 8 is a schematic diagram illustrating an example of an output value of a detection signal detected by the detection coil.
- FIG. 8 is a schematic diagram illustrating an example of an output value of a detection signal detected by the detection coil.
- FIG. 9 is a schematic diagram for explaining the threshold setting method (2).
- FIG. 10 is a schematic diagram for explaining a determination value determination method according to Embodiment 2 of the present invention.
- FIG. 11 is a schematic diagram for explaining a determination value determination method according to Embodiment 2 of the present invention.
- FIG. 12 is a schematic diagram for explaining a determination value determination method according to Embodiment 2 of the present invention.
- FIG. 13 is a schematic diagram illustrating an arrangement example of the detection coils according to the third embodiment of the present invention.
- the present invention measures, for example, a capsule endoscope that moves in the lumen from the esophagus to the anus of the subject, a capsule medical device that delivers a drug or the like into the subject, and a PH in the subject.
- the present invention can be applied to position detection of various medical devices having a capsule type, such as a capsule type medical device including a PH sensor.
- each drawing merely schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. In the description of the drawings, the same portions are denoted by the same reference numerals.
- FIG. 1 is a schematic diagram showing a configuration example of a guidance system according to Embodiment 1 of the present invention.
- the guidance system 1 according to the first embodiment is an image acquired by imaging the inside of a subject 2 as an example of a capsule medical device introduced into the lumen of the subject 2.
- a capsule endoscope 10 that transmits data superimposed on a radio signal and a magnetic field detection that is provided below the bed 2a on which the subject 2 is placed and detects an alternating magnetic field generated by the capsule endoscope 10
- the position of the capsule endoscope 10 is detected based on the alternating magnetic field detected by the apparatus 30, the guidance magnetic field generation apparatus 40 that generates a magnetic field for guiding the capsule endoscope 10, and the magnetic field detection apparatus 30.
- the upper surface of the bed 2a that is, the placement surface of the subject 2 is defined as an XY plane (horizontal plane), and a direction orthogonal to the XY plane is defined as a Z direction (vertical direction, that is, a gravity direction).
- FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope 10 shown in FIG.
- the capsule endoscope 10 includes a capsule-shaped casing 100 that is formed in a size that can be easily introduced into the lumen of the subject 2, and is housed in the casing 100.
- the imaging unit 11 that images the inside of the subject 2 and acquires an imaging signal, and the operation of each unit of the capsule endoscope 10 including the imaging unit 11 are controlled, and the imaging signal acquired by the imaging unit 11 is controlled.
- a control unit 12 that performs predetermined signal processing, a transmission unit 13 that wirelessly transmits an imaging signal subjected to signal processing, and a magnetic field generation unit 14 that generates an alternating magnetic field for position detection of the capsule endoscope 10
- a power supply unit 15 that supplies power to each unit of the capsule endoscope 10 and a permanent magnet 16 are provided.
- the housing 100 is an outer case formed in a size that can be introduced into the organ of the subject 2.
- the casing 100 includes a cylindrical casing 101 having a cylindrical shape, and dome-shaped casings 102 and 103 having a dome shape, and the opening ends on both sides of the cylindrical casing 101 are connected to a dome-shaped casing having a dome shape. This is realized by closing with the bodies 102 and 103.
- the cylindrical housing 101 is formed of a colored member that is substantially opaque to visible light.
- at least one of the dome-shaped casings 102 and 103 (the dome-shaped casing 102 on the imaging unit 11 side in FIG. 2) is formed by an optical member that is transparent to light of a predetermined wavelength band such as visible light. ing.
- a predetermined wavelength band such as visible light.
- one imaging unit 11 is provided only on one dome-shaped casing 102 side, but two imaging units 11 may be provided.
- the dome-shaped casing 103 is also transparent. It is formed by an optical member.
- Such a casing 100 encloses the imaging unit 11, the control unit 12, the transmission unit 13, the magnetic field generation unit 14, the power supply unit 15, and the permanent magnet 16 in a liquid-tight manner.
- the imaging unit 11 includes an illumination unit 111 such as an LED, an optical system 112 such as a condenser lens, and an imaging element 113 such as a CMOS image sensor or a CCD.
- the illumination unit 111 emits illumination light such as white light to the imaging field of the imaging element 113 and illuminates the subject in the imaging field through the dome-shaped housing 102.
- the optical system 112 focuses the reflected light from the imaging field of view on the imaging surface of the imaging element 113 to form an image.
- the image sensor 113 converts reflected light (optical signal) from the imaging field received on the imaging surface into an electrical signal and outputs it as an image signal.
- the control unit 12 operates the imaging unit 11 at a predetermined imaging frame rate and causes the illumination unit 111 to emit light in synchronization with the imaging frame rate.
- the control unit 12 generates image data by performing A / D conversion and other predetermined signal processing on the imaging signal generated by the imaging unit 11.
- the control unit 12 generates an alternating magnetic field from the magnetic field generation unit 14 by supplying power from the power supply unit 15 to the magnetic field generation unit 14.
- the transmission unit 13 includes a transmission antenna, acquires image data and related information that have been subjected to signal processing by the control unit 12, performs modulation processing, and sequentially wirelessly transmits to the outside via the transmission antenna.
- the magnetic field generation unit 14 includes a magnetic field generation coil 141 that forms part of a resonance circuit and generates a magnetic field when current flows, and a capacitor 142 that forms a resonance circuit together with the magnetic field generation coil 141. To generate an alternating magnetic field having a predetermined frequency.
- the power supply unit 15 is a power storage unit such as a button-type battery or a capacitor, and has a switch unit such as a magnetic switch or an optical switch.
- the power supply unit 15 switches the power supply on / off state by a magnetic field applied from the outside, and in the on state, the power of the power storage unit is transmitted to each component unit of the capsule endoscope 10 (imaging Unit 11, control unit 12, and transmission unit 13) as appropriate.
- the power supply part 15 stops the electric power supply to each structure part of the capsule endoscope 10 in the OFF state.
- the permanent magnet 16 is for enabling the capsule endoscope 10 to be magnetically guided by the magnetic field generated by the guiding magnetic field generator 40, and the magnetization direction is inclined with respect to the long axis La of the housing 100. It is fixedly arranged inside the capsule-shaped housing 100 so as to have it. In FIG. 2, the magnetization direction of the permanent magnet 16 is indicated by an arrow. In the first embodiment, the permanent magnet 16 is arranged so that the magnetization direction is orthogonal to the long axis La. The permanent magnet 16 operates following a magnetic field applied from the outside. As a result, magnetic guidance of the capsule endoscope 10 by the guiding magnetic field generator 40 is realized.
- the magnetic field detection device 30 is arranged on a planar panel 31 and a main surface of the panel 31, and each receives and detects an alternating magnetic field generated from the capsule endoscope 10.
- a plurality of detection coils C n (n 1, 2,...) That output signals.
- Each detection coil C n is a magnetic field detection unit formed of a cylindrical coil in which a coil wire is wound in a coil spring shape.
- the detection coil C n has an opening diameter of about 30 to 40 mm and a height of about 5 mm.
- Such a magnetic field detection device 30 is disposed in the vicinity of the subject 2 under examination.
- the magnetic field detection device 30 is arranged below the bed 2a so that the main surface of the panel 31 is horizontal.
- a region where the position of the capsule endoscope 10 can be detected by the magnetic field detection device 30 is a detection target region R.
- This detection target region R is a three-dimensional closed region including a range in which the capsule endoscope 10 can move within the subject 2 (that is, the range of the organ to be observed).
- arrangement of the plurality of detection coils C n, are set in advance the magnetic field generating unit 14 in the capsule endoscope 10 according to the intensity or the like that can be generated magnetic field.
- FIG. 3 is a schematic diagram showing a configuration example of the guidance magnetic field generator 40.
- the guidance magnetic field generation device 40 determines the position of the capsule endoscope 10 introduced into the subject 2, the inclination angle of the long axis La with respect to the vertical direction, and the azimuth angle from the subject 2.
- the induction magnetic field generation device 40 changes the position and posture of the extracorporeal permanent magnet 41 as an induction magnetic field generation unit (second magnetic field generation unit) that generates a magnetic field, and the extracorporeal permanent magnet 41.
- a magnet drive unit 42 and a magnetic shield 43 and a magnetic shield drive unit 44 as shielding means capable of shielding a magnetic field generated by the extracorporeal permanent magnet 41 are provided.
- the magnet driving unit 42 includes a plane position changing unit 421, a vertical position changing unit 422, an elevation angle changing unit 423, and a turning angle changing unit 424.
- the extracorporeal permanent magnet 41 is preferably realized by a bar magnet having a rectangular parallelepiped shape, and the capsule endoscope 10 is placed in a region obtained by projecting one of four surfaces parallel to its magnetization direction onto a horizontal plane. to bound.
- an electromagnet that generates a magnetic field when a current flows may be provided.
- the magnet drive unit 42 operates in accordance with a control signal output from a guidance magnetic field control unit 57 described later. Specifically, the planar position changing unit 421 translates the extracorporeal permanent magnet 41 in the XY plane. That is, the movement is performed in the horizontal plane while the relative positions of the two magnetic poles magnetized in the extracorporeal permanent magnet 41 are secured.
- the vertical position changing unit 422 translates the extracorporeal permanent magnet 41 along the Z direction. That is, the movement is performed along the vertical direction while the relative positions of the two magnetic poles magnetized in the extracorporeal permanent magnet 41 are secured.
- the elevation angle changing unit 423 changes the angle of the magnetization direction with respect to the horizontal plane by rotating the extracorporeal permanent magnet 41 in a vertical plane including the magnetization direction of the extracorporeal permanent magnet 41.
- the turning angle changing unit 424 turns the extracorporeal permanent magnet 41 with respect to a vertical axis passing through the center of the extracorporeal permanent magnet 41.
- the magnetic shield 43 is a plate-like member made of a ferromagnetic material such as iron or nickel, and is provided so as to be inserted / removed at least above the extracorporeal permanent magnet 41.
- the magnetic shield drive unit 44 inserts and removes the magnetic shield 43 in accordance with a control signal output from a guidance magnetic field control unit 57 described later. While the magnetic shield 43 is removed from above the extracorporeal permanent magnet 41, a magnetic field is generated in the space including the detection target region R by the extracorporeal permanent magnet 41. During this time, the capsule endoscope 10 can be guided by the guiding magnetic field generator 40.
- the magnetic shield 43 is inserted above the extracorporeal permanent magnet 41, the magnetic field generated by the extracorporeal permanent magnet 41 is shielded in the guiding magnetic field generator 40. In other words, during this time, the capsule endoscope 10 is not guided.
- the control device 50 receives the radio signal transmitted from the capsule endoscope 10 via the reception antenna 51a, and various information processed by the control device 50.
- the signal processing unit 55 that performs various signal processing on the detected signal to generate magnetic field information, the image generation based on the image data received by the receiving unit 51, and the magnetic field information generated by the signal processing unit 55
- a calculation unit 56 that performs various calculation processes such as position detection of the capsule endoscope 10 based thereon and a guidance magnetic field control unit 57 that performs control for guiding the capsule endoscope 10 are provided. .
- a plurality of receiving antennas 51a for receiving radio signals transmitted from the capsule endoscope 10 are attached to the body surface of the subject 2.
- the reception unit 51 selects a reception antenna 51a having the highest reception intensity for the radio signal among these reception antennas 51a, and performs a demodulation process or the like on the radio signal received through the selected reception antenna 51a.
- the image data of the in-vivo image and the related information are acquired.
- the display unit 52 includes various displays such as liquid crystal and organic EL, and various information input from the operation input unit 54, the in-vivo image of the subject 2, and the position of the capsule endoscope 10 at the time of capturing the in-vivo image. Display information etc. on the screen.
- the storage unit 53 is realized by using a storage medium and a writing / reading device that store information in a rewritable manner such as a flash memory or a hard disk.
- the storage unit 53 includes various programs and various parameters for the calculation unit 56 to control each unit of the control device 50, image data of an in-vivo image captured by the capsule endoscope 10, and a capsule type in the subject 2.
- the position information of the endoscope 10 and the like are stored.
- the operation input unit 54 is realized by an input device such as various buttons, switches, and a keyboard, a pointing device such as a mouse and a touch panel, a joystick, and the like, and inputs various types of information to the calculation unit 56 according to an input operation by the user. .
- Examples of the information input by the operation input unit 54 include information for guiding the capsule endoscope 10 to a user-desired position and posture (hereinafter referred to as guidance operation information).
- the signal processing unit 55 includes a filter unit 551 that shapes the waveform of the detection signal output from the magnetic field detection device 30, an amplifier 552, and an A / D conversion unit 553 that performs A / D conversion processing on the detection signal.
- a filter unit 551 that shapes the waveform of the detection signal output from the magnetic field detection device 30, an amplifier 552, and an A / D conversion unit 553 that performs A / D conversion processing on the detection signal.
- the magnetic field detection device 30 can detect a magnetic field, there are an alternating magnetic field generated by the magnetic field generation unit 14 in the capsule endoscope 10 and a guidance magnetic field formed by the guidance magnetic field generation device 40.
- the two magnetic fields have completely different frequencies, interference between the magnetic fields does not become a problem.
