JP6101771B1 - Positive electrode active material for sodium ion battery and method for producing the same - Google Patents

Positive electrode active material for sodium ion battery and method for producing the same Download PDF

Info

Publication number
JP6101771B1
JP6101771B1 JP2015219074A JP2015219074A JP6101771B1 JP 6101771 B1 JP6101771 B1 JP 6101771B1 JP 2015219074 A JP2015219074 A JP 2015219074A JP 2015219074 A JP2015219074 A JP 2015219074A JP 6101771 B1 JP6101771 B1 JP 6101771B1
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
sodium ion
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015219074A
Other languages
Japanese (ja)
Other versions
JP2017091755A (en
Inventor
弘樹 山下
弘樹 山下
大神 剛章
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015219074A priority Critical patent/JP6101771B1/en
Application granted granted Critical
Publication of JP6101771B1 publication Critical patent/JP6101771B1/en
Publication of JP2017091755A publication Critical patent/JP2017091755A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】大きな放電容量を示すナトリウムイオン電池を得ることのできるナトリウムイオン電池用正極活物質及びその製造方法を提供する。【解決手段】水熱反応により得られる次式(A):NaFeaMnbMcPO4・・・(A)(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0<a、0≦b<1、0<c≦0.2、2a+2b+(Mの価数)×c=2を満たし、かつa=1−b−(Mの価数)×c÷2を満たす数を示す。)で表されるオリビン型リン酸鉄ナトリウム化合物を含有するナトリウムイオン電池用正極活物質。【選択図】なしA positive electrode active material for a sodium ion battery capable of obtaining a sodium ion battery exhibiting a large discharge capacity and a method for producing the same are provided. The following formula (A) obtained by hydrothermal reaction: NaFeaMnbMcPO4 (A) (wherein M is Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, Represents La, Ce, Nd or Gd, a, b and c satisfy 0 <a, 0 ≦ b <1, 0 <c ≦ 0.2, 2a + 2b + (valence of M) × c = 2, and The positive electrode active material for sodium ion batteries containing the olivine type sodium iron phosphate compound represented by a = 1-b- (the valence of M) × c ÷ 2. [Selection figure] None

Description

本発明は、ナトリウムイオン電池の放電容量を有効に高めることのできるナトリウムイオン電池用正極活物質及びその製造方法に関する。   The present invention relates to a positive electrode active material for a sodium ion battery that can effectively increase the discharge capacity of the sodium ion battery and a method for producing the same.

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われているなか、高い出力特性や良好なサイクル特性を示すことから、特にリチウムイオン電池が広く用いられている。その一方、リチウムイオン電池の原料として用いられるリチウムは、必ずしも資源として豊富に存在するとは言えず、また産地も限定的であることから、高価な原料となっている。そのため、こうしたリチウムに代わり、産地が偏在することなく豊富な資源であるナトリウムを用いたナトリウムイオン電池(NIB)が注目されつつあり、かかる電池用正極材料の実現も種々試みられている。   While secondary batteries used for portable electronic devices, hybrid vehicles, electric vehicles, and the like are being developed, lithium ion batteries are particularly widely used because they exhibit high output characteristics and good cycle characteristics. On the other hand, lithium used as a raw material for a lithium ion battery is not necessarily abundant as a resource, and since the production area is limited, it is an expensive raw material. For this reason, sodium ion batteries (NIB) using sodium, which is an abundant resource with no uneven distribution of localities, are attracting attention, and various attempts have been made to realize such positive electrode materials for batteries.

例えば、特許文献1には、X線回折図形において特徴を有するAabPO4(aは0.5以上1.5以下、かつbは0.5以上1.5以下)で表される正極活物質が開示されており、かかる活物質は固相法で得られ、AがナトリウムであってMがFeである具体例(NaFePO4)が示されており、また特許文献2には、同様の正極活物質を、原料を含む液状物を加熱して、固液分離を介して得る製造方法が示されている。
さらに特許文献3にも、NaxyPO4で表される遷移金属リン酸塩を含むナトリウム二次電池用正極活物質が開示されている。かかる遷移金属リン酸塩は、特定のBET比表面積を有しており、MがFe又はMnである具体例が示され、固液混合物から水を蒸発させることにより得た乾固品を水洗・乾燥する製造方法が記載されている。
For example, in Patent Document 1, it is represented by A a M b PO 4 having a feature in an X-ray diffraction pattern (a is 0.5 to 1.5 and b is 0.5 to 1.5). A positive electrode active material is disclosed, and such an active material is obtained by a solid phase method, and a specific example (NaFePO 4 ) in which A is sodium and M is Fe is shown. A production method is shown in which a similar positive electrode active material is obtained through solid-liquid separation by heating a liquid material containing raw materials.
Further in Patent Document 3, Na x M y PO positive electrode active material for sodium secondary batteries which comprises a transition metal phosphates represented by 4 is disclosed. Such transition metal phosphate has a specific BET specific surface area, and specific examples in which M is Fe or Mn are shown. A dry solid product obtained by evaporating water from a solid-liquid mixture is washed with water. A production method for drying is described.

特開2009−206085号公報JP 2009-206085 A 特開2011−134550号公報JP 2011-134550 A 特開2010−18472号公報JP 2010-18472 A

しかしながら、上記いずれの文献に記載の活物質であっても、得られるナトリウムイオン電池において、充分な放電容量を確保できない状況にあり、さらなる改善が求められている。   However, even with the active materials described in any of the above-mentioned documents, there is a situation in which sufficient discharge capacity cannot be secured in the obtained sodium ion battery, and further improvement is required.

したがって、本発明の課題は、大きな放電容量を示すナトリウムイオン電池を得ることのできるナトリウムイオン電池用正極活物質及びその製造方法を提供することにある。   Therefore, the subject of this invention is providing the positive electrode active material for sodium ion batteries which can obtain the sodium ion battery which shows a big discharge capacity, and its manufacturing method.

そこで本発明者らは、ナトリウムイオン電池用正極活物質としての組成や製造方法について種々検討したところ、水熱反応により得られる特定のドープ金属を含む組成のオリビン型リン酸鉄ナトリウム化合物を用いれば、高い放電容量を示すことのできるナトリウムイオン電池用の正極活物質が得られることを見出し、本発明を完成させるに至った。   Therefore, the present inventors conducted various studies on the composition and manufacturing method as a positive electrode active material for sodium ion batteries. When an olivine-type sodium iron phosphate compound containing a specific dope metal obtained by a hydrothermal reaction is used. The inventors have found that a positive electrode active material for a sodium ion battery that can exhibit a high discharge capacity can be obtained, and have completed the present invention.

すなわち、本発明は、水熱反応により得られる次式(A):
NaFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0<a、0≦b<1、0<c≦0.2、2a+2b+(Mの価数)×c=2を満たし、かつa=1−b−(Mの価数)×c÷2を満たす数を示す。)
で表されるオリビン型リン酸鉄ナトリウム化合物を含有するナトリウムイオン電池用正極活物質を提供することにある。
また、本発明は、ナトリウム化合物、鉄化合物、金属(M)化合物(MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。)、及びリン酸化合物を窒素雰囲気下で混合して混合液を得る工程(I)、及び
得られた混合液を水熱反応に付した後、乾燥する工程(II)
を備える上記ナトリウムイオン電池用正極活物質の製造方法を提供することにある。
That is, the present invention provides the following formula (A) obtained by a hydrothermal reaction:
NaFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 <a, 0 ≦ b <1, 0 <c ≦ 0.2, 2a + 2b + (M valence) × c = 2, and a = 1−b− (M valence) × c ÷ 2 is satisfied.)
It is providing the positive electrode active material for sodium ion batteries containing the olivine type sodium iron phosphate compound represented by these.
The present invention also relates to a sodium compound, an iron compound, and a metal (M) compound (M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd). And a step of mixing the phosphoric acid compound under a nitrogen atmosphere to obtain a mixed solution (I), and a step of subjecting the obtained mixed solution to a hydrothermal reaction and then drying (II)
It is providing the manufacturing method of the said positive electrode active material for sodium ion batteries provided with this.

