WO2016151890A1 - Secondary battery positive electrode active material and method for producing same - Google Patents

Secondary battery positive electrode active material and method for producing same Download PDF

Info

Publication number
WO2016151890A1
WO2016151890A1 PCT/JP2015/076385 JP2015076385W WO2016151890A1 WO 2016151890 A1 WO2016151890 A1 WO 2016151890A1 JP 2015076385 W JP2015076385 W JP 2015076385W WO 2016151890 A1 WO2016151890 A1 WO 2016151890A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
positive electrode
carbon material
electrode active
active material
Prior art date
Application number
PCT/JP2015/076385
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 山下
智紀 初森
充志 中村
大神 剛章
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015178161A external-priority patent/JP6042513B2/en
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to US15/560,749 priority Critical patent/US10601042B2/en
Priority to EP15886442.1A priority patent/EP3276711B1/en
Priority to CN201580078111.7A priority patent/CN107408695B/en
Priority to KR1020177025026A priority patent/KR102336781B1/en
Publication of WO2016151890A1 publication Critical patent/WO2016151890A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide, and a method for producing the same.
  • lithium ion secondary batteries are widely known as the most excellent secondary batteries that operate near room temperature.
  • lithium-containing olivine-type phosphate metal salts such as Li (Fe, Mn) PO 4 and Li 2 (Fe, Mn) SiO 4 are more resource-constrained than lithium transition metal oxides such as LiCoO 2. Therefore, it is possible to exhibit high safety, and therefore, it is an optimum positive electrode material for obtaining a high-output and large-capacity lithium ion secondary battery.
  • these compounds have the property that it is difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.
  • Patent Document 2 discloses that after the firing treatment of the raw material mixture containing the carbonaceous material precursor, the water content is reduced to a certain value or less by performing pulverization treatment and classification treatment in a dry atmosphere.
  • Technology is disclosed.
  • a predetermined lithium phosphate compound, lithium silicate compound, and the like and a conductive carbon material are mixed by a wet ball mill, and then a mechanochemical treatment is performed so that the conductive carbon material is uniformly applied to the surface.
  • a technique for obtaining a composite oxide deposited is disclosed.
  • Patent Document 4 discloses a sodium secondary battery active material using marisite-type NaMnPO 4
  • Patent Document 5 discloses a positive electrode active material containing transition metal sodium phosphate having an olivine structure. Substances are disclosed, and any literature shows that a high-performance sodium ion secondary battery can be obtained.
  • the surface of the positive electrode active material for secondary batteries is not sufficiently covered with the carbon source, and a part of the surface is exposed, so that moisture adsorption can be suppressed. Therefore, it has been found that it is difficult to obtain a positive electrode active material for a secondary battery having a sufficiently high moisture content and sufficiently high battery properties such as cycle characteristics.
  • an object of the present invention is to provide a positive electrode active material for a secondary battery that can effectively suppress moisture adsorption and a method for manufacturing the same, in order to obtain a high-performance lithium ion secondary battery or a sodium ion secondary battery. It is to provide.
  • the present inventors have made various studies, and as long as a positive electrode active material for a secondary battery in which conductive carbon powder and carbon obtained by carbonizing a water-soluble carbon material are supported on a specific oxide. Since the carbons derived from a plurality of carbon sources can effectively cover the oxide surface and effectively suppress the adsorption of moisture, lithium ions or sodium ions can effectively carry out electrical conduction. As a substance, it was found to be extremely useful, and the present invention was completed.
  • the present invention includes at least the following formula (A), (B) or (C) containing iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by:
  • the present invention provides the following formula (A), (B) or (C) containing at least iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • a method for producing a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by: A step (I) of obtaining an oxide X by subjecting a slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction; Step (II) in which a water-insoluble conductive carbon material is added to the obtained oxide X and dry-mixed to obtain a composite Y, and a water-soluble carbon material is added to the obtained composite Y and wet-mixed.
  • the manufacturing method of the positive electrode active material for secondary batteries provided with the process (III) to bake is provided.
  • a predetermined oxide effectively supports a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material, so that the oxide is partially supported on the oxide surface. Since the oxide is effectively suppressed from being exposed without the presence of carbon, a positive electrode active material for a secondary battery in which the exposed portion on the oxide surface is effectively reduced can be obtained. Therefore, since such a positive electrode active material can effectively suppress the adsorption of moisture, in a lithium ion secondary battery or a sodium ion secondary battery using the positive electrode active material, lithium ions or sodium ions effectively carry electric conduction, and various Excellent battery characteristics such as cycle characteristics can be stably exhibited even in a different use environment.
  • the oxide used in the present invention contains at least iron or manganese and has the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • oxides all have an olivine structure and contain at least iron or manganese.
  • oxide represented by the above formula (A) or (B) a positive electrode active material for a lithium ion battery is obtained, and when the oxide represented by the above formula (C) is used.
  • a positive electrode active material for a sodium ion battery is obtained.
  • the oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals.
  • M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • a is 0 ⁇ a ⁇ 1, preferably 0.01 ⁇ a ⁇ 0.99, and more preferably 0.1 ⁇ a ⁇ 0.9.
  • b is 0 ⁇ b ⁇ 1, preferably 0.01 ⁇ b ⁇ 0.99, and more preferably 0.1 ⁇ b ⁇ 0.9.
  • olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and among them, LiFe 0.2 Mn 0.8 PO 4 is preferable.
  • the oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals.
  • N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr.
  • d is 0 ⁇ d ⁇ 1, preferably 0 ⁇ d ⁇ 1, and more preferably 0.1 ⁇ d ⁇ 0.6.
  • e is 0 ⁇ d ⁇ 1, preferably 0 ⁇ e ⁇ 1, and more preferably 0.1 ⁇ e ⁇ 0.6.
  • f is 0 ⁇ f ⁇ 1, preferably 0 ⁇ f ⁇ 1, and more preferably 0.05 ⁇ f ⁇ 0.4.
  • olivine-type transition metal lithium compound represented by the above formula (B) include, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.
  • the oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals.
  • Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • g is 0 ⁇ g ⁇ 1, and preferably 0 ⁇ g ⁇ 1.
  • h is 0 ⁇ h ⁇ 1, and preferably 0.5 ⁇ h ⁇ 1.
  • i is 0 ⁇ i ⁇ 1, preferably 0 ⁇ i ⁇ 0.5, and more preferably 0 ⁇ i ⁇ 0.3.
  • olivine-type transition metal sodium phosphate compound represented by the above formula (C) include, for example, NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.
  • the positive electrode active material for a secondary battery according to the present invention is obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material on the oxide represented by the above formula (A), (B), or (C). Carbon (carbon derived from a water-soluble carbon material) is supported. That is, a water-insoluble conductive carbon material and a water-soluble carbon material coexist as a carbon source, and the oxide surface is coated without the presence of such carbon while the oxide surface is coated with carbon derived from one carbon source. The carbon derived from the other carbon source is effectively supported on the exposed portion.
  • the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material are combined and firmly supported on the entire surface of the oxide while effectively suppressing the exposure of the oxide surface. Therefore, moisture adsorption in the positive electrode active material for a secondary battery of the present invention can be effectively prevented.
  • the water-insoluble conductive carbon material supported on the oxide represented by the above formula (A), (B) or (C) means that the amount dissolved in 100 g of water at 25 ° C. is carbon of the water-insoluble conductive carbon material.
  • Examples of the water-insoluble conductive carbon material include one or more selected from graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Of these, graphite is preferable from the viewpoint of reducing the amount of adsorbed moisture.
  • the graphite may be any of artificial graphite (scaly, massive, earthy, graphene) or natural graphite.
  • the BET specific surface area of the water-insoluble conductive carbon material that can be used is preferably 1 to 750 m 2 / g, more preferably 3 to 500 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed water. Further, from the same viewpoint, the average particle size of the water-insoluble conductive carbon material is preferably 0.5 to 20 ⁇ m, more preferably 1.0 to 15 ⁇ m.
  • the water-soluble carbon material supported as carbon carbonized by the oxide represented by the formula (A), (B) or (C) is used in 100 g of water at 25 ° C.
  • the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids.
  • monosaccharides such as glucose, fructose, galactose and mannose
  • disaccharides such as maltose, sucrose and cellobiose
  • polysaccharides such as starch and dextrin
  • polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin
  • organic acids such as citric acid, tartaric acid, and ascorbic acid.
  • glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.
  • the carbon atom equivalent of the water-insoluble conductive carbon material and the water-soluble carbon material is the positive electrode for the secondary battery of the present invention as the carbon in which the water-insoluble conductive carbon material and the carbonized water-soluble carbon material are supported on the oxide. It will coexist in the active material.
  • the carbon atom equivalent amount of the water-insoluble conductive carbon material and the water-soluble carbon material corresponds to the total supported amount of carbon obtained by carbonizing the water-insoluble conductive carbon material and the water-soluble carbon material.
  • the total amount in the positive electrode active material for batteries is preferably 1.0 to 20.0% by mass, more preferably 2.0 to 17.5% by mass, and still more preferably 3.0 to 15.0%. % By mass.
  • the carbon atom equivalent amount of the water-insoluble conductive carbon material and the water-soluble carbon material is preferably the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C). 1.0 to 15.0 mass%, more preferably 2.0 to 13.5 mass%, still more preferably 3.0 to 12.0 mass%, and the oxide is represented by the above formula (B). Is preferably 2.0 to 20.0% by mass, more preferably 3.0 to 17.5% by mass, and still more preferably 4.0 to 15%. 0.0% by mass. Further, the carbon atom equivalent amount of the water-soluble carbon material, that is, the supported amount of carbon obtained by carbonizing the water-soluble carbon material is preferably 0.5 to 17.0 in the positive electrode active material for secondary battery of the present invention.
  • the carbon atom equivalent amount of the water-soluble carbon material is preferably 0.5 to 10.0 for the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C).
  • the positive electrode active material for use it is preferably 0.75 to 17.0% by mass, more preferably 0.75 to 13.5% by mass, and further preferably 0.75 to 10.0% by mass.
  • the total amount of carbon-atom equivalents of the water-insoluble conductive carbon material and the water-soluble carbon material present in the positive electrode active material for secondary batteries is confirmed as the total carbon amount measured using a carbon / sulfur analyzer. can do. Further, the carbon atom equivalent amount of the water-soluble carbon material can be confirmed by subtracting the addition amount of the water-insoluble conductive carbon material from the total carbon amount measured using a carbon / sulfur analyzer.
  • the positive electrode active material for a secondary battery according to the present invention efficiently (A), (B) or (C) while the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material complement each other.
  • the composite containing the oxide and the water-insoluble conductive carbon material is supported as carbon obtained by carbonizing the water-soluble carbon material.
  • a composite formed by supporting a water-insoluble conductive carbon material on an oxide is supported by carbon obtained by carbonizing a water-soluble carbon material.
  • the water-insoluble conductive carbon material is preferably dry-mixed with an oxide obtained by a hydrothermal reaction and supported on the oxide, and is premixed with the oxide. It is more preferable that the mixture is mixed while applying a compressive force and a shearing force and is supported on an oxide. That is, the composite containing the oxide and the water-insoluble conductive carbon material is preferably a dry mixture of the water-insoluble conductive carbon material and an oxide that is a hydrothermal reaction product.
  • supported by the oxide by baking a water-insoluble conductive carbon material is obtained as a composite_body
  • a water-soluble carbon material may be supplementarily added as necessary, separately from the water-soluble carbon material added during the wet mixing described later.
  • the composite obtained at this time contains a water-soluble carbon material together with an oxide and a water-insoluble conductive carbon material.
  • a water-soluble carbon material supported as carbonized carbon on a composite containing the oxide and the water-insoluble conductive carbon material is obtained by using the oxide surface of the composite without the presence of the water-insoluble conductive carbon material. From the viewpoint of effectively supporting carbon on the exposed portion, it is preferable that it is supported on an oxide as carbon that is carbonized by being baked after being wet mixed with the composite. . That is, the positive electrode active material for a secondary battery of the present invention is preferably a fired product of a wet mixture of a water-soluble carbon material and a composite containing an oxide and a water-insoluble conductive carbon material.
  • the water-soluble carbon material used when wet-mixing may be the same type as the water-soluble carbon material used as an auxiliary when necessary during the dry-mixing, or another type. There may be.
  • the positive electrode active material for a secondary battery of the present invention is a slurry water containing a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound.
  • a step (I) of obtaining an oxide X by subjecting to a thermal reaction Step (II) in which a water-insoluble conductive carbon material is added to the obtained oxide X and dry-mixed to obtain a composite Y, and a water-soluble carbon material is added to the obtained composite Y and wet-mixed. It is preferably obtained by a production method comprising the step (III) of firing.
  • Step (I) is a step of obtaining an oxide X by subjecting a slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction.
  • a lithium compound or sodium compound that can be used include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
  • the content of the lithium compound or silicic acid compound in the slurry water is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water.
  • the content of the lithium compound or sodium compound in the slurry water is preferably 5 to 50 parts by mass with respect to 100 parts by mass of water.
  • the amount is preferably 10 to 45 parts by mass.
  • the content of the silicate compound in the slurry water is preferably 5 to 40 parts by mass, more preferably 7 to 35 parts by mass with respect to 100 parts by mass of water.
  • Step (I) is a mixture A containing a lithium compound or a sodium compound from the viewpoint of improving the dispersibility of each component contained in the slurry water and making the obtained positive electrode active material particles finer to improve battery physical properties.
  • a mixture a 2 was mixed phosphoric acid compound or a silicic acid compound (Ia), to the mixture a 2 obtained as well, by adding a metal salt containing at least an iron compound or a manganese compound, and mixed
  • step (I) or (Ia) prior to mixing the mixture A phosphoric acid compound to one or silicic acid compound, preferably it is allowed to stir in advance mixture A 1.
  • the stirring time of the mixture A 1 is preferably 1 to 15 minutes, more preferably 3 to 10 minutes.
  • the temperature of the mixture A 1 is preferably 20 to 90 ° C., more preferably 20 to 70 ° C.
  • Examples of the phosphoric acid compound used in the step (I) or (Ia) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. Etc. Of these, phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used.
  • phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used.
  • the reaction proceeds well in the mixture A 1 , and the precursor of the oxide X represented by the above (A) to (C) is contained in the slurry. It is also possible to effectively prevent the oxide precursors from being agglomerated unnecessarily while being uniformly dispersed.
  • the dropping rate of phosphoric acid into the mixture A 1 is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min.
  • the stirring time of the mixture A 1 while dropping phosphoric acid is preferably 0.5 to 24 hours, more preferably 3 to 12 hours.
  • the stirring speed of the mixture A 1 while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm. Note that when the mixture is stirred for A 1, preferred to further cool the mixture A in the following 1 the boiling point temperature. Specifically, cooling to 80 ° C. or lower is preferable, and cooling to 20 to 60 ° C. is more preferable.
  • the silicic acid compound used in the step (I) or (Ia) is not particularly limited as long as it is a reactive silica compound.
  • the mixture A 2 after mixing the phosphoric acid compound or the silicic acid compound preferably contains 2.0 to 4.0 mol of lithium or sodium with respect to 1 mol of phosphoric acid or silicic acid. It is more preferable to contain 1 mol, and the lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount. More specifically, when a phosphoric acid compound is used in step (I), the mixture A 2 after mixing the phosphoric acid compound has 2.7 to 3.3 of lithium or sodium per mol of phosphoric acid.
  • the mixture A 2 after mixing the silicate compound is Lithium is preferably contained in an amount of 2.0 to 4.0 mol, more preferably 2.0 to 3.0, with respect to 1 mol.
  • the reaction in the mixture A 2 is completed, and represented by the above (A) to (C) to produce a precursor of the oxides in the mixture a 2.
  • the reaction can proceed in a state where the dissolved oxygen concentration in the mixture A 2 is reduced, and the dissolved oxygen concentration in the mixture containing the resulting oxide precursor is also effectively increased. Since it is reduced, oxidation of the iron compound or manganese compound added in the next step can be suppressed.
  • the oxide precursors represented by the above (A) to (C) exist as fine dispersed particles. For example, in the case of the oxide represented by the above formula (A), such an oxide precursor is obtained as trilithium phosphate (Li 3 PO 4 ).
  • the pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa.
  • the temperature of the mixture A 2 after mixing the phosphoric acid compound or the silicic acid compound is preferably 20 to 80 ° C., more preferably 20 to 60 ° C.
  • the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.
  • dissolved oxygen in the mixture A 2 after mixing the phosphoric acid compound or the silicate compound is preferably 0.5 mg / L or less, and more preferably 0.2 mg / L or less.
  • an oxide X is obtained by subjecting the obtained oxide precursor and slurry water containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction. . It is preferable to use the obtained oxide precursor as a mixture and add a metal salt containing at least an iron compound or a manganese compound to the slurry water X.
  • the oxides represented by the above (A) to (C) can be obtained while simplifying the process, and it is possible to obtain extremely fine particles, which are very useful for secondary batteries.
  • a positive electrode active material can be obtained.
  • iron compounds examples include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.
  • manganese compounds examples include manganese acetate, manganese nitrate, and manganese sulfate. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.
  • the use molar ratio of these iron compound and manganese compound is preferably 99: 1 to 1:99, more preferably 90. : 10 to 10:90.
  • the total addition amount of these iron compound and manganese compound is preferably 0.99 to 1.01 mol, more preferably 0.995 with respect to 1 mol of Li 3 PO 4 contained in the slurry water X. ⁇ 1.005 mol.
  • metal (M, N, or Q) salts other than an iron compound and a manganese compound as a metal salt as needed.
  • M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
  • the total amount of iron compound, manganese compound, and metal (M, N, or Q) salt added is phosphoric acid in the mixture obtained in the above step (I).
  • the amount is preferably 0.99 to 1.01 mole, more preferably 0.995 to 1.005 mole relative to 1 mole of silicic acid.
  • the amount of water used for the hydrothermal reaction is phosphoric acid or silicate ions contained in the slurry water X from the viewpoint of the solubility of the metal salt used, the ease of stirring, the efficiency of synthesis, etc.
  • the amount is preferably 10 to 50 mol, more preferably 12.5 to 45 mol, relative to 1 mol. More specifically, when the ions contained in the slurry water X are phosphate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, more preferably 12 .5 to 25 moles. Further, when the ions contained in the slurry water X are silicate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 50 mol, more preferably 12.5 to 45. Is a mole.
  • the order of adding the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used.
  • the content of the oxide precursor in the slurry water X obtained by adding an iron compound, a manganese compound, and a metal (M, N or Q) salt or an antioxidant used as necessary is preferably 10 to It is 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 40% by mass.
  • the hydrothermal reaction in the step (I) or (Ib) may be 100 ° C. or higher, and preferably 130 to 180 ° C.
  • the hydrothermal reaction is preferably carried out in a pressure-resistant vessel.
  • the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C.
  • the pressure is preferably 0.3 to 0.6 MPa.
  • the hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
  • the obtained oxide X is an oxide represented by the above formulas (A) to (C), which can be isolated by filtration, washing with water, and drying. As the drying means, freeze drying or vacuum drying is used.
  • the BET specific surface area of the resulting oxide X is preferably 5 to 40 m 2 / g, more preferably 5 to 40 m from the viewpoint of efficiently carrying the coexisting carbon and effectively reducing the amount of adsorbed water. 20 m 2 / g.
  • the BET specific surface area of the oxide X is less than 5 m 2 / g, the primary particles of the positive electrode active material for the secondary battery become too large, and the battery characteristics may be deteriorated.
  • the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed moisture of the positive electrode active material for the secondary battery may increase and affect the battery characteristics.
  • Step (II) is a step of adding the water-insoluble conductive carbon material to the oxide X obtained in step (I) and then dry mixing to obtain the composite Y.
  • a water-soluble carbon material may be further supplementarily added.
  • the order of addition is not particularly limited.
  • the amount of the water-insoluble conductive carbon material added is preferably 0.5 to 24.2 parts by mass, more preferably 1.5 to 20.5 parts by mass with respect to 100 parts by mass of the oxide X, for example.
  • the amount is preferably 2.6 to 17.0 parts by mass.
  • the addition amount of the water-insoluble conductive carbon material is preferably 0.5 to 17.0 in the case of the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C). Secondary battery in which the oxide is represented by the above formula (B), more preferably 1.5 to 14.9 parts by mass, and still more preferably 2.6 to 13.0 parts by mass.
  • the positive electrode active material for use is preferably 1.3 to 23.8 parts by mass, more preferably 2.3 to 20.1 parts by mass, and still more preferably 3.4 to 16.6 parts by mass.
  • the mass of the addition amount of the water-insoluble conductive carbon material and the carbon atom equivalent amount of the addition amount of the water-soluble carbon material is preferably 100: 2 to 3: 100, more preferably 100: 10 to 10: 100.
  • the dry mixing in the step (II) is preferably mixing by a normal ball mill, and more preferably by a planetary ball mill capable of revolving. Further, the water-insoluble conductive carbon material and the water-soluble carbon material used in combination as necessary are densely and uniformly dispersed on the oxide surface represented by the above formulas (A) to (C) and carbonized. From the viewpoint of effectively supporting the carbon, it is more preferable to mix the composite Y while applying a compressive force and a shearing force to obtain a composite Y ′.
  • the process of mixing while applying a compressive force and a shearing force is preferably performed in a closed container equipped with an impeller.
  • the peripheral speed of the impeller is preferably 25 to 40 m / s, more preferably 27 from the viewpoint of increasing the tap density of the obtained positive electrode active material and reducing the BET specific surface area to effectively reduce the amount of adsorbed water. ⁇ 40 m / s.
  • the mixing time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes.
  • the peripheral speed of the impeller means the speed of the outermost end of the rotary stirring blade (impeller), which can be expressed by the following formula (1), and is mixed while applying compressive force and shearing force.
  • the processing time and / or the impeller peripheral speed when performing the mixing process while applying the compressive force and the shearing force need to be appropriately adjusted according to the amount of the composite Y to be charged into the container.
  • the container By operating the container, it is possible to perform a process of mixing the mixture while applying a compressive force and a shearing force between the impeller and the inner wall of the container, and the above formulas (A) to (C).
  • the water-insoluble conductive carbon material and the water-soluble carbon material to be used in combination as needed are densely and uniformly dispersed on the oxide surface represented by Combined with the added water-soluble carbon material, a positive electrode active material for a secondary battery that can effectively reduce the amount of adsorbed water can be obtained.
  • a container corresponding to a part capable of accommodating the complex Y is preferably 0.1 to 0.7 g, more preferably 0.15 to 0.4 g per 1 cm 3 .
  • the apparatus equipped with a closed container that can easily perform mixing while applying compressive force and shear force examples include a high-speed shear mill, a blade-type kneader, and the like. Fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Corporation) can be suitably used.
  • the treatment temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C.
  • the treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.
  • Step (III) is a step of adding a water-soluble carbon material obtained in step (I), wet mixing, and baking. This effectively suppresses the exposure of the surface of the oxide X represented by the above (A) to (C), while the water-insoluble conductive carbon material and the water-soluble carbon material are carbonized on the oxide X.
  • the formed carbon can be supported firmly together.
  • the amount of the water-soluble carbon material added in the step (III) is such that carbon obtained by carbonizing the water-soluble carbon material is effectively supported on the surface of the oxide X where no water-insoluble conductive carbon material is present, and sufficient charge is obtained.
  • 100 parts by mass of composite Y (or composite Y ′ when the above-described process (II) is further mixed while applying the compressive force and shearing force) On the other hand, it is preferably 1.0 to 55.0 parts by mass, more preferably 1.0 to 40.0 parts by mass, and still more preferably 1.0 to 30.0 parts by mass.
  • step (III) it is preferable to add water together with the water-soluble carbon material from the viewpoint of favorably supporting the carbon obtained by carbonizing the water-soluble carbon material on the oxide surface.
  • the amount of water added is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and even more preferably 75 to 200 parts by mass with respect to 100 parts by mass of the complex Y (or complex Y ′). Part.
  • the water-soluble carbon material is supplementarily added in step (II) with this water, the supplementally added water-soluble carbon material supported on the composite Y (or composite Y ′) is dissolved, The same action as the water-soluble carbon material added in (III) can be exhibited.
  • the wet mixing means in step (III) is not particularly limited, and can be performed by a conventional method.
  • the temperature at the time of mixing after adding the water-soluble carbon material to the composite Y (or the composite Y ′) is preferably 5 to 80 ° C., more preferably 7 to 70 ° C.
  • the resulting mixture is preferably dried before firing. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.
  • step (III) the mixture obtained by the wet mixing is fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere.
  • the firing temperature is preferably 500 to 800 ° C., more preferably 600 from the viewpoint of improving the conductivity by improving the crystallinity of the water-insoluble conductive carbon material and from the viewpoint of more effectively carbonizing the water-soluble carbon material. It is ⁇ 770 ° C., more preferably 650 to 750 ° C.
  • the firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.
  • the positive electrode active material for a secondary battery according to the present invention has the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material both supported on the oxide and acting synergistically.
  • the amount of moisture adsorbed in the positive electrode active material for batteries can be effectively reduced.
  • the amount of adsorbed moisture of the positive electrode active material for secondary battery of the present invention is the same for the secondary battery in the case of the positive electrode active material for secondary battery in which the oxide is represented by the formula (A) or (C).
  • the positive electrode active material it is preferably 850 ppm or less, more preferably 700 ppm or less, and in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), preferably 2900 ppm or less, and more Preferably it is 2500 ppm or less.
  • the amount of adsorbed moisture is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. Measured as the amount of water volatilized from the start point to the end point, starting from when the temperature rise is resumed from 150 ° C.
  • the amount of adsorbed moisture of the positive electrode active material for a secondary battery and the amount of moisture volatilized from the start point to the end point are the same, and the measured value of the volatilized moisture amount is This is the amount of moisture adsorbed on the positive electrode active material for the secondary battery.
  • the positive electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment, and the resulting lithium In both the ion secondary battery and the sodium ion secondary battery, it is possible to stably exhibit excellent battery characteristics even under various usage environments.
  • the tap density of the positive electrode active material for a secondary battery of the present invention is preferably 0.5 to 1.6 g / cm 3 , more preferably 0.8 from the viewpoint of effectively reducing the amount of adsorbed moisture. ⁇ 1.6 g / cm 3 .
  • the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is preferably 5 to 21 m 2 / g, more preferably 7 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. It is.
  • the secondary battery to which the positive electrode for the secondary battery including the positive electrode active material for the secondary battery of the present invention can be applied is not particularly limited as long as the positive electrode, the negative electrode, the electrolytic solution, and the separator are essential components.
  • the material configuration is not particularly limited, and those having a known material configuration can be used.
  • a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.
  • the electrolytic solution is obtained by dissolving a supporting salt in an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery.
  • carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.
  • the type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt.
  • an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2, and an organic salt selected from NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one derivative of the organic salt It is preferable.
  • the separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution.
  • a porous synthetic resin film particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.
  • Example 1-1 The slurry water was obtained by mixing 4.9 kg of LiOH.H 2 O and 11.7 kg of water. Next, while maintaining the obtained slurry water at a temperature of 25 ° C. and stirring for 30 minutes at a speed of 400 rpm, 5.09 kg of a 70% phosphoric acid aqueous solution was dropped at 35 mL / min to obtain a mixture A 1 . . The pH of the mixed slurry was 10.0 and contained 0.33 mol of phosphoric acid with respect to 1 mol of lithium hydroxide.
  • the resulting mixture A 1 was purged with nitrogen while stirring at a speed of 400 rpm for 30 minutes to complete the reaction with the mixture A 1 (dissolved oxygen concentration 0.5 mg / L). Subsequently, 1.63 kg of FeSO 4 .7H 2 O and 5.60 kg of MnSO 4 .H 2 O are added to 21.7 kg of the mixture A 1, and 0.0468 kg of Na 2 SO 3 is further added, and the speed is 400 rpm. to obtain a mixture a 2 are stirred and mixed at. In this case, the added FeSO 4 ⁇ 7H 2 O and MnSO 4 ⁇ H 2 O molar ratio of (FeSO 4 ⁇ 7H 2 O: MnSO 4 ⁇ H 2 O) is 20: was 80.
  • the mixture A 2 was put into a synthesis container installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 170 ° C. for 1 hour using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.8 MPa. The formed crystals were filtered and then washed with water. The washed crystal was vacuum-dried under the conditions of 60 ° C. and 1 Torr to obtain an oxide X 1 (powder, chemical composition represented by the formula (A): LiFe 0.2 Mn 0.8 PO 4 ).
  • the obtained oxide X 1 was fractionated, and 4 g of graphite (high-purity graphite powder, manufactured by Nippon Graphite Industry Co., Ltd., BET specific surface area 5 m 2 / g, average particle size 6.1 ⁇ m, in the active material) (Corresponding to 3.8% by mass in terms of carbon atoms) was mixed by a dry method using a ball mill.
  • the obtained composite Y 1 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 1 ′ (powder).
  • Oxide X 2 (powder, represented by formula (A)) was prepared in the same manner as in Example 1-1, except that FeSO 4 ⁇ 7H 2 O was 7.34 kg and MnSO 4 ⁇ H 2 O was 0.7 kg.
  • 4 g of graphite (corresponding to 3.8% by mass in terms of carbon atom in the active material) was mixed to obtain composite Y 2 and composite Y 2 ′.
  • 0.25 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) is added, and the lithium ion secondary battery in which graphite and carbon derived from glucose are supported is obtained.
  • Example 2-1 3.75 L of ultrapure water was mixed with 0.428 kg of LiOH.H 2 O and 1.40 kg of Na 4 SiO 4 .nH 2 O to obtain slurry water. To this slurry water, 0.39 kg of FeSO 4 .7H 2 O, 0.79 kg of MnSO 4 .5H 2 O, and 0.053 kg of Zr (SO 4 ) 2 .4H 2 O were added and mixed. Subsequently, the obtained mixed liquid was put into an autoclave, and a hydrothermal reaction was performed at 150 ° C. for 12 hours. The pressure in the autoclave was 0.4 MPa.
  • oxide X 3 (powder, chemical composition represented by formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 ).
  • 213.9 g of the obtained oxide X 3 was fractionated and mixed with 16.1 g of graphite (corresponding to 7.0% by mass in terms of carbon atom in the active material) by a ball mill in a dry manner.
  • the obtained composite Y 3 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 3 ′ (powder).
  • 5 g of the obtained complex Y 3 ′ was fractionated, and 0.125 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added to this, and mixed to 80 ° C.
  • lithium ion secondary battery Li 2 Fe
  • SiO 4 positive electrode active material for lithium ion secondary battery
  • Example 2-2 A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the amount of glucose added to the complex Y 3 ′ was 0.25 g (corresponding to 2.0 mass% in terms of carbon atom in the active material).
  • Example 3-1 A solution was obtained by mixing 0.60 kg of NaOH and 9.0 L of water. Next, the obtained solution is stirred for 5 minutes while maintaining the temperature at 25 ° C., and 0.577 kg of 85% phosphoric acid aqueous solution is dropped at 35 mL / min, followed by stirring at a speed of 400 rpm for 12 hours. Thus, a slurry containing the mixture A 4 was obtained. Such a slurry contained 3.00 moles of sodium per mole of phosphorus. The obtained slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 0.139 kg of FeSO 4 .7H 2 O, 0.964 kg of MnSO 4 .5H 2 O, MgSO 4.
  • 153.6 g of the obtained oxide X 4 was fractionated and mixed with 6.4 g of graphite (corresponding to 4% by mass in terms of carbon atom in the active material) by a dry method using a ball mill.
  • the obtained composite Y 4 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 4 ′ (powder).
  • 5 g of the obtained complex Y 4 ′ was fractionated, and 0.125 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added to this, and mixed to 80 ° C.
  • Example 3-4 A sodium ion secondary battery was prepared in the same manner as in Example 3-1, except that the glucose added to the complex Y 4 ′ was 0.92 g (corresponding to 6.8% by mass in terms of carbon atoms in the active material).
  • each positive electrode active material obtained in Examples 1-1 to 3-4 and Comparative Examples 1-1 to 3-1 was measured according to the following method.
  • the amount of water volatilized in the water was measured with a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) and determined as the amount of water adsorbed on the positive electrode active material. The results are shown in Table 1.
  • LiPF 6 in the case of a lithium ion secondary battery
  • NaPF 6 in the case of a sodium ion secondary battery
  • a known one such as a polymer porous film such as polypropylene was used.
  • These battery components were assembled and housed in a conventional manner in an atmosphere having a dew point of ⁇ 50 ° C. or lower to produce a coin-type secondary battery (CR-2032).
  • the charging condition is a constant current and constant voltage charge with a current of 1 CA (330 mA / g) and a voltage of 4.5 V
  • the discharge condition is 1 CA (330 mA / g)
  • a constant current discharge with a final voltage of 1.5 V.
  • the discharge capacity at 1 CA was obtained.
  • the charging conditions are a constant current and constant voltage charging with a current of 1 CA (154 mA / g) and a voltage of 4.5 V
  • the discharging conditions are a constant current discharge of 1 CA (154 mA / g) and a final voltage of 2.0 V.
  • the positive electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the positive electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