- the calculation unit 56 is configured by using, for example, a CPU (Central Processing Unit) and the like, reads a program from the storage unit 53, performs instructions and data transfer to each unit configuring the control device 50, and performs operations of the control device 50. Control all over.
- the calculation unit 56 includes an image processing unit 561, a threshold value holding unit 562, a determination unit 563, and a position detection calculation unit 564.
- the image processing unit 561 performs predetermined image processing such as white balance processing, demosaicing, gamma conversion, smoothing (noise removal, etc.) on the image data input from the receiving unit 51, thereby displaying an image for display. Generate data.
- predetermined image processing such as white balance processing, demosaicing, gamma conversion, smoothing (noise removal, etc.)
- the determination unit 563 determines whether or not to cause the position detection calculation unit 564 described later to execute the position detection calculation of the capsule endoscope 10. .
- the threshold holding unit 562 holds a threshold used for this determination.
- the position detection calculation unit 564 when the determination unit 563 determines to execute the position detection calculation, information (position) indicating the position of the capsule endoscope 10 based on the detection signal output from the signal processing unit 55. Information). More specifically, the position detection calculation unit 564 performs magnetic field information such as the amplitude and phase of the alternating magnetic field by performing fast Fourier transform processing (hereinafter referred to as FFT processing) on the detection data output from the signal processing unit 55. An FFT processing unit 564a to extract and a position calculation unit 564b to calculate the position of the capsule endoscope 10 based on the magnetic field information extracted by the FFT processing unit 564a.
- FFT processing fast Fourier transform processing
- the capsule endoscope 10 the magnetic field detection device 30, the signal processing unit 55, the threshold holding unit 562, the determination unit 563, and the position detection calculation unit 564 constitute a position detection system.
- the guidance magnetic field control unit 57 is based on the position and orientation of the capsule endoscope 10 calculated by the position detection calculation unit 564 and the guidance operation information input from the operation input unit 54.
- the operation of each part of the magnet driving unit 42 is controlled so that 10 takes a user-desired posture at a user-desired position.
- the capsule endoscope 10 is guided by changing the magnetic gradient in the space including the position of the capsule endoscope 10 by changing the position, elevation angle, and turning angle of the extracorporeal permanent magnet 41.
- FIG. 4 is a flowchart showing the operation of the guidance system 1.
- step S10 the power source of the capsule endoscope 10 is turned on. Thereby, power supply from the power supply unit 15 (see FIG. 2) to each part of the capsule endoscope 10 is started, the imaging unit 11 starts imaging, and the magnetic field generation unit 14 starts generating a magnetic field.
- step S11 the magnetic field detection apparatus 30 detects a magnetic field. That is, each detection coil C n of the magnetic field detection device 30 generates a current corresponding to the magnetic field distributed in its own position, and outputs this current to the signal processing unit 55 as a magnetic field detection signal.
- step S12 the signal processing unit 55 takes in a plurality of detection signals output from the magnetic field detector 30 (the current plurality of detection coils C n occurs respectively), shaping the waveforms for these detection signals, amplified
- the signal processing such as A / D conversion is performed and output.
- step S ⁇ b> 13 the determination unit 563 determines the determination value determined based on the threshold value stored in advance by the threshold value storage unit 562 and the output values (amplitudes) of the plurality of detection signals output from the signal processing unit 55. Compare A method for setting the threshold and a method for determining the determination value will be described in detail later.
- 5 and 6 are schematic views for explaining a method of determining the output value of the detection coil C n.
- the maximum value D max of the output values of the plurality of detection coils C n and the determination value, or the determination value D max is the threshold value Th 0 or more Determine whether or not.
- step S14 the determination unit 563 indicates that the capsule endoscope 10 actually exists in the detection target region R. Therefore, it is determined that proper position detection is possible (step S14).
- “appropriate position detection is possible” means that the signal detected by the detection coil C n includes a magnetic field component generated by the capsule endoscope 10, and position detection calculation based on this magnetic field component is possible. Meaning.
- the fact that proper position detection is impossible means that the signal detected by the detection coil C n does not contain much of the magnetic field component generated by the capsule endoscope 10, and position detection calculation based on the noise component is performed. It means that it will be executed.
- the position detection calculation unit 564 performs position detection calculation of the capsule endoscope 10 based on the plurality of detection signals output from the signal processing unit 55 (step S15). Specifically, the FFT processing unit 564a calculates the amplitude and phase of the detection signal by performing fast Fourier transform processing on each detection signal. The amplitude and phase correspond to the magnetic field intensity and phase at the position of each detection coil C n. The position calculation unit 564b calculates the position and orientation of the capsule endoscope 10 based on the amplitude and phase of the detection signal.
- step S ⁇ b> 16 the guidance magnetic field control unit 57 determines whether guidance operation information is input from the operation input unit 54.
- the guidance magnetic field control unit 57 performs guidance based on the guidance operation information and the position and posture of the capsule endoscope 10 calculated in step S15.
- the capsule endoscope 10 is guided by controlling the operation of the magnetic field generator 40 (step S17).
- step S16 No
- the operation of the guidance system 1 proceeds to step S20 as it is.
- step S13 as shown in FIG. 6, when the determination value D max is less than the threshold Th 0 (step S13: No), the determination unit 563 indicates that the capsule endoscope 10 actually exists in the detection target region R. Therefore, it is determined that proper position detection is impossible (step S18). In this case, the position detection calculation unit 564 does not perform the position detection calculation of the capsule endoscope 10 and proceeds to the subsequent step S19.
- step S19 the guidance magnetic field control unit 57 turns off guidance control for the capsule endoscope 10.
- the magnetic shield 43 is inserted above the extracorporeal permanent magnet 41 with respect to the magnetic shield driving unit 44 of the guiding magnetic field generating device 40, and the magnetic field generated by the extracorporeal permanent magnet 41 is changed to the guiding magnetic field generating device.
- Control to shield in 40 is performed. Thereby, even if guidance operation information is input from the operation input unit 54, no guidance magnetic field is applied to the capsule endoscope 10. Thereafter, the operation of the guidance system 1 proceeds to step S20.
- step S20 the control device 50 determines whether or not to end the examination by the capsule endoscope 10. Specifically, when an instruction signal for ending the examination is input via the operation input unit 54, or when a predetermined time or more has passed since the capsule endoscope 10 is turned on, the control device 50 Decides to end the inspection.
- step S20: Yes When the inspection is finished (step S20: Yes), the operation of the guidance system 1 is finished. On the other hand, when the inspection is not finished (step S20: No), the operation of the guidance system 1 returns to step S11.
- the threshold value setting method used in step S13 will be described.
- Examples of the threshold setting method include the following setting methods (1) and (2).
- the threshold value acquired by any of the threshold value setting methods (1) and (2) may be used.
- the acquisition of the threshold value is performed before the start of the examination by the capsule endoscope 10.
- the power source of the capsule endoscope 10 is turned on to generate a magnetic field in the magnetic field generator 14.
- the capsule endoscope 10 in a state where a magnetic field is generated is positioned at the position where the detection level of each detection coil C n is the lowest with respect to the magnetic field generated by the capsule endoscope 10, in other words, the detection target region It arrange
- FIG. 7 shows a state where the capsule endoscope 10 is arranged at one of the four corners of the upper surface of the detection target region R.
- FIG. 8 is a schematic diagram illustrating an example of an output value of a detection signal detected by each detection coil C n in this state.
- the output value of the detection coil C 4 is the largest. In this case, the maximum output value, is acquired as the threshold value Th 0.
- the capsule endoscope 10 in a state where a magnetic field is generated has the lowest detection level of each detection coil C n with respect to the magnetic field generated by the capsule endoscope 10. (See FIG. 7). Then, the output value is set as a threshold the average value of the output value of the detection coil C n of the maximum of the detection coil C n and a predetermined number located in the vicinity of the detection coil C n (1 or more).
- FIG. 9 is a schematic diagram for explaining the threshold setting method (2).
- the output value of the detection coil C 4 is maximum, as shown in FIG. 9, the detection coil C n located in the vicinity of the detection coil C 4, the detection coil C 3, C 7, C 8 It is. Therefore, the average value of the output values of the detection coil group (detection coils C 3 , C 4 , C 7 , C 8 ) included in the range A1 is set as the threshold value.
- the detection coil C n the output value is located in the detection coil C n and near the maximum, like in the range A1, but is not limited to the four corners of the arranged has been detected coil group to the panel 31.
- the vertical four detection coils C 6 which are adjacent and transverse directions, C 9, C 11, C 14 of the detection coil C 10, in the vicinity it may be a detection coil C n located.
- the average value of the output values of the detection coil group included in the range A2 is set as the threshold value.
- C 13 , C 14 , and C 15 may be detection coils C n located in the vicinity.
- the average value of the output values of the detection coil group included in the range A3 is set as the threshold value.
- threshold values may be calculated in advance based on theoretical values. That is, assuming that was placed a magnetic field generating source for generating a magnetic field of a predetermined strength to the end portion of the detection target area R (comparable to the magnetic field in which the capsule endoscope 10 is generated), the respective detection coils C n Based on the theoretical value of the magnetic field strength at the position, the threshold value is calculated in the same manner as the threshold value setting method (1) or (2).
- step S13 a method for determining the determination value to be compared with the threshold value in step S13 will be described.
- Examples of the determination value determination method include the following determination methods (1) to (4).
- the determination value determined by any of the determination value determination methods (1) to (4) may be used.
- a determination value the maximum value among the output values of the plurality of detection coils C n is compared to a threshold Th 0.
- Determination value determination method (2) Of the output values of the plurality of detection coils C n, and the determination value the average value of the output value of a predetermined number from the larger values (two or more). For example, when the average value of four output values from the larger value is used as the determination value, when the output values shown in FIG. 5 are obtained, the output values of the detection coils C 1 , C 5 , C 6 , and C 9 An average value is determined as a determination value.
- the inappropriate position (ghost) of the capsule endoscope 10 that can be detected in the conventional position detection system depends on the noise distribution, the position and signal level of the detected ghost are substantially constant. Therefore, by using the output values of the plurality of detection coils C n that are likely to have large output values as the determination targets, the current output values from the detection coils C n are the detection results of the magnetic field generated by the capsule endoscope 10. Or whether it is a detection result of high level noise.
- the output value is respectively determined value the output value of the at least one detection coil C n adjacent to the maximum of the detection coil C n and the detection coil C n.
- the output values are the determination values.
- the detection coil C n for acquiring the determination value may be determined in advance, or the detection coil C n positioned in the moving direction of the capsule endoscope 10. May be used as the determination value.
- the average value of the output values of the detection coil C n having the maximum output value and the detection coil C n positioned in the vicinity of the detection coil C n is used as a determination value.
- the average value of the output value is determined as the determination value, it is compared to a threshold Th 0.
- a detection coil group adjacent in the vertical direction and the horizontal direction to the detection coil C n having the maximum output value may be selected, or the vertical direction, the horizontal direction, Alternatively, detection coil groups adjacent in the oblique direction may be selected.
- the capsule endoscope 10 when the capsule endoscope 10 actually exists in the detection target region R, if there is a detection coil C n having a large output value, the output value of the surrounding detection coil C n also tends to increase. . Conversely, when the capsule endoscope 10 does not exist in the detection target area R, even if there is a large detection coil C n of the output value, the output value of the detection coil C n also increases located near the Not exclusively. Therefore, the output value comparing the average value of the maximum of the detection coil C n and the output value of the detection coil C n in the vicinity thereof to a threshold Th 0, the capsule endoscope 10 is present in the detection target area R It is possible to accurately determine whether or not.
- the position detection calculation unit 564 is not caused to perform position detection calculation, so that inappropriate output of the position detection result of the capsule endoscope 10 can be prevented. It becomes possible.
- the guidance control with respect to the capsule endoscope 10 is turned off. Inappropriate guidance based on the position of the endoscope 10 can be prevented.
- the capsule endoscope 10 is placed at a position where the detection level of each detection coil Cn with respect to the magnetic field generated by the capsule endoscope 10 is lowest. arrangement, and the output value is set as the maximum of the detection coil C n and threshold the average value of the output value of a predetermined number of the detection coil C n positioned in the vicinity of the detection coil C n. However, the sum of these output values may be set as a threshold value.
- the average value of the plurality of output values is used as the determination value. Instead, the sum of these output values is determined as the determination value.
- the detection coil C n for acquiring the output value used for determining the determination value is selected so that the number of output values used for acquiring the threshold value matches the number of output values used for determining the determination value. .
- the detection coil C n that acquires the output value when determining the determination value to be compared with the threshold value may be selected in advance at the time of calibration performed before the start of the examination by the capsule endoscope 10.
- the capsule endoscope 10 does not generate a magnetic field, and the detection signal from each detection coil C n is acquired in the state where the magnetic field generating unit 14 does not affect the detection target region R.
- advance elect detection coil C n noise level was low as the detection coil C n of acquisition target determination value.
- a predetermined number (one or more) of detection coils C n from the lowest noise level may be selected, or all detection coils C n having a noise level equal to or lower than a predetermined value. n may be selected. Accordingly, all the detection coils C n arranged on the panel 31 may be selected, or only one detection coil C n may be selected. In the latter case, the output value of the elected detection coil C n are directly used as the determination value.