本発明のナトリウムイオン電池用正極活物質によれば、特定のドープ金属が存在するオリビン型リン酸鉄ナトリウム化合物を含有するため、優れた放電容量を示すナトリウムイオン電池を得ることができる。   According to the positive electrode active material for a sodium ion battery of the present invention, since it contains the olivine-type sodium iron phosphate compound in which a specific doped metal is present, a sodium ion battery exhibiting an excellent discharge capacity can be obtained.

以下、本発明について詳細に説明する。
本発明のナトリウムイオン電池用正極活物質は、水熱反応により得られる次式(A):
NaFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0<a、0≦b<1、0<c≦0.2、2a+2b+(Mの価数)×c=2を満たし、かつa=1−b−(Mの価数)×c÷2を満たす数を示す。)
で表されるオリビン型リン酸鉄ナトリウム化合物を含有する。
Hereinafter, the present invention will be described in detail.
The positive electrode active material for a sodium ion battery of the present invention has the following formula (A) obtained by a hydrothermal reaction:
NaFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 <a, 0 ≦ b <1, 0 <c ≦ 0.2, 2a + 2b + (M valence) × c = 2, and a = 1−b− (M valence) × c ÷ 2 is satisfied.)
The olivine type | mold sodium iron phosphate compound represented by these is contained.

上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物は、少なくともナトリウム及び鉄を含み、これらナトリウム及び鉄とは異種原子のドープ金属(M)を含む。このようにドープ金属(M)を含む上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物は、水熱反応によって得ることのできる化合物であり、かかるドープ金属(M)が介在するオリビン型リン酸鉄ナトリウム化合物を正極活物質として用いることにより、高い放電容量を示すナトリウムイオン電池を実現することが可能となる。   The olivine-type sodium iron phosphate compound represented by the above formula (A) contains at least sodium and iron, and these sodium and iron contain a doped metal (M) of a heteroatom. Thus, the olivine type sodium iron phosphate compound represented by the above formula (A) containing the doped metal (M) is a compound that can be obtained by a hydrothermal reaction, and the olivine in which the doped metal (M) is interposed. By using the type sodium iron phosphate compound as the positive electrode active material, it is possible to realize a sodium ion battery exhibiting a high discharge capacity.

式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr又はMoであり、より好ましくはMg又はZrである。aは、0<aであって、好ましくは0.1≦aである。bは、0≦b<1であって、好ましくは0≦b≦0.9である。cは、0<c≦0.2であって、好ましくは0<c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たす数であり、かつa=1−b−(Mの価数)×c÷2を満たす。上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物としては、具体的には、例えばNaFe0.98Mg0.02PO4、NaFe0.98Zr0.01PO4、NaFe0.98Mo0.007PO、NaFe0.28Mn0.7Mg0.02PO、NaFe0.28Mn0.7Zr0.01PO、NaFe0.28Mn0.7Mo0.007PO等が挙げられる。 In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd, preferably Mg, Zr or Mo, more preferably Mg or Zr. a is 0 <a, and preferably 0.1 ≦ a. b is 0 ≦ b <1, and preferably 0 ≦ b ≦ 0.9. c is 0 <c ≦ 0.2, and preferably 0 <c ≦ 0.1. These a, b, and c are numbers satisfying 2a + 2b + (M valence) × c = 2, and a = 1−b− (M valence) × c ÷ 2. Specific examples of the olivine-type sodium iron phosphate compound represented by the above formula (A) include NaFe 0.98 Mg 0.02 PO 4 , NaFe 0.98 Zr 0.01 PO 4 , NaFe 0.98 Mo 0.007 PO 4 , NaFe 0.28 Mn 0.7 Mg 0.02 PO 4 , NaFe 0.28 Mn 0.7 Zr 0.01 PO 4 , NaFe 0.28 Mn 0.7 Mo 0.007 PO 4 and the like can be mentioned.

本発明のナトリウムイオン電池用正極活物質は、導電性を高め、得られるナトリウムイオン電池における放電容量の向上を有効に図る観点から、炭素が担持してなるオリビン型リン酸鉄ナトリウム化合物を含有するのが好ましい。炭素を担持させるために用いる炭素源としては、例えば、グルコース、フルクトース、スクロース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等の水溶性炭素材料;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックが挙げられる。なかでも、水溶性炭素材料については、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。カーボンブラックについては、製造されるナトリウムイオン電池用正極活物質のタップ密度を効果的に高める観点から、ケッチェンブラックが好ましい。なお、水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する有機化合物を意味する。
かかる炭素の担持量は、ナトリウムイオン電池用正極活物質100質量%中、炭素原子換算量で、好ましくは0.1〜15質量%であり、より好ましくは0.2〜10質量%であり、さらに好ましくは0.3〜8質量%である。
The positive electrode active material for a sodium ion battery according to the present invention contains an olivine-type sodium iron phosphate compound supported by carbon from the viewpoint of enhancing conductivity and effectively improving the discharge capacity of the obtained sodium ion battery. Is preferred. Examples of the carbon source used for supporting carbon include water-soluble carbon materials such as glucose, fructose, sucrose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, and citric acid; acetylene black, ketjen black , Carbon black such as channel black, furnace black, lamp black and thermal black. Especially, about the water-soluble carbon material, glucose, fructose, sucrose, and dextrin are preferable and glucose is more preferable from a viewpoint of improving the solubility and dispersibility to a solvent and functioning effectively as a carbon material. As for carbon black, ketjen black is preferable from the viewpoint of effectively increasing the tap density of the positive electrode active material for a sodium ion battery to be produced. The water-soluble carbon material means an organic compound that is dissolved in 100 g of water at 25 ° C. in an amount of 0.4 g or more, preferably 1.0 g or more in terms of carbon atom of the water-soluble carbon material.
The amount of carbon supported is 100 to 15% by mass in terms of carbon atom in 100% by mass of the positive electrode active material for a sodium ion battery, preferably 0.1 to 15% by mass, more preferably 0.2 to 10% by mass, More preferably, it is 0.3-8 mass%.

本発明のナトリウムイオン電池用正極活物質の製造方法は、ナトリウム化合物、鉄化合物、金属(M)化合物(MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。)、及びリン酸化合物を窒素雰囲気下で混合して混合液を得る工程(I)、及び
得られた混合液を水熱反応に付した後、乾燥する工程(II)
を備える。
The manufacturing method of the positive electrode active material for sodium ion batteries of the present invention includes a sodium compound, an iron compound, and a metal (M) compound (M is Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce). , Nd or Gd.) And a step of mixing a phosphoric acid compound in a nitrogen atmosphere to obtain a mixed solution (I), and a step of subjecting the obtained mixed solution to a hydrothermal reaction followed by drying (II) )
Is provided.