In order to obtain a high-performance lithium-ion secondary battery or sodium-ion secondary battery, the present invention provides a secondary battery positive electrode active material capable of effectively suppressing water absorption, and a method for producing the same. To be specific, the present invention pertains to a secondary battery positive electrode active material in which a water-insoluble conductive carbon material and a carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide containing at least iron or manganese and represented by formula (A) LiFeaMnbMcPO4, formula (B) Li2FedMneNfSiO4, or formula (C) NaFegMnhQiPO4.

Description

二次電池用正極活物質及びその製造方法Positive electrode active material for secondary battery and method for producing the same
 本発明は、酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが、ともに担持されてなる二次電池用正極活物質及びその製造方法に関する。 The present invention relates to a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide, and a method for producing the same.
 携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池は、室温付近で動作する最も優れた二次電池として広く知られている。こうしたなか、Li(Fe,Mn)PO4やLi2(Fe,Mn)SiO4等のリチウム含有オリビン型リン酸金属塩は、LiCoO2等のリチウム遷移金属酸化物に比べて、資源的な制約に大きく左右されることがなく、しかも高い安全性を発揮することができるため、高出力で大容量のリチウムイオン二次電池を得るのには最適な正極材料となる。しかしながら、これらの化合物は、結晶構造に由来して導電性を十分に高めるのが困難な性質を有しており、またリチウムイオンの拡散性にも改善の余地があるため、従来より種々の開発がなされている。 Secondary batteries used in portable electronic devices, hybrid cars, electric cars, and the like have been developed. In particular, lithium ion secondary batteries are widely known as the most excellent secondary batteries that operate near room temperature. Under these circumstances, lithium-containing olivine-type phosphate metal salts such as Li (Fe, Mn) PO 4 and Li 2 (Fe, Mn) SiO 4 are more resource-constrained than lithium transition metal oxides such as LiCoO 2. Therefore, it is possible to exhibit high safety, and therefore, it is an optimum positive electrode material for obtaining a high-output and large-capacity lithium ion secondary battery. However, these compounds have the property that it is difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.
 さらに、普及が進んでいるリチウムイオン二次電池では、充電後長時間放置すると内部抵抗が徐々に上昇し、電池性能の劣化が生じる現象が知られている。これは、製造時に電池材料が含有していた水分が、電池の充放電が繰り返される中で材料から脱離し、かかる水分と電池に充満している非水電解液LiPF6との化学反応によって、フッ化水素が発生するためである。こうした電池性能の劣化を有効に抑制するには、二次電池に用いる正極活物質の水分含有量を低減することが有効であることも知られている(特許文献1参照)。 Furthermore, in lithium ion secondary batteries, which are spreading, it is known that the internal resistance gradually increases when the battery is left for a long time after charging, and the battery performance is deteriorated. This is because the moisture contained in the battery material at the time of manufacture is desorbed from the material during repeated charging and discharging of the battery, and by the chemical reaction between the moisture and the nonaqueous electrolyte LiPF 6 filling the battery, This is because hydrogen fluoride is generated. It is also known that reducing the water content of the positive electrode active material used in the secondary battery is effective for effectively suppressing such deterioration in battery performance (see Patent Document 1).
 こうしたなか、例えば、特許文献2には、炭素質物質前駆体を含む原料混合物の焼成処理後、粉砕処理や分級処理を乾燥雰囲気下で行うことにより、かかる水分含有量を一定値以下に低減する技術が開示されている。また、特許文献3には、所定のリン酸リチウム化合物やケイ酸リチウム化合物等と導電性炭素材料を湿式ボールミルにより混合した後、メカノケミカル処理を行うことにより、表面に均一に導電性炭素材料が沈着されてなる複合酸化物を得る技術が開示されている。 Under these circumstances, for example, Patent Document 2 discloses that after the firing treatment of the raw material mixture containing the carbonaceous material precursor, the water content is reduced to a certain value or less by performing pulverization treatment and classification treatment in a dry atmosphere. Technology is disclosed. In Patent Document 3, a predetermined lithium phosphate compound, lithium silicate compound, and the like and a conductive carbon material are mixed by a wet ball mill, and then a mechanochemical treatment is performed so that the conductive carbon material is uniformly applied to the surface. A technique for obtaining a composite oxide deposited is disclosed.
 一方、リチウムは希少有価物質であることから、リチウムイオン二次電池に代えてナトリウムを用いたナトリウムイオン二次電池等も種々検討されはじめている。
 例えば、特許文献4には、マリサイト型NaMnPO4を用いたナトリウム二次電池用活物質が開示されており、また特許文献5には、オリビン型構造を有するリン酸遷移金属ナトリウムを含む正極活物質が開示されており、いずれの文献においても高性能なナトリウムイオン二次電池が得られることを示している。
On the other hand, since lithium is a rare valuable material, various studies have been made on sodium ion secondary batteries using sodium instead of lithium ion secondary batteries.
For example, Patent Document 4 discloses a sodium secondary battery active material using marisite-type NaMnPO 4 , and Patent Document 5 discloses a positive electrode active material containing transition metal sodium phosphate having an olivine structure. Substances are disclosed, and any literature shows that a high-performance sodium ion secondary battery can be obtained.
特開2013-152911号公報JP 2013-152911 A 特開2003-292309号公報JP 2003-292309 A 特開2010-218884号公報JP 2010-218884 A 特開2008-260666号公報JP 2008-260666 A 特開2011-34963号公報JP 2011-34963 A
 しかしながら、上記いずれの文献に記載の技術においても、二次電池用正極活物質の表面が、炭素源によって充分に被覆されずに一部の表面が露出しているため、水分の吸着を抑制できずに水分含有量が高まり、サイクル特性等の電池物性が充分に高い二次電池用正極活物質を得るのは困難であることが判明した。 However, in any of the techniques described in any of the above documents, the surface of the positive electrode active material for secondary batteries is not sufficiently covered with the carbon source, and a part of the surface is exposed, so that moisture adsorption can be suppressed. Therefore, it has been found that it is difficult to obtain a positive electrode active material for a secondary battery having a sufficiently high moisture content and sufficiently high battery properties such as cycle characteristics.
 したがって、本発明の課題は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用正極活物質及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a positive electrode active material for a secondary battery that can effectively suppress moisture adsorption and a method for manufacturing the same, in order to obtain a high-performance lithium ion secondary battery or a sodium ion secondary battery. It is to provide.
 そこで本発明者らは、種々検討したところ、特定の酸化物に、導電性炭素粉末と、水溶性炭素材料が炭化されてなる炭素とが担持されてなる二次電池用正極活物質であれば、複数の炭素源由来の炭素が酸化物表面を効率的に被覆して水分の吸着を有効に抑制できるため、リチウムイオン又はナトリウムイオンが有効に電気伝導を担うことのできる二次電池用正極活物質として、極めて有用であることを見出し、本発明を完成させるに至った。 Therefore, the present inventors have made various studies, and as long as a positive electrode active material for a secondary battery in which conductive carbon powder and carbon obtained by carbonizing a water-soluble carbon material are supported on a specific oxide. Since the carbons derived from a plurality of carbon sources can effectively cover the oxide surface and effectively suppress the adsorption of moisture, lithium ions or sodium ions can effectively carry out electrical conduction. As a substance, it was found to be extremely useful, and the present invention was completed.
 すなわち、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが担持されてなる二次電池用正極活物質を提供するものである。
That is, the present invention includes at least the following formula (A), (B) or (C) containing iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
A positive electrode active material for a secondary battery is provided in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by:
 また、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが担持されてなる二次電池用正極活物質の製造方法であって、
 リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水を水熱反応に付して酸化物Xを得る工程(I)、
 得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合して複合体Yを得る工程(II)、並びに
 得られた複合体Yに水溶性炭素材料を添加して湿式混合し、焼成する工程(III)を備える、二次電池用正極活物質の製造方法を提供するものである。
Further, the present invention provides the following formula (A), (B) or (C) containing at least iron or manganese:
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0. ≦ g ≦ 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (Q valence) × i = 2 and a number satisfying g + h ≠ 0 are shown.
A method for producing a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by:
A step (I) of obtaining an oxide X by subjecting a slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction;
Step (II) in which a water-insoluble conductive carbon material is added to the obtained oxide X and dry-mixed to obtain a composite Y, and a water-soluble carbon material is added to the obtained composite Y and wet-mixed. The manufacturing method of the positive electrode active material for secondary batteries provided with the process (III) to bake is provided.
 本発明によれば、所定の酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが補い合いながら有効に担持されてなることにより、酸化物表面の一部において、炭素が存在することなく酸化物が露出してしまうのを有効に抑制するので、酸化物表面における露出部が効果的に低減された二次電池用正極活物質を得ることができる。そのため、かかる正極活物質は水分の吸着を効果的に抑制できるため、これを用いたリチウムイオン二次電池又はナトリウムイオン二次電池において、リチウムイオン又はナトリウムイオンが有効に電気伝導を担いつつ、様々な使用環境下でもサイクル特性等の優れた電池特性を安定して発現することができる。 According to the present invention, a predetermined oxide effectively supports a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material, so that the oxide is partially supported on the oxide surface. Since the oxide is effectively suppressed from being exposed without the presence of carbon, a positive electrode active material for a secondary battery in which the exposed portion on the oxide surface is effectively reduced can be obtained. Therefore, since such a positive electrode active material can effectively suppress the adsorption of moisture, in a lithium ion secondary battery or a sodium ion secondary battery using the positive electrode active material, lithium ions or sodium ions effectively carry electric conduction, and various Excellent battery characteristics such as cycle characteristics can be stably exhibited even in a different use environment.
 以下、本発明について詳細に説明する。
 本発明で用いる酸化物は、少なくとも鉄又はマンガンを含み、かつ下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
のいずれかの式で表される。
 これらの酸化物は、いずれもオリビン型構造を有しており、少なくとも鉄又はマンガンを含む。上記式(A)又は式(B)で表される酸化物を用いた場合には、リチウムイオン電池用正極活物質が得られ、上記式(C)で表される酸化物を用いた場合には、ナトリウムイオン電池用正極活物質が得られる。
Hereinafter, the present invention will be described in detail.
The oxide used in the present invention contains at least iron or manganese and has the following formula (A), (B) or (C):
LiFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
Li 2 Fe d Mn e N f SiO 4 (B)
(In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, 0 ≦ f <1, and 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
NaFe g Mn h Q i PO 4 (C)
(In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0 ≦ g ≦. 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (valence of Q) × i = 2 and a number satisfying g + h ≠ 0 are shown.)
It is expressed by one of the following formulas.
These oxides all have an olivine structure and contain at least iron or manganese. When the oxide represented by the above formula (A) or (B) is used, a positive electrode active material for a lithium ion battery is obtained, and when the oxide represented by the above formula (C) is used. Provides a positive electrode active material for a sodium ion battery.
 上記式(A)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属リチウム化合物である。式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。aは、0≦a≦1であって、好ましくは0.01≦a≦0.99であり、より好ましくは0.1≦a≦0.9である。bは、0≦b≦1であって、好ましくは0.01≦b≦0.99であり、より好ましくは0.1≦b≦0.9である。cは、0≦c≦0.2をであって、好ましくは0≦c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数である。上記式(A)で表されるオリビン型リン酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.2Mn0.8PO4、LiFe0.9Mn0.1PO4、LiFe0.15Mn0.75Mg0.1PO4、LiFe0.19Mn0.75Zr0.03PO4等が挙げられ、なかでもLiFe0.2Mn0.8PO4が好ましい。 The oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals. In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co. a is 0 ≦ a ≦ 1, preferably 0.01 ≦ a ≦ 0.99, and more preferably 0.1 ≦ a ≦ 0.9. b is 0 ≦ b ≦ 1, preferably 0.01 ≦ b ≦ 0.99, and more preferably 0.1 ≦ b ≦ 0.9. c satisfies 0 ≦ c ≦ 0.2, and preferably 0 ≦ c ≦ 0.1. These a, b and c are numbers satisfying 2a + 2b + (valence of M) × c = 2 and satisfying a + b ≠ 0. Specific examples of the olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and among them, LiFe 0.2 Mn 0.8 PO 4 is preferable.
 上記式(B)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型ケイ酸遷移金属リチウム化合物である。式(B)中、Nは、Ni、Co、Al、Zn、V又はZrを示し、好ましくはCo、Al、Zn、V又はZrである。dは、0≦d≦1であって、好ましくは0≦d<1であり、より好ましくは0.1≦d≦0.6である。eは、0≦d≦1であって、好ましくは0≦e<1であり、より好ましくは0.1≦e≦0.6である。fは、0≦f<1であって、好ましくは0<f<1であり、より好ましくは0.05≦f≦0.4である。そして、これらd、e及びfは、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数である。上記式(B)で表されるオリビン型ケイ酸遷移金属リチウム化合物としては、具体的には、例えばLi2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.540.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4等が挙げられ、なかでもLi2Fe0.282Mn0.658Zr0.02SiO4が好ましい。 The oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals. In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr. d is 0 ≦ d ≦ 1, preferably 0 ≦ d <1, and more preferably 0.1 ≦ d ≦ 0.6. e is 0 ≦ d ≦ 1, preferably 0 ≦ e <1, and more preferably 0.1 ≦ e ≦ 0.6. f is 0 ≦ f <1, preferably 0 <f <1, and more preferably 0.05 ≦ f ≦ 0.4. These d, e, and f are numbers satisfying 2d + 2e + (N valence) × f = 2 and d + e ≠ 0. Specific examples of the olivine-type transition metal lithium compound represented by the above formula (B) include, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.
 上記式(C)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属ナトリウム化合物である。式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。gは、0≦g≦1であって、好ましくは0<g≦1である。hは、0≦h≦1であって、好ましくは0.5≦h<1である。iは、0≦i<1であって、好ましくは0≦i≦0.5であり、より好ましくは0≦i≦0.3である。そして、これらg、h及びiは、0≦g≦1、0≦h≦1、及び0≦i<1、2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数である。上記式(C)で表されるオリビン型リン酸遷移金属ナトリウム化合物としては、具体的には、例えばNaFe0.2Mn0.8PO4、NaFe0.9Mn0.1PO4、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等が挙げられ、なかでもNaFe0.2Mn0.8PO4が好ましい。 The oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals. In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co. g is 0 ≦ g ≦ 1, and preferably 0 <g ≦ 1. h is 0 ≦ h ≦ 1, and preferably 0.5 ≦ h <1. i is 0 ≦ i <1, preferably 0 ≦ i ≦ 0.5, and more preferably 0 ≦ i ≦ 0.3. These g, h, and i are numbers satisfying 0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ i <1, 2 + g + 2h + (Q valence) × i = 2 and satisfying g + h ≠ 0. It is. Specific examples of the olivine-type transition metal sodium phosphate compound represented by the above formula (C) include, for example, NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.
 本発明の二次電池用正極活物質は、上記式(A)、(B)又は(C)で表される酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素(水溶性炭素材料由来の炭素)とが担持されてなるものである。すなわち、炭素源として水不溶性導電性炭素材料と水溶性炭素材料が共存してなり、酸化物表面を一方の炭素源由来の炭素が被覆しつつも、かかる炭素が存在することなく酸化物表面が露出した部位に、他方の炭素源由来の炭素が有効に担持してなる。したがって、これら水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが相まって上記酸化物表面の露出を効果的に抑制しながら、酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用正極活物質における水分吸着を有効に防止することができる。 The positive electrode active material for a secondary battery according to the present invention is obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material on the oxide represented by the above formula (A), (B), or (C). Carbon (carbon derived from a water-soluble carbon material) is supported. That is, a water-insoluble conductive carbon material and a water-soluble carbon material coexist as a carbon source, and the oxide surface is coated without the presence of such carbon while the oxide surface is coated with carbon derived from one carbon source. The carbon derived from the other carbon source is effectively supported on the exposed portion. Therefore, the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material are combined and firmly supported on the entire surface of the oxide while effectively suppressing the exposure of the oxide surface. Therefore, moisture adsorption in the positive electrode active material for a secondary battery of the present invention can be effectively prevented.