- 10 to 12 are schematic diagrams for explaining a determination value determination method according to the second embodiment.
- the output value (noise level) of the detection coil C n as shown in FIG. 10 is obtained, and the detection coils C 3 , C 6 , C 7 , C 8 , Assume that C 10 , C 11 , and C 12 are selected as acquisition targets for determination values (see FIG. 11).
- determination values are determined based on the output values of the selected detection coils C 3 , C 6 , C 7 , C 8 , C 10 , C 11 , and C 12 .
- circled numbers shown in FIG. 10 and FIG. 12 is a coil number of elected detection coil C n.
- the maximum value among the output values of the detection coils C 3 , C 6 , C 7 , C 8 , C 10 , C 11 , and C 12 selected in advance is used as the determination value.
- the detection coils C 3 , C 6 , C 7 , C 8 , C 10 Among the output values of C 11 and C 12 , the output value D S1 of the detection coil C 6 is the maximum. Therefore, this output value DS1 is determined as a determination value and compared with a threshold value.
- Modification 2-1 of Embodiment 2 of the present invention will be described.
- a predetermined number of output values of detection coils C 3 , C 6 , C 7 , C 8 , C 10 , C 11 , and C 12 selected in advance from a larger value is selected.
- (Two or more) output values may be used as the determination value.
- the output value D S2 of the output value D S1 and the detection coil C 7 of the detection coil C 6 are determined as the determination value.
- the output value D S1 and the output value D S2 are each compared with a threshold value, and when both are equal to or greater than the threshold value, it is determined that an appropriate position of the capsule endoscope 10 can be detected.
- Modification 2-2 of Embodiment 2 of the present invention will be described.
- a predetermined value is selected from the larger output values of the detection coils C 3 , C 6 , C 7 , C 8 , C 10 , C 11 , and C 12 selected in advance.
- An average value of a number (two or more) of output values may be used as the determination value. For example, in the case of a determination value the average value of the four output values from the larger value, in FIG.
- the output value D S1 of the detection coil C 6 an output value D S2 of the detection coil C 7, a detection coil C 11
- the average value of the output value D S3 and the output value D S4 of the detection coil C 8 is determined as the determination value.
- the sum of these output values D S1 , D S2 , D S3 , and D S4 may be determined as a determination value.
- the detection coil C n having the maximum output value among the previously selected detection coils C 3 , C 6 , C 7 , C 8 , C 10 , C 11 , C 12 is used. and an average value of the output value of the detection coil C n positioned in the vicinity of the detection coil C n may be determined value.
- the detection coil C 3, C 6, C 7 , C 8, C 10, C 11, of C 12 since the output value of the detection coil C 6 is the maximum, the detection coil C 6 and The average value of the output values of the detection coils C 3 , C 7 and C 10 (see FIG. 11) located in the vicinity thereof is determined as the determination value.
- the sum of these output values may be determined as the determination value.
- the determination value is determined based on the output value of the detection coil C n selected in advance at the time of calibration
- the respective conditions under the condition (the condition in which the capsule endoscope 10 is arranged at the end of the detection target region R) where the detection level of each of the detection coils Cn with respect to the magnetic field generated by the capsule endoscope 10 is the lowest. obtained based on the theoretical value of the output value of the detection coil C n.
- the threshold value setting method based on the theoretical value is the same as the threshold value setting method (1) or (2) described in the first embodiment or the threshold value setting method described in the first modification.
- FIG. 13 is a schematic diagram illustrating an arrangement example of the detection coils C n according to Embodiment 3 of the present invention, in which the rotation center axes A of the detection coils C n are directed in any of three directions (XYZ directions) orthogonal to each other. An example is shown.
- the detection coils C 1 to C 16 are arranged so that the rotation center axis A is parallel to the Z axis (that is, the opening surface of the coil is parallel to the XY plane), and the panel 31 is arranged.
- the detection coils C 1Y , C 4Y , C 13Y , and C 16Y are arranged so that the rotation center axis A is parallel to the Y axis.
- the shapes and sizes of the detection coils C 1X , C 4X , C 13X , C 16X , C 1Y , C 4Y , C 13Y , and C 16Y are the same as those of the detection coils C 1 to C 16 .
- Figure 13 places the coil set C XYZ the four corners of the panel 31, to the other position, the detection coil C 2 so that the rotational center axis A is parallel to the Z axis, C 3, C 5 ⁇ C 12 , C 14 , C 15 are arranged.
- detection coil groups that acquire output values when determining a determination value to be compared with a threshold value. For example, determination values are determined for detection coils C n having the same direction as the detection coils C 2 , C 3 , C 5 to C 12 , C 14 , and C 15 whose rotation center axis A is parallel to the Z axis. It is set as a detection coil group which acquires an output value when doing.
- the detection coils C 1X , C 4X , C 13X , and C 16X in which the rotation center axis A is parallel to the X axis, and the detection coils C 1Y , C 4Y , C 13Y , and C 16Y in which the rotation center axis A is parallel to the Y axis May be set as a detection coil group for obtaining an output value when determining a determination value.
- the determination value is determined based on the output value acquired from the set detection coil group.
- the determination value determination method is the same as in the first embodiment (determination value determination methods (1) to (4)).
- the threshold value may be acquired in advance based on the output value of the detection coil C n in the same direction as that of the detection coil C n used to determine the determination value.
- the method of setting the threshold value, except that the group detection coil to obtain an output value (the direction of the detection coil C n) is limited, the form 1 (method of setting the threshold value (first embodiment) or (2) ).
- the determination unit 563 indicates that the capsule endoscope 10 is within the detection target region R. It may be determined that the actual position is present and proper position detection is possible.
- each coil set C XYZ calculates the square sum of the output values of the three detection coils included in one set of coils C XYZ (e.g. C 1X, C 1Y, C 1 ), the sum of squares, It is handled as the output value of the detection coil when determining the judgment value.
- the strength of the magnetic field generated by the magnetic field generating coil 141 can be reliably detected regardless of the mutual relationship between the position and direction of the magnetic field generating coil 141 included in the capsule endoscope 10 and the detection coil C n. .
- the root mean square is calculated instead of the sum of squares of the output values of the three detection coils included in one coil set CXYZ , and this value is treated as the output value of the detection coil when determining the determination value. Also good.