工程(I)は、ナトリウム化合物、鉄化合物、金属(M)化合物(MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。)、及びリン酸化合物を窒素雰囲気下で混合して混合液を得る工程である。
ナトリウム化合物としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、硝酸ナトリウム、硫酸ナトリウム、塩化ナトリウム等が挙げられる。なかでも、反応性を高める観点から、水酸化ナトリウムが好ましい。
鉄化合物としては、2価の鉄化合物及びこれらの水和物等であればよく、例えば、ハロゲン化鉄等のハロゲン化物;硫酸鉄等の硫酸塩;シュウ酸鉄、酢酸鉄等の有機酸塩;並びにこれらの水和物等が挙げられる。なかでも、電池特性を高める観点から、硫酸鉄又はその水和物を用いるのが好ましい。
金属(M)化合物としては、金属(M)を含むハロゲン化物、硫酸塩、酢酸塩等が挙げられる。なかでも、電池特性を高める観点から、硫酸塩を用いるのが好ましい。
リン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70〜90質量%濃度の水溶液として用いるのが好ましい。
Step (I) is a sodium compound, iron compound, metal (M) compound (M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd). And a phosphoric acid compound in a nitrogen atmosphere to obtain a mixed solution.
Examples of the sodium compound include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium nitrate, sodium sulfate, sodium chloride and the like. Of these, sodium hydroxide is preferable from the viewpoint of increasing reactivity.
The iron compound may be a divalent iron compound or a hydrate thereof, for example, a halide such as iron halide; a sulfate such as iron sulfate; an organic acid salt such as iron oxalate or iron acetate. As well as hydrates thereof. Especially, it is preferable to use iron sulfate or its hydrate from a viewpoint of improving a battery characteristic.
Examples of the metal (M) compound include halides including metal (M), sulfates, and acetates. Especially, it is preferable to use a sulfate from a viewpoint of improving battery characteristics.
Examples of the phosphoric acid compound include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, and ammonium hydrogen phosphate. Of these, phosphoric acid is preferably used, and is preferably used as an aqueous solution having a concentration of 70 to 90% by mass.

なお、工程(I)で得られる混合液は、続く工程(II)における水熱反応を良好に進行させる観点から、水を含む。水の使用量は、混合液中におけるナトリウムイオン1モルに対し、好ましくは10〜30モルであり、より好ましくは12.5〜25モルである。   In addition, the liquid mixture obtained by process (I) contains water from a viewpoint of making the hydrothermal reaction in subsequent process (II) advance favorably. The amount of water used is preferably 10 to 30 mol, more preferably 12.5 to 25 mol, relative to 1 mol of sodium ions in the mixed solution.

これらナトリウム化合物、鉄化合物、金属(M)化合物、及びリン酸化合物は、これらの溶解性を高め、金属(M)を良好にドープさせる観点、及び鉄化合物と金属(M)化合物の酸化を抑制する観点から、ナトリウム化合物、鉄化合物、金属(M)化合物、及びリン酸化合物を窒素雰囲気下で混合するのが好ましく、具体的には、ナトリウム化合物とリン酸化合物を混合し、窒素雰囲気下とした後に混合液X1を得て、かかる混合液X1に鉄化合物、及び金属(M)化合物を添加して混合し、得られた混合液X2を工程(II)に付するのがよい。 These sodium compounds, iron compounds, metal (M) compounds, and phosphoric acid compounds increase their solubility, favorably dope metal (M), and suppress oxidation of iron compounds and metal (M) compounds. In view of the above, it is preferable to mix a sodium compound, an iron compound, a metal (M) compound, and a phosphoric acid compound in a nitrogen atmosphere. Specifically, a sodium compound and a phosphoric acid compound are mixed, After that, a mixed solution X 1 is obtained, and an iron compound and a metal (M) compound are added to and mixed with the mixed solution X 1 , and the obtained mixed solution X 2 is subjected to step (II). .

より具体的には、ナトリウム化合物は、予め水と混合してスラリー水とするのがよく、かかるスラリー水にリン酸化合物を添加するのが好ましい。また、リン酸化合物としてリン酸水溶液を用いるのがよく、スラリー水を撹拌しながらリン酸水溶液を滴下するのが好ましい。スラリー水にリン酸水溶液を滴下して少量ずつ加えることで、混合液X1中における反応が良好に進行して、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物の前駆体をスラリー中で均一に分散させつつ生成させることができ、かかる前駆体が不要に凝集するのをも効果的に抑制することができる。 More specifically, the sodium compound is preferably mixed with water in advance to form slurry water, and it is preferable to add a phosphoric acid compound to the slurry water. Moreover, it is good to use phosphoric acid aqueous solution as a phosphoric acid compound, and it is preferable to dripping phosphoric acid aqueous solution, stirring slurry water. By adding dropwise a small amount of phosphoric acid aqueous solution to the slurry water, the reaction in the mixed solution X 1 proceeds well, and the precursor of the olivine-type sodium iron phosphate compound represented by the above formula (A) is added. It can produce | generate, making it disperse | distribute uniformly in a slurry, and can also suppress effectively that this precursor aggregates unnecessarily.

リン酸水溶液の上記スラリー水への滴下速度は、好ましくは15〜50mL/分であり、より好ましくは20〜45mL/分であり、さらに好ましくは28〜40mL/分である。また、リン酸水溶液を滴下しながらのスラリー水の撹拌時間は、好ましくは0.5〜24時間であり、より好ましくは3〜12時間である。さらに、リン酸水溶液を滴下しながらのスラリー水の撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmであり、さらに好ましくは300〜500rpmである。
なお、スラリー水を撹拌する際、さらにスラリー水の沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20〜60℃に冷却するのがより好ましい。
The dropping rate of the aqueous phosphoric acid solution into the slurry water is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min. Moreover, the stirring time of the slurry water while dropping the phosphoric acid aqueous solution is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours. Furthermore, the stirring speed of the slurry water while dropping the phosphoric acid aqueous solution is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
In addition, when stirring slurry water, it is preferable to cool to below the boiling point temperature of slurry water. Specifically, cooling to 80 ° C. or lower is preferable, and cooling to 20 to 60 ° C. is more preferable.

次に、ナトリウム化合物とリン酸化合物を混合し、窒素雰囲気下とした後、混合液X1を得る。これにより、混合液X1中での反応を完了させて、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物の前駆体を良好に生成させることができる。混合液X1中におけるNaの含有量は、混合液X1中におけるリン1モルに対し、1.0〜2.95モルであるのが好ましく、1.5〜2.95モルであるのがより好ましく、2.0〜2.9モルであるのがさらに好ましい。
窒素雰囲気下とするには、窒素をパージすればよく、これによって混合液X1中の溶存酸素濃度が低減された状態で反応を進行させることができるため、次の工程で添加する鉄化合物や金属(M)化合物等の酸化を抑制することができる。かかる混合液X1中において、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物の前駆体は、リン酸三ナトリウム(Na3PO4)であり、微細な分散粒子として存在する。
Then mixed sodium compound and phosphoric acid compounds, after a nitrogen atmosphere to obtain a mixture X 1. Thus, to complete the reaction in a mixed solution X 1, the precursor of the olivine-type sodium iron phosphate compound represented by the above formula (A) can be favorably produced. The content of Na in the mixed liquid X in 1, compared per mole of phosphorus in the mixture X in 1, it is preferably in the range of 1.0 to 2.95 mol, and even a 1.5 to 2.95 moles More preferably, it is 2.0-2.9 mol.
In order to obtain a nitrogen atmosphere, it is only necessary to purge nitrogen, which allows the reaction to proceed in a state where the dissolved oxygen concentration in the mixed solution X 1 is reduced. Oxidation of a metal (M) compound etc. can be suppressed. In the mixed solution X 1 , the precursor of the olivine-type sodium iron phosphate compound represented by the above formula (A) is trisodium phosphate (Na 3 PO 4 ) and exists as fine dispersed particles.