 上記式(A)、(B)又は(C)で表される酸化物に担持される水不溶性導電性炭素材料とは、25℃の水100gに対する溶解量が、水不溶性導電性炭素材料の炭素原子換算量で0.4g未満である水不溶性の炭素材料であって、焼成等せずともそのもの自体が導電性を有する炭素源である。かかる水不溶性導電性炭素材料としては、グラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックから選ばれる1種又は2種以上が挙げられる。なかでも、吸着水分量低減の観点から、グラファイトが好ましい。グラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。 The water-insoluble conductive carbon material supported on the oxide represented by the above formula (A), (B) or (C) means that the amount dissolved in 100 g of water at 25 ° C. is carbon of the water-insoluble conductive carbon material. A water-insoluble carbon material having an atomic conversion amount of less than 0.4 g, which itself is a conductive carbon source without firing. Examples of the water-insoluble conductive carbon material include one or more selected from graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Of these, graphite is preferable from the viewpoint of reducing the amount of adsorbed moisture. The graphite may be any of artificial graphite (scaly, massive, earthy, graphene) or natural graphite.
 用い得る水不溶性導電性炭素材料のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは1~750m2/gであり、より好ましくは3~500m2/gである。また、かかる水不溶性導電性炭素材料の平均粒子径は、同様の観点から、好ましくは0.5~20μmであり、より好ましくは1.0~15μmである。 The BET specific surface area of the water-insoluble conductive carbon material that can be used is preferably 1 to 750 m 2 / g, more preferably 3 to 500 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed water. Further, from the same viewpoint, the average particle size of the water-insoluble conductive carbon material is preferably 0.5 to 20 μm, more preferably 1.0 to 15 μm.
 上記水不溶性導電性炭素材料とともに、式(A)、(B)又は(C)で表される酸化物に炭化された炭素として担持される水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、上記式(A)~(C)で表される酸化物表面を被覆する炭素源として機能する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。 Along with the water-insoluble conductive carbon material, the water-soluble carbon material supported as carbon carbonized by the oxide represented by the formula (A), (B) or (C) is used in 100 g of water at 25 ° C. Carbon source which dissolves 0.4 g or more, preferably 1.0 g or more, of water-soluble carbon material in terms of carbon atom, and which covers the oxide surface represented by the above formulas (A) to (C) Function as. Examples of the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol and butane Examples include polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin; and organic acids such as citric acid, tartaric acid, and ascorbic acid. Among these, glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.
 水不溶性導電性炭素材料及び水溶性炭素材料の炭素原子換算分は、水不溶性導電性炭素材料及び炭化された水溶性炭素材料が上記酸化物に担持された炭素として本発明の二次電池用正極活物質中に共存することとなる。かかる水不溶性導電性炭素材料及び水溶性炭素材料の炭素原子換算量は、これら水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素の合計担持量に相当し、本発明の二次電池用正極活物質中に、合計で、好ましくは1.0~20.0質量%であり、より好ましくは2.0~17.5質量%であり、さらに好ましくは3.0~15.0質量%である。具体的には、水不溶性導電性炭素材料及び水溶性炭素材料の炭素原子換算量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、好ましくは1.0~15.0質量%であり、より好ましくは2.0~13.5質量%であり、さらに好ましくは3.0~12.0質量%であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは2.0~20.0質量%であり、より好ましくは3.0~17.5質量%であり、さらに好ましくは4.0~15.0質量%である。
 また、水溶性炭素材料の炭素原子換算量、すなわち水溶性炭素材料が炭化されてなる炭素の担持量は、本発明の二次電池用正極活物質中に、好ましくは0.5~17.0質量%であり、より好ましくは0.5~13.5質量%であり、さらに好ましくは0.5~10.0質量%である。具体的には、水溶性炭素材料の炭素原子換算量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、好ましくは0.5~10.0質量%であり、より好ましくは0.5~9.0質量%であり、さらに好ましくは0.5~8.0質量%であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは0.75~17.0質量%であり、より好ましくは0.75~13.5質量%であり、さらに好ましくは0.75~10.0質量%である。
 なお、二次電池用正極活物質中に存在する水不溶性導電性炭素材料と水溶性炭素材料の炭素原子換算量の合計量は、炭素・硫黄分析装置を用いて測定した全炭素量として、確認することができる。また、水溶性炭素材料の炭素原子換算量は、炭素・硫黄分析装置を用いて測定した上記合計の炭素量から、水不溶性導電性炭素材料の添加量を差し引くことにより、確認することができる。
The carbon atom equivalent of the water-insoluble conductive carbon material and the water-soluble carbon material is the positive electrode for the secondary battery of the present invention as the carbon in which the water-insoluble conductive carbon material and the carbonized water-soluble carbon material are supported on the oxide. It will coexist in the active material. The carbon atom equivalent amount of the water-insoluble conductive carbon material and the water-soluble carbon material corresponds to the total supported amount of carbon obtained by carbonizing the water-insoluble conductive carbon material and the water-soluble carbon material. The total amount in the positive electrode active material for batteries is preferably 1.0 to 20.0% by mass, more preferably 2.0 to 17.5% by mass, and still more preferably 3.0 to 15.0%. % By mass. Specifically, the carbon atom equivalent amount of the water-insoluble conductive carbon material and the water-soluble carbon material is preferably the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C). 1.0 to 15.0 mass%, more preferably 2.0 to 13.5 mass%, still more preferably 3.0 to 12.0 mass%, and the oxide is represented by the above formula (B). Is preferably 2.0 to 20.0% by mass, more preferably 3.0 to 17.5% by mass, and still more preferably 4.0 to 15%. 0.0% by mass.
Further, the carbon atom equivalent amount of the water-soluble carbon material, that is, the supported amount of carbon obtained by carbonizing the water-soluble carbon material is preferably 0.5 to 17.0 in the positive electrode active material for secondary battery of the present invention. % By mass, more preferably 0.5 to 13.5% by mass, and still more preferably 0.5 to 10.0% by mass. Specifically, the carbon atom equivalent amount of the water-soluble carbon material is preferably 0.5 to 10.0 for the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C). A secondary battery in which the oxide is represented by the above formula (B), preferably 0.5 to 9.0 mass%, more preferably 0.5 to 8.0 mass%. In the positive electrode active material for use, it is preferably 0.75 to 17.0% by mass, more preferably 0.75 to 13.5% by mass, and further preferably 0.75 to 10.0% by mass.
The total amount of carbon-atom equivalents of the water-insoluble conductive carbon material and the water-soluble carbon material present in the positive electrode active material for secondary batteries is confirmed as the total carbon amount measured using a carbon / sulfur analyzer. can do. Further, the carbon atom equivalent amount of the water-soluble carbon material can be confirmed by subtracting the addition amount of the water-insoluble conductive carbon material from the total carbon amount measured using a carbon / sulfur analyzer.
 本発明の二次電池用正極活物質は、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素とが互いに補い合いながら、効率的に上記(A)、(B)又は(C)で表される酸化物に担持させる観点から、かかる酸化物と水不溶性導電性炭素材料とを含む複合体に、水溶性炭素材料が炭化されてなる炭素として担持されてなるものであるのが好ましく、具体的には、酸化物に水不溶性導電性炭素材料が担持してなる複合体に、水溶性炭素材料が炭化されてなる炭素が担持されてなるものであるのが好ましい。 The positive electrode active material for a secondary battery according to the present invention efficiently (A), (B) or (C) while the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material complement each other. From the viewpoint of supporting the oxide represented by the formula (1), it is preferable that the composite containing the oxide and the water-insoluble conductive carbon material is supported as carbon obtained by carbonizing the water-soluble carbon material. Specifically, it is preferable that a composite formed by supporting a water-insoluble conductive carbon material on an oxide is supported by carbon obtained by carbonizing a water-soluble carbon material.
 上記水不溶性導電性炭素材料は、具体的には、水熱反応により得られた酸化物と乾式混合されて、酸化物に担持してなるものであるのが好ましく、酸化物と予備混合された後、圧縮力及びせん断力を付加しながら混合されて、酸化物に担持されてなるものであるのがより好ましい。すなわち、上記酸化物と水不溶性導電性炭素材料を含む複合体は、水不溶性導電性炭素材料と、水熱反応物である酸化物との乾式混合物であるのが好ましい。なお、水不溶性導電性炭素材料が焼成されることにより酸化物に担持されてなるものは、酸化物と水不溶性導電性炭素材料とを含む複合体として得られる。また、この乾式混合の際、後述する湿式混合の際に添加する水溶性炭素材料とは別に、必要に応じて補助的に水溶性炭素材料を添加してもよい。このときに得られる複合体は、酸化物と水不溶性導電性炭素材料と共に水溶性炭素材料を含むこととなる。 Specifically, the water-insoluble conductive carbon material is preferably dry-mixed with an oxide obtained by a hydrothermal reaction and supported on the oxide, and is premixed with the oxide. It is more preferable that the mixture is mixed while applying a compressive force and a shearing force and is supported on an oxide. That is, the composite containing the oxide and the water-insoluble conductive carbon material is preferably a dry mixture of the water-insoluble conductive carbon material and an oxide that is a hydrothermal reaction product. In addition, what was carry | supported by the oxide by baking a water-insoluble conductive carbon material is obtained as a composite_body | complex containing an oxide and a water-insoluble conductive carbon material. In addition, during the dry mixing, a water-soluble carbon material may be supplementarily added as necessary, separately from the water-soluble carbon material added during the wet mixing described later. The composite obtained at this time contains a water-soluble carbon material together with an oxide and a water-insoluble conductive carbon material.
 上記酸化物と水不溶性導電性炭素材料とを含む複合体に、炭化された炭素として担持される水溶性炭素材料は、かかる複合体において、水不溶性導電性炭素材料が存在することなく酸化物表面が露出した部位に、さらに炭素を有効に担持させる観点から、上記複合体と湿式混合された後、焼成されることにより炭化されてなる炭素として酸化物に担持されてなるものであるのが好ましい。すなわち、本発明の二次電池用正極活物質は、水溶性炭素材料と、酸化物及び水不溶性導電性炭素材料を含む複合体との湿式混合物の、焼成物であるのが好ましい。この水溶性炭素材料を炭化するための焼成により、乾式混合等により低下した酸化物及び水不溶性導電性炭素材料双方の結晶性を回復させることができるため、得られる正極活物質における導電性を有効に高めることができる。なお、湿式混合される際に用いる水溶性炭素材料は、上記乾式混合の際に必要に応じて補助的に用いる水溶性炭素材料と同じ種類のものであってもよく、別の種類のものであってもよい。 A water-soluble carbon material supported as carbonized carbon on a composite containing the oxide and the water-insoluble conductive carbon material is obtained by using the oxide surface of the composite without the presence of the water-insoluble conductive carbon material. From the viewpoint of effectively supporting carbon on the exposed portion, it is preferable that it is supported on an oxide as carbon that is carbonized by being baked after being wet mixed with the composite. . That is, the positive electrode active material for a secondary battery of the present invention is preferably a fired product of a wet mixture of a water-soluble carbon material and a composite containing an oxide and a water-insoluble conductive carbon material. By firing to carbonize this water-soluble carbon material, it is possible to recover the crystallinity of both the oxide and the water-insoluble conductive carbon material, which have been reduced by dry mixing, etc., so the conductivity in the resulting positive electrode active material is effective. Can be increased. The water-soluble carbon material used when wet-mixing may be the same type as the water-soluble carbon material used as an auxiliary when necessary during the dry-mixing, or another type. There may be.
 本発明の二次電池用正極活物質は、より具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水を水熱反応に付して酸化物Xを得る工程(I)、
 得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合して複合体Yを得る工程(II)、並びに
 得られた複合体Yに水溶性炭素材料を添加して湿式混合し、焼成する工程(III)を備える製造方法により得られるものであるのが好ましい。
More specifically, the positive electrode active material for a secondary battery of the present invention is a slurry water containing a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound. A step (I) of obtaining an oxide X by subjecting to a thermal reaction;
Step (II) in which a water-insoluble conductive carbon material is added to the obtained oxide X and dry-mixed to obtain a composite Y, and a water-soluble carbon material is added to the obtained composite Y and wet-mixed. It is preferably obtained by a production method comprising the step (III) of firing.
 工程(I)は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水を水熱反応に付して酸化物Xを得る工程である。
 用い得るリチウム化合物又はナトリウム化合物としては、水酸化物(例えばLiOH・H2O、NaOH)、炭酸化物、硫酸化物、酢酸化物が挙げられる。なかでも、水酸化物が好ましい。
 スラリー水におけるリチウム化合物又はケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは7~45質量部である。より具体的には、工程(I)においてリン酸化合物を用いた場合、スラリー水におけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは10~45質量部である。また、ケイ酸化合物を用いた場合、スラリー水におけるケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~40質量部であり、より好ましくは7~35質量部である。
Step (I) is a step of obtaining an oxide X by subjecting a slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction. It is.
Examples of the lithium compound or sodium compound that can be used include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
The content of the lithium compound or silicic acid compound in the slurry water is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water. More specifically, when a phosphoric acid compound is used in step (I), the content of the lithium compound or sodium compound in the slurry water is preferably 5 to 50 parts by mass with respect to 100 parts by mass of water. The amount is preferably 10 to 45 parts by mass. When a silicate compound is used, the content of the silicate compound in the slurry water is preferably 5 to 40 parts by mass, more preferably 7 to 35 parts by mass with respect to 100 parts by mass of water.
 工程(I)は、スラリー水に含有される各成分の分散性を高めつつ、得られる正極活物質の粒子を微細化し、電池物性の向上を図る観点から、リチウム化合物又はナトリウム化合物を含む混合物A1に、リン酸化合物又はケイ酸化合物を混合して混合物A2を得る工程(Ia)、並びに得られた混合物A2に、少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加し、混合して得られるスラリー水Xを水熱反応に付して酸化物Xを得る工程(Ib)を備えるのが好ましい。 Step (I) is a mixture A containing a lithium compound or a sodium compound from the viewpoint of improving the dispersibility of each component contained in the slurry water and making the obtained positive electrode active material particles finer to improve battery physical properties. 1, to obtain a mixture a 2 was mixed phosphoric acid compound or a silicic acid compound (Ia), to the mixture a 2 obtained as well, by adding a metal salt containing at least an iron compound or a manganese compound, and mixed It is preferable to include a step (Ib) of obtaining the oxide X by subjecting the obtained slurry water X to a hydrothermal reaction.
 工程(I)又は(Ia)において、混合物A1にリン酸化合物又はケイ酸化合物を混合する前に、予め混合物A1を撹拌しておくのが好ましい。かかる混合物A1の撹拌時間は、好ましくは1~15分であり、より好ましくは3~10分である。また、混合物A1の温度は、好ましくは20~90℃であり、より好ましくは20~70℃である。 In step (I) or (Ia), prior to mixing the mixture A phosphoric acid compound to one or silicic acid compound, preferably it is allowed to stir in advance mixture A 1. The stirring time of the mixture A 1 is preferably 1 to 15 minutes, more preferably 3 to 10 minutes. The temperature of the mixture A 1 is preferably 20 to 90 ° C., more preferably 20 to 70 ° C.
 工程(I)又は(Ia)で用いるリン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70~90質量%濃度の水溶液として用いるのが好ましい。かかる工程(I)又は(Ia)では、混合物A1にリン酸を混合するにあたり、混合物A1を撹拌しながらリン酸を滴下するのが好ましい。混合物A1にリン酸を滴下して少量ずつ加えることで、混合物A1中において良好に反応が進行して、上記(A)~(C)で表される酸化物Xの前駆体がスラリー中で均一に分散しつつ生成され、かかる酸化物の前駆体が不要に凝集するのをも効果的に抑制することができる。 Examples of the phosphoric acid compound used in the step (I) or (Ia) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. Etc. Of these, phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used. In this step (I) or (Ia), Upon mixing phosphoric acid to the mixture A 1, preferably dropwise addition of phosphoric acid while stirring the mixture A 1. By adding phosphoric acid dropwise to the mixture A 1 and adding small portions little by little, the reaction proceeds well in the mixture A 1 , and the precursor of the oxide X represented by the above (A) to (C) is contained in the slurry. It is also possible to effectively prevent the oxide precursors from being agglomerated unnecessarily while being uniformly dispersed.
 リン酸の上記混合物A1への滴下速度は、好ましくは15~50mL/分であり、より好ましくは20~45mL/分であり、さらに好ましくは28~40mL/分である。また、リン酸を滴下しながらの混合物A1の撹拌時間は、好ましくは0.5~24時間であり、より好ましくは3~12時間である。さらに、リン酸を滴下しながらの混合物A1の撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmであり、さらに好ましくは300~500rpmである。
 なお、混合物A1を撹拌する際、さらに混合物A1の沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20~60℃に冷却するのがより好ましい。