- the position detection calculation unit 564 when it is determined that the proper position detection of the capsule endoscope 10 is impossible, the position detection calculation unit 564 is not allowed to execute the position detection calculation, but the position detection calculation is executed. You may let them. In this case, the calculation unit 56 may output information indicating that the position of the capsule endoscope 10 is an error and display the information on the display unit 52. Accordingly, the user can perform a guidance operation on the capsule endoscope 10 after recognizing that the position of the capsule endoscope 10 displayed on the display unit 52 is an error.
- the calculation unit 56 may stop displaying the position of the capsule endoscope 10 on the display unit 52.
- the user can recognize that the position of the capsule endoscope 10 is not displayed on the display unit 52 and that the proper position detection of the capsule endoscope 10 cannot be performed. .
- the guidance system 1 is inspected by the capsule endoscope 10 in a state where the magnetic shield 43 of the guidance magnetic field generator 40 is closed, that is, in a state where guidance control is not performed on the capsule endoscope 10.
- the determination unit 563 determines that an appropriate position of the capsule endoscope 10 can be detected (see step S14 in FIG. 4)
- the guidance magnetic field control unit 57 performs control to open the magnetic shield 43. Thereby, a guidance magnetic field is generated in the space including the detection target region R, and the guidance control for the capsule endoscope 10 can be started.
- the inspection by the capsule endoscope 10 may be started with the magnetic shield 43 of the guidance magnetic field generator 40 opened.
- the determination unit 563 determines that the proper position detection of the capsule endoscope 10 is impossible (see step S18 in FIG. 4)
- the guidance magnetic field control unit 57 performs control to close the magnetic shield 43. Do.
- the guidance magnetic field is shielded from the space including the detection target region R, and the guidance control for the capsule endoscope 10 cannot be started.
- Embodiments 1 to 5 of the present invention described above and modifications thereof are merely examples for carrying out the present invention, and the present invention is not limited to these.
- the present invention can generate various inventions by appropriately combining a plurality of constituent elements disclosed in the first to fifth embodiments and their modifications. It is obvious from the above description that the present invention can be variously modified according to specifications and the like, and that various other embodiments are possible within the scope of the present invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- Endoscopes (AREA)
Abstract
位置検出システムは、磁界を発生する磁界発生部が内部に設けられたカプセル型内視鏡10と、該磁界の検出信号を出力する複数の検出コイルCnと、検出コイルCnが出力した検出信号を用いてカプセル型内視鏡10の位置を算出する位置検出演算部564と、カプセル型内視鏡10の適正な位置検出が可能か否かを判定する判定部563と、該判定に用いられる閾値を保持する閾値保持部562とを有し、該閾値は、所定の条件の下での複数の検出コイルCnからの少なくとも1つの出力値に基づく値であり、判定部563は、複数の検出コイルCnからの出力値のうちの少なくとも1つを用いて判定値を決定し、該判定値が閾値未満である場合にカプセル型内視鏡10の適正な位置検出が不可能と判定する。これにより、カプセル型医療装置の位置検出結果の不適正な出力を防ぐことができる位置検出システムを提供する。
Description
本発明は、被検体内に導入されたカプセル型医療装置の位置を検出する位置検出システム、及び該カプセル型医療装置を誘導する誘導システムに関する。
従来、被検体内に導入されて被検体内に関する種々の情報を取得する、或いは、被検体内に薬剤等を投与するといったカプセル型医療装置が開発されている。一例として、被検体の消化管内(管腔内)に導入可能な大きさに形成されたカプセル型内視鏡が知られている。カプセル型内視鏡は、カプセル形状をなす筐体の内部に撮像機能及び無線通信機能を備えたものであり、被検体に嚥下された後、消化管内を移動しながら撮像を行い、被検体の臓器内部の画像(以下、体内画像ともいう)の画像データを順次無線送信する。
このようなカプセル型医療装置の被検体内における位置を検出するシステムが開発されている。例えば特許文献1には、磁界を発生する磁界発生コイルをカプセル型医療装置内に設け、磁界発生コイルから発生した磁界を被検体外に設けられた検出コイルで検出し、検出した磁界の強度に基づいてカプセル型医療装置の位置検出演算を行う位置検出システムが開示されている。
被検体内に導入されたカプセル型医療装置の検出精度は、検出コイルが検出した磁界のSN比と、検出コイルの配置条件に依存する。このため、SN比が低い場合であっても、カプセル型医療装置の位置検出誤差をできるだけ小さくすることができる検出コイルの配置を実現することが望まれる。
しかし、SN比が低い場合、位置検出演算に対するノイズの影響が懸念される。例えば、カプセル型医療装置が位置検出対象の空間に存在しない場合、本来であればカプセル型医療装置の位置を検出できないため、検出エラーを出力することが適正な処理となる。しかし、ノイズレベルがあるレベルよりも大きい場合、従来の位置検出システムにおいては、ノイズをカプセル型医療装置からの出力信号とみなして位置検出演算を行ってしまう場合がある。この場合、カプセル型医療装置が位置検出対象の空間に存在しないにもかかわらず、カプセル型医療装置が当該空間に存在するものとして認識され、カプセル型医療装置の不適正な位置検出結果(所謂ゴースト)が出力されてしまう。
本発明は、上記に鑑みてなされたものであって、カプセル型医療装置が位置検出対象の空間に存在しない場合に、カプセル型医療装置の位置検出結果の不適正な出力を防ぐことができる位置検出システム及び誘導システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る位置検出システムは、磁界を発生する磁界発生部が内部に設けられたカプセル型医療装置と、前記磁界発生部が発生した磁界を検出して検出信号を出力する複数の磁界検出部と、前記複数の磁界検出部がそれぞれ出力した複数の検出信号の少なくともいずれか1つを用いて前記カプセル型医療装置の位置を算出する位置検出演算部と、前記複数の検出信号に基づく前記カプセル型医療装置の適正な位置検出が可能か否かを判定する判定部と、前記判定部における判定に用いられる閾値を保持する閾値保持部と、を備え、前記閾値は、所定の条件の下で前記複数の磁界検出部がそれぞれ出力する複数の検出信号のうちの少なくとも1つの出力値に基づく値であり、前記判定部は、前記複数の磁界検出部の少なくとも一部がそれぞれ出力した複数の検出信号の出力値のうちの少なくとも1つを用いて判定値を決定し、該判定値が前記閾値未満である場合に前記カプセル型医療装置の適正な位置検出が不可能と判定する、ことを特徴とする。
上記位置検出システムにおいて、前記閾値は、前記複数の磁界検出部がそれぞれ出力する複数の検出信号の出力値のレベルが最低となる位置に前記カプセル型医療装置を配置した条件の下で設定される、ことを特徴とする。
上記位置検出システムにおいて、前記閾値は、前記カプセル型医療装置が当該カプセル型医療装置の検出対象領域の境界に位置する条件の下で設定される、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、前記複数の磁界検出部の全てからの出力値をもとに、前記判定値を決定する、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、前記複数の磁界検出部のうちの予め設定された磁界検出部群からの出力値をもとに、前記判定値を決定する、ことを特徴とする。
上記位置検出システムにおいて、前記複数の磁界検出部の各々は、コイル線材を巻回した筒型コイルであり、前記予め設定された磁界検出部群において、各磁界検出部は、回転中心軸が互いに同一の向きとなるように配置されている、ことを特徴とする。
上記位置検出システムにおいて、前記複数の磁界検出部の各々は、コイル線材を巻回した筒型コイルであり、前記予め設定された磁界検出部群において、少なくとも1つの磁界検出部は、回転中心軸が他の磁界検出部と異なる向きを向いている、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、前記磁界発生部が発生した磁界の影響を受けない条件の下での検出信号の出力値に基づいて前記複数の磁界検出部のうちから予め選出された少なくとも1つの磁界検出部からの出力値をもとに、前記判定値を決定する、ことを特徴とする。
上記位置検出システムにおいて、前記予め選出された少なくとも1つの磁界検出部は、前記条件における検出信号の出力値が所定値以下となる磁界発生部である、ことを特徴とする。
上記位置検出システムにおいて、前記予め選出された少なくとも1つの磁界検出部は、前記条件における検出信号の出力値が小さい方から所定数番目以内となる磁界発生部である、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、前記カプセル型医療装置の位置を検出する際における前記複数の検出信号の出力値の最大値を前記判定値として決定する、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、前記カプセル型医療装置の位置を検出する際における前記複数の検出信号の出力値のうち、値が大きい方から所定数の出力値を用いて前記判定値を決定する、ことを特徴とする。
上記位置検出システムにおいて、前記判定部は、検出信号の出力値が最大の磁界検出部及び該磁界検出部と隣接する所定数の磁界検出部からそれぞれ出力された複数の検出信号の出力値を用いて前記判定値を決定する、ことを特徴とする。
上記位置検出システムにおいて、前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合、前記位置検出演算部は、前記カプセル型医療装置の位置の算出を実行しない、ことを特徴とする。
上記位置検出システムは、前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合に、前記位置検出演算部が算出した前記カプセル型医療装置の位置がエラーである旨の情報を表示する表示部をさらに備える、ことを特徴とする。
上記位置検出システムは、前記位置検出演算部が算出した前記カプセル型医療装置の位置を表示する表示部をさらに備え、前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合、前記表示部は、前記位置検出演算部が算出した前記カプセル型医療装置の位置の表示を停止する、ことを特徴とする。
本発明に係る誘導システムは、前記カプセル型医療装置が永久磁石をさらに有し、前記位置検出システムと、前記永久磁石に作用させる磁界を発生する誘導用磁界発生部と、前記誘導用磁界発生部を制御することにより前記カプセル型医療装置の位置と姿勢とのうちの少なくとも一方を変化させる誘導制御を行う誘導用磁界制御部と、を備えることを特徴とする。
上記誘導システムは、前記誘導用磁界発生部が発生する磁界を遮蔽可能な遮蔽手段をさらに備え、前記誘導用磁界制御部は、前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記遮蔽手段によって前記誘導用磁界発生部が発生する磁界を遮蔽する制御を行う、ことを特徴とする。
上記誘導システムにおいて、前記誘導用磁界制御部は、前記判定部による前記カプセル型医療装置の適正な位置検出が可能か否かの判定に応じて、前記誘導制御が可能な状態と不可能な状態とを切り替える、ことを特徴とする。
上記誘導システムにおいて、前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を停止する、ことを特徴とする。
上記誘導システムにおいて、前記誘導制御の停止中に前記判定部が前記カプセル型医療装置の適正な位置検出が可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を開始可能とする制御を行う、ことを特徴とする。
上記誘導システムにおいて、前記誘導制御の停止中に前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を開始不可能とする制御を行う、ことを特徴とする。
本発明によれば、所定の条件の下での複数の磁界検出部からの出力値に基づく閾値を基準として、上記複数の磁界検出部からの出力値のうちの少なくとも1つを用いて決定された判定値とを比較するので、カプセル型医療装置の適正な位置検出が可能か否かを適切に判定することができる。従って、カプセル型医療装置が位置検出対象の空間に存在しない場合であっても、カプセル型医療装置の位置検出結果の不適正な出力を防ぐことが可能になる。
以下に、本発明の実施の形態に係る位置検出システム及び誘導システムについて、図面を参照しながら説明する。なお、以下に説明する実施の形態においては、位置検出システムが検出対象とするカプセル型医療装置の一形態として、被検体内に経口にて導入されて被検体内(管腔内)を撮像するカプセル型内視鏡を例示するが、これらの実施の形態によって本発明が限定されるものではない。即ち、本発明は、例えば被検体の食道から肛門にかけて管腔内を移動するカプセル型内視鏡や、被検体内に薬剤等を配送するカプセル型医療装置や、被検体内のPHを測定するPHセンサを備えるカプセル型医療装置など、カプセル型をなす種々の医療装置の位置検出に適用することが可能である。
また、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。従って、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。