窒素をパージする際における圧力は、好ましくは0.1〜0.2MPaであり、より好ましくは0.1〜0.15MPaである。また、リン酸化合物を混合した後の混合物X1の温度は、好ましくは20〜80℃であり、より好ましくは20〜60℃である。反応時間は、好ましくは5〜60分であり、より好ましくは15〜45分である。
また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物を混合した後の混合物X1を撹拌するのが好ましい。このときの撹拌速度は、好ましくは200〜700rpmであり、より好ましくは250〜600rpmである。
The pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa. The temperature of the mixture X 1 after mixing the phosphoric acid compound is preferably 20 to 80 ° C., more preferably from 20 to 60 ° C.. The reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
Further, when the purging nitrogen from the viewpoint of advancing satisfactorily reaction, the mixture is stirred for X 1 after mixing the phosphoric acid compound are preferred. The stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.

また、より効果的に前駆体の分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、工程(I)において、リン酸化合物を混合した後の混合物X1中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。 Further, from the viewpoint of more effectively suppressing oxidation of the precursor on the surface of the dispersed particles and miniaturizing the dispersed particles, the dissolved oxygen concentration in the mixture X 1 after mixing the phosphoric acid compound in the step (I). Is preferably 0.5 mg / L or less, and more preferably 0.2 mg / L or less.

次いで工程(I)では、上記混合液X1に鉄化合物、及び金属(M)化合物を添加して混合し、混合液X2を得る。かかる混合液X2中におけるNaの含有量は、オリビン型リン酸鉄ナトリウム化合物中において金属(M)を良好にドープさせる観点から、混合液X2中におけるFe及びMを含む金属原子の合計1モルに対し、1.0〜3.3モルであるのが好ましく、1.5〜3.3モルであるのがより好ましく、2.0〜3.2モルであるのがさらに好ましい。また、混合液X2中におけるリンの含有量は、混合液X2中におけるFe及びMを含む金属原子の合計1モルに対し、1.0〜1.1モルであるのが好ましく、1.0〜1.08モルであるのがより好ましく、1.0〜1.05モルであるのがさらに好ましい。 Next, at step (I), the mixed solution X 1 iron compounds, and then adding and mixing the metal (M) compound to obtain a mixture X 2. The content of Na in such mixture X 2, the total from the viewpoint of satisfactorily doped with metal (M) in the olivine-type sodium iron phosphate compound, a metal atom containing Fe and M in the mixed solution X 2 1 It is preferable that it is 1.0-3.3 mol with respect to mol, It is more preferable that it is 1.5-3.3 mol, It is further more preferable that it is 2.0-3.2 mol. The content of phosphorus in the mixed solution X 2 is the total 1 mol of the metal atoms including Fe and M in the mixture X 2, is preferably from 1.0 to 1.1 mol, 1. It is more preferably 0 to 1.08 mol, and further preferably 1.0 to 1.05 mol.

さらに工程(I)において、上記混合液X1に酸化防止剤を添加する工程を含むのが好ましい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na)、アンモニア水等が挙げられる。かかる酸化防止剤を添加することにより、鉄化合物や金属(M)化合物等の酸化をより有効に抑制することができる。混合液X1中におけるNa2SO3の含有量は、リン1モルに対し、好ましくは0.01〜1.0モルであり、より好ましくは0.03〜0.5モルである。
このようにして工程(I)を経ることにより、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物の前駆体としてのリン酸三ナトリウム(Na3PO4)と、鉄化合物及び金属(M)化合物等とが、混合物のまま存在する混合液X2がスラリー水として得られる。
In yet step (I), it includes the step of adding an antioxidant to the mixture X 1 is preferred. Examples of such an antioxidant include sodium sulfite (Na 2 SO 3 ), sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, and the like. By adding such an antioxidant, oxidation of iron compounds, metal (M) compounds and the like can be more effectively suppressed. The content of Na 2 SO 3 in the mixed solution X 1 is preferably 0.01 to 1.0 mol, more preferably 0.03 to 0.5 mol, per 1 mol of phosphorus.
By passing through the step (I) in this way, trisodium phosphate (Na 3 PO 4 ) as a precursor of the olivine-type sodium iron phosphate compound represented by the above formula (A), an iron compound and a metal (M) A mixed solution X 2 in which a compound or the like is present as a mixture is obtained as slurry water.

上記工程(I)は、かかる工程(I)において得られる上記混合液X1又は混合液X2に、さらに水溶性炭素材料を添加する工程(I−1)を含んでもよい。これにより、後述する工程(II)における上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)に、水溶性炭素材料由来の炭素が担持してなる複合体(二次粒子)を得ることができ、これを正極活物質として用いることによって、得られるナトリウムイオン電池における放電容量の向上を有効に図ることができる。 The step (I) may include a step (I-1) of further adding a water-soluble carbon material to the mixed solution X 1 or the mixed solution X 2 obtained in the step (I). Thus, a composite (secondary particle) in which carbon derived from a water-soluble carbon material is supported on the olivine-type sodium iron phosphate compound (primary particle) represented by the above formula (A) in the step (II) described later. By using this as a positive electrode active material, it is possible to effectively improve the discharge capacity of the obtained sodium ion battery.

かかる工程(I−1)における水溶性炭素材料の添加量は、ナトリウムイオン電池用正極活物質100質量%中における炭素の担持量が、炭素原子換算量で上記範囲内となる量であればよい。例えば、水溶性炭素材料の添加量は、後述する工程(II)において得られる複合体(二次粒子)100質量部に対し、炭素原子換算量で、好ましくは0.1〜17.7質量部であり、より好ましくは0.2〜11.1質量部であり、さらに好ましくは0.3〜8.7質量部となる量であればよい。   The amount of the water-soluble carbon material added in the step (I-1) may be an amount such that the supported amount of carbon in 100% by mass of the positive electrode active material for sodium ion battery is within the above range in terms of carbon atom. . For example, the addition amount of the water-soluble carbon material is a carbon atom equivalent with respect to 100 parts by mass of the composite (secondary particle) obtained in the step (II) described later, preferably 0.1 to 17.7 parts by mass. More preferably, the amount is 0.2 to 11.1 parts by mass, and more preferably 0.3 to 8.7 parts by mass.

工程(II)は、工程(I)で得られた混合液X2を水熱反応に付した後、乾燥する工程である。かかる混合液X2を水熱反応に付すことにより、金属(M)を良好にドープしながら上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物を一次粒子として得ることができるとともに、極めて微細な粒子とすることが可能となり、非常に有用なナトリウムイオン電池用正極活物質を得ることができる。 Step (II) is a step in which the mixed solution X 2 obtained in step (I) is subjected to a hydrothermal reaction and then dried. By subjecting the mixed solution X 2 to a hydrothermal reaction, the olivine-type sodium iron phosphate compound represented by the above formula (A) can be obtained as primary particles while doping the metal (M) well, It becomes possible to make very fine particles, and a very useful positive electrode active material for a sodium ion battery can be obtained.