The dropping rate of phosphoric acid into the mixture A 1 is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min. The stirring time of the mixture A 1 while dropping phosphoric acid is preferably 0.5 to 24 hours, more preferably 3 to 12 hours. Further, the stirring speed of the mixture A 1 while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
Note that when the mixture is stirred for A 1, preferred to further cool the mixture A in the following 1 the boiling point temperature. Specifically, cooling to 80 ° C. or lower is preferable, and cooling to 20 to 60 ° C. is more preferable.
 工程(I)又は(Ia)で用いるケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)等が挙げられる。 The silicic acid compound used in the step (I) or (Ia) is not particularly limited as long as it is a reactive silica compound. Amorphous silica, Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) Etc.
 リン酸化合物又はケイ酸化合物を混合した後の混合物A2は、リン酸又はケイ酸1モルに対し、リチウム又はナトリウムを2.0~4.0モル含有するのが好ましく、2.0~3.1モル含有するのがより好ましく、このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。より具体的には、工程(I)においてリン酸化合物を用いた場合、リン酸化合物を混合した後の混合物A2は、リン酸1モルに対し、リチウム又はナトリウムを2.7~3.3モル含有するのが好ましく、2.8~3.1モル含有するのがより好ましく、工程(I)においてケイ酸化合物を用いた場合、ケイ酸化合物を混合した後の混合物A2は、ケイ酸1モルに対し、リチウムを2.0~4.0モル含有するのが好ましく、2.0~3.0含有するのがより好ましい。 The mixture A 2 after mixing the phosphoric acid compound or the silicic acid compound preferably contains 2.0 to 4.0 mol of lithium or sodium with respect to 1 mol of phosphoric acid or silicic acid. It is more preferable to contain 1 mol, and the lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount. More specifically, when a phosphoric acid compound is used in step (I), the mixture A 2 after mixing the phosphoric acid compound has 2.7 to 3.3 of lithium or sodium per mol of phosphoric acid. It is preferable to contain 2.8 to 3.1 mol, and when the silicate compound is used in step (I), the mixture A 2 after mixing the silicate compound is Lithium is preferably contained in an amount of 2.0 to 4.0 mol, more preferably 2.0 to 3.0, with respect to 1 mol.
 リン酸化合物又はケイ酸化合物を混合した後の混合物A2に対して窒素をパージすることにより、かかる混合物A2中での反応を完了させて、上記(A)~(C)で表される酸化物の前駆体を混合物A2中に生成させる。窒素がパージされると、混合物A2中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる酸化物の前駆体を含有する混合物中の溶存酸素濃度も効果的に低減されるため、次の工程で添加する鉄化合物やマンガン化合物等の酸化を抑制することができる。かかる混合物A2中において、上記(A)~(C)で表される酸化物の前駆体は、微細な分散粒子として存在する。かかる酸化物の前駆体は、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)として得られる。 By purging the mixture A 2 after mixing the phosphoric acid compound or silicic acid compound with nitrogen, the reaction in the mixture A 2 is completed, and represented by the above (A) to (C) to produce a precursor of the oxides in the mixture a 2. When nitrogen is purged, the reaction can proceed in a state where the dissolved oxygen concentration in the mixture A 2 is reduced, and the dissolved oxygen concentration in the mixture containing the resulting oxide precursor is also effectively increased. Since it is reduced, oxidation of the iron compound or manganese compound added in the next step can be suppressed. In the mixture A 2 , the oxide precursors represented by the above (A) to (C) exist as fine dispersed particles. For example, in the case of the oxide represented by the above formula (A), such an oxide precursor is obtained as trilithium phosphate (Li 3 PO 4 ).
 窒素をパージする際における圧力は、好ましくは0.1~0.2MPaであり、より好ましくは0.1~0.15MPaである。また、リン酸化合物又はケイ酸化合物を混合した後の混合物A2の温度は、好ましくは20~80℃であり、より好ましくは20~60℃である。例えば上記式(A)で表される酸化物の場合、反応時間は、好ましくは5~60分であり、より好ましくは15~45分である。
 また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物A2を撹拌するのが好ましい。このときの撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmである。
The pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa. The temperature of the mixture A 2 after mixing the phosphoric acid compound or the silicic acid compound is preferably 20 to 80 ° C., more preferably 20 to 60 ° C. For example, in the case of the oxide represented by the above formula (A), the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
Further, when the purging nitrogen from the viewpoint of advancing satisfactorily reaction, it is preferred to stir the mixture A 2 after mixing the phosphoric acid compound or a silicic acid compound. The stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.
 また、より効果的に酸化物の前駆体の分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物A2中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。 Further, from the viewpoint of more effectively suppressing oxidation of the oxide precursor on the surface of the dispersed particles and miniaturizing the dispersed particles, dissolved oxygen in the mixture A 2 after mixing the phosphoric acid compound or the silicate compound. The concentration is preferably 0.5 mg / L or less, and more preferably 0.2 mg / L or less.
 工程(I)又は(Ib)では、次いで得られた酸化物の前駆体と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水を水熱反応に付して、酸化物Xを得る。得られた酸化物の前駆体を混合物のまま用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加して、スラリー水Xとするのが好ましい。これにより、工程を簡略化させつつ、上記(A)~(C)で表される酸化物を得ることができるとともに、極めて微細な粒子とすることが可能となり、非常に有用な二次電池用正極活物質を得ることができる。 In step (I) or (Ib), an oxide X is obtained by subjecting the obtained oxide precursor and slurry water containing a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction. . It is preferable to use the obtained oxide precursor as a mixture and add a metal salt containing at least an iron compound or a manganese compound to the slurry water X. As a result, the oxides represented by the above (A) to (C) can be obtained while simplifying the process, and it is possible to obtain extremely fine particles, which are very useful for secondary batteries. A positive electrode active material can be obtained.
 用い得る鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸鉄が好ましい。 Examples of iron compounds that can be used include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.
 用い得るマンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸マンガンが好ましい。 Examples of manganese compounds that can be used include manganese acetate, manganese nitrate, and manganese sulfate. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.
 金属塩として、鉄化合物とマンガン化合物の双方を用いる場合、これら鉄化合物及びマンガン化合物の使用モル比(鉄化合物:マンガン化合物)は、好ましくは99:1~1:99であり、より好ましくは90:10~10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー水X中に含有されるLi3PO4 1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。 When both an iron compound and a manganese compound are used as the metal salt, the use molar ratio of these iron compound and manganese compound (iron compound: manganese compound) is preferably 99: 1 to 1:99, more preferably 90. : 10 to 10:90. The total addition amount of these iron compound and manganese compound is preferably 0.99 to 1.01 mol, more preferably 0.995 with respect to 1 mol of Li 3 PO 4 contained in the slurry water X. ~ 1.005 mol.
 さらに、必要に応じて、金属塩として、鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を用いてもよい。金属(M、N又はQ)塩におけるM、N及びQは、上記式(A)~(C)中のM、N及びQと同義であり、かかる金属塩として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池物性を高める観点から、硫酸塩を用いるのがより好ましい。
 これら金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I)において得られた混合物中のリン酸又はケイ酸1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
Furthermore, you may use metal (M, N, or Q) salts other than an iron compound and a manganese compound as a metal salt as needed. M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
When these metal (M, N, or Q) salts are used, the total amount of iron compound, manganese compound, and metal (M, N, or Q) salt added is phosphoric acid in the mixture obtained in the above step (I). Alternatively, the amount is preferably 0.99 to 1.01 mole, more preferably 0.995 to 1.005 mole relative to 1 mole of silicic acid.
 水熱反応に付する際に用いる水の使用量は、用いる金属塩の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー水X中に含有されるリン酸又はケイ酸イオン1モルに対し、好ましくは10~50モルであり、より好ましくは12.5~45モルである。より具体的には、スラリー水X中に含有されるイオンがリン酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~30モルであり、より好ましくは12.5~25モルである。また、スラリー水X中に含有されるイオンがケイ酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~50モルであり、より好ましくは12.5~45モルである。 The amount of water used for the hydrothermal reaction is phosphoric acid or silicate ions contained in the slurry water X from the viewpoint of the solubility of the metal salt used, the ease of stirring, the efficiency of synthesis, etc. The amount is preferably 10 to 50 mol, more preferably 12.5 to 45 mol, relative to 1 mol. More specifically, when the ions contained in the slurry water X are phosphate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, more preferably 12 .5 to 25 moles. Further, when the ions contained in the slurry water X are silicate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 50 mol, more preferably 12.5 to 45. Is a mole.
 工程(I)又は(Ib)において、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩の添加順序は特に制限されない。また、これらの金属塩を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることで、上記式(A)~(C)で表される酸化物の生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩の合計1モルに対し、好ましくは0.01~1モルであり、より好ましくは0.03~0.5モルである。 In the step (I) or (Ib), the order of adding the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the formation of the oxides represented by the above formulas (A) to (C) by adding an excessive amount of the antioxidant, an iron compound, a manganese compound, and The amount is preferably 0.01 to 1 mol, more preferably 0.03 to 0.5 mol, relative to a total of 1 mol of the metal (M, N or Q) salt used as necessary.
 鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩や酸化防止剤を添加することにより得られるスラリー水X中における酸化物の前駆体の含有量は、好ましくは10~50質量%であり、より好ましくは15~45質量%であり、さらに好ましくは20~40質量%である。 The content of the oxide precursor in the slurry water X obtained by adding an iron compound, a manganese compound, and a metal (M, N or Q) salt or an antioxidant used as necessary is preferably 10 to It is 50% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 40% by mass.
 工程(I)又は(Ib)における水熱反応は、100℃以上であればよく、130~180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130~180℃で反応を行う場合、この時の圧力は0.3~0.9MPaであるのが好ましく、140~160℃で反応を行う場合の圧力は0.3~0.6MPaであるのが好ましい。水熱反応時間は0.1~48時間が好ましく、さらに0.2~24時間が好ましい。
 得られた酸化物Xは、上記式(A)~(C)で表される酸化物であり、ろ過後、水で洗浄し、乾燥することによりこれを単離できる。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。
The hydrothermal reaction in the step (I) or (Ib) may be 100 ° C. or higher, and preferably 130 to 180 ° C. The hydrothermal reaction is preferably carried out in a pressure-resistant vessel. When the reaction is carried out at 130 to 180 ° C., the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C. The pressure is preferably 0.3 to 0.6 MPa. The hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
The obtained oxide X is an oxide represented by the above formulas (A) to (C), which can be isolated by filtration, washing with water, and drying. As the drying means, freeze drying or vacuum drying is used.
 得られる酸化物XのBET比表面積は、共存してなる炭素を効率よく担持して吸着水分量を効果的に低減する観点から、好ましくは5~40m2/gであり、より好ましくは5~20m2/gである。酸化物XのBET比表面積が5m2/g未満であると、二次電池用正極活物質の一次粒子が大きくなりすぎ、電池特性が低下してしまうおそれがある。また、BET比表面積が40m2/gを超えると、二次電池用正極活物質の吸着水分量が増大して電池特性に影響を与えるおそれがある。 The BET specific surface area of the resulting oxide X is preferably 5 to 40 m 2 / g, more preferably 5 to 40 m from the viewpoint of efficiently carrying the coexisting carbon and effectively reducing the amount of adsorbed water. 20 m 2 / g. When the BET specific surface area of the oxide X is less than 5 m 2 / g, the primary particles of the positive electrode active material for the secondary battery become too large, and the battery characteristics may be deteriorated. On the other hand, if the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed moisture of the positive electrode active material for the secondary battery may increase and affect the battery characteristics.
 工程(II)は、工程(I)で得られた酸化物Xに水不溶性導電性炭素材料を添加した後、乾式混合して複合体Yを得る工程である。水不溶性導電性炭素材料に加え、さらに補助的に水溶性炭素材料を添加してもよく、この場合、これらの添加順序は特に制限されない。水不溶性導電性炭素材料の添加量は、例えば酸化物X100質量部に対し、好ましくは0.5~24.2質量部であり、より好ましくは1.5~20.5質量部であり、さらに好ましくは2.6~17.0質量部である。具体的には、水不溶性導電性炭素材料の添加量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、好ましくは0.5~17.0質量部であり、より好ましくは1.5~14.9質量部であり、さらに好ましくは2.6~13.0質量部であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは1.3~23.8質量部であり、より好ましくは2.3~20.1質量部であり、さらに好ましくは3.4~16.6質量部である。
 また、かかる工程(II)において、水不溶性導電性炭素材料と水溶性炭素材料を併用する場合、水不溶性導電性炭素材料の添加量と水溶性炭素材料の添加量の炭素原子換算量との質量比(水不溶性導電性炭素材料:水溶性炭素材料)は、好ましくは100:2~3:100であり、より好ましくは100:10~10:100である。
Step (II) is a step of adding the water-insoluble conductive carbon material to the oxide X obtained in step (I) and then dry mixing to obtain the composite Y. In addition to the water-insoluble conductive carbon material, a water-soluble carbon material may be further supplementarily added. In this case, the order of addition is not particularly limited. The amount of the water-insoluble conductive carbon material added is preferably 0.5 to 24.2 parts by mass, more preferably 1.5 to 20.5 parts by mass with respect to 100 parts by mass of the oxide X, for example. The amount is preferably 2.6 to 17.0 parts by mass. Specifically, the addition amount of the water-insoluble conductive carbon material is preferably 0.5 to 17.0 in the case of the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (A) or (C). Secondary battery in which the oxide is represented by the above formula (B), more preferably 1.5 to 14.9 parts by mass, and still more preferably 2.6 to 13.0 parts by mass. The positive electrode active material for use is preferably 1.3 to 23.8 parts by mass, more preferably 2.3 to 20.1 parts by mass, and still more preferably 3.4 to 16.6 parts by mass.
In addition, in the step (II), when the water-insoluble conductive carbon material and the water-soluble carbon material are used in combination, the mass of the addition amount of the water-insoluble conductive carbon material and the carbon atom equivalent amount of the addition amount of the water-soluble carbon material The ratio (water-insoluble conductive carbon material: water-soluble carbon material) is preferably 100: 2 to 3: 100, more preferably 100: 10 to 10: 100.
 工程(II)における乾式混合としては、通常のボールミルによる混合であるのが好ましく、自公転可能な遊星ボールミルによる混合がより好ましい。さらに、上記式(A)~(C)で表される酸化物表面上で水不溶性導電性炭素材料、及び必要に応じて併用する水溶性炭素材料を緻密かつ均一に分散させ、炭化されてなる炭素として有効に担持させる観点から、圧縮力及びせん断力を付加しながら複合体Yを混合して複合体Y'とするのがさらに好ましい。圧縮力及びせん断力を付加しながら混合する処理は、インペラを備える密閉容器で行うのが好ましい。かかるインペラの周速度は、得られる正極活物質のタップ密度を高め、またBET比表面積を減じて吸着水分量を有効に低減する観点から、好ましくは25~40m/sであり、より好ましくは27~40m/sである。また、混合時間は、好ましくは5~90分であり、より好ましくは10~80分である。
 なお、インペラの周速度とは、回転式攪拌翼(インペラ)の最外端部の速度を意味し、下記式(1)により表すことができ、また圧縮力及びせん断力を付加しながら混合する処理を行う時間は、インペラの周速度が遅いほど長くなるように、インペラの周速度によっても変動し得る。
  インペラの周速度(m/s)=
  インペラの半径(m)×2×π×回転数(rpm)÷60・・・(1)
The dry mixing in the step (II) is preferably mixing by a normal ball mill, and more preferably by a planetary ball mill capable of revolving. Further, the water-insoluble conductive carbon material and the water-soluble carbon material used in combination as necessary are densely and uniformly dispersed on the oxide surface represented by the above formulas (A) to (C) and carbonized. From the viewpoint of effectively supporting the carbon, it is more preferable to mix the composite Y while applying a compressive force and a shearing force to obtain a composite Y ′. The process of mixing while applying a compressive force and a shearing force is preferably performed in a closed container equipped with an impeller. The peripheral speed of the impeller is preferably 25 to 40 m / s, more preferably 27 from the viewpoint of increasing the tap density of the obtained positive electrode active material and reducing the BET specific surface area to effectively reduce the amount of adsorbed water. ~ 40 m / s. The mixing time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes.
The peripheral speed of the impeller means the speed of the outermost end of the rotary stirring blade (impeller), which can be expressed by the following formula (1), and is mixed while applying compressive force and shearing force. The processing time may vary depending on the peripheral speed of the impeller so that it becomes longer as the peripheral speed of the impeller is slower.