(実施の形態1)
図1は、本発明の実施の形態1に係る誘導システムの一構成例を示す模式図である。図1に示すように、本実施の形態1に係る誘導システム1は、被検体2の管腔内に導入されるカプセル型医療装置の一例として、被検体2内を撮像することにより取得した画像データを無線信号に重畳して送信するカプセル型内視鏡10と、被検体2が載置されるベッド2aの下方に設けられ、カプセル型内視鏡10が発生する交番磁界を検出する磁界検出装置30と、カプセル型内視鏡10を誘導するための磁界を発生する誘導用磁界発生装置40と、磁界検出装置30により検出された交番磁界に基づいてカプセル型内視鏡10の位置を検出すると共に、被検体2内においてカプセル型内視鏡10を誘導する制御装置50とを備える。
図1は、本発明の実施の形態1に係る誘導システムの一構成例を示す模式図である。図1に示すように、本実施の形態1に係る誘導システム1は、被検体2の管腔内に導入されるカプセル型医療装置の一例として、被検体2内を撮像することにより取得した画像データを無線信号に重畳して送信するカプセル型内視鏡10と、被検体2が載置されるベッド2aの下方に設けられ、カプセル型内視鏡10が発生する交番磁界を検出する磁界検出装置30と、カプセル型内視鏡10を誘導するための磁界を発生する誘導用磁界発生装置40と、磁界検出装置30により検出された交番磁界に基づいてカプセル型内視鏡10の位置を検出すると共に、被検体2内においてカプセル型内視鏡10を誘導する制御装置50とを備える。
以下においては、ベッド2aの上面、即ち、被検体2の載置面をXY平面(水平面)とし、該XY平面と直交する方向をZ方向(鉛直方向即ち重力方向)とする。
図2は、図1に示すカプセル型内視鏡10の内部構造の一例を示す模式図である。図2に示すように、カプセル型内視鏡10は、被検体2の管腔内に導入し易い大きさに形成されたカプセル型をなす筐体100と、該筐体100内に収納され、被検体2内を撮像して撮像信号を取得する撮像部11と、撮像部11を含むカプセル型内視鏡10の各部の動作を制御すると共に、撮像部11により取得された撮像信号に対して所定の信号処理を施す制御部12と、信号処理が施された撮像信号を無線送信する送信部13と、当該カプセル型内視鏡10の位置検出用の交番磁界を発生する磁界発生部14と、カプセル型内視鏡10の各部に電力を供給する電源部15と、永久磁石16とを備える。
筐体100は、被検体2の臓器内部に導入可能な大きさに形成された外装ケースである。筐体100は、円筒形状をなす筒状筐体101と、ドーム形状をなすドーム状筐体102、103とを有し、筒状筐体101の両側開口端を、ドーム形状をなすドーム状筐体102、103によって塞ぐことによって実現される。筒状筐体101は、可視光に対して略不透明な有色の部材によって形成されている。また、ドーム状筐体102、103の少なくとも一方(図2においては撮像部11側であるドーム状筐体102)は、可視光等の所定波長帯域の光に対して透明な光学部材によって形成されている。なお、図2においては、一方のドーム状筐体102側にのみ撮像部11を1つ設けているが、撮像部11を2つ設けても良く、この場合、ドーム状筐体103も透明な光学部材によって形成される。このような筐体100は、撮像部11と、制御部12と、送信部13と、磁界発生部14と、電源部15と、永久磁石16とを液密に内包する。
撮像部11は、LED等の照明部111と、集光レンズ等の光学系112と、CMOSイメージセンサ又はCCD等の撮像素子113とを有する。照明部111は、撮像素子113の撮像視野に白色光等の照明光を発光して、ドーム状筐体102越しに撮像視野内の被検体を照明する。光学系112は、この撮像視野からの反射光を撮像素子113の撮像面に集光して結像させる。撮像素子113は、撮像面において受光した撮像視野からの反射光(光信号)を電気信号に変換し、画像信号として出力する。
制御部12は、所定の撮像フレームレートで撮像部11を動作させると共に、撮像フレームレートと同期して、照明部111を発光させる。また、制御部12は、撮像部11が生成した撮像信号に対し、A/D変換や、その他所定の信号処理を施して画像データを生成する。さらに、制御部12は、電源部15から磁界発生部14に電力を供給させることにより、磁界発生部14から交番磁界を発生させる。
送信部13は、送信アンテナを備え、制御部12によって信号処理が施された画像データ及び関連情報を取得して変調処理を施し、送信アンテナを介して外部に順次無線送信する。
磁界発生部14は、共振回路の一部をなし、電流が流れることにより磁界を発生する磁界発生コイル141と、該磁界発生コイル141と共に共振回路を形成するコンデンサ142とを含み、電源部15からの電力供給を受けて所定の周波数の交番磁界を発生する。
電源部15は、ボタン型電池やキャパシタ等の蓄電部であって、磁気スイッチや光スイッチ等のスイッチ部を有する。電源部15は、磁気スイッチを有する構成とした場合、外部から印加された磁界によって電源のオンオフ状態を切り替え、オン状態の場合に蓄電部の電力をカプセル型内視鏡10の各構成部(撮像部11、制御部12、及び送信部13)に適宜供給する。また、電源部15は、オフ状態の場合に、カプセル型内視鏡10の各構成部への電力供給を停止する。
永久磁石16は、誘導用磁界発生装置40が発生した磁界によるカプセル型内視鏡10の磁気誘導を可能にするためのものであり、磁化方向が筐体100の長軸Laに対して傾きを持つように、カプセル形状をなす筐体100の内部に固定配置される。なお、図2においては、永久磁石16の磁化方向を矢印で示している。実施の形態1においては、永久磁石16を、磁化方向が長軸Laに対して直交するように配置している。永久磁石16は、外部から印加された磁界に追従して動作し、この結果、誘導用磁界発生装置40によるカプセル型内視鏡10の磁気誘導が実現する。
再び図1を参照すると、磁界検出装置30は、平面状のパネル31と、該パネル31の主面上に配設され、各々がカプセル型内視鏡10から発生した交番磁界を受信して検出信号を出力する複数の検出コイルCn(n=1、2、…)とを有する。各検出コイルCnは、コイル線材をコイルバネ状に巻回した筒型コイルからなる磁界検出部であり、例えば、開口径が30~40mm程度、高さが5mm程度のサイズを有する。
このような磁界検出装置30は、検査中の被検体2の近傍に配設される。実施の形態1においては、磁界検出装置30をベッド2aの下方に、パネル31の主面が水平になるように配設される。
この磁界検出装置30によりカプセル型内視鏡10の位置を検出可能な領域が、検出対象領域Rである。この検出対象領域Rは、被検体2内でカプセル型内視鏡10が移動可能な範囲(即ち、観察対象の臓器の範囲)を含む3次元的な閉じた領域であり、磁界検出装置30における複数の検出コイルCnの配置や、カプセル型内視鏡10内の磁界発生部14が発生可能な磁界の強度等に応じて予め設定されている。
図3は、誘導用磁界発生装置40の構成例を示す模式図である。図3に示すように、誘導用磁界発生装置40は、被検体2内に導入されたカプセル型内視鏡10の位置、鉛直方向に対する長軸Laの傾斜角、及び方位角を、被検体2に対して相対的に変化させるための磁界を発生する。より詳細には、誘導用磁界発生装置40は、磁界を発生する誘導用磁界発生部(第2の磁界発生部)としての体外永久磁石41と、該体外永久磁石41の位置及び姿勢を変化させる磁石駆動部42と、体外永久磁石41が発生する磁界を遮蔽可能な遮蔽手段としての磁気シールド43及び磁気シールド駆動部44とを備える。このうち、磁石駆動部42は、平面位置変更部421、鉛直位置変更部422、仰角変更部423、及び旋回角変更部424を有する。
体外永久磁石41は、好ましくは、直方体形状を有する棒磁石によって実現され、自身の磁化方向と平行な4つの面の内の1つの面を水平面に投影した領域内にカプセル型内視鏡10を拘束する。なお、体外永久磁石41の代わりに、電流が流れることにより磁界を発生する電磁石を設けても良い。
磁石駆動部42は、後述する誘導用磁界制御部57から出力される制御信号に従って動作する。具体的には、平面位置変更部421は、体外永久磁石41をXY面内において並進させる。即ち、体外永久磁石41において磁化された2つの磁極の相対位置が確保された状態のままで水平面内に移動を行う。
鉛直位置変更部422は、体外永久磁石41をZ方向に沿って並進させる。即ち、体外永久磁石41において磁化された2つの磁極の相対位置が確保された状態のままで鉛直方向に沿って移動を行う。
仰角変更部423は、体外永久磁石41の磁化方向を含む鉛直面内において、体外永久磁石41を回転させることにより、水平面に対する磁化方向の角度を変化させる。
旋回角変更部424は、体外永久磁石41の中心を通る鉛直方向の軸に対して体外永久磁石41を旋回させる。
磁気シールド43は、鉄やニッケル等の強磁性体からなる板状の部材であり、少なくとも体外永久磁石41の上方に挿抜可能に設けられている。磁気シールド駆動部44は、後述する誘導用磁界制御部57から出力される制御信号に従って、磁気シールド43の挿脱を行う。磁気シールド43が体外永久磁石41の上方から抜去されている間、体外永久磁石41により検出対象領域Rを含む空間に磁界が生成される。この間、誘導用磁界発生装置40によるカプセル型内視鏡10の誘導が可能となる。一方、磁気シールド43が体外永久磁石41の上方に挿入されている間、体外永久磁石41が発生する磁界は、誘導用磁界発生装置40内に遮蔽される。即ち、この間、カプセル型内視鏡10の誘導は行われない。
なお、体外永久磁石41の代わりに電磁石を設ける場合には、磁気シールド43及び磁気シールド駆動部44を設ける必要はない。この場合、電磁石への電力供給を停止することにより、誘導用磁界発生装置40からの磁界発生が停止するので、電磁石への電力供給を制御する電力制御部が、磁界の遮蔽手段として機能する。
再び図1を参照すると、制御装置50は、カプセル型内視鏡10から送信された無線信号を、受信アンテナ51aを介して受信する受信部51と、当該制御装置50によって処理された種々の情報等を表示装置等に出力して表示させる表示部52と、記憶部53と、当該制御装置50に対する種々の情報や命令の入力に用いられる操作入力部54と、各検出コイルCnから出力された検出信号に対して種々の信号処理を施して磁界情報を生成する信号処理部55と、受信部51によって受信された画像データに基づく画像生成や、信号処理部55によって生成された磁界情報に基づくカプセル型内視鏡10の位置検出等の各種演算処理を行う演算部56と、カプセル型内視鏡10を誘導するための制御を行う誘導用磁界制御部57とを備える。
カプセル型内視鏡10による検査を行う際、被検体2の体表には、カプセル型内視鏡10から送信された無線信号を受信する複数の受信アンテナ51aが貼り付けられる。受信部51は、これらの受信アンテナ51aのうち、無線信号に対して最も受信強度の高い受信アンテナ51aを選択し、選択した受信アンテナ51aを介して受信した無線信号に対して復調処理等を施すことにより、体内画像の画像データ及び関連情報を取得する。
表示部52は、液晶や有機EL等の各種ディスプレイを含み、操作入力部54から入力された各種情報や、被検体2の体内画像や、体内画像の撮像時におけるカプセル型内視鏡10の位置情報等を画面表示する。
記憶部53は、フラッシュメモリ又はハードディスク等の書き換え可能に情報を保存する記憶媒体及び書込読取装置を用いて実現される。記憶部53は、演算部56が制御装置50の各部を制御するための各種プログラムや各種パラメータや、カプセル型内視鏡10によって撮像された体内画像の画像データや、被検体2内におけるカプセル型内視鏡10の位置情報等を記憶する。
操作入力部54は、各種ボタン、スイッチ、キーボード等の入力デバイスや、マウス、タッチパネル等のポインティングデバイスや、ジョイスティック等によって実現され、ユーザによる入力操作に応じて、各種情報を演算部56に入力する。操作入力部54により入力される情報として、例えば、カプセル型内視鏡10をユーザ所望の位置及び姿勢に誘導するための情報(以下、誘導操作情報という)が挙げられる。
信号処理部55は、磁界検出装置30から出力された検出信号の波形を整形するフィルタ部551と、増幅器552と、検出信号にA/D変換処理を施すA/D変換部553とを有する。なお、磁界検出装置30が磁界を検出可能な空間には、カプセル型内視鏡10内の磁界発生部14が発生する交番磁界と、誘導用磁界発生装置40が形成する誘導用磁界とが存在するが、両磁界は周波数が全く異なるため、磁界同士の干渉が問題になることはない。
演算部56は、例えばCPU(Central Processing Unit)等を用いて構成され、記憶部53からプログラムを読み出し、制御装置50を構成する各部に対する指示やデータの転送等を行って制御装置50の動作を統括的に制御する。また、演算部56は、画像処理部561と、閾値保持部562と、判定部563と、位置検出演算部564とを備える。
画像処理部561は、受信部51から入力された画像データに対してホワイトバランス処理、デモザイキング、ガンマ変換、平滑化(ノイズ除去等)等の所定の画像処理を施すことにより、表示用の画像データを生成する。
判定部563は、信号処理部55から出力された検出信号の出力値に基づいて、後述する位置検出演算部564にカプセル型内視鏡10の位置検出演算を実行させるか否かの判定を行う。閾値保持部562は、この判定に用いられる閾値を保持している。
位置検出演算部564は、判定部563が位置検出演算を実行させると判定した場合に、信号処理部55から出力された検出信号に基づいて、カプセル型内視鏡10の位置を表す情報(位置情報)を取得する。より詳細には、位置検出演算部564は、信号処理部55から出力された検出データに高速フーリエ変換処理(以下、FFT処理という)を施すことにより、交番磁界の振幅及び位相等の磁界情報を抽出するFFT処理部564aと、FFT処理部564aによって抽出された磁界情報に基づいてカプセル型内視鏡10の位置を算出する位置算出部564bとを有する。
図1に示す誘導システム1のうち、カプセル型内視鏡10、磁界検出装置30、信号処理部55、閾値保持部562、判定部563、及び位置検出演算部564が位置検出システムを構成する。
誘導用磁界制御部57は、位置検出演算部564により算出されたカプセル型内視鏡10の位置及び姿勢と、操作入力部54から入力された誘導操作情報とに基づいて、カプセル型内視鏡10がユーザ所望の位置においてユーザ所望の姿勢をなすように、磁石駆動部42の各部の動作を制御する。即ち、体外永久磁石41の位置、仰角、及び旋回角を変化させることにより、カプセル型内視鏡10の位置を含む空間における磁気勾配を変化させてカプセル型内視鏡10を誘導する。
次に、誘導システム1の動作について説明する。図4は、誘導システム1の動作を示すフローチャートである。
まず、ステップS10において、カプセル型内視鏡10の電源がオンにされる。これにより、電源部15(図2参照)からカプセル型内視鏡10の各部への電力供給が開始され、撮像部11が撮像を開始すると共に、磁界発生部14が磁界の発生を開始する。
ステップS11において、磁界検出装置30は磁界の検出を行う。即ち、磁界検出装置30の各検出コイルCnが、自身の位置に分布する磁界に応じた電流を発生し、この電流を磁界の検出信号として信号処理部55に出力する。
ステップS12において、信号処理部55は、磁界検出装置30から出力された複数の検出信号(複数の検出コイルCnがそれぞれ発生した電流)を取り込み、これらの検出信号に対して波形の整形、増幅、A/D変換等の信号処理を施して出力する。
ステップS13において、判定部563は、閾値保持部562が予め保持している閾値と、信号処理部55から出力された複数の検出信号の出力値(振幅)をもとに決定される判定値とを比較する。閾値の設定方法及び判定値の決定方法については、後で詳述する。図5及び図6は、検出コイルCnの出力値の判定方法を説明するための模式図である。ここでは、一例として、図5及び図6に示すように、複数の検出コイルCnの出力値のうちの最大値Dmaxを判定値とし、この判定値Dmaxが閾値Th0以上であるか否かを判定する。
図5に示すように、判定値(最大値Dmax)が閾値Th0以上である場合(ステップS13:Yes)、判定部563は、カプセル型内視鏡10は検出対象領域R内に実在しており、適正な位置検出が可能と判定する(ステップS14)。ここで、適正な位置検出が可能とは、検出コイルCnが検出した信号にはカプセル型内視鏡10が発生した磁界成分が含まれており、この磁界成分に基づく位置検出演算が可能という意味である。反対に、適正な位置検出が不可能とは、検出コイルCnが検出した信号にはカプセル型内視鏡10が発生した磁界成分があまり含まれておらず、ノイズ成分に基づく位置検出演算が実行されてしまうという意味である。
この場合、位置検出演算部564は、信号処理部55から出力された複数の検出信号に基づいて、カプセル型内視鏡10の位置検出演算を行う(ステップS15)。詳細には、FFT処理部564aが、各検出信号に高速フーリエ変換処理を施すことにより、検出信号の振幅及び位相を算出する。この振幅及び位相は、各検出コイルCnの位置における磁界の強度及び位相に対応する。位置算出部564bは、検出信号の振幅及び位相に基づいて、カプセル型内視鏡10の位置及び姿勢を算出する。