工程(II)における水熱反応における温度は、好ましくは130〜250℃であり、より好ましくは140〜230℃である。かかる水熱反応は耐圧容器中で行うのが好ましく、圧力は0.3〜1.5MPaであるのが好ましく、0.4〜1.0MPaであるのがより好ましく、また窒素雰囲気下又は蒸気雰囲気下で行うのがよい。水熱反応時間は、0.1〜48時間が好ましく、さらに0.2〜24時間が好ましい。   The temperature in the hydrothermal reaction in the step (II) is preferably 130 to 250 ° C, more preferably 140 to 230 ° C. Such a hydrothermal reaction is preferably performed in a pressure vessel, and the pressure is preferably 0.3 to 1.5 MPa, more preferably 0.4 to 1.0 MPa, and also in a nitrogen atmosphere or a steam atmosphere. It is good to do below. The hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.

得られた一次粒子は、ろ過後、水で洗浄した後に、乾燥して単離するのが好ましい。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。かかる一次粒子は、そのままナトリウムイオン電池用正極活物質として用いることができる。   The obtained primary particles are preferably isolated by drying after filtration, washing with water. As the drying means, freeze drying or vacuum drying is used. Such primary particles can be directly used as a positive electrode active material for sodium ion batteries.

上記工程(II)は、得られた乾燥処理後の上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)に、さらに水溶性炭素材料及び水を添加して噴霧乾燥する工程(II−1)、或いは得られた乾燥処理後の上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)に、さらにカーボンブラックを添加する工程(II−2)を含んでもよい。かかる工程(II−1)を含む場合、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)に、水溶性炭素材料由来の炭素が担持してなる複合体(二次粒子)を得ることができ、かかる工程(II−2)を含む場合、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)に、カーボンブラックが担持してなる複合体(二次粒子)を得ることができ、これを正極活物質として用いることによって、得られるナトリウムイオン電池における放電容量の向上を有効に図ることができる。   In the step (II), a water-soluble carbon material and water are further added to the olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A) after the drying treatment and spray-dried. A step (II-2) of further adding carbon black to the step (II-1) or the obtained olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A) after the drying treatment. May be included. When this step (II-1) is included, a composite (secondary) in which carbon derived from a water-soluble carbon material is supported on the olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A). In the case where the step (II-2) is included, a composite in which carbon black is supported on the olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A). (Secondary particles) can be obtained, and by using this as a positive electrode active material, the discharge capacity of the obtained sodium ion battery can be effectively improved.

かかる工程(II−1)又は工程(II−2)におけるこれら炭素源(水溶性炭素材料又はカーボンブラック)の添加量は、ナトリウムイオン電池用正極活物質100質量%中における炭素の担持量が、炭素原子換算量で上記範囲内となる量であればよい。例えば、炭素源の添加量は、複合体(二次粒子)100質量部に対し炭素原子換算量で、好ましくは0.1〜17.7質量部であり、より好ましくは0.2〜11.1質量部であり、さらに好ましくは0.3〜8.7質量部である。   The amount of carbon source (water-soluble carbon material or carbon black) added in the step (II-1) or the step (II-2) is such that the amount of carbon supported in 100% by mass of the positive electrode active material for sodium ion batteries is as follows: What is necessary is just the quantity which becomes in the said range by the amount of carbon atom conversion. For example, the addition amount of the carbon source is a carbon atom conversion amount with respect to 100 parts by mass of the composite (secondary particle), preferably 0.1 to 17.7 parts by mass, and more preferably 0.2 to 11.1. 1 part by mass, and more preferably 0.3 to 8.7 parts by mass.

上記工程(II)が工程(II−2)を含む場合、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)にカーボンブラックを添加した際、これらを混合するのが好ましく、かかる混合としては、通常のボールミルによる混合であるのが好ましく、自公転可能な遊星ボールミルによる混合にて複合体(二次粒子)を得るのがより好ましい。
さらに、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)の表面上で炭素を緻密かつ均一に分散させ、これを有効に担持させる観点から、圧縮力及びせん断力を付加しながら混合して複合体(二次粒子)とするのがさらに好ましい。圧縮力及びせん断力を付加しながら混合する処理は、インペラを備える密閉容器で行うのが好ましい。かかるインペラの周速度は、得られる正極活物質の導電性を有効に高めて電池の放電容量の向上を図る観点から、好ましくは25〜40m/sであり、より好ましくは27〜40m/sである。また、混合時間は、好ましくは5〜90分であり、より好ましくは10〜80分である。
なお、インペラの周速度とは、回転式攪拌翼(インペラ)の最外端部の速度を意味し、下記式(X)により表すことができ、また圧縮力及びせん断力を付加しながら混合する処理を行う時間は、インペラの周速度が遅いほど長くなるように、インペラの周速度によっても変動し得る。
インペラの周速度(m/s)=
インペラの半径(m)×2×π×回転数(rpm)÷60・・・(X)
When the step (II) includes the step (II-2), when carbon black is added to the olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A), these are mixed. Preferably, such mixing is preferably mixing by a normal ball mill, and more preferably a composite (secondary particle) is obtained by mixing by a planetary ball mill capable of revolving.
Furthermore, from the viewpoint of finely and uniformly dispersing carbon on the surface of the olivine-type sodium iron phosphate compound (primary particles) represented by the above formula (A) and effectively supporting it, compressive force and shearing force are It is more preferable to mix while adding to form a composite (secondary particle). The process of mixing while applying a compressive force and a shearing force is preferably performed in a closed container equipped with an impeller. The peripheral speed of the impeller is preferably 25 to 40 m / s, more preferably 27 to 40 m / s, from the viewpoint of effectively increasing the conductivity of the obtained positive electrode active material and improving the discharge capacity of the battery. is there. The mixing time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes.
The peripheral speed of the impeller means the speed of the outermost end portion of the rotary stirring blade (impeller), which can be expressed by the following formula (X), and is mixed while applying compressive force and shearing force. The processing time may vary depending on the peripheral speed of the impeller so that it becomes longer as the peripheral speed of the impeller is slower.
Impeller peripheral speed (m / s) =
Impeller radius (m) × 2 × π × rotational speed (rpm) ÷ 60 (X)

工程(II−2)において、上記圧縮力及びせん断力を付加しながら混合する処理を行う際の処理時間及び/又はインペラの周速度は、容器に投入する複合体(二次粒子)の量に応じて適宜調整する必要がある。そして、容器を稼動させることにより、インペラと容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、これを混合する処理を行うことが可能となり、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物(一次粒子)表面上で炭素を緻密かつ均一に分散させることができる。
例えば、上記混合する処理を、周速度25〜40m/sで回転するインペラを備える密閉容器内で6〜90分間行う場合、容器に投入する複合体(二次粒子)の量は、有効容器(インペラを備える密閉容器のうち、複合体を収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1〜0.7gであり、より好ましくは0.15〜0.4gである。
In the step (II-2), the processing time and / or the peripheral speed of the impeller at the time of performing the mixing process while adding the compressive force and the shearing force depends on the amount of the composite (secondary particles) charged into the container. It is necessary to adjust accordingly. Then, by operating the container, it is possible to perform a process of mixing the impeller and the inner wall of the container while the compressive force and the shearing force are applied to the mixture, which is expressed by the above formula (A). The olivine-type sodium iron phosphate compound (primary particles) can be finely and uniformly dispersed on the surface.
For example, when the mixing process is performed for 6 to 90 minutes in an airtight container equipped with an impeller rotating at a peripheral speed of 25 to 40 m / s, the amount of the composite (secondary particles) charged into the container is an effective container ( Among sealed containers equipped with an impeller, a container corresponding to a part capable of accommodating a composite) per cm 3 is preferably 0.1 to 0.7 g, more preferably 0.15 to 0.4 g.