Impeller peripheral speed (m / s) =
Impeller radius (m) × 2 × π × rotational speed (rpm) ÷ 60 (1)
 工程(II)において、上記圧縮力及びせん断力を付加しながら混合する処理を行う際の処理時間及び/又はインペラの周速度は、容器に投入する複合体Yの量に応じて適宜調整する必要がある。そして、容器を稼動させることにより、インペラと容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、これを混合する処理を行うことが可能となり、上記式(A)~(C)で表される酸化物表面上で水不溶性導電性炭素材料、及び必要に応じて補助的に併用する水溶性炭素材料を緻密かつ均一に分散させ、後述するように、さらに工程(III)において添加される水溶性炭素材料とも相まって吸着水分量を有効に低減できる二次電池用正極活物質を得ることができる。
 例えば、上記混合する処理を、周速度25~40m/sで回転するインペラを備える密閉容器内で6~90分間行う場合、容器に投入する複合体Yの量は、有効容器(インペラを備える密閉容器のうち、複合体Yを収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1~0.7gであり、より好ましくは0.15~0.4gである。
In the step (II), the processing time and / or the impeller peripheral speed when performing the mixing process while applying the compressive force and the shearing force need to be appropriately adjusted according to the amount of the composite Y to be charged into the container. There is. By operating the container, it is possible to perform a process of mixing the mixture while applying a compressive force and a shearing force between the impeller and the inner wall of the container, and the above formulas (A) to (C The water-insoluble conductive carbon material and the water-soluble carbon material to be used in combination as needed are densely and uniformly dispersed on the oxide surface represented by Combined with the added water-soluble carbon material, a positive electrode active material for a secondary battery that can effectively reduce the amount of adsorbed water can be obtained.
For example, when the mixing process is performed for 6 to 90 minutes in an airtight container equipped with an impeller rotating at a peripheral speed of 25 to 40 m / s, the amount of the composite Y charged into the container is an effective container (airtight equipped with an impeller). Of the containers, a container corresponding to a part capable of accommodating the complex Y) is preferably 0.1 to 0.7 g, more preferably 0.15 to 0.4 g per 1 cm 3 .
 このような圧縮力及びせん断力を付加しながら混合する処理を容易に行うことができる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、微粒子複合化装置 ノビルタ(ホソカワミクロン社製)を好適に用いることができる。
 上記混合の処理条件としては、処理温度が、好ましくは5~80℃、より好ましくは10~50℃である。処理雰囲気としては、特に限定されないが、不活性ガス雰囲気下、又は還元ガス雰囲気下が好ましい。
Examples of the apparatus equipped with a closed container that can easily perform mixing while applying compressive force and shear force include a high-speed shear mill, a blade-type kneader, and the like. Fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Corporation) can be suitably used.
As the mixing treatment conditions, the treatment temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C. The treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.
 工程(III)では、工程(I)で得られたに水溶性炭素材料を添加して湿式混合し、焼成する工程である。これにより、上記(A)~(C)で表される酸化物Xの表面が露出するのを有効に抑制しつつ、かかる酸化物Xに水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とを、共に堅固に担持させることができる。 Step (III) is a step of adding a water-soluble carbon material obtained in step (I), wet mixing, and baking. This effectively suppresses the exposure of the surface of the oxide X represented by the above (A) to (C), while the water-insoluble conductive carbon material and the water-soluble carbon material are carbonized on the oxide X. The formed carbon can be supported firmly together.
 工程(III)における水溶性炭素材料の添加量は、水不溶性導電性炭素材料が存在しない酸化物Xの表面に水溶性炭素材料が炭化されてなる炭素を有効に担持させ、且つ、充分な充放電容量を保持する観点から、複合体Y(又は上記工程(II)において、さらに上記圧縮力及びせん断力を付加しながら混合する処理を行った場合は複合体Y'、以下同様)100質量部に対し、好ましくは1.0~55.0質量部であり、より好ましくは1.0~40.0質量部であり、さらに好ましくは1.0~30.0質量部である。 The amount of the water-soluble carbon material added in the step (III) is such that carbon obtained by carbonizing the water-soluble carbon material is effectively supported on the surface of the oxide X where no water-insoluble conductive carbon material is present, and sufficient charge is obtained. From the viewpoint of maintaining the discharge capacity, 100 parts by mass of composite Y (or composite Y ′ when the above-described process (II) is further mixed while applying the compressive force and shearing force) On the other hand, it is preferably 1.0 to 55.0 parts by mass, more preferably 1.0 to 40.0 parts by mass, and still more preferably 1.0 to 30.0 parts by mass.
 工程(III)では、さらに水溶性炭素材料が炭化されてなる炭素を酸化物表面に良好に担持させる観点から、水溶性炭素材料とともに、水を添加するのが好ましい。水の添加量は、複合体Y(又は複合体Y')100質量部に対し、好ましくは30~300質量部であり、より好ましくは50~250質量部であり、さらに好ましくは75~200質量部である。この水により、工程(II)において補助的に水溶性炭素材料を添加した場合、複合体Y(又は複合体Y')に担持されてなる補助的に添加した水溶性炭素材料を溶解させ、工程(III)で添加した水溶性炭素材料と同じ作用を発揮させることができる。 In step (III), it is preferable to add water together with the water-soluble carbon material from the viewpoint of favorably supporting the carbon obtained by carbonizing the water-soluble carbon material on the oxide surface. The amount of water added is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and even more preferably 75 to 200 parts by mass with respect to 100 parts by mass of the complex Y (or complex Y ′). Part. When the water-soluble carbon material is supplementarily added in step (II) with this water, the supplementally added water-soluble carbon material supported on the composite Y (or composite Y ′) is dissolved, The same action as the water-soluble carbon material added in (III) can be exhibited.
 工程(III)における湿式混合手段としては、特に制限されず、常法により行うことができる。複合体Y(又は複合体Y')に水溶性炭素材料を添加した後、混合する際の温度は、好ましくは5~80℃であり、より好ましくは7~70℃である。得られる混合物は、焼成するまでの間に乾燥するのが好ましい。乾燥手段としては、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。 The wet mixing means in step (III) is not particularly limited, and can be performed by a conventional method. The temperature at the time of mixing after adding the water-soluble carbon material to the composite Y (or the composite Y ′) is preferably 5 to 80 ° C., more preferably 7 to 70 ° C. The resulting mixture is preferably dried before firing. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.
 工程(III)において、上記湿式混合に得られた混合物を焼成する。焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。焼成温度は、水不溶性導電性炭素材料の結晶性を高めて導電性を向上させる観点、及び水溶性炭素材料をより有効に炭化させる観点から、好ましくは500~800℃であり、より好ましくは600~770℃であり、さらに好ましくは650~750℃である。また、焼成時間は、好ましくは10分~3時間、より好ましくは30分~1.5時間とするのがよい。 In step (III), the mixture obtained by the wet mixing is fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere. The firing temperature is preferably 500 to 800 ° C., more preferably 600 from the viewpoint of improving the conductivity by improving the crystallinity of the water-insoluble conductive carbon material and from the viewpoint of more effectively carbonizing the water-soluble carbon material. It is ˜770 ° C., more preferably 650 to 750 ° C. The firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.
 本発明の二次電池用正極活物質は、上記水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが、共に上記酸化物に担持されて相乗的に作用し、二次電池用正極活物質における吸着水分量を有効に低減することができる。具体的には、本発明の二次電池用正極活物質の吸着水分量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは850ppm以下であり、より好ましくは700ppm以下であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは2900ppm以下であり、より好ましくは2500ppm以下である。なお、かかる吸着水分量は、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量として測定される値であって、二次電池用正極活物質の吸着水分量と、上記始点から終点までの間に揮発した水分量とが、同量であるとみなし、かかる揮発する水分量の測定値を二次電池用正極活物質の吸着水分量とするものである。
 このように、本発明の二次電池用正極活物質は、水分を吸着しにくいため、製造環境として強い乾燥条件を必要とすることなく吸着水分量を有効に低減することができ、得られるリチウムイオン二次電池及びナトリウムイオン二次電池の双方において、様々な使用環境下でも優れた電池特性を安定して発現することが可能となる。
 なお、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量は、例えばカールフィッシャー水分計を用いて測定することができる。
The positive electrode active material for a secondary battery according to the present invention has the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material both supported on the oxide and acting synergistically. The amount of moisture adsorbed in the positive electrode active material for batteries can be effectively reduced. Specifically, the amount of adsorbed moisture of the positive electrode active material for secondary battery of the present invention is the same for the secondary battery in the case of the positive electrode active material for secondary battery in which the oxide is represented by the formula (A) or (C). In the positive electrode active material, it is preferably 850 ppm or less, more preferably 700 ppm or less, and in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), preferably 2900 ppm or less, and more Preferably it is 2500 ppm or less. The amount of adsorbed moisture is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. Measured as the amount of water volatilized from the start point to the end point, starting from when the temperature rise is resumed from 150 ° C. when held for 20 minutes and ending at the constant temperature state at 250 ° C. It is assumed that the amount of adsorbed moisture of the positive electrode active material for a secondary battery and the amount of moisture volatilized from the start point to the end point are the same, and the measured value of the volatilized moisture amount is This is the amount of moisture adsorbed on the positive electrode active material for the secondary battery.
Thus, since the positive electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment, and the resulting lithium In both the ion secondary battery and the sodium ion secondary battery, it is possible to stably exhibit excellent battery characteristics even under various usage environments.
When water is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. and held for 20 minutes. The amount of water volatilized between the start point and the end point, starting from when the temperature rise is resumed from 150 ° C. and the end point when the constant temperature state at 250 ° C. is completed, is measured using, for example, a Karl Fischer moisture meter Can be measured.
 また、本発明の二次電池用正極活物質のタップ密度は、吸着水分量を効果的に低減する観点から、好ましくは0.5~1.6g/cm3であり、より好ましくは0.8~1.6g/cm3である。 Further, the tap density of the positive electrode active material for a secondary battery of the present invention is preferably 0.5 to 1.6 g / cm 3 , more preferably 0.8 from the viewpoint of effectively reducing the amount of adsorbed moisture. ~ 1.6 g / cm 3 .
 さらに、本発明の二次電池用正極活物質のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5~21m2/gであり、より好ましくは7~20m2/gである。 Furthermore, the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is preferably 5 to 21 m 2 / g, more preferably 7 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. It is.
 本発明の二次電池用正極活物質を含む二次電池用正極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。 The secondary battery to which the positive electrode for the secondary battery including the positive electrode active material for the secondary battery of the present invention can be applied is not particularly limited as long as the positive electrode, the negative electrode, the electrolytic solution, and the separator are essential components.
 ここで、負極については、リチウムイオン又はナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオン又はナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。 Here, as for the negative electrode, as long as lithium ions or sodium ions can be occluded at the time of charging and can be released at the time of discharging, the material configuration is not particularly limited, and those having a known material configuration can be used. . For example, a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.
 電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池やナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。 The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.
 支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF6、LiBF4、LiClO4、LiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、ナトリウムイオン二次電池の場合、NaPF6、NaBF4、NaClO4及びNaAsF6から選ばれる無機塩、該無機塩の誘導体、NaSO3CF3、NaC(SO3CF32及びNaN(SO3CF32、NaN(SO2252及びNaN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt. In the case of a sodium ion secondary battery, an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 , a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2, and an organic salt selected from NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one derivative of the organic salt It is preferable.
 セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。 The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 [実施例1-1]
 LiOH・H2O 4.9kg、及び水 11.7kgを混合してスラリー水を得た。次いで、得られたスラリー水を25℃の温度に保持しながら速度400rpmにて30分間撹拌しつつ、70%のリン酸水溶液 5.09kgを35mL/minで滴下して、混合物A1を得た。かかる混合スラリー液のpHは10.0であり、水酸化リチウム1モルに対し、0.33モルのリン酸を含有していた。
[Example 1-1]
The slurry water was obtained by mixing 4.9 kg of LiOH.H 2 O and 11.7 kg of water. Next, while maintaining the obtained slurry water at a temperature of 25 ° C. and stirring for 30 minutes at a speed of 400 rpm, 5.09 kg of a 70% phosphoric acid aqueous solution was dropped at 35 mL / min to obtain a mixture A 1 . . The pH of the mixed slurry was 10.0 and contained 0.33 mol of phosphoric acid with respect to 1 mol of lithium hydroxide.
 次に、得られた混合物A1に対し、速度400rpmで30分間撹拌しながら窒素をパージして、混合物A1での反応を完了させた(溶存酸素濃度0.5mg/L)。続いて、混合物A1 21.7kgに対し、FeSO4・7H2O 1.63kg、MnSO4・H2O 5.60 kgを添加し、さらにNa2SO3 0.0468kgを添加して速度400rpmにて撹拌・混合して混合物A2を得た。このとき、添加したFeSO4・7H2OとMnSO4・H2Oのモル比(FeSO4・7H2O:MnSO4・H2O)は、20:80であった。
 次いで、混合物A2を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、170℃で1時間攪拌しながら加熱した。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで水により洗浄した。洗浄した結晶を60℃、1Torrの条件で真空乾燥し、酸化物X1(粉末、式(A)で表される化学組成:LiFe0.2Mn0.8PO4)を得た。
Next, the resulting mixture A 1 was purged with nitrogen while stirring at a speed of 400 rpm for 30 minutes to complete the reaction with the mixture A 1 (dissolved oxygen concentration 0.5 mg / L). Subsequently, 1.63 kg of FeSO 4 .7H 2 O and 5.60 kg of MnSO 4 .H 2 O are added to 21.7 kg of the mixture A 1, and 0.0468 kg of Na 2 SO 3 is further added, and the speed is 400 rpm. to obtain a mixture a 2 are stirred and mixed at. In this case, the added FeSO 4 · 7H 2 O and MnSO 4 · H 2 O molar ratio of (FeSO 4 · 7H 2 O: MnSO 4 · H 2 O) is 20: was 80.
Next, the mixture A 2 was put into a synthesis container installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 170 ° C. for 1 hour using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.8 MPa. The formed crystals were filtered and then washed with water. The washed crystal was vacuum-dried under the conditions of 60 ° C. and 1 Torr to obtain an oxide X 1 (powder, chemical composition represented by the formula (A): LiFe 0.2 Mn 0.8 PO 4 ).
 得られた酸化物X1100gを分取し、これにグラファイト4g(高純度黒鉛粉末、日本黒鉛工業(株)製、BET比表面積5m2/g、平均粒子径6.1μm、活物質中における炭素原子換算量で3.8質量%に相当)をボールミルにより乾式で混合した。得られた複合体Y1に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体Y1’(粉末)を得た。 100 g of the obtained oxide X 1 was fractionated, and 4 g of graphite (high-purity graphite powder, manufactured by Nippon Graphite Industry Co., Ltd., BET specific surface area 5 m 2 / g, average particle size 6.1 μm, in the active material) (Corresponding to 3.8% by mass in terms of carbon atoms) was mixed by a dry method using a ball mill. The obtained composite Y 1 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 1 ′ (powder).
 得られた複合体Y1’を10g分取し、これにグルコース 0.25g(活物質中における炭素原子換算量で1.0質量%に相当)及び水 10mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で11時間焼成して、酸化物X1にグラファイトとグルコース由来の炭素とが担持してなるリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=4.8質量%)を得た。 10 g of the obtained complex Y 1 ′ was collected, and 0.25 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added to this, and mixed to 80 ° C. in performed 12 hours drying, and calcined at 700 ° C. 11 hours under a reducing atmosphere, the oxide X 1 to graphite and glucose derived from a cathode active material for a lithium ion secondary battery in which the carbon formed by carrying (LiFe 0.2 Mn 0.8 PO 4 and carbon amount = 4.8% by mass).
 [実施例1-2]
 複合体Y1’に添加するグルコースを0.5g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=5.8質量%)を得た。
[Example 1-2]