続くステップS16において、誘導用磁界制御部57は、操作入力部54から誘導操作情報が入力されたか否かを判定する。誘導操作情報が入力された場合(ステップS16:Yes)、誘導用磁界制御部57は、この誘導操作情報と、ステップS15において算出されたカプセル型内視鏡10の位置及び姿勢とに基づき、誘導用磁界発生装置40の動作を制御することにより、カプセル型内視鏡10の誘導を実行する(ステップS17)。
一方、操作入力部54から誘導操作情報が入力されない場合(ステップS16:No)、誘導システム1の動作はそのままステップS20に移行する。
ステップS13において、図6に示すように、判定値Dmaxが閾値Th0未満である場合(ステップS13:No)、判定部563は、カプセル型内視鏡10は検出対象領域R内に実在しておらず、適正な位置検出は不可能と判定する(ステップS18)。この場合、位置検出演算部564は、カプセル型内視鏡10の位置検出演算を行うことなく、動作は続くステップS19に移行する。
ステップS19において、誘導用磁界制御部57は、カプセル型内視鏡10に対する誘導制御をオフにする。具体的には、誘導用磁界発生装置40の磁気シールド駆動部44に対し、磁気シールド43を体外永久磁石41の上方に挿入して、体外永久磁石41が発生する磁界を当該誘導用磁界発生装置40内に遮蔽する制御を行う。これにより、操作入力部54から誘導操作情報が入力されたとしても、カプセル型内視鏡10に対して誘導用磁界は印加されない。その後、誘導システム1の動作はステップS20に移行する。
ステップS20において、制御装置50は、カプセル型内視鏡10による検査を終了するか否かを判断する。具体的には、操作入力部54を介して検査を終了する指示信号が入力された、カプセル型内視鏡10の電源がオンにされてから所定時間以上経過した、といった場合に、制御装置50は検査を終了すると判断する。
検査を終了する場合(ステップS20:Yes)、誘導システム1の動作は終了する。一方、検査を終了しない場合(ステップS20:No)、誘導システム1の動作はステップS11に戻る。
次に、ステップS13において用いられる閾値の設定方法について説明する。閾値の設定方法としては、以下の設定方法(1)、(2)が挙げられる。上述したステップS13においては、閾値の設定方法(1)、(2)のいずれの方法により取得された閾値を用いても良い。
(閾値の設定方法(1))
図7は、閾値の設定方法(1)を説明するための模式図であり、磁界検出装置30に設けられた複数の検出コイルCn(一例として、n=1~16)と、カプセル型内視鏡10の検出対象領域Rとを示している。
図7は、閾値の設定方法(1)を説明するための模式図であり、磁界検出装置30に設けられた複数の検出コイルCn(一例として、n=1~16)と、カプセル型内視鏡10の検出対象領域Rとを示している。
閾値の取得は、カプセル型内視鏡10による検査の開始前に行われる。まず、カプセル型内視鏡10の電源をオンにして磁界発生部14に磁界を発生させる。そして、磁界を発生している状態のカプセル型内視鏡10を、このカプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる位置、言い換えると、検出対象領域Rの端部(境界面又は境界ライン)、好ましくは最端部である隅に配置する。図7においては、検出対象領域Rの上面の4隅の1つにカプセル型内視鏡10を配置した状態を示している。
図8は、この状態で各検出コイルCnによって検出された検出信号の出力値の一例を示す模式図である。図8においては、検出コイルC4の出力値が最大となっている。この場合、当該最大の出力値が、閾値Th0として取得される。
(閾値の設定方法(2))
上記閾値の設定方法(1)と同様に、磁界を発生している状態のカプセル型内視鏡10を、カプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる位置(検出対象領域Rの端部)に配置する(図7参照)。そして、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する所定数(1つ以上)の検出コイルCnの出力値の平均値を閾値として設定する。図9は、閾値の設定方法(2)を説明するための模式図である。
上記閾値の設定方法(1)と同様に、磁界を発生している状態のカプセル型内視鏡10を、カプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる位置(検出対象領域Rの端部)に配置する(図7参照)。そして、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する所定数(1つ以上)の検出コイルCnの出力値の平均値を閾値として設定する。図9は、閾値の設定方法(2)を説明するための模式図である。
例えば図8の場合、検出コイルC4の出力値が最大であり、図9に示すように、検出コイルC4の近傍に位置する検出コイルCnは、検出コイルC3、C7、C8である。従って、範囲A1に含まれる検出コイル群(検出コイルC3、C4、C7、C8)の出力値の平均値が閾値として設定される。
ここで、出力値が最大の検出コイルCn及びその近傍に位置する検出コイルCnは、範囲A1のように、パネル31に配設された検出コイル群の角の4つに限定されない。別の例として、検出コイルC10の出力値が最大である場合、検出コイルC10の縦方向及び横方向で隣接する4つの検出コイルC6、C9、C11、C14を、近傍に位置する検出コイルCnとしても良い。この場合、範囲A2に含まれる検出コイル群の出力値の平均値が閾値として設定される。さらに別の例として、出力値が最大の検出コイルC10に対して、縦方向、横方向、及び斜め方向で隣接する8個の検出コイルC5、C6、C7、C9、C11、C13、C14、C15を、近傍に位置する検出コイルCnとしても良い。この場合、範囲A3に含まれる検出コイル群の出力値の平均値が閾値として設定される。
なお、これらの閾値は、理論値に基づいて予め算出しておいても良い。即ち、検出対象領域Rの端部に所定の強さ(カプセル型内視鏡10が発生する磁界と同程度)の磁界を発生する磁界発生源を配置したと仮定し、各検出コイルCnの位置における磁界の強さの理論値をもとに、上記閾値の設定方法(1)又は(2)と同様にして閾値を算出する。
次に、ステップS13において閾値と比較される判定値の決定方法について説明する。判定値の決定方法としては、以下の決定方法(1)~(4)が挙げられる。上述したステップS13においては、判定値の決定方法(1)~(4)のいずれの方法により決定された判定値を用いても良い。
(判定値の決定方法(1))
上記ステップS13において説明したように、複数の検出コイルCnの出力値のうちの最大値を判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、この最大値Dmaxが判定値として決定され、閾値Th0と比較される。
上記ステップS13において説明したように、複数の検出コイルCnの出力値のうちの最大値を判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、この最大値Dmaxが判定値として決定され、閾値Th0と比較される。
(判定値の決定方法(2))
複数の検出コイルCnの出力値のうち、値が大きい方から所定数(2つ以上)の出力値の平均値を判定値とする。例えば値が大きい方から4つの出力値の平均値を判定値とする場合、図5に示す出力値が得られているときには、検出コイルC1、C5、C6、C9の出力値の平均値が判定値として決定される。
複数の検出コイルCnの出力値のうち、値が大きい方から所定数(2つ以上)の出力値の平均値を判定値とする。例えば値が大きい方から4つの出力値の平均値を判定値とする場合、図5に示す出力値が得られているときには、検出コイルC1、C5、C6、C9の出力値の平均値が判定値として決定される。
ここで、従来の位置検出システムにおいて検出され得るカプセル型内視鏡10の不適正な位置(ゴースト)はノイズ分布に依存するので、検出されたゴーストの位置や信号レベルはほぼ一定となる。そこで、出力値が大きくなり易い複数の検出コイルCnの出力値を判定対象とすることで、今回の各検出コイルCnからの出力値がカプセル型内視鏡10が発生した磁界の検出結果であるのか、或いはレベルの高いノイズの検出結果であるのかを精度良く判定することが可能となる。
(判定値の決定方法(3))
複数の検出コイルCnのうち、出力値が最大の検出コイルCn及びこの検出コイルCnと隣接する少なくとも1つの検出コイルCnの出力値をそれぞれ判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、検出コイルC5の出力値と、これに隣接する検出コイルC1、C6、C9(図9参照)のいずれかの出力値とがそれぞれ判定値となる。この場合、検出コイルC5の出力値及び隣接する検出コイルCnの出力値が共に閾値Th0以上であるとき、適正な位置検出が可能と判定される。隣接するコイルC1、C6、C9のうち、判定値を取得する検出コイルCnは予め決定しておいても良いし、カプセル型内視鏡10の移動方向に位置する検出コイルCnの出力値を判定値として用いても良い。
複数の検出コイルCnのうち、出力値が最大の検出コイルCn及びこの検出コイルCnと隣接する少なくとも1つの検出コイルCnの出力値をそれぞれ判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、検出コイルC5の出力値と、これに隣接する検出コイルC1、C6、C9(図9参照)のいずれかの出力値とがそれぞれ判定値となる。この場合、検出コイルC5の出力値及び隣接する検出コイルCnの出力値が共に閾値Th0以上であるとき、適正な位置検出が可能と判定される。隣接するコイルC1、C6、C9のうち、判定値を取得する検出コイルCnは予め決定しておいても良いし、カプセル型内視鏡10の移動方向に位置する検出コイルCnの出力値を判定値として用いても良い。
(判定値の決定方法(4))
複数の検出コイルCnのうち、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する検出コイルCnの出力値の平均値を判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、検出コイルC5及びその近傍に位置する検出コイルC1、C2、C6、C9、C10(図9参照)の出力値の平均値が判定値として決定され、閾値Th0と比較される。なお、近傍に位置する検出コイルCnとしては、出力値が最大の検出コイルCnに対して縦方向及び横方向で隣接する検出コイル群を選択しても良いし、縦方向、横方向、及び斜め方向で隣接する検出コイル群を選択しても良い。
複数の検出コイルCnのうち、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する検出コイルCnの出力値の平均値を判定値とする。例えば図5の場合、検出コイルC5の出力値が最大であるから、検出コイルC5及びその近傍に位置する検出コイルC1、C2、C6、C9、C10(図9参照)の出力値の平均値が判定値として決定され、閾値Th0と比較される。なお、近傍に位置する検出コイルCnとしては、出力値が最大の検出コイルCnに対して縦方向及び横方向で隣接する検出コイル群を選択しても良いし、縦方向、横方向、及び斜め方向で隣接する検出コイル群を選択しても良い。
ここで、カプセル型内視鏡10が実際に検出対象領域R内に存在する場合、出力値の大きい検出コイルCnがあれば、その周囲の検出コイルCnの出力値も大きくなる傾向がある。反対に、カプセル型内視鏡10が検出対象領域R内に存在しない場合、出力値の大きい検出コイルCnがあったとしても、その近傍に位置する検出コイルCnの出力値も大きくなるとは限らない。そこで、出力値が最大の検出コイルCn及びその近傍の検出コイルCnの出力値の平均値を閾値Th0と比較することにより、カプセル型内視鏡10が検出対象領域R内に存在するか否かを精度良く判定することが可能となる。
以上説明したように、本発明の実施の形態1においては、検出コイルCnの出力値に基づいて決定された判定値を、予め取得された閾値と比較し、この比較の結果に基づいて、カプセル型内視鏡10の適正な位置検出が可能か否かを判定する。そして、適正な位置検出が不可能であると判定した場合には位置検出演算部564に位置検出演算を実行させないので、カプセル型内視鏡10の位置検出結果の不適正な出力を防ぐことが可能となる。
また、本発明の実施の形態1によれば、カプセル型内視鏡10の適正な位置検出ができない場合、カプセル型内視鏡10に対する誘導制御をオフにするので、誤検出されたカプセル型内視鏡10の位置に基づく不適切な誘導を防ぐことができる。
(変形例1)
次に、本発明の実施の形態1の変形例1について説明する。
上記実施の形態1で説明した閾値の設定方法(2)においては、カプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる位置にカプセル型内視鏡10を配置し、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する所定数の検出コイルCnの出力値の平均値を閾値として設定した。しかし、これらの出力値の和を閾値として設定しても良い。
次に、本発明の実施の形態1の変形例1について説明する。
上記実施の形態1で説明した閾値の設定方法(2)においては、カプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる位置にカプセル型内視鏡10を配置し、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する所定数の検出コイルCnの出力値の平均値を閾値として設定した。しかし、これらの出力値の和を閾値として設定しても良い。
この場合、上記判定値の決定方法(2)、(4)においては複数の出力値の平均値を判定値としたが、その代わりに、これらの出力値の和を判定値として決定する。この際、閾値の取得に用いた出力値の数と、判定値の決定に用いる出力値の数とが一致するように、判定値の決定に用いる出力値を取得する検出コイルCnを選択する。
(実施の形態2)
次に、本発明の実施の形態2について説明する。実施の形態2に係る誘導システムの構成及び動作は、全体として実施の形態1と同様であり(図1及び図4参照)、閾値と比較する判定値の決定方法が実施の形態1と異なる。
次に、本発明の実施の形態2について説明する。実施の形態2に係る誘導システムの構成及び動作は、全体として実施の形態1と同様であり(図1及び図4参照)、閾値と比較する判定値の決定方法が実施の形態1と異なる。
上記実施の形態1においては、全ての検出コイルCnから出力値を取得し、これらの出力値に基づいて判定値を決定した。しかしながら、閾値と比較する判定値の決定に際して出力値を取得する検出コイルCnを、カプセル型内視鏡10による検査の開始前に行われるキャリブレーション時に予め選出しておいても良い。即ち、カプセル型内視鏡10が磁界を発生しておらず、検出対象領域Rに磁界発生部14が発生する磁界の影響がない状態で、各検出コイルCnからの検出信号を取得し、ノイズレベルが低かった検出コイルCnを判定値の取得対象の検出コイルCnとして予め選出する。検出コイルCnの選出方法としては、ノイズレベルが低い方から所定数(1つ以上)までの検出コイルCnを選出しても良いし、ノイズレベルが所定値以下である全ての検出コイルCnを選出しても良い。従って、パネル31に配設された検出コイルCnが全て選出されることもあり得るし、検出コイルCnが1つしか選出されないこともあり得る。なお、後者の場合には、選出された検出コイルCnの出力値がそのまま判定値として用いられる。
図10~図12は、実施の形態2における判定値の決定方法を説明するための模式図である。例えば、検査の開始前のキャリブレーション時に、図10に示すような検出コイルCnの出力値(ノイズレベル)が得られ、ノイズレベルの低い検出コイルC3、C6、C7、C8、C10、C11、C12が判定値の取得対象として選出されたとする(図11参照)。ステップS13においては、これらの選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値をもとに判定値が決定される。なお、図10及び図12に示す丸数字は、選出された検出コイルCnのコイル番号である。
判定値の決定方法の一例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうちの最大値を判定値とする。例えば、カプセル型内視鏡10による検査の開始後、図12に示す各検出コイルCnの出力値が得られている場合、検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうちでは、検出コイルC6の出力値DS1が最大である。従って、この出力値DS1が判定値として決定され、閾値と比較される。
(変形例2-1)
次に、本発明の実施の形態2の変形例2-1について説明する。
判定値の決定方法の別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうち、値が大きい方から所定数(2つ以上)の出力値を判定値としても良い。例えば値が大きい方から2つの出力値を判定値とする場合、図12においては、検出コイルC6の出力値DS1及び検出コイルC7の出力値DS2が判定値として決定される。この場合、出力値DS1及び出力値DS2をそれぞれ閾値と比較し、共に閾値以上である場合に、カプセル型内視鏡10の適正な位置検出が可能と判定される。