このような圧縮力及びせん断力を付加しながら混合する処理を容易に行うことができる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、微粒子複合化装置 ノビルタ(ホソカワミクロン社製)を好適に用いることができる。   Examples of the apparatus equipped with a closed container that can easily perform mixing while applying compressive force and shear force include a high-speed shear mill, a blade-type kneader, and the like. Fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Corporation) can be suitably used.

上記工程(II)を経ることにより得られた一次粒子又は二次粒子は、焼成するのが好ましい。かかる焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。焼成温度は、上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物の結晶性を向上させる観点から、さらに工程(I−1)または工程(II−1)を含む場合、水溶性炭素材料由来の炭素を上記式(A)で表されるオリビン型リン酸鉄ナトリウム化合物に有効に担持させる観点から、好ましくは500〜800℃であり、より好ましくは600〜770℃であり、さらに好ましくは650〜750℃である。また、焼成時間は、好ましくは10分〜3時間、より好ましくは30分〜1.5時間とするのがよい。   The primary particles or secondary particles obtained through the step (II) are preferably fired. Such firing is preferably performed in a reducing atmosphere or an inert atmosphere. From the viewpoint of improving the crystallinity of the olivine-type sodium iron phosphate compound represented by the above formula (A), the firing temperature further includes the step (I-1) or the step (II-1). From the viewpoint of effectively supporting carbon derived from the material on the olivine-type sodium iron phosphate compound represented by the above formula (A), the temperature is preferably 500 to 800 ° C, more preferably 600 to 770 ° C, and still more preferably. Is 650-750 degreeC. The firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.

本発明の二次電池用正極活物質を含む二次電池用正極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The secondary battery to which the positive electrode for a secondary battery including the positive electrode active material for a secondary battery of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、ナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as sodium ions can be occluded at the time of charging and released at the time of discharging, the material configuration is not particularly limited, and a known material configuration can be used. For example, a carbon material such as sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically occluding and releasing sodium ions, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常ナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent used in an electrolyte solution of a sodium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、NaPF6、NaBF4、NaClO4、NaAsF6から選ばれる無機塩、該無機塩の誘導体、NaSO3CF3、NaC(SO3CF32、NaN(SO3CF32、NaN(SO2252及びNaN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The kind of the supporting salt is not particularly limited, but an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 , NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2 and NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and derivatives of the organic salts It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
NaOH 5.60g(140mmol)および水 90gを混合してスラリー水を得た。次いで、得られたスラリー水を40℃に保持しながら撹拌速度400rpmにて撹拌し、ここに85%のリン酸水溶液5.77g(50mmol)を混合して混合液X1を得た。次に、得られた混合液X1に対し、窒素をパージして(0.2MPa)溶存酸素濃度0.5mg/Lに調整された前駆体を含有する混合液X1を得た。この混合液X1にFeSO4・7H2O 13.62g(49mmol)、MgSO4・7H2O 0.25g(1mmol)を添加して混合液X2を得た。
ここで、混合液X2中、Fe及びMgの合計1モルに対し、Naは2.8モルであり、リンは1モルであった。
[Example 1]
A slurry water was obtained by mixing 5.60 g (140 mmol) of NaOH and 90 g of water. Next, the slurry water obtained was stirred at a stirring speed of 400 rpm while being kept at 40 ° C., and 5.77 g (50 mmol) of an 85% aqueous phosphoric acid solution was mixed therein to obtain a mixed solution X 1 . Next, to a mixed solution X 1 obtained, to obtain a mixed liquid X 1 containing nitrogen to purge the (0.2 MPa) is adjusted to the concentration of dissolved oxygen 0.5 mg / L precursor. To this mixture X 1 FeSO 4 · 7H 2 O 13.62g (49mmol), was obtained MgSO 4 · 7H 2 O 0.25g ( 1mmol) mixture X 2 added.
Here, in the mixed solution X 2 , Na was 2.8 mol and phosphorus was 1 mol with respect to 1 mol in total of Fe and Mg.

次いで、混合液X2をオートクレーブに投入し、オートクレーブ内を窒素でパージして、200℃で3時間水熱反応を行った。水熱反応を行った後、放冷して、生成した結晶をろ過し、次いで水により洗浄し、約12時間凍結乾燥して、一次粒子(NaFe0.98Mg0.02PO4)を得た。得られた一次粒子 10gと、グルコース 1.25g(一次粒子100質量部に対し、炭素原子換算量で5質量部)を混合して遊星ボールミル(P−5、フリッチュ社製)に備えられた容器に投入し、これにエタノール 90gと水 10gを混合して得た溶媒を添加した。次いで、ボール(球径:1mm)を100g用い、回転速度400rpmにて1時間混合した。
得られた混合物をろ過し、エバポレーターを用いて溶媒を留去した後、還元雰囲気下、700℃で1時間焼成して、ナトリウムイオン電池用正極活物質(NaFe0.98Mg0.02PO4)を得た。
Next, the mixed solution X 2 was put into an autoclave, the inside of the autoclave was purged with nitrogen, and a hydrothermal reaction was performed at 200 ° C. for 3 hours. After carrying out a hydrothermal reaction, the mixture was allowed to cool, and the produced crystals were filtered, then washed with water, and lyophilized for about 12 hours to obtain primary particles (NaFe 0.98 Mg 0.02 PO 4 ). A container provided in a planetary ball mill (P-5, manufactured by Fritsch) by mixing 10 g of the obtained primary particles and 1.25 g of glucose (5 parts by mass in terms of carbon atoms with respect to 100 parts by mass of primary particles). The solvent obtained by mixing 90 g of ethanol and 10 g of water was added thereto. Next, 100 g of a ball (ball diameter: 1 mm) was used and mixed for 1 hour at a rotation speed of 400 rpm.
The obtained mixture was filtered, the solvent was distilled off using an evaporator, and then calcined at 700 ° C. for 1 hour in a reducing atmosphere to obtain a positive electrode active material for sodium ion batteries (NaFe 0.98 Mg 0.02 PO 4 ). .

[実施例2]
MgSO4・7H2Oの代わりに、Zr(SO42・4H2Oを0.18g(0.5mmol)添加した以外、実施例1と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.98Zr0.01PO4)を得た。
[Example 2]
In the same manner as in Example 1, except that 0.18 g (0.5 mmol) of Zr (SO 4 ) 2 .4H 2 O was added instead of MgSO 4 .7H 2 O, a positive electrode active material for sodium ion battery (NaFe 0.98 Zr 0.01 PO 4 ) was obtained.