A lithium ion secondary battery was produced in the same manner as in Example 1-1 except that 0.5 g of glucose added to the complex Y 1 ′ (corresponding to 2.0 mass% in terms of carbon atom in the active material) was used. A positive electrode active material (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 5.8 mass%) was obtained.
 [実施例1-3]
 複合体Y1’に添加するグルコースを0.75g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=6.7質量%)を得た。
[Example 1-3]
A lithium ion secondary battery was produced in the same manner as in Example 1-1, except that 0.75 g of glucose added to the complex Y 1 ′ (corresponding to 2.9% by mass in terms of carbon atom in the active material) was used. A positive electrode active material (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 6.7% by mass) was obtained.
 [実施例1-4]
 複合体Y1’に添加するグルコースを1.25g(活物質中における炭素原子換算量で4.8質量%に相当)とした以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=8.6質量%)を得た。
[Example 1-4]
A lithium ion secondary battery was prepared in the same manner as in Example 1-1, except that 1.25 g of glucose added to the complex Y 1 ′ (corresponding to 4.8% by mass in terms of carbon atom in the active material) was used. A positive electrode active material (LiFe 0.2 Mn 0.8 PO 4 , amount of carbon = 8.6% by mass) was obtained.
 [実施例1-5]
 FeSO4・7H2Oを7.34kg、MnSO4・H2Oを0.7kgとした以外、実施例1-1と同様の方法で、酸化物X2(粉末、式(A)で表される化学組成:LiFe0.9Mn0.1PO4)を得た後にグラファイトを4g(活物質中における炭素原子換算量で3.8質量%に相当)を混合して複合体Y2及び複合体Y2’を得て、次いでグルコースを0.25g(活物質中における炭素原子換算量で1.0質量%に相当)添加して、グラファイトとグルコース由来の炭素とが担持してなるリチウムイオン二次電池用正極活物質(LiFe0.9Mn0.1PO4、炭素の量=4.8質量%)を得た。
[Example 1-5]
Oxide X 2 (powder, represented by formula (A)) was prepared in the same manner as in Example 1-1, except that FeSO 4 · 7H 2 O was 7.34 kg and MnSO 4 · H 2 O was 0.7 kg. After obtaining LiFe 0.9 Mn 0.1 PO 4 ), 4 g of graphite (corresponding to 3.8% by mass in terms of carbon atom in the active material) was mixed to obtain composite Y 2 and composite Y 2 ′. Next, 0.25 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) is added, and the lithium ion secondary battery in which graphite and carbon derived from glucose are supported is obtained. A positive electrode active material (LiFe 0.9 Mn 0.1 PO 4 , amount of carbon = 4.8% by mass) was obtained.
 [比較例1-1]
 複合体Y2’にグルコースを添加しなかった以外、実施例1-5と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.9Mn0.1PO4、炭素の量=3.8質量%)を得た。
[Comparative Example 1-1]
A positive electrode active material for a lithium ion secondary battery (LiFe 0.9 Mn 0.1 PO 4 , amount of carbon = 3.8% by mass) in the same manner as in Example 1-5, except that glucose was not added to the complex Y 2 ′. )
 [実施例2-1]
 LiOH・H2O 0.428kg、Na4SiO4・nH2O 1.40kgに超純水3.75Lを混合してスラリー水を得た。このスラリー水に、FeSO4・7H2O 0.39kg、MnSO4・5H2O 0.79kg、及びZr(SO42・4H2O 0.053kgを添加し、混合した。次いで、得られた混合液をオートクレーブに投入し、150℃で12時間水熱反応を行った。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して酸化物X3(粉末、式(B)で表される化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4)を得た。
[Example 2-1]
3.75 L of ultrapure water was mixed with 0.428 kg of LiOH.H 2 O and 1.40 kg of Na 4 SiO 4 .nH 2 O to obtain slurry water. To this slurry water, 0.39 kg of FeSO 4 .7H 2 O, 0.79 kg of MnSO 4 .5H 2 O, and 0.053 kg of Zr (SO 4 ) 2 .4H 2 O were added and mixed. Subsequently, the obtained mixed liquid was put into an autoclave, and a hydrothermal reaction was performed at 150 ° C. for 12 hours. The pressure in the autoclave was 0.4 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystals were freeze-dried at −50 ° C. for 12 hours to obtain oxide X 3 (powder, chemical composition represented by formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 ).
 得られた酸化物X3213.9gを分取し、グラファイト16.1g(活物質中における炭素原子換算量で7.0質量%に相当)と共にボールミルにより乾式で混合した。得られた複合体Y3に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体Y3’(粉末)を得た。得られた複合体Y3’を5g分取し、これにグルコース 0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水 10mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で650℃で1時間焼成して、酸化物X3にグラファイトとグルコース由来の炭素とが担持してなるリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=8.0質量%)を得た。 213.9 g of the obtained oxide X 3 was fractionated and mixed with 16.1 g of graphite (corresponding to 7.0% by mass in terms of carbon atom in the active material) by a ball mill in a dry manner. The obtained composite Y 3 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 3 ′ (powder). 5 g of the obtained complex Y 3 ′ was fractionated, and 0.125 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added to this, and mixed to 80 ° C. For 12 hours, calcined at 650 ° C. for 1 hour in a reducing atmosphere, and positive electrode active material for lithium ion secondary battery (Li 2 Fe) in which graphite and carbon derived from glucose are supported on oxide X 3 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 8.0% by mass).
 [実施例2-2]
 複合体Y3’に添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=9.0質量%)を得た。
[Example 2-2]
A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the amount of glucose added to the complex Y 3 ′ was 0.25 g (corresponding to 2.0 mass% in terms of carbon atom in the active material). A positive electrode active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 9.0% by mass) was obtained.
 [実施例2-3]
 複合体Y3’に添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=9.9質量%)質を得た。
[Example 2-3]
A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that 0.375 g of glucose added to the complex Y 3 ′ (corresponding to 2.9% by mass in terms of carbon atoms in the active material) was used. A positive electrode active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 9.9% by mass) was obtained.
 [実施例2-4]
 複合体Y3’に添加するグルコースを0.875g(活物質中における炭素原子換算量で6.8質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=13.8質量%)を得た。
[Example 2-4]
A lithium ion secondary battery was prepared in the same manner as in Example 2-1, except that 0.875 g of glucose added to the complex Y 3 ′ (corresponding to 6.8% by mass in terms of carbon atom in the active material) was used. A positive electrode active material (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 13.8% by mass) was obtained.
 [比較例2-1]
 複合体Y3’にグルコースを添加しなかった以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%)を得た。
[Comparative Example 2-1]
A positive electrode active material for lithium ion secondary battery (Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , amount of carbon = 7) in the same manner as in Example 2-1, except that glucose was not added to the composite Y 3 ′. 0.0 mass%) was obtained.
 [実施例3-1]
 NaOH 0.60kgと水 9.0Lを混合して溶液を得た。次いで、得られた溶液を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液0.577kgを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、混合物A4を含有するスラリーを得た。かかるスラリーは、リン1モルに対し、3.00モルのナトリウムを含有していた。得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 0.139kg、MnSO4・5H2O 0.964kg、MgSO4・7H2O 0.124kgを添加した。次いで、得られた混合液を窒素ガスでパージしたオートクレーブに投入し、200℃で3時間水熱反応を行った。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して酸化物X4(粉末、式(C)で表される化学組成:NaFe0.1Mn0.8Mg0.1PO4)を得た。
[Example 3-1]
A solution was obtained by mixing 0.60 kg of NaOH and 9.0 L of water. Next, the obtained solution is stirred for 5 minutes while maintaining the temperature at 25 ° C., and 0.577 kg of 85% phosphoric acid aqueous solution is dropped at 35 mL / min, followed by stirring at a speed of 400 rpm for 12 hours. Thus, a slurry containing the mixture A 4 was obtained. Such a slurry contained 3.00 moles of sodium per mole of phosphorus. The obtained slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 0.139 kg of FeSO 4 .7H 2 O, 0.964 kg of MnSO 4 .5H 2 O, MgSO 4. 0.124 kg of 7H 2 O was added. Subsequently, the obtained liquid mixture was thrown into the autoclave purged with nitrogen gas, and the hydrothermal reaction was performed at 200 degreeC for 3 hours. The pressure in the autoclave was 1.4 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystals were freeze-dried at −50 ° C. for 12 hours to obtain oxide X 4 (powder, chemical composition represented by formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 ).
 得られた酸化物X4153.6gを分取し、グラファイト6.4g(活物質中における炭素原子換算量で4質量%に相当)とともにボールミルにより乾式で混合した。得られた複合体Y4に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体Y4’(粉末)を得た。得られた複合体Y4’を5g分取し、これにグルコース 0.125g(活物質中における炭素原子換算量で1.0質量%に相当)及び水 10mLを添加し、混合して80℃で12時間乾燥を行い、還元雰囲気下で700℃で1時間焼成して、酸化物X4にグラファイトとグルコース由来の炭素とが担持してなるナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=5.0質量%)を得た。 153.6 g of the obtained oxide X 4 was fractionated and mixed with 6.4 g of graphite (corresponding to 4% by mass in terms of carbon atom in the active material) by a dry method using a ball mill. The obtained composite Y 4 was mixed with Nobilta (manufactured by Hosokawa Micron Corporation, NOB130) at 40 m / s (6000 rpm) for 5 minutes to obtain a composite Y 4 ′ (powder). 5 g of the obtained complex Y 4 ′ was fractionated, and 0.125 g of glucose (corresponding to 1.0% by mass in terms of carbon atom in the active material) and 10 mL of water were added to this, and mixed to 80 ° C. For 12 hours, calcined at 700 ° C. for 1 hour in a reducing atmosphere, and positive electrode active material for sodium ion secondary battery (NaFe 0.1 Mn) in which graphite and glucose-derived carbon are supported on oxide X 4 0.8 Mg 0.1 PO 4 , amount of carbon = 5.0% by mass).
 [実施例3-2]
 複合体Y4’に添加するグルコースを0.25g(活物質中における炭素原子換算量で2.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=6.0質量%)を得た。
[Example 3-2]
Sodium ion secondary battery in the same manner as in Example 3-1, except that 0.25 g of glucose added to complex Y 4 ′ (corresponding to 2.0% by mass in terms of carbon atom in the active material) was used A positive electrode active material (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , amount of carbon = 6.0% by mass) was obtained.
 [実施例3-3]
 複合体Y4’に添加するグルコースを0.375g(活物質中における炭素原子換算量で2.9質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=6.9質量%)を得た。
[Example 3-3]
A sodium ion secondary battery was prepared in the same manner as in Example 3-1, except that 0.375 g of glucose added to the complex Y 4 ′ (corresponding to 2.9% by mass in terms of carbon atom in the active material) was used. A positive electrode active material (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , amount of carbon = 6.9% by mass) was obtained.
 [実施例3-4]
 複合体Y4’に添加するグルコースを0.92g(活物質中における炭素原子換算量で6.8質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=10.8質量%)を得た。
[Example 3-4]
A sodium ion secondary battery was prepared in the same manner as in Example 3-1, except that the glucose added to the complex Y 4 ′ was 0.92 g (corresponding to 6.8% by mass in terms of carbon atoms in the active material). A positive electrode active material (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , amount of carbon = 10.8% by mass) was obtained.
 [比較例3-1]
 複合体Y4’にグルコースを添加しなかった以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%)を得た。
[Comparative Example 3-1]
A positive electrode active material for sodium ion secondary battery (NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , amount of carbon = 4.0) in the same manner as in Example 3-1, except that glucose was not added to the complex Y 4 ′. Mass%).
 《吸着水分量の測定》
 実施例1-1~3-4及び比較例1-1~3-1で得られた各正極活物質の吸着水分量は、下記方法にしたがって測定した。
 正極活物質(複合体粒子)について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点とし、及び250℃での恒温状態を終えたときを終点とし、始点から終点までの間に揮発した水分量を、カールフィッシャー水分計(MKC-610、京都電子工業(株)製)で測定し、正極活物質における吸着水分量として求めた。
 結果を表1に示す。
<Measurement of adsorbed water content>
The adsorbed moisture content of each positive electrode active material obtained in Examples 1-1 to 3-4 and Comparative Examples 1-1 to 3-1 was measured according to the following method.
About the positive electrode active material (composite particle), after allowing it to stand for 1 day in an environment of a temperature of 20 ° C. and a relative humidity of 50% and adsorbing moisture until reaching equilibrium, raising the temperature to 150 ° C. and holding for 20 minutes, Furthermore, when the temperature is raised to 250 ° C. and held for 20 minutes, the start point is when the temperature rise is resumed from 150 ° C., and the end point is when the constant temperature state at 250 ° C. is completed. The amount of water volatilized in the water was measured with a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) and determined as the amount of water adsorbed on the positive electrode active material.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《二次電池を用いた充放電特性の評価》
 実施例1-1~3-4及び比較例1-1~3-1で得られた正極活物質を用い、リチウムイオン二次電池又はナトリウムイオン二次電池の正極を作製した。具体的には、得られた正極活物質、ケッチェンブラック、ポリフッ化ビニリデンを質量比75:20:5の配合割合で混合し、これにN-メチル-2-ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。
 その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
 次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6(リチウムイオン二次電池の場合)又はNaPF6(ナトリウムイオン二次電池の場合)を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が-50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR-2032)を製造した。
<< Evaluation of charge / discharge characteristics using secondary battery >>
Using the positive electrode active materials obtained in Examples 1-1 to 3-4 and Comparative Examples 1-1 to 3-1, positive electrodes of lithium ion secondary batteries or sodium ion secondary batteries were produced. Specifically, the obtained positive electrode active material, ketjen black, and polyvinylidene fluoride were mixed at a mixing ratio of 75: 20: 5, and N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently. A positive electrode slurry was prepared. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours.
Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. For the electrolyte, LiPF 6 (in the case of a lithium ion secondary battery) or NaPF 6 (in the case of a sodium ion secondary battery) is added to a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 1. Those dissolved at a concentration of 1 mol / L were used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere having a dew point of −50 ° C. or lower to produce a coin-type secondary battery (CR-2032).
 製造した二次電池を用い、充放電試験を行った。リチウムイオン電池の場合には、充電条件を電流1CA(330mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(330mA/g)、終止電圧1.5Vの定電流放電として、1CAにおける放電容量を求めた。ナトリウムイオン電池の場合には、充電条件を電流1CA(154mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(154mA/g)、終止電圧2.0Vの定電流放電として、1CAにおける放電容量を求めた。さらに、同様の充放電条件において、50サイクル繰り返し試験を行い、下記式(2)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。
  容量保持率(%)=(50サイクル後の放電容量)/(1サイクル後の
    放電容量)×100                 ・・・(2)
 結果を表2に示す。
A charge / discharge test was performed using the manufactured secondary battery. In the case of a lithium ion battery, the charging condition is a constant current and constant voltage charge with a current of 1 CA (330 mA / g) and a voltage of 4.5 V, the discharge condition is 1 CA (330 mA / g), and a constant current discharge with a final voltage of 1.5 V. As a result, the discharge capacity at 1 CA was obtained. In the case of a sodium ion battery, the charging conditions are a constant current and constant voltage charging with a current of 1 CA (154 mA / g) and a voltage of 4.5 V, the discharging conditions are a constant current discharge of 1 CA (154 mA / g) and a final voltage of 2.0 V. As a result, the discharge capacity at 1 CA was obtained. Furthermore, 50 cycle repetition tests were performed under the same charge / discharge conditions, and the capacity retention rate (%) was determined by the following formula (2). All charge / discharge tests were performed at 30 ° C.
Capacity retention (%) = (discharge capacity after 50 cycles) / (discharge capacity after 1 cycle) × 100 (2)
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果より、実施例の正極活物質は、比較例の正極活物質に比して、確実に吸着水分量を低減することができるとともに、得られる電池においても優れた性能を発揮できることがわかる。 From the above results, it can be seen that the positive electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the positive electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Claims (14)