次に、本発明の実施の形態2の変形例2-1について説明する。
判定値の決定方法の別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうち、値が大きい方から所定数(2つ以上)の出力値を判定値としても良い。例えば値が大きい方から2つの出力値を判定値とする場合、図12においては、検出コイルC6の出力値DS1及び検出コイルC7の出力値DS2が判定値として決定される。この場合、出力値DS1及び出力値DS2をそれぞれ閾値と比較し、共に閾値以上である場合に、カプセル型内視鏡10の適正な位置検出が可能と判定される。
(変形例2-2)
次に、本発明の実施の形態2の変形例2-2について説明する。
判定値の決定方法のさらに別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうち、値が大きい方から所定数(2つ以上)の出力値の平均値を判定値としても良い。例えば値が大きい方から4つの出力値の平均値を判定値とする場合、図12においては、検出コイルC6の出力値DS1、検出コイルC7の出力値DS2、検出コイルC11の出力値DS3、及び検出コイルC8の出力値DS4の平均値が判定値として決定される。或いは、これらの出力値DS1、DS2、DS3、DS4の和を判定値として決定しても良い。
次に、本発明の実施の形態2の変形例2-2について説明する。
判定値の決定方法のさらに別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12の出力値のうち、値が大きい方から所定数(2つ以上)の出力値の平均値を判定値としても良い。例えば値が大きい方から4つの出力値の平均値を判定値とする場合、図12においては、検出コイルC6の出力値DS1、検出コイルC7の出力値DS2、検出コイルC11の出力値DS3、及び検出コイルC8の出力値DS4の平均値が判定値として決定される。或いは、これらの出力値DS1、DS2、DS3、DS4の和を判定値として決定しても良い。
(変形例2-3)
次に、本発明の実施の形態2の変形例2-3について説明する。
判定値の決定方法のさらに別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12のうち、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する検出コイルCnの出力値の平均値を判定値としても良い。例えば、図12においては、検出コイルC3、C6、C7、C8、C10、C11、C12のうち、検出コイルC6の出力値が最大であるから、検出コイルC6及びその近傍に位置する検出コイルC3、C7、C10(図11参照)の出力値の平均値が判定値として決定される。或いは、これらの出力値の和を判定値として決定しても良い。
次に、本発明の実施の形態2の変形例2-3について説明する。
判定値の決定方法のさらに別の例として、予め選出された検出コイルC3、C6、C7、C8、C10、C11、C12のうち、出力値が最大の検出コイルCn及びこの検出コイルCnの近傍に位置する検出コイルCnの出力値の平均値を判定値としても良い。例えば、図12においては、検出コイルC3、C6、C7、C8、C10、C11、C12のうち、検出コイルC6の出力値が最大であるから、検出コイルC6及びその近傍に位置する検出コイルC3、C7、C10(図11参照)の出力値の平均値が判定値として決定される。或いは、これらの出力値の和を判定値として決定しても良い。
上述した実施の形態2及びその変形例2-1~2-3で説明したように、キャリブレーション時に予め選出された検出コイルCnの出力値に基づいて判定値を決定する場合、閾値については、カプセル型内視鏡10が発生する磁界に対する各検出コイルCnの検出レベルが最低となる条件(検出対象領域Rの端部にカプセル型内視鏡10を配置した条件)の下での各検出コイルCnの出力値の理論値に基づいて取得する。理論値に基づく閾値の設定方法は、上記実施の形態1において説明した閾値の設定方法(1)、(2)、又は変形例1において説明した閾値の設定方法と同様である。
(実施の形態3)
次に、本発明の実施の形態3について説明する。
上記実施の形態1、2においては、パネル31上に配置する検出コイルCnの向きを全て揃えたが、一部の検出コイルCnの向きを変化させても良い。図13は、本発明の実施の形態3における検出コイルCnの配置例を示す模式図であり、検出コイルCnの回転中心軸Aを互いに直交する3方向(XYZ方向)のいずれかに向けた例を示している。
次に、本発明の実施の形態3について説明する。
上記実施の形態1、2においては、パネル31上に配置する検出コイルCnの向きを全て揃えたが、一部の検出コイルCnの向きを変化させても良い。図13は、本発明の実施の形態3における検出コイルCnの配置例を示す模式図であり、検出コイルCnの回転中心軸Aを互いに直交する3方向(XYZ方向)のいずれかに向けた例を示している。
図13においては、検出コイルC1~C16を、回転中心軸AがZ軸と平行になるように(即ち、コイルの開口面がXY平面と平行になるように)配置すると共に、パネル31の端部に配置された検出コイルC1、C4、C13、C16の近傍に、回転中心軸AがX軸と平行な向きの検出コイルC1X、C4X、C13X、C16Xと、回転中心軸AがY軸と平行な向きの検出コイルC1Y、C4Y、C13Y、C16Yとをそれぞれ配置している。各検出コイルC1X、C4X、C13X、C16X、C1Y、C4Y、C13Y、C16Yの形状及びサイズは、検出コイルC1~C16と同様である。
ここで、検出コイルCn(n=1~16、1X、1Y、4X、4Y、13X、13Y、16X、16Y)は、回転中心軸Aと平行な方向における磁界の変化を精度良く検出することができる。そこで、それぞれの回転中心軸AがX軸、Y軸、Z軸と平行になるように配置された3つの検出コイル(例えば検出コイルC1、C1X、C1Y)を1単位(コイルセットCXYZ)として近傍に配置することにより、当該位置における磁界の変化を3次元的に検出することが可能となる。図13は、パネル31の4隅にコイルセットCXYZを配置し、それ以外の位置に、回転中心軸AがZ軸と平行になるように検出コイルC2、C3、C5~C12、C14、C15を配置した例を示している。
このように検出コイルCnの向きを変化させる場合、閾値と比較する判定値を決定する際に出力値を取得する複数の検出コイル(検出コイル群)を予め設定しておくと良い。例えば、回転中心軸AがZ軸と平行な検出コイルC2、C3、C5~C12、C14、C15のように、互いに向きが同一の検出コイルCnを、判定値を決定する際に出力値を取得する検出コイル群として設定しておく。或いは、回転中心軸AがX軸と平行な検出コイルC1X、C4X、C13X、C16Xや、回転中心軸AがY軸と平行な検出コイルC1Y、C4Y、C13Y、C16Yを、判定値を決定する際に出力値を取得する検出コイル群として設定しても良い。この場合、設定された検出コイル群から取得した出力値に基づいて判定値を決定する。判定値の決定方法は、実施の形態1(判定値の決定方法(1)~(4))と同様である。
また、この場合、閾値についても、判定値の決定に用いられる検出コイルCnの向きと同じ向きの検出コイルCnの出力値に基づいて予め取得しておくと良い。なお、閾値の設定方法は、出力値を取得する検出コイル群(各検出コイルCnの向き)が限定されることを除いて、実施の形態1(閾値の設定方法(1)又は(2))と同様である。
(変形例3-1)
次に、本発明の実施の形態3の変形例3-1について説明する。
図13に示すように、パネル31に配置する検出コイルCnをXYZの各方向に向ける場合、回転中心軸AがX軸と平行な検出コイル群(検出コイルC1X、C4X、C13X、C16X)と、回転中心軸AがY軸と平行な検出コイル群(検出コイルC1Y、C4Y、C13Y、C16Y)と、回転中心軸AがZ軸と平行な検出コイル群(検出コイルC2、C3、C5~C12、C14、C15)とのそれぞれを、判定値を決定する際に出力値を取得する検出コイル群として予め設定しておいても良い。この場合、各検出コイル群の出力値に基づいて、XYZの方向別に3つの判定値を決定し、これらの判定値を、XYZの方向ごとに取得された閾値とそれぞれ比較することにより、方向別の判定を行うことができる。
次に、本発明の実施の形態3の変形例3-1について説明する。
図13に示すように、パネル31に配置する検出コイルCnをXYZの各方向に向ける場合、回転中心軸AがX軸と平行な検出コイル群(検出コイルC1X、C4X、C13X、C16X)と、回転中心軸AがY軸と平行な検出コイル群(検出コイルC1Y、C4Y、C13Y、C16Y)と、回転中心軸AがZ軸と平行な検出コイル群(検出コイルC2、C3、C5~C12、C14、C15)とのそれぞれを、判定値を決定する際に出力値を取得する検出コイル群として予め設定しておいても良い。この場合、各検出コイル群の出力値に基づいて、XYZの方向別に3つの判定値を決定し、これらの判定値を、XYZの方向ごとに取得された閾値とそれぞれ比較することにより、方向別の判定を行うことができる。
このように方向別に判定を行う場合、XYZのいずれかの方向において、判定値が閾値以上であるとき、判定部563(図1参照)は、カプセル型内視鏡10は検出対象領域R内に実在しており、適正な位置検出が可能と判定することとしても良い。
(変形例3-2)
次に、本発明の実施の形態3の変形例3-2について説明する。
図13に示すように、パネル31に配置する検出コイルCnをXYZの各方向に向ける場合、判定値を決定する際に出力値を取得する検出コイル群に、互いに異なる方向を向く検出コイルCnを含めても良い。一例として、回転中心軸AがZ方向と平行な検出コイルC2、C3、C5~C12、C14、C15に加えて、パネル31の端部に配置された4つのコイルセットCXYZを、出力値を取得する検出コイル群として予め設定しておく。
次に、本発明の実施の形態3の変形例3-2について説明する。
図13に示すように、パネル31に配置する検出コイルCnをXYZの各方向に向ける場合、判定値を決定する際に出力値を取得する検出コイル群に、互いに異なる方向を向く検出コイルCnを含めても良い。一例として、回転中心軸AがZ方向と平行な検出コイルC2、C3、C5~C12、C14、C15に加えて、パネル31の端部に配置された4つのコイルセットCXYZを、出力値を取得する検出コイル群として予め設定しておく。
この場合、各コイルセットCXYZについては、1つのコイルセットCXYZに含まれる3つの検出コイル(例えばC1X、C1Y、C1)の出力値の平方和を算出し、この平方和を、判定値を決定する際の検出コイルの出力値として扱う。それにより、カプセル型内視鏡10が備える磁界発生コイル141の位置及び方向と検出コイルCnとの相互関係によらず、磁界発生コイル141が発生した磁界の強度を確実に検出することができる。
或いは、1つのコイルセットCXYZに含まれる3つの検出コイルの出力値の平方和の代わりに二乗平均平方根を算出し、この値を、判定値を決定する際の検出コイルの出力値として扱っても良い。
(実施の形態4)
次に、本発明の実施の形態4について説明する。
上記実施の形態1においては、カプセル型内視鏡10の適正な位置検出が不可能と判定された場合、位置検出演算部564に位置検出演算を実行させないこととしたが、位置検出演算を実行させても良い。この場合、演算部56は、カプセル型内視鏡10の位置がエラーである旨の情報を出力し、表示部52に表示させることとしても良い。それにより、ユーザは、表示部52に表示されたカプセル型内視鏡10の位置がエラーであることを認識した上で、カプセル型内視鏡10に対する誘導操作を行うことが可能となる。
次に、本発明の実施の形態4について説明する。
上記実施の形態1においては、カプセル型内視鏡10の適正な位置検出が不可能と判定された場合、位置検出演算部564に位置検出演算を実行させないこととしたが、位置検出演算を実行させても良い。この場合、演算部56は、カプセル型内視鏡10の位置がエラーである旨の情報を出力し、表示部52に表示させることとしても良い。それにより、ユーザは、表示部52に表示されたカプセル型内視鏡10の位置がエラーであることを認識した上で、カプセル型内視鏡10に対する誘導操作を行うことが可能となる。
或いは、カプセル型内視鏡10の適正な位置検出が不可能と判定された場合、演算部56は、表示部52におけるカプセル型内視鏡10の位置表示を停止させることとしても良い。それにより、ユーザは、表示部52にカプセル型内視鏡10の位置が表示されなくなったことをもって、カプセル型内視鏡10の適正な位置検出ができない状態になったことを認識することができる。
(実施の形態5)
次に、本発明の実施の形態5について説明する。
上記実施の形態1においては、カプセル型内視鏡10の適正な位置検出が不可能と判定された場合、カプセル型内視鏡10に対する誘導制御をオフにすることとしたが、反対に、カプセル型内視鏡10の適正な位置検出が可能になったことをトリガーとして、誘導制御を開始させることとしても良い。
次に、本発明の実施の形態5について説明する。
上記実施の形態1においては、カプセル型内視鏡10の適正な位置検出が不可能と判定された場合、カプセル型内視鏡10に対する誘導制御をオフにすることとしたが、反対に、カプセル型内視鏡10の適正な位置検出が可能になったことをトリガーとして、誘導制御を開始させることとしても良い。
詳細には、誘導システム1は、誘導用磁界発生装置40の磁気シールド43を閉じた状態、即ち、カプセル型内視鏡10に対する誘導制御を行っていない状態で、カプセル型内視鏡10による検査を開始する。そして、判定部563がカプセル型内視鏡10の適正な位置検出が可能と判定した際に(図4のステップS14参照)、誘導用磁界制御部57が磁気シールド43を開かせる制御を行う。それにより、検出対象領域Rを含む空間に誘導用磁界が発生し、カプセル型内視鏡10に対する誘導制御の開始が可能な状態となる。
反対に、誘導システム1において、誘導用磁界発生装置40の磁気シールド43を開いた状態で、カプセル型内視鏡10による検査を開始しても良い。この場合、判定部563がカプセル型内視鏡10の適正な位置検出が不可能と判定した際に(図4のステップS18参照)、誘導用磁界制御部57が磁気シールド43を閉じさせる制御を行う。それにより、検出対象領域Rを含む空間に対して誘導用磁界が遮蔽され、カプセル型内視鏡10に対する誘導制御の開始が不可能な状態となる。
以上説明した本発明の実施の形態1~5及びこれらの変形例は、本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、本発明は、上記実施の形態1~5及びこれらの変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を生成することができる。本発明は、仕様等に応じて種々変形することが可能であり、さらに本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。
1 誘導システム
2 被検体
10 カプセル型内視鏡
11 撮像部
12 制御部
13 送信部
14 磁界発生部
15 電源部
16 永久磁石
30 磁界検出装置
31 パネル
40 誘導用磁界発生装置
41 体外永久磁石
42 磁石駆動部
43 磁気シールド
44 磁気シールド駆動部
50 制御装置
51 受信部
52 表示部
53 記憶部
54 操作入力部
55 信号処理部
56 演算部
57 誘導用磁界制御部
100 筐体
101 筒状筐体
102、103 ドーム状筐体
111 照明部
112 光学系
113 撮像素子
141 磁界発生コイル
142 コンデンサ
421 平面位置変更部
422 鉛直位置変更部
423 仰角変更部
424 旋回角変更部
551 フィルタ部
552 増幅器
553 A/D変換部
561 画像処理部
562 閾値保持部
563 判定部
564 位置検出演算部
564a FFT処理部
564b 位置算出部
2 被検体
10 カプセル型内視鏡
11 撮像部
12 制御部
13 送信部
14 磁界発生部
15 電源部
16 永久磁石
30 磁界検出装置
31 パネル
40 誘導用磁界発生装置
41 体外永久磁石
42 磁石駆動部
43 磁気シールド
44 磁気シールド駆動部
50 制御装置
51 受信部
52 表示部
53 記憶部
54 操作入力部
55 信号処理部
56 演算部
57 誘導用磁界制御部
100 筐体
101 筒状筐体
102、103 ドーム状筐体
111 照明部
112 光学系
113 撮像素子
141 磁界発生コイル
142 コンデンサ
421 平面位置変更部
422 鉛直位置変更部
423 仰角変更部
424 旋回角変更部
551 フィルタ部
552 増幅器
553 A/D変換部
561 画像処理部
562 閾値保持部
563 判定部
564 位置検出演算部
564a FFT処理部
564b 位置算出部
Claims (22)
- 磁界を発生する磁界発生部が内部に設けられたカプセル型医療装置と、
前記磁界発生部が発生した磁界を検出して検出信号を出力する複数の磁界検出部と、
前記複数の磁界検出部がそれぞれ出力した複数の検出信号の少なくともいずれか1つを用いて前記カプセル型医療装置の位置を算出する位置検出演算部と、
前記複数の検出信号に基づく前記カプセル型医療装置の適正な位置検出が可能か否かを判定する判定部と、