[実施例3]
MgSO4・7H2Oの代わりに、HMoOを0.054g(0.33mmol)添加した以外、実施例1と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.98Mo0.007PO)を得た。
[Example 3]
Instead of MgSO 4 .7H 2 O, a positive electrode active material for sodium ion battery (NaFe 0.98 Mo 0 .0) was added in the same manner as in Example 1 except that 0.054 g (0.33 mmol) of H 2 MoO 4 was added . 007 PO 4 ).

[実施例4]
FeSO4・7H2O 13.62gの代わりに、FeSO4・7H2O 3.89g(14mmol)ならびにMnSO4・5H2O 8.44g(35mmol)添加した以外、実施例1と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.28Mn0.7Mg0.02PO)を得た。
[Example 4]
Instead of FeSO 4 · 7H 2 O 13.62g, FeSO 4 · 7H 2 O 3.89g (14mmol) and MnSO 4 · 5H 2 O 8.44g ( 35mmol) was added which had, in the same manner as in Example 1, A positive electrode active material for sodium ion battery (NaFe 0.28 Mn 0.7 Mg 0.02 PO 4 ) was obtained.

[実施例5]
MgSO・7HOの代わりに、Zr(SO42・4H2Oを0.18g(0.5mmol)添加した以外、実施例4と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.28Mn0.7Zr0.01PO)を得た。
[Example 5]
In the same manner as in Example 4, except that 0.18 g (0.5 mmol) of Zr (SO 4 ) 2 .4H 2 O was added instead of MgSO 4 · 7H 2 O, a positive electrode active material for sodium ion battery (NaFe 0.28 Mn 0.7 Zr 0.01 PO 4 ) was obtained.

[実施例6]
MgSO4・7H2Oの代わりに、HMoOを0.054g(0.33mmol)添加した以外、実施例4と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.28Mn0.7Mo0.007PO)を得た。
[Example 6]
Instead of MgSO 4 .7H 2 O, a positive electrode active material for sodium ion battery (NaFe 0.28 Mn 0. 0 ) was added in the same manner as in Example 4 except that 0.054 g (0.33 mmol) of H 2 MoO 4 was added . 7 Mo 0.007 PO 4 ) was obtained.

[比較例1]
FeSO4・7H2Oを13.90g(50mmol)とし、MgSO4・7H2Oを添加しなかった以外、実施例1と同様にして、ナトリウムイオン電池用正極活物質(NaFePO4)を得た。
[Comparative Example 1]
The FeSO 4 · 7H 2 O and 13.90 g (50 mmol), except for not adding MgSO 4 · 7H 2 O, in the same manner as in Example 1 to obtain a positive electrode active material for sodium ion batteries (NaFePO 4) .

[比較例2]
FeSO4・7H2Oを4.17g(15mmol)とし、MgSO4・7H2Oを添加しなかった以外、実施例4と同様にして、ナトリウムイオン電池用正極活物質(NaFe0.3Mn0.7PO)を得た。
[Comparative Example 2]
The FeSO 4 · 7H 2 O and 4.17g (15mmol), MgSO 4 · 7H 2 except that O was not added, in the same manner as in Example 4, the positive electrode active material for sodium ion battery (NaFe 0.3 Mn 0 .7 PO 4 ) was obtained.

《充放電特性の評価》
実施例1〜6及び比較例1〜2で得られたナトリウムイオン電池用正極活物質を用い、ナトリウムイオン二次電池の正極を作製した。具体的には、得られたナトリウムイオン電池用正極活物質、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:20:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
<Evaluation of charge / discharge characteristics>
The positive electrode of the sodium ion secondary battery was produced using the positive electrode active material for sodium ion batteries obtained in Examples 1-6 and Comparative Examples 1-2. Specifically, the obtained positive electrode active material for sodium ion battery, ketjen black (conducting agent), and polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 75: 20: 5, and N -Methyl-2-pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

次いで、上記の正極を用いてコイン型ナトリウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたNa箔を用いた。電解液には、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、NaPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型ナトリウム二次電池(CR−2032)を製造した。
製造したナトリウム二次電池を用いて充放電試験を行い、放電容量を求めた。このときの充電条件は電流0.1CA(17mAh/g)、電圧4.2Vの定電流定電圧充電とし、放電条件は電流0.1CA(17mAh/g)、終止電圧2.0Vの定電流放電とした。温度は全て30℃とした。
結果を表1に示す。
Next, a coin-type sodium ion secondary battery was constructed using the positive electrode. As the negative electrode, a Na foil punched to φ15 mm was used. As the electrolytic solution, a solution obtained by dissolving NaPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type sodium secondary battery (CR-2032).
A charge / discharge test was performed using the manufactured sodium secondary battery to determine the discharge capacity. The charging conditions at this time are constant current and constant voltage charging with a current of 0.1 CA (17 mAh / g) and a voltage of 4.2 V, and the discharging conditions are constant current discharging with a current of 0.1 CA (17 mAh / g) and a final voltage of 2.0 V. It was. All temperatures were 30 ° C.
The results are shown in Table 1.

Figure 0006101771
Figure 0006101771

上記結果より、実施例のナトリウムイオン電池用正極活物質は、比較例のナトリウムイオン電池用正極活物質に比して、得られるナトリウムイオン電池において優れた放電容量を確保できることがわかる。   From the above results, it can be seen that the positive electrode active material for sodium ion battery of the example can secure an excellent discharge capacity in the obtained sodium ion battery as compared with the positive electrode active material for sodium ion battery of the comparative example.

Claims (11)