  1.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが担持されてなる二次電池用正極活物質。
    The following formula (A), (B) or (C) containing at least iron or manganese:
    LiFe a Mn b M c PO 4 (A)
    (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
    Li 2 Fe d Mn e N f SiO 4 (B)
    (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
    NaFe g Mn h Q i PO 4 (C)
    (In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0. ≦ g ≦ 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (Q valence) × i = 2 and a number satisfying g + h ≠ 0 are shown.
    A positive electrode active material for a secondary battery, in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by:
  2.  酸化物と水不溶性導電性炭素材料を含む複合体に、水溶性炭素材料が炭化されてなる炭素が担持されてなる請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein carbon obtained by carbonizing a water-soluble carbon material is supported on a composite including an oxide and a water-insoluble conductive carbon material.
  3.  水不溶性導電性炭素材料及び水溶性炭素材料の炭素原子換算量が、合計で1.0~20.0質量%である請求項1又は2に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1 or 2, wherein the water-insoluble conductive carbon material and the water-soluble carbon material have a total carbon atom conversion amount of 1.0 to 20.0 mass%.
  4.  水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項1~3のいずれか1項に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to any one of claims 1 to 3, wherein the water-soluble carbon material is one or more selected from saccharides, polyols, polyethers, and organic acids.
  5.  水不溶性導電性炭素材料が、グラファイトである請求項1~4のいずれか1項に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to any one of claims 1 to 4, wherein the water-insoluble conductive carbon material is graphite.
  6.  複合体が、水不溶性導電性炭素材料と、水熱反応により得られた酸化物と乾式混合されることにより、酸化物に担持されてなる請求項2~5のいずれか1項に記載の二次電池用正極活物質。 The composite according to any one of claims 2 to 5, wherein the composite is supported on an oxide by dry mixing with a water-insoluble conductive carbon material and an oxide obtained by a hydrothermal reaction. Positive electrode active material for secondary battery.
  7.  乾式混合が、酸化物と水不溶性導電性炭素材料とが予備混合され、次いで圧縮力及びせん断力を付加しながら混合される混合である請求項6に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 6, wherein the dry mixing is a mixture in which an oxide and a water-insoluble conductive carbon material are premixed and then mixed while applying compressive force and shearing force.
  8.  水溶性炭素材料が、酸化物を含む複合体と湿式混合された後、焼成されることにより炭化されてなる炭素として酸化物に担持されてなる請求項2~7のいずれか1項に記載の二次電池用正極活物質。 The water-soluble carbon material according to any one of claims 2 to 7, wherein the water-soluble carbon material is supported on the oxide as carbon that is carbonized by being wet-mixed with the composite containing the oxide and then calcined. Positive electrode active material for secondary battery.
  9.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。を示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、水不溶性導電性炭素材料と、水溶性炭素材料が炭化されてなる炭素とが担持されてなる二次電池用正極活物質の製造方法であって、
     リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水を水熱反応に付して酸化物Xを得る工程(I)、
     得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合して複合体Yを得る工程(II)、並びに
     得られた複合体Yに水溶性炭素材料を添加して湿式混合し、焼成する工程(III)を備える、二次電池用正極活物質の製造方法。
    The following formula (A), (B) or (C) containing at least iron or manganese:
    LiFe a Mn b M c PO 4 (A)
    (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.2, and 2a + 2b + (M valence) × c = 2 and a number satisfying a + b ≠ 0 are shown.)
    Li 2 Fe d Mn e N f SiO 4 (B)
    (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr. D, e, and f are 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, and 0 ≦ f <1, 2d + 2e +. (The valence of N) × f = 2 is satisfied, and d + e ≠ 0 is satisfied.)
    NaFe g Mn h Q i PO 4 (C)
    (In the formula (C), Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. G, h, and i are 0. ≦ g ≦ 1, 0 ≦ h ≦ 1, 0 ≦ i <1, and 2g + 2h + (Q valence) × i = 2 and a number satisfying g + h ≠ 0 are shown.
    A method for producing a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide represented by:
    A step (I) of obtaining an oxide X by subjecting a slurry water containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction;
    Step (II) in which a water-insoluble conductive carbon material is added to the obtained oxide X and dry-mixed to obtain a composite Y, and a water-soluble carbon material is added to the obtained composite Y and wet-mixed. The manufacturing method of the positive electrode active material for secondary batteries provided with the process (III) baked.
  10.  水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項9に記載の二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a secondary battery according to claim 9, wherein the water-soluble carbon material is one or more selected from saccharides, polyols, polyethers, and organic acids.
  11.  水不溶性導電性炭素材料が、グラファイトである請求項9又は10に記載の二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a secondary battery according to claim 9 or 10, wherein the water-insoluble conductive carbon material is graphite.
  12.  工程(II)において、水不溶性導電性炭素材料とともに水溶性炭素材料を添加する請求項9~11のいずれか1項に記載の二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a secondary battery according to any one of claims 9 to 11, wherein a water-soluble carbon material is added together with the water-insoluble conductive carbon material in the step (II).
  13.  工程(III)における水溶性炭素材料の添加量が、複合体Y100質量部に対して1.0~55.0質量部である請求項9~12のいずれか1項に記載の二次電池用正極活物質の製造方法。 The secondary battery according to any one of claims 9 to 12, wherein the amount of the water-soluble carbon material added in step (III) is 1.0 to 55.0 parts by mass with respect to 100 parts by mass of the composite Y. A method for producing a positive electrode active material.
  14.  工程(II)における乾式混合が、酸化物と水不溶性導電性炭素材料とを予備混合し、次いで圧縮力及びせん断力を付加しながら混合する混合である請求項9~13のいずれか1項に記載の二次電池用正極活物質の製造方法。 14. The dry mixing in step (II) is a mixture in which an oxide and a water-insoluble conductive carbon material are premixed and then mixed while applying compressive force and shearing force. The manufacturing method of the positive electrode active material for secondary batteries of description.
PCT/JP2015/076385 2015-03-24 2015-09-17 Secondary battery positive electrode active material and method for producing same WO2016151890A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/560,749 US10601042B2 (en) 2015-03-24 2015-09-17 Secondary battery positive electrode active material and method for producing same
EP15886442.1A EP3276711B1 (en) 2015-03-24 2015-09-17 Secondary battery positive electrode active material and method for producing same
CN201580078111.7A CN107408695B (en) 2015-03-24 2015-09-17 Positive electrode active material for secondary battery and method for producing same
KR1020177025026A KR102336781B1 (en) 2015-03-24 2015-09-17 Cathode active material for secondary battery and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015060578 2015-03-24
JP2015-060578 2015-03-24
JP2015178161A JP6042513B2 (en) 2015-03-24 2015-09-10 Positive electrode active material for secondary battery and method for producing the same
JP2015-178161 2015-09-10