前記判定部における判定に用いられる閾値を保持する閾値保持部と、
を備え、
前記閾値は、所定の条件の下で前記複数の磁界検出部がそれぞれ出力する複数の検出信号のうちの少なくとも1つの出力値に基づく値であり、
前記判定部は、前記複数の磁界検出部の少なくとも一部がそれぞれ出力した複数の検出信号の出力値のうちの少なくとも1つを用いて判定値を決定し、該判定値が前記閾値未満である場合に前記カプセル型医療装置の適正な位置検出が不可能と判定する、
ことを特徴とする位置検出システム。 - 前記閾値は、前記複数の磁界検出部がそれぞれ出力する複数の検出信号の出力値のレベルが最低となる位置に前記カプセル型医療装置を配置した条件の下で設定される、ことを特徴とする請求項1に記載の位置検出システム。
- 前記閾値は、前記カプセル型医療装置が当該カプセル型医療装置の検出対象領域の境界に位置する条件の下で設定される、ことを特徴とする請求項1又は2に記載の位置検出システム。
- 前記判定部は、前記複数の磁界検出部の全てからの出力値をもとに、前記判定値を決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記判定部は、前記複数の磁界検出部のうちの予め設定された磁界検出部群からの出力値をもとに、前記判定値を決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記複数の磁界検出部の各々は、コイル線材を巻回した筒型コイルであり、
前記予め設定された磁界検出部群において、各磁界検出部は、回転中心軸が互いに同一の向きとなるように配置されている、
ことを特徴とする請求項5に記載の位置検出システム。 - 前記複数の磁界検出部の各々は、コイル線材を巻回した筒型コイルであり、
前記予め設定された磁界検出部群において、少なくとも1つの磁界検出部は、回転中心軸が他の磁界検出部と異なる向きを向いている、
ことを特徴とする請求項5に記載の位置検出システム。 - 前記判定部は、前記磁界発生部が発生した磁界の影響を受けない条件の下での検出信号の出力値に基づいて前記複数の磁界検出部のうちから予め選出された少なくとも1つの磁界検出部からの出力値をもとに、前記判定値を決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記予め選出された少なくとも1つの磁界検出部は、前記条件における検出信号の出力値が所定値以下となる磁界発生部である、ことを特徴とする請求項8に記載の位置検出システム。
- 前記予め選出された少なくとも1つの磁界検出部は、前記条件における検出信号の出力値が小さい方から所定数番目以内となる磁界発生部である、ことを特徴とする請求項8に記載の位置検出システム。
- 前記判定部は、前記カプセル型医療装置の位置を検出する際における前記複数の検出信号の出力値の最大値を前記判定値として決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記判定部は、前記カプセル型医療装置の位置を検出する際における前記複数の検出信号の出力値のうち、値が大きい方から所定数の出力値を用いて前記判定値を決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記判定部は、検出信号の出力値が最大の磁界検出部及び該磁界検出部と隣接する所定数の磁界検出部からそれぞれ出力された複数の検出信号の出力値を用いて前記判定値を決定する、ことを特徴とする請求項1~3のいずれか1項に記載の位置検出システム。
- 前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合、前記位置検出演算部は、前記カプセル型医療装置の位置の算出を実行しない、ことを特徴とする請求項1~13のいずれか1項に記載の位置検出システム。
- 前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合に、前記位置検出演算部が算出した前記カプセル型医療装置の位置がエラーである旨の情報を表示する表示部をさらに備える、ことを特徴とする請求項1~13のいずれか1項に記載の位置検出システム。
- 前記位置検出演算部が算出した前記カプセル型医療装置の位置を表示する表示部をさらに備え、
前記判定部が前記カプセル型医療装置の適正な位置検出は不可能と判定した場合、前記表示部は、前記位置検出演算部が算出した前記カプセル型医療装置の位置の表示を停止する、
ことを特徴とする請求項1~13のいずれか1項に記載の位置検出システム。 - 前記カプセル型医療装置は、永久磁石をさらに有し、
請求項1~16のいずれか1項に記載の位置検出システムと、
前記永久磁石に作用させる磁界を発生する誘導用磁界発生部と、
前記誘導用磁界発生部を制御することにより前記カプセル型医療装置の位置と姿勢とのうちの少なくとも一方を変化させる誘導制御を行う誘導用磁界制御部と、
を備えることを特徴とする誘導システム。 - 前記誘導用磁界発生部が発生する磁界を遮蔽可能な遮蔽手段をさらに備え、
前記誘導用磁界制御部は、前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記遮蔽手段によって前記誘導用磁界発生部が発生する磁界を遮蔽する制御を行う、
ことを特徴とする請求項17に記載の誘導システム。 - 前記誘導用磁界制御部は、前記判定部による前記カプセル型医療装置の適正な位置検出が可能か否かの判定に応じて、前記誘導制御が可能な状態と不可能な状態とを切り替える、ことを特徴とする請求項17に記載の誘導システム。
- 前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を停止する、ことを特徴とする請求項19に記載の誘導システム。
- 前記誘導制御の停止中に前記判定部が前記カプセル型医療装置の適正な位置検出が可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を開始可能とする制御を行う、ことを特徴とする請求項19に記載の誘導システム。
- 前記誘導制御の停止中に前記判定部が前記カプセル型医療装置の適正な位置検出が不可能と判定した場合、前記誘導用磁界制御部は前記誘導制御を開始不可能とする制御を行う、ことを特徴とする請求項19に記載の誘導システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016550818A JP6058236B1 (ja) | 2015-03-25 | 2015-10-22 | 位置検出システム及び誘導システム |
CN201580050961.6A CN106687022A (zh) | 2015-03-25 | 2015-10-22 | 位置检测系统以及引导系统 |
US15/463,520 US20170188883A1 (en) | 2015-03-25 | 2017-03-20 | Position detection system and guidance system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-063108 | 2015-03-25 | ||
JP2015063108 | 2015-03-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/463,520 Continuation US20170188883A1 (en) | 2015-03-25 | 2017-03-20 | Position detection system and guidance system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016151914A1 true WO2016151914A1 (ja) | 2016-09-29 |
Family
ID=56978775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079868 WO2016151914A1 (ja) | 2015-03-25 | 2015-10-22 | 位置検出システム及び誘導システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170188883A1 (ja) |
JP (1) | JP6058236B1 (ja) |
CN (1) | CN106687022A (ja) |
WO (1) | WO2016151914A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110613454B (zh) * | 2019-10-09 | 2022-07-26 | 北京华亘安邦科技有限公司 | 一种胶囊内镜的位置寻找方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041524A1 (ja) * | 2007-09-25 | 2009-04-02 | Olympus Medical Systems Corp. | 位置検出装置 |
WO2012114811A1 (ja) * | 2011-02-23 | 2012-08-30 | オリンパスメディカルシステムズ株式会社 | 位置情報推定システム |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101669807B (zh) * | 2004-08-23 | 2013-08-21 | 奥林巴斯株式会社 | 图像显示装置、图像显示方法和图像显示程序 |
JP4560359B2 (ja) * | 2004-09-13 | 2010-10-13 | オリンパス株式会社 | 位置検出装置、被検体内導入システムおよび位置検出方法 |
JP5484651B2 (ja) * | 2006-11-13 | 2014-05-07 | オリンパスメディカルシステムズ株式会社 | 医療装置位置検出システムおよび医療装置誘導システム |
JP4869040B2 (ja) * | 2006-11-27 | 2012-02-01 | オリンパス株式会社 | 位置検出システムおよび医療装置誘導システム |
JP5064416B2 (ja) * | 2007-02-05 | 2012-10-31 | オリンパスメディカルシステムズ株式会社 | 表示装置およびこれを用いた被検体内情報取得システム |
JP5243750B2 (ja) * | 2007-08-09 | 2013-07-24 | オリンパスメディカルシステムズ株式会社 | 医療装置誘導システム、作動方法および医療装置誘導システムで用いるルックアップテーブルの作成方法 |
WO2009031456A1 (ja) * | 2007-09-07 | 2009-03-12 | Olympus Medical Systems Corp. | 位置検出装置、医療装置誘導システム、位置検出方法、および医療装置誘導方法 |
JP5096268B2 (ja) * | 2008-09-02 | 2012-12-12 | オリンパスメディカルシステムズ株式会社 | カプセル誘導システム |
WO2010103866A1 (ja) * | 2009-03-10 | 2010-09-16 | オリンパスメディカルシステムズ株式会社 | 位置検出システムおよび位置検出方法 |
JP5337013B2 (ja) * | 2009-12-18 | 2013-11-06 | オリンパス株式会社 | 起動制御信号送信装置 |
CN102665530B (zh) * | 2010-03-26 | 2014-11-26 | 奥林巴斯医疗株式会社 | 胶囊型医疗装置用引导系统以及胶囊型医疗装置的引导方法 |
CN102958416B (zh) * | 2010-07-01 | 2015-08-26 | 奥林巴斯医疗株式会社 | 探针形状检测装置 |
EP2662016A4 (en) * | 2011-01-28 | 2017-04-12 | Olympus Corporation | Capsule endoscope system |
CN103347431B (zh) * | 2011-03-02 | 2016-08-10 | 奥林巴斯株式会社 | 胶囊型内窥镜的位置检测装置以及胶囊型内窥镜系统 |
EP2740050A4 (en) * | 2011-08-01 | 2015-03-25 | Soreq Nuclear Res Ct | MAGNETIC TRACKING SYSTEM |
WO2013168681A1 (ja) * | 2012-05-07 | 2013-11-14 | オリンパスメディカルシステムズ株式会社 | 誘導装置及びカプセル型医療装置誘導システム |
US10264995B2 (en) * | 2013-12-04 | 2019-04-23 | Obalon Therapeutics, Inc. | Systems and methods for locating and/or characterizing intragastric devices |
US10980439B2 (en) * | 2014-08-06 | 2021-04-20 | Biosense Webster (Israel) Ltd | Wavefront analysis based on ablation parameters |
-
2015
- 2015-10-22 WO PCT/JP2015/079868 patent/WO2016151914A1/ja active Application Filing
- 2015-10-22 CN CN201580050961.6A patent/CN106687022A/zh active Pending
- 2015-10-22 JP JP2016550818A patent/JP6058236B1/ja active Active
-
2017
- 2017-03-20 US US15/463,520 patent/US20170188883A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041524A1 (ja) * | 2007-09-25 | 2009-04-02 | Olympus Medical Systems Corp. | 位置検出装置 |
WO2012114811A1 (ja) * | 2011-02-23 | 2012-08-30 | オリンパスメディカルシステムズ株式会社 | 位置情報推定システム |
Also Published As
Publication number | Publication date |
---|---|
JP6058236B1 (ja) | 2017-01-11 |
CN106687022A (zh) | 2017-05-17 |
JPWO2016151914A1 (ja) | 2017-04-27 |
US20170188883A1 (en) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6022132B1 (ja) | 位置検出システム及び誘導システム | |
JP5810246B2 (ja) | 位置検出装置及び位置検出システム | |
WO2016076217A1 (ja) | 位置検出システム | |
US20180035913A1 (en) | Position detection system and operation method of position detection system | |
US10932690B2 (en) | Position detection system and operation method of position detection system | |
JP5953451B1 (ja) | 誘導装置及びカプセル型医療装置誘導システム | |
JPWO2013168659A1 (ja) | 磁界発生装置及びカプセル型医療装置誘導システム | |
CN106999004B (zh) | 位置检测系统以及引导系统 | |
CN107405052B (zh) | 引导装置以及胶囊型医疗装置引导系统 | |
JP6058236B1 (ja) | 位置検出システム及び誘導システム | |
WO2016167042A1 (ja) | カプセル型医療装置誘導システム | |
JP5415717B2 (ja) | 検査装置およびこれを用いた磁気誘導システム | |
JP5797362B1 (ja) | 位置検出システム | |
JP6022134B1 (ja) | 位置検出システム及びカプセル型医療装置誘導システム | |
WO2017141499A1 (ja) | 位置検出装置及び位置検出システム | |
JP6064109B1 (ja) | 位置検出システム及び誘導システム | |
JP4578881B2 (ja) | 被検体内方位検出システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016550818 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15886466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15886466 Country of ref document: EP Kind code of ref document: A1 |