水熱反応物である次式(A):
NaFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0<a、0≦b<1、0<c≦0.2、2a+2b+(Mの価数)×c=2を満たし、かつa=1−b−(Mの価数)×c÷2を満たす数を示す。)
で表されるオリビン型リン酸鉄ナトリウム化合物
を含有するナトリウムイオン電池用正極活物質。
The following formula (A) which is a hydrothermal reaction product :
NaFe a Mn b M c PO 4 (A)
(In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd. A, b, and c are 0 <a, 0 ≦ b <1, 0 <c ≦ 0.2, 2a + 2b + (M valence) × c = 2, and a = 1−b− (M valence) × c ÷ 2 is satisfied.)
The positive electrode active material for sodium ion batteries containing the olivine type sodium iron phosphate compound represented by these.
オリビン型リン酸鉄ナトリウム化合物に、炭素が担持してなる請求項1に記載のナトリウムイオン電池用正極活物質。   The positive electrode active material for sodium ion batteries according to claim 1, wherein carbon is supported on an olivine-type sodium iron phosphate compound. 請求項1又は2に記載のナトリウムイオン電池用正極活物質を含むナトリウムイオン電池。   The sodium ion battery containing the positive electrode active material for sodium ion batteries of Claim 1 or 2. ナトリウム化合物、鉄化合物、金属(M)化合物(MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。)、及びリン酸化合物を窒素雰囲気下で混合して混合液を得る工程(I)、及び
得られた混合液を水熱反応に付した後、乾燥する工程(II)
を備える請求項1〜3のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。
Sodium compound, iron compound, metal (M) compound (M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd), and phosphate compound to nitrogen Step (I) for mixing in an atmosphere to obtain a mixture, and step (II) for drying the resulting mixture after subjecting it to a hydrothermal reaction.
The manufacturing method of the positive electrode active material for sodium ion batteries of any one of Claims 1-3 provided with these.
工程(I)で得られた混合液中の溶存酸素濃度が、0.5mg/L以下である、請求項4に記載のナトリウムイオン電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for sodium ion batteries of Claim 4 whose dissolved oxygen concentration in the liquid mixture obtained at process (I) is 0.5 mg / L or less. 工程(I)で得られる混合液において、Fe及びMを含む金属原子の合計1モルに対し、Naが1.0〜3.3モルである、請求項4又は5に記載のナトリウムイオン電池用正極活物質の製造方法。   6. The sodium ion battery according to claim 4, wherein in the mixed solution obtained in step (I), Na is 1.0 to 3.3 mol with respect to a total of 1 mol of metal atoms including Fe and M. 7. A method for producing a positive electrode active material. 工程(I)が、さらに亜硫酸ナトリウムを添加する工程を含む、請求項4〜6のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for sodium ion batteries of any one of Claims 4-6 in which process (I) includes the process of adding sodium sulfite further. 工程(II)の圧力が、0.3〜1.5MPaである、請求項4〜7のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for sodium ion batteries of any one of Claims 4-7 whose pressure of process (II) is 0.3-1.5 MPa. 工程(I)で得られる混合液において、Fe及びMを含む金属原子の合計1モルに対し、リンが1.0〜1.1モルである、請求項4〜8のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。   In the liquid mixture obtained by process (I), phosphorus is 1.0-1.1 mol with respect to a total of 1 mol of the metal atom containing Fe and M, The any one of Claims 4-8. Manufacturing method of positive electrode active material for sodium ion battery. 工程(I)が、さらに混合液X1又は混合液X2に水溶性炭素材料を添加する工程(I−1)を含む、請求項4〜9のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。 The step (I) further includes a step (I-1) of adding a water-soluble carbon material to the mixed solution X 1 or the mixed solution X 2 , for the sodium ion battery according to claim 4. A method for producing a positive electrode active material. 工程(II)が、乾燥する処理を経た後、さらに水溶性炭素材料及び水を添加して噴霧乾燥する工程(II−1)、或いはカーボンブラックを添加する工程(II−2)を含む、請求項4〜10のいずれか1項に記載のナトリウムイオン電池用正極活物質の製造方法。   The step (II) includes a step (II-1) of adding a water-soluble carbon material and water and spray-drying after passing through the drying treatment, or a step (II-2) of adding carbon black. The manufacturing method of the positive electrode active material for sodium ion batteries of any one of claim | item 4 -10.
JP2015219074A 2015-11-09 2015-11-09 Positive electrode active material for sodium ion battery and method for producing the same Active JP6101771B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015219074A JP6101771B1 (en) 2015-11-09 2015-11-09 Positive electrode active material for sodium ion battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219074A JP6101771B1 (en) 2015-11-09 2015-11-09 Positive electrode active material for sodium ion battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP6101771B1 true JP6101771B1 (en) 2017-03-22
JP2017091755A JP2017091755A (en) 2017-05-25

Family

ID=58363247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219074A Active JP6101771B1 (en) 2015-11-09 2015-11-09 Positive electrode active material for sodium ion battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6101771B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937279A (en) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 Positive electrode material, preparation method thereof and sodium ion battery
CN113972364A (en) * 2021-09-30 2022-01-25 广东邦普循环科技有限公司 Preparation method of layered carbon-doped sodium iron phosphate cathode material
CN114050250A (en) * 2021-11-18 2022-02-15 中国科学技术大学 Carbon-coated sodium iron phosphate sodium ion battery positive electrode material, and preparation method and application thereof
CN114249311A (en) * 2021-11-26 2022-03-29 广东邦普循环科技有限公司 Preparation method of porous sodium ion battery positive electrode material sodium iron phosphate
CN114759173A (en) * 2022-03-21 2022-07-15 上海电力大学 Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application
CN114759179A (en) * 2022-04-27 2022-07-15 浙江格派钴业新材料有限公司 Method for synthesizing anode material sodium iron phosphate for sodium ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442633B2 (en) * 2017-05-29 2018-12-19 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
CN113921779B (en) * 2021-09-08 2022-12-13 西北大学 NASICON type sodium fast ion conductor material, preparation method and application
CN116779778B (en) * 2023-08-11 2024-02-09 深圳海辰储能控制技术有限公司 Positive electrode plate, preparation method thereof, energy storage device and power utilization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP2009206085A (en) * 2008-01-28 2009-09-10 Sumitomo Chemical Co Ltd Cathode active material, sodium secondary battery, and manufacturing method of olivine phosphate
JP2010018472A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Transition metal phosphate, positive electrode for sodium secondary battery using it and secondary battery using the positive electrode
JP2011134550A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Method of manufacturing electrode and electrode paste, and sodium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP2009206085A (en) * 2008-01-28 2009-09-10 Sumitomo Chemical Co Ltd Cathode active material, sodium secondary battery, and manufacturing method of olivine phosphate
JP2010018472A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Transition metal phosphate, positive electrode for sodium secondary battery using it and secondary battery using the positive electrode
JP2011134550A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Method of manufacturing electrode and electrode paste, and sodium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937279A (en) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 Positive electrode material, preparation method thereof and sodium ion battery
CN113972364A (en) * 2021-09-30 2022-01-25 广东邦普循环科技有限公司 Preparation method of layered carbon-doped sodium iron phosphate cathode material
CN114050250A (en) * 2021-11-18 2022-02-15 中国科学技术大学 Carbon-coated sodium iron phosphate sodium ion battery positive electrode material, and preparation method and application thereof
CN114249311A (en) * 2021-11-26 2022-03-29 广东邦普循环科技有限公司 Preparation method of porous sodium ion battery positive electrode material sodium iron phosphate
WO2023093158A1 (en) * 2021-11-26 2023-06-01 广东邦普循环科技有限公司 Preparation method for porous sodium ion battery positive electrode material sodium iron phosphate
US12012331B2 (en) 2021-11-26 2024-06-18 Guangdong Brunp Recycling Technology Co., Ltd. Preparation method of porous sodium iron phosphate used as sodium ion battery cathode material
CN114759173A (en) * 2022-03-21 2022-07-15 上海电力大学 Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application
CN114759179A (en) * 2022-04-27 2022-07-15 浙江格派钴业新材料有限公司 Method for synthesizing anode material sodium iron phosphate for sodium ion battery

Also Published As

Publication number Publication date
JP2017091755A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6101771B1 (en) Positive electrode active material for sodium ion battery and method for producing the same
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6357193B2 (en) Polyanionic positive electrode active material and method for producing the same
JP6151386B2 (en) Manufacturing method of olivine type lithium phosphate positive electrode material
JP5820521B1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
US20160145104A1 (en) Method for making lithium iron phosphate
JP2016184570A (en) Positive electrode active material for secondary battery and manufacturing method of the same
JP2014051418A (en) Composite material, method for producing the same, cathode active material, cathode and nonaqueous electrolyte secondary battery
TWI676592B (en) Positive electrode active material for secondary battery and method for producing same
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP2016072029A (en) Positive electrode material for lithium secondary battery
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2018041683A (en) Method for manufacturing olivine type lithium phosphate-based positive electrode material
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
WO2016151891A1 (en) Secondary battery positive-electrode active material and method for producing same
JP5820522B1 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5688128B2 (en) Lithium manganese phosphate positive electrode active material and method for producing the same
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6042513B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5688126B2 (en) Method for producing lithium manganese phosphate positive electrode active material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6101771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250