Publications (1)

Publication Number Publication Date
WO2016151890A1 true WO2016151890A1 (en) 2016-09-29

Family

ID=56977082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076385 WO2016151890A1 (en) 2015-03-24 2015-09-17 Secondary battery positive electrode active material and method for producing same

Country Status (2)

Country Link
KR (1) KR102336781B1 (en)
WO (1) WO2016151890A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130526A (en) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd Active material for electrochemical element, manufacturing method therefor, and electrochemical element
JP2011181486A (en) * 2009-08-28 2011-09-15 Equos Research Co Ltd Evaluation method of electrolyte for secondary battery
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2012527067A (en) * 2009-05-11 2012-11-01 ズード−ケミー アーゲー Composite material containing lithium metal mixed oxide
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery
JP2013225471A (en) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp Cathode active material for secondary battery and method for producing the same
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2014532263A (en) * 2011-10-04 2014-12-04 ハイドロ−ケベック Positive electrode material, manufacturing method thereof and use in lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187524B2 (en) 2002-01-31 2008-11-26 日本化学工業株式会社 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2008260666A (en) 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
JP5436896B2 (en) 2009-03-17 2014-03-05 日本化学工業株式会社 Lithium phosphorus composite oxide carbon composite, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130526A (en) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd Active material for electrochemical element, manufacturing method therefor, and electrochemical element
JP2012527067A (en) * 2009-05-11 2012-11-01 ズード−ケミー アーゲー Composite material containing lithium metal mixed oxide
JP2011181486A (en) * 2009-08-28 2011-09-15 Equos Research Co Ltd Evaluation method of electrolyte for secondary battery
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2014532263A (en) * 2011-10-04 2014-12-04 ハイドロ−ケベック Positive electrode material, manufacturing method thereof and use in lithium secondary battery
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery
JP2013225471A (en) * 2012-03-23 2013-10-31 Taiheiyo Cement Corp Cathode active material for secondary battery and method for producing the same
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material

Also Published As

Publication number Publication date
KR20170129722A (en) 2017-11-27
KR102336781B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP6042515B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6357193B2 (en) Polyanionic positive electrode active material and method for producing the same
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6101771B1 (en) Positive electrode active material for sodium ion battery and method for producing the same
JP6023295B2 (en) Positive electrode active material for secondary battery and method for producing the same
US11646405B2 (en) Positive electrode active substance for secondary cell and method for producing same
TWI676592B (en) Positive electrode active material for secondary battery and method for producing same
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP2016072029A (en) Positive electrode material for lithium secondary battery
KR102385969B1 (en) Cathode active material for secondary battery and manufacturing method thereof
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2013077517A (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP6042513B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR102336781B1 (en) Cathode active material for secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025026

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015886442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15560749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE