JP2011181486A - Evaluation method of electrolyte for secondary battery - Google Patents

Evaluation method of electrolyte for secondary battery Download PDF

Info

Publication number
JP2011181486A
JP2011181486A JP2010071159A JP2010071159A JP2011181486A JP 2011181486 A JP2011181486 A JP 2011181486A JP 2010071159 A JP2010071159 A JP 2010071159A JP 2010071159 A JP2010071159 A JP 2010071159A JP 2011181486 A JP2011181486 A JP 2011181486A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolytic solution
electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071159A
Other languages
Japanese (ja)
Inventor
Norifumi Hasegawa
規史 長谷川
Masatoshi Nagahama
昌俊 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2010071159A priority Critical patent/JP2011181486A/en
Priority to PCT/JP2010/064339 priority patent/WO2011024837A1/en
Priority to CN201080038112.6A priority patent/CN102576906B/en
Publication of JP2011181486A publication Critical patent/JP2011181486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of an electrolyte capable of appropriate evaluation when the electrolyte is applied to a secondary battery. <P>SOLUTION: The secondary battery having a secondary battery positive electrode having Li<SB>1-x</SB>FePO<SB>4</SB>as a positive electrode active material, a secondary battery negative electrode, and an electrolyte of evaluation object is assembled, and discharge characteristics after constant voltage charging of the secondary battery are measured, thereby, evaluation of the electrolyte for lithium ion battery is carried out. When the electrolyte for sodium ion battery is evaluated, evaluation is carried out using a secondary battery positive electrode having Na<SB>1-x</SB>FePO<SB>4</SB>as a positive electrode active material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン電池やナトリウムイオン電池に用いられる二次電池用電解液の評価方法に関し、従来困難であった5V(vs Li/Li+)を超えるような高い電位における二次電池用電解液を評価するのに好適に用いることができる。 The present invention relates to a method for evaluating an electrolytic solution for a secondary battery used in a lithium ion battery or a sodium ion battery, and electrolysis for a secondary battery at a high potential exceeding 5 V (vs Li / Li + ), which has been difficult in the past. It can be suitably used to evaluate the liquid.

リチウムイオン電池やナトリウムイオン電池の高エネルギー密度化の要求に応えるため、高い電位で充放電が行なわれる正極活物質の探索が進められている。このような正極活物質を用いた二次電池では、電解液も高い電位に曝されることになるため、二次電池用電解液の耐電圧特性の評価が必要となる。   In order to meet the demand for higher energy density of lithium ion batteries and sodium ion batteries, a search for a positive electrode active material that is charged and discharged at a high potential is in progress. In a secondary battery using such a positive electrode active material, the electrolytic solution is also exposed to a high potential, and thus it is necessary to evaluate the withstand voltage characteristics of the secondary battery electrolytic solution.

二次電池用電解液の耐電圧特性の評価方法としては、グラッシーカーボンや白金や金等、電位窓の広い安定な電極を用い、電位−電流曲線やサイクリックボルタモグラム等の電気化学的手法を使って広い電位範囲で酸化還元電流を観測し、その結果をもとに、電解液としての安定性などの評価を行っていた(例えば特許文献1)。   As a method for evaluating the withstand voltage characteristics of the electrolyte for secondary batteries, a stable electrode with a wide potential window, such as glassy carbon, platinum, or gold, is used, and an electrochemical method such as a potential-current curve or cyclic voltammogram is used. In addition, the oxidation-reduction current was observed in a wide potential range, and the stability as an electrolytic solution was evaluated based on the result (for example, Patent Document 1).

特開2009−158240JP 2009-158240 A

しかし、正極活物質を実際の二次電池に適用した場合には、充放電時に電解液と正極活物質との間でリチウムイオンやナトリウムイオンが出入りすることが必要となる。これに対して、グラッシーカーボン等の安定な電極を用い、広い電位範囲での酸化還元電流を観測する上記方法では、電解液の電位窓の広さを測定することはできるものの、高い電位において正極活物質との間でリチウムイオンやナトリウムイオンが出入りすることができるか否かについては、判断できなかった。このため、電解液を実際の二次電池に適用して充放電が円滑に行なわれなかった場合、その原因が電解液にあるのか、正極活物質にあるのかの判断ができず、電解液の評価ができなかった。   However, when the positive electrode active material is applied to an actual secondary battery, it is necessary for lithium ions and sodium ions to enter and exit between the electrolytic solution and the positive electrode active material during charging and discharging. In contrast, the above method of observing the oxidation-reduction current in a wide potential range using a stable electrode such as glassy carbon can measure the width of the potential window of the electrolytic solution, but the positive electrode at a high potential. It was not possible to judge whether lithium ions or sodium ions could enter or leave the active material. For this reason, when the electrolytic solution is applied to an actual secondary battery and charging / discharging is not performed smoothly, it cannot be determined whether the cause is the electrolytic solution or the positive electrode active material. Evaluation was not possible.

本発明は、上記従来の実情に鑑みてなされたものであり、電解液を二次電池に適用した場合において、適切な評価が可能な電解液の評価方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and it is an issue to be solved to provide an electrolytic solution evaluation method capable of appropriate evaluation when the electrolytic solution is applied to a secondary battery. Yes.

本発明者らは、様々な正極活物質について、通常では充電に用いられないような高い電位における充放電特性を調べた。その結果、LiFePOが6V(vs Li/Li+)という極めて高い電位で充電しても充電量がほとんど低下せず、リチウムイオンの出入りが円滑に行われることを見出した。そして、このLiFePOを正極活物質とした正極を用いて電解液の充放電特性を測定すれば、電解液を実際の二次電池に適用した場合の電解液の適確な評価を行うことができることを見出し、本発明を完成させるに至った。 The present inventors investigated the charge / discharge characteristics at a high potential that is not normally used for charging of various positive electrode active materials. As a result, it has been found that even when LiFePO 4 is charged at an extremely high potential of 6 V (vs Li / Li + ), the amount of charge hardly decreases and lithium ions enter and exit smoothly. If the charge / discharge characteristics of the electrolytic solution are measured using a positive electrode using LiFePO 4 as a positive electrode active material, the electrolytic solution can be accurately evaluated when the electrolytic solution is applied to an actual secondary battery. The present inventors have found that the present invention can be accomplished and have completed the present invention.

すなわち、第1発明の二次電池用電解液の評価方法は、Li1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1以下の数を示す)を正極活物質とする二次電池用正極と、二次電池用負極と、評価対象の電解液とを備えた二次電池を組み立て、該二次電池の定電圧充電後の放電特性を測定することにより該電解液の評価を行うことを特徴とする。 That is, the evaluation method of the secondary battery electrolyte of the first invention is Li 1-x FePO 4 (wherein Fe is partly Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb , Ti may be substituted with one or more of Zr, and x represents a number of 0 or more and 1 or less), and a positive electrode for a secondary battery, a negative electrode for a secondary battery, and evaluation A secondary battery including a target electrolytic solution is assembled, and the electrolytic solution is evaluated by measuring discharge characteristics after constant voltage charging of the secondary battery.

第1発明の二次電池用電解液の評価方法では、Li1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1以下の数を示す)を正極活物質とする二次電池用正極を用いる。この正極活物質は、電解液との間でリチウムイオンの出入りを行う、リチウムイオン電池用の正極活物質であり、リチウムイオン電池用電解液の評価を行うことができる。式中のxはリチウムイオンの出入りの状態によって0以上1以下の範囲で変化する係数である。 In the method for evaluating an electrolyte for a secondary battery according to the first aspect of the invention, Li 1-x FePO 4 (wherein part of Fe is Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti And Zr may be substituted with one or more of Zr, and x represents a number of 0 to 1 inclusive). This positive electrode active material is a positive electrode active material for a lithium ion battery that allows lithium ions to enter and exit from the electrolytic solution, and the evaluation of the electrolytic solution for a lithium ion battery can be performed. In the formula, x is a coefficient that varies in the range of 0 to 1 depending on the state of entering and exiting lithium ions.

また、二次電池の負極としては、リチウムイオン電池に用いることのできる材料であれば特に制限は無い。例えばリチウム金属、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料やチタン酸リチウム(LiTi12)、HTi1225、HTi13、Feなどが挙げられる。また、これらを適宜混合した複合体も挙げることができる。さらには、Si微粒子やSi薄膜、これらのSiがSi−Ni、Si−Cu、Si−Nb、Si−Zn、Si−Sn等のSi系合金となった微粒子や薄膜が挙げられる。さらには、SiO酸化物、Si−SiO複合体、Si−SiO−カーボンなどの複合体等を挙げることができる。 Moreover, as a negative electrode of a secondary battery, if it is a material which can be used for a lithium ion battery, there will be no restriction | limiting in particular. For example, various carbon materials such as lithium metal, artificial graphite, natural graphite, and hard carbon, lithium titanate (Li 4 Ti 5 O 12 ), H 2 Ti 12 O 25 , H 2 Ti 6 O 13 , Fe 2 O 3, etc. Is mentioned. Moreover, the composite material which mixed these suitably can also be mentioned. Furthermore, there may be mentioned Si fine particles and Si thin films, and fine particles and thin films in which these Si are Si-based alloys such as Si—Ni, Si—Cu, Si—Nb, Si—Zn, Si—Sn. Further, SiO oxide, Si-SiO 2 composite, Si-SiO 2 - can be given complex, etc., such as carbon.

発明者らの試験結果によれば、Li1−xFePOは6V(vs Li/Li+)という極めて高い電位で充電しても放電容量がほとんど低下せず、極めて優れた充放電特性を示す。このため、このLi1−xFePOを正極活物質とした正極と、二次電池用負極と、を評価対象となるリチウムイオン電池用電解液に接触させて二次電池とし、この二次電池の充放電特性を測定すれば、正極では円滑にリチウムイオンの出入りを行うことができるため、電解液の適確な評価を行うことができる。
したがって、第1発明の二次電池用電解液の評価方法によれば、電解液を実際のリチウムイオン電池に適用した場合の電解液の適確な評価を行うことができる。
According to the test results of the inventors, Li 1-x FePO 4 shows extremely excellent charge / discharge characteristics with little decrease in discharge capacity even when charged at an extremely high potential of 6 V (vs Li / Li + ). . For this reason, a positive electrode using this Li 1-x FePO 4 as a positive electrode active material and a negative electrode for a secondary battery are brought into contact with an electrolytic solution for a lithium ion battery to be evaluated to form a secondary battery. If the charge / discharge characteristics are measured, lithium ions can enter and exit smoothly at the positive electrode, so that the electrolyte can be evaluated accurately.
Therefore, according to the method for evaluating an electrolytic solution for a secondary battery of the first invention, it is possible to accurately evaluate the electrolytic solution when the electrolytic solution is applied to an actual lithium ion battery.

なお、Li1−xFePOにおけるFeの一部をCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよい。このようにFeを上記他元素で置換した正極活物質であっても、高電位充電による充電量の低下はほとんどなく、極めて優れた充放電特性を示す正極活物質となるからである。 A part of Fe in Li 1-x FePO 4 may be substituted with one or more of Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti, and Zr. . This is because even in the case of a positive electrode active material obtained by substituting Fe with the above-mentioned other elements, there is almost no decrease in the amount of charge due to high potential charging, and the positive electrode active material exhibits extremely excellent charge / discharge characteristics.

第2発明の二次電池用電解液の評価方法は、Na1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1未満の数を示す)を正極活物質とする二次電池用正極と、二次電池用負極と、評価対象の電解液とを備えた二次電池を組み立て、該二次電池の定電圧充電後の放電特性を測定することにより該電解液の評価を行うことを特徴とする。 The secondary battery electrolyte evaluation method of the second invention is Na 1-x FePO 4 (wherein part of Fe is Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti And Zr may be substituted with one or more of Zr, and x represents a number of 0 or more and less than 1, and a positive electrode for a secondary battery having a positive electrode active material, a negative electrode for a secondary battery, A secondary battery provided with an electrolytic solution is assembled, and the electrolytic solution is evaluated by measuring discharge characteristics after constant voltage charging of the secondary battery.

第2発明の二次電池用電解液の評価方法ではNa1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1未満の数を示す)を正極活物質とする二次電池用正極を用いる。この正極活物質は、電解液との間でナトリウムイオンの出入りを行う、ナトリウムイオン電池用の正極活物質であり、ナトリウムイオン電池用電解液の評価を行うことができる。式中のxはリチウムイオンの出入りの状態によって0以上1以下の範囲で変化する係数である。 In the method for evaluating an electrolytic solution for a secondary battery according to the second aspect of the invention, Na 1-x FePO 4 (wherein part of Fe is Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti and A positive electrode for a secondary battery using a positive electrode active material, which may be substituted with one or more of Zr, and x represents a number of 0 or more and less than 1, is used. This positive electrode active material is a positive electrode active material for a sodium ion battery that allows sodium ions to enter and exit from the electrolytic solution, and can be used to evaluate the electrolytic solution for a sodium ion battery. In the formula, x is a coefficient that varies in the range of 0 to 1 depending on the state of entering and exiting lithium ions.

また、二次電池の負極としては、ナトリウムイオン電池に用いることのできる材料であれば特に制限は無い。例えばナトリウム金属、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料やチタン酸リチウム(LiTi12)などが挙げられる。また、これらを適宜混合した複合体も挙げることができる。 The negative electrode of the secondary battery is not particularly limited as long as it is a material that can be used for a sodium ion battery. Examples thereof include various carbon materials such as sodium metal, artificial graphite, natural graphite, and hard carbon, and lithium titanate (Li 4 Ti 5 O 12 ). Moreover, the composite material which mixed these suitably can also be mentioned.

Na1−xFePOは高い電位で充電しても充電量がほとんど低下せず、極めて優れた充放電特性を示す。このため、このNa1−xFePOを正極活物質とした正極と二次電池用負極とを評価対象となる電解液に接触させて二次電池とし、この二次電池の充放電特性を測定すれば、正極では円滑にナトリウムイオンの出入りを行うことができるため、電解液の適確な評価を行うことができる。
したがって、第2発明の二次電池用電解液の評価方法によれば、電解液を実際のナトリウムイオン電池に適用した場合の電解液の適確な評価を行うことができる。
Na 1-x FePO 4 shows very good charge / discharge characteristics with little decrease in charge even when charged at a high potential. For this reason, a positive electrode using this Na 1-x FePO 4 as a positive electrode active material and a negative electrode for a secondary battery are brought into contact with an electrolyte to be evaluated to form a secondary battery, and the charge / discharge characteristics of the secondary battery are measured. Then, since sodium ions can smoothly enter and exit from the positive electrode, the electrolyte solution can be evaluated accurately.
Therefore, according to the method for evaluating an electrolytic solution for a secondary battery of the second invention, it is possible to accurately evaluate the electrolytic solution when the electrolytic solution is applied to an actual sodium ion battery.

なお、Na1−xFePOにおけるFeの一部をCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよい。このようにFeを上記他元素で置換した正極活物質であっても、高電位充電による充電量の低下はほとんどなく、極めて優れた充放電特性を示す正極活物質となるからである。 A part of Fe in Na 1-x FePO 4 may be substituted with one or more of Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti, and Zr. . This is because even in the case of a positive electrode active material obtained by substituting Fe with the above-mentioned other elements, there is almost no decrease in the amount of charge due to high potential charging, and the positive electrode active material exhibits extremely excellent charge / discharge characteristics.

本発明の電解液の評価方法において使用する二次電池用正極には、導電助剤を含有させることにより、集電体と正極活物質との間の電子伝導パスを確保することができる。導電助剤としてはカーボンブラックやグラファイトを用いることもできるが、グラッシーカーボン及び/又は導電性ダイヤモンドライクカーボンを用いることが好ましい。グラッシーカーボンや導電性ダイヤモンドライクカーボンは、カーボンブラックやグラファイトに比べて電位窓が極めて広く、高い電位においても安定である。このため、高い電位下における電解液の評価を行う場合、導電助剤自身の酸化還元に起因する電流がほとんど流れないため、電解液の評価を行う場合の邪魔にならないからである。   By including a conductive additive in the positive electrode for secondary battery used in the method for evaluating an electrolytic solution of the present invention, an electron conduction path between the current collector and the positive electrode active material can be secured. Although carbon black and graphite can be used as the conductive assistant, it is preferable to use glassy carbon and / or conductive diamond-like carbon. Glassy carbon and conductive diamond-like carbon have a much wider potential window than carbon black and graphite, and are stable even at high potentials. For this reason, when an electrolytic solution is evaluated under a high potential, a current resulting from oxidation / reduction of the conductive additive itself hardly flows, so that it does not interfere with the evaluation of the electrolytic solution.

さらには、本発明の電解液の評価方法において使用する二次電池用正極に含まれる正極活物質は、グラッシーカーボン及び/又は導電性ダイヤモンドライクカーボンによって包囲されていることが好ましい。こうであれば、集電体と正極活物質との間の電子伝導パスをさらに確実に確保することができる。   Furthermore, it is preferable that the positive electrode active material contained in the positive electrode for secondary batteries used in the method for evaluating an electrolytic solution of the present invention is surrounded by glassy carbon and / or conductive diamond-like carbon. In this case, an electron conduction path between the current collector and the positive electrode active material can be further ensured.

また、本発明の電解液の評価方法において、放電特性を測定する前に行う定電圧充電の電圧について特に限定はされないが、高い電位での評価を行うためには、5V(vs Li/Li+)以上とすることが好ましく、さらに高い電位での評価のためには6V(vs Li/Li+)以上とすることが好ましい。   Further, in the method for evaluating an electrolytic solution of the present invention, the voltage of constant voltage charging performed before measuring discharge characteristics is not particularly limited, but in order to perform evaluation at a high potential, 5 V (vs Li / Li +) It is preferable that the voltage be 6 V (vs Li / Li +) or higher for evaluation at a higher potential.

<実施例>
以下のようにして調製したリチウムイオン電池用の電解液1及び電解液2について充電特性の評価を行った。
<Example>
The charging characteristics of the electrolytic solution 1 and the electrolytic solution 2 for lithium ion batteries prepared as follows were evaluated.

(電解液1)
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とセバコニトリル(SB)とを容量比で25:25:50の割合で混合した溶媒を用い、これにリチウム塩としてLiBFを1mol/Lとなるように溶解させた。
(Electrolytic solution 1)
Using a solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and sebaconitrile (SB) were mixed in a volume ratio of 25:25:50, LiBF 4 as a lithium salt was 1 mol / L. Dissolved.

(電解液2)
リチウム塩をLiPF(1mol/L)とし、その他については電解液1と同様の組成とした。
(Electrolytic solution 2)
The lithium salt was LiPF 6 (1 mol / L), and the other components were the same as in the electrolytic solution 1.

(電解液3)
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とグルタロニトリルとを容量比で25:25:50の割合で混合した溶媒を用い、これにリチウム塩としてLiBF4を1mol/Lとなるように溶解させた。
(Electrolytic solution 3)
Using a solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and glutaronitrile were mixed at a volume ratio of 25:25:50, LiBF4 as a lithium salt was dissolved to 1 mol / L. It was.

<リチウムイオン電池の作製>
上記電解液1〜電解液3の評価を行うため、これらの電解液を用いてリチウムイオン電池を作製し、充放電特性について測定した。詳細を以下に示す。
<Production of lithium ion battery>
In order to evaluate the electrolytic solution 1 to the electrolytic solution 3, lithium ion batteries were prepared using these electrolytic solutions, and charge / discharge characteristics were measured. Details are shown below.

・正極の作製
LiFePOの粉末とグラッシーカーボン粉とポリテトラフルオロエチレン(PTFE)粉とを70:25:5の重量割合で、メノウ乳鉢にて混合し、冷間圧延してシート状の電極を得た。これを径8mmに打ち抜き、正極ペレットとした。
Preparation of positive electrode LiFePO 4 powder, glassy carbon powder and polytetrafluoroethylene (PTFE) powder in a weight ratio of 70: 25: 5 were mixed in an agate mortar and cold rolled to form a sheet-like electrode. Obtained. This was punched out to a diameter of 8 mm to obtain a positive electrode pellet.

・リチウムイオン電池の組み立て
図1に示すように、有底円筒状のSUS316L製の正極缶11と、有底円筒状で扁平状のSUS316L製の負極キャップ12とを用意する。ついで、図2に示すように、正極缶11内に、SUS316L製のスペーサー13、正極ペレット14及びセパレータ15を充填する。一方、負極キャップ12内に、SUS316L製の波座金16、SUS316L製のスペーサー17及びリチウム負極18を充填する。そして、正極缶11内に電解液を入れた後、絶縁ガスケット19を介して負極キャップ12を載置してかしめて密封してリチウムイオン電池とした。
Assembling the Lithium Ion Battery As shown in FIG. 1, a bottomed cylindrical SUS316L positive electrode can 11 and a bottomed cylindrical flat SUS316L negative electrode cap 12 are prepared. Next, as shown in FIG. 2, a spacer 13 made of SUS316L, a positive electrode pellet 14, and a separator 15 are filled in the positive electrode can 11. On the other hand, the SUS316L wave washer 16, the SUS316L spacer 17 and the lithium negative electrode 18 are filled in the negative electrode cap 12. And after putting electrolyte solution in the positive electrode can 11, the negative electrode cap 12 was mounted and crimped | sealed through the insulating gasket 19, and it was set as the lithium ion battery.

−電解液の評価−
<実施例1>
以上のように構成された電解液1及び電解液2を用いたリチウムイオン電池について、充放電を繰り返してその電池特性を測定した。充電は5.5Vの定電圧充電を175mAh/g(活物質量)まで行った。ただし、電解液2を用いたリチウムイオン電池では、充電開始時は定電流制御で充電し、極間電圧が5.5Vに達したところからは、5.5Vの定電圧で充電を行った一方、放電は放電レート0.05Cの定電流で行い、電圧が2.5Vに到達した時点で放電を停止した。
-Evaluation of electrolyte-
<Example 1>
About the lithium ion battery using the electrolyte solution 1 and the electrolyte solution 2 comprised as mentioned above, charging / discharging was repeated and the battery characteristic was measured. Charging was performed at a constant voltage of 5.5 V up to 175 mAh / g (active material amount). However, in the lithium ion battery using the electrolytic solution 2, charging was performed with constant current control at the start of charging, and charging was performed at a constant voltage of 5.5 V from when the voltage between the electrodes reached 5.5V . On the other hand, the discharge was performed at a constant current of a discharge rate of 0.05C, and the discharge was stopped when the voltage reached 2.5V.

その結果、電解質としてLiBFを添加した電解液1を用いたリチウムイオン電池では、図3に示すように、10回の充放電の繰り返しを行っても、放電容量はほとんど変化しなかった。この結果から、LiFePOは5.5Vという高い電位で充電しても、充放電においてリチウムイオンの円滑な出入が行われ、正極活物質として正常に機能することが分かった。また、電解液1は充電容量の低下の少ない、優れた充放電特性を有していることが分かった。 As a result, in the lithium ion battery using the electrolytic solution 1 to which LiBF 4 was added as the electrolyte, as shown in FIG. 3, the discharge capacity hardly changed even after 10 charge / discharge cycles. From this result, it was found that even when LiFePO 4 was charged at a high potential of 5.5 V, lithium ions smoothly entered and exited during charge and discharge and functioned normally as a positive electrode active material. Moreover, it turned out that the electrolyte solution 1 has the outstanding charging / discharging characteristic with a little fall of charge capacity.

これに対して、電解質としてLiPFを用いた電解液2を用いたリチウムイオン電池では、図4に示すように、充放電を繰り返すごとに、充電電流が減少し、数サイクルの充放電の繰り返しにより、放電量が急激に減少することが分かった。この放電量の急激な減少は、電解液1においては認められなかったことから、正極活物質であるLiFePOに起因するものではなく、電解液2に起因するものであり、電解液2の分解や重合に基づく不働態皮膜の形成等が考えられる。 On the other hand, in the lithium ion battery using the electrolytic solution 2 using LiPF 6 as the electrolyte, as shown in FIG. 4, the charging current decreases every time charging / discharging is repeated, and several cycles of charging / discharging are repeated. As a result, it was found that the discharge amount rapidly decreased. Since this rapid decrease in the amount of discharge was not observed in the electrolytic solution 1, it was not caused by the positive electrode active material LiFePO 4 but by the electrolytic solution 2, and the electrolytic solution 2 was decomposed. And the formation of a passive film based on polymerization.

また、電解液1を用いたリチウムイオン電池について、充電レートを0.05Cとした通常充電、及び、充電開始時に充電レートを10Cとし、6V(vs Li/Li+)に達してから定電位充電として測定した。その結果、図5に示すように、どちらの充電方法においても放電容量はほぼ一緒であり、電位窓が広いため、6Vにおける高電圧充電でも充分実用に耐え得ることが分かった。また、LiFePOは、6Vにおける高電圧充電でも正常な充電が行われ、耐電圧性にきわめて優れているため、電解液の評価を行う際の正極活物質として適していることが分かった。 In addition, for lithium ion batteries using the electrolyte 1, normal charging with a charge rate of 0.05 C, and charge rate of 10 C at the start of charging, and after reaching 6 V (vs Li / Li +), constant potential charging It was measured. As a result, as shown in FIG. 5, it was found that the discharge capacities were almost the same in both charging methods and the potential window was wide, so that even high-voltage charging at 6V could sufficiently withstand practical use. In addition, since LiFePO 4 is normally charged even at a high voltage of 6 V and is extremely excellent in voltage resistance, it has been found that LiFePO 4 is suitable as a positive electrode active material when an electrolytic solution is evaluated.

<比較例1>
上記電解液1及び電解液2について、グラッシーカーボン板を作用極とし、対極に白金線を用い、電位−電流曲線の測定による電解液の評価を行った。掃引速度は5mV/秒とした。
<Comparative Example 1>
About the said electrolyte solution 1 and the electrolyte solution 2, the glassy carbon board was made into the working electrode, the platinum wire was used for the counter electrode, and the electrolyte solution was evaluated by the measurement of a potential-current curve. The sweep speed was 5 mV / second.

その結果、電解液1(図6)及び電解液2(図7参照)について、どちらも同様の範囲での広い電位窓を有することが示された。同じ電解液について、リチウムイオン電池を作製して、充放電特性の測定を行なった上記実施例では、図3及び図4に示すように、電解液1と電解液2との挙動は明らかに異なっており、そのような差異は、電位−電流曲線の測定によって見出すことはできなかった。   As a result, it was shown that both of the electrolytic solution 1 (FIG. 6) and the electrolytic solution 2 (see FIG. 7) have a wide potential window in the same range. In the above example in which a lithium ion battery was prepared for the same electrolytic solution and the charge / discharge characteristics were measured, the behaviors of the electrolytic solution 1 and the electrolytic solution 2 are clearly different as shown in FIGS. Such a difference could not be found by measuring the potential-current curve.

<実施例2>
以上のように構成された電解液1及び電解液3を用いたリチウムイオン電池について、充放電を繰り返してその電池特性を測定した。充放電特性は以下の条件で行った。
充電 CC-CV充電 6V カットオフ 150mAh/g
放電 CC放電 0.01C カットオフ 2.5V
<Example 2>
About the lithium ion battery using the electrolyte solution 1 and the electrolyte solution 3 comprised as mentioned above, charging / discharging was repeated and the battery characteristic was measured. The charge / discharge characteristics were performed under the following conditions.
Charging CC-CV charging 6V cutoff 150mAh / g
Discharge CC discharge 0.01C Cutoff 2.5V

その結果、ジニトリルとしてセバコニトリルを添加した電解液1を用いたリチウムイオン電池では、図8に示すように、2回目も1回目とほとんど変わらない放電容量を確保できた。これに対し、ジニトリルとしてグルタロニトリルを添加した電解液3では、初回の放電から放電容量が116mAh/gと少なく、2回目の強制充電後は更に放電容量が92mAh/gと少なくなった。この放電量の急激な減少は、電解液1においては認められなかったことから、正極活物質であるLiFePO4に起因するものではなく、電解液3に起因するものであり、電解液3の分解や重合に基づく不働態皮膜の形成等が示唆された。   As a result, in the lithium ion battery using the electrolytic solution 1 to which sebaconitrile was added as a dinitrile, the discharge capacity that was almost the same as the first time could be secured as shown in FIG. On the other hand, in the electrolytic solution 3 in which glutaronitrile was added as a dinitrile, the discharge capacity was as low as 116 mAh / g from the first discharge, and after the second forced charge, the discharge capacity was further reduced to 92 mAh / g. Since this rapid decrease in the amount of discharge was not observed in the electrolytic solution 1, it was not attributed to the positive electrode active material LiFePO4 but to the electrolytic solution 3. The formation of a passive film based on polymerization was suggested.

<比較例2>
上記電解液1及び電解液3について、グラッシーカーボン板を作用極とし、対極に白金線を用い、電位−電流曲線の測定による電解液の評価を行った。掃引速度は5mV/秒とした。
<Comparative example 2>
About the said electrolyte solution 1 and the electrolyte solution 3, the glassy carbon plate was made into the working electrode, the platinum wire was used for the counter electrode, and the electrolyte solution was evaluated by the measurement of a potential-current curve. The sweep speed was 5 mV / second.

その結果、図9に示すように、電解液1及び電解液3について、どちらも同様の範囲での広い電位窓を有することが示された。同じ電解液について、リチウムイオン電池を作製して、充放電特性の測定を行なった上記実施例2では、図8に示すように、電解液1と電解液3との挙動は明らかに異なっており、そのような差異は、電位−電流曲線の測定によって見出すことはできなかった。   As a result, as shown in FIG. 9, it was shown that both of the electrolytic solution 1 and the electrolytic solution 3 have a wide potential window in the same range. In Example 2 in which a lithium ion battery was manufactured for the same electrolytic solution and the charge / discharge characteristics were measured, the behaviors of the electrolytic solution 1 and the electrolytic solution 3 were clearly different as shown in FIG. Such a difference could not be found by measuring the potential-current curve.

上記電解液1〜電解液3の評価では正極活物質としてLiFePOを用いたが、それの替わりにNaFePOを用いれば、ナトリウムイオンの円滑な出入りができることは明らかであり、ナトリウムイオン電池用電解液の評価を行うことができる。また、LiFePOやNaFePOのFeの一部をCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換しても、高電位でのリチウムイオンやナトリウムイオンの円滑な出入りができることは明らかであり、これらを正極活物質として用いて電解液の評価を行うこともできる。
以上のように、正極活物質としてLiFePO4を用い、強制的に所望する高電圧で充電し、放電容量を確認することにより、電解液を実際に二次電池として使用した場合、高電圧における使用が可能であるか否かの評価を適切に行うことが可能となる。
In the evaluation of the electrolytic solution 1 to the electrolytic solution 3, LiFePO 4 was used as the positive electrode active material. However, it is obvious that sodium ions can smoothly enter and exit if NaFePO 4 is used instead. The liquid can be evaluated. Even if a part of Fe of LiFePO 4 or NaFePO 4 is replaced with one or more of Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti, and Zr, a high potential is obtained. It is clear that lithium ions and sodium ions can smoothly enter and exit, and the electrolyte can be evaluated using these as positive electrode active materials.
As described above, when LiFePO4 is used as the positive electrode active material, the battery is forcibly charged at a desired high voltage and the discharge capacity is confirmed, the electrolyte is actually used as a secondary battery. It is possible to appropriately evaluate whether or not it is possible.

また、本発明の電解液の評価方法は、有機溶媒とリチウムもしくはナトリウム電解質とを組み合わせた電解液のみならず、ポリエチレンオキシド系やポリアクリルニトリル系のポリマー電解質や、NASICON型固体電解質や、Li2S-P2S5系の固体電解質へ適用することも可能である。   In addition, the electrolytic solution evaluation method of the present invention includes not only an electrolytic solution combining an organic solvent and a lithium or sodium electrolyte, but also a polyethylene oxide-based or polyacrylonitrile-based polymer electrolyte, a NASICON-type solid electrolyte, a Li2S- It can also be applied to P2S5 solid electrolytes.

(正極用集電体)
本発明の電解液の評価方法を高い電位において行う場合、正極の集電体の成形材料は、充電時において安定であることが要求される。特に、酸化還元電位の高いオリビン型結晶構造を有するリン酸塩系及びオリビンフッ化物系の正極活物質を用いるときには、耐食性に優れた素材を使用することが好ましい。
(Current collector for positive electrode)
When the electrolytic solution evaluation method of the present invention is performed at a high potential, the molding material for the positive electrode current collector is required to be stable during charging. In particular, when using a phosphate-based and olivine fluoride-based positive electrode active material having an olivine-type crystal structure with a high redox potential, it is preferable to use a material excellent in corrosion resistance.

例えば、電解質としてLiPF、LiBFを使用する場合、オーステナイト系ステンレス、Ni、Al、Ti等を用いることができるが、使用する正極活物質の動作電位を考慮し、適宜選択することが好ましい。例えば、電解質としてLiPFを用いる場合は、Li/Li+電極に対して6Vでも使用することができるが、電解質としてLiBFを用いる場合、SUS304はLi/Li+電極に対し5.8V以下で充放電可能な場合のみ用いることができる。さらに好ましいのは、耐食性向上のためにモリブデンが添加されたSUS316、SUS316L及びSUS317が挙げられる。また、電解質としてLiTFSIを使用する場合、正極集電体表面に耐食性皮膜を形成させるべく、LiPFを共存させることが好ましい。LiBETI及びLiTFSもLiTFSIの場合と同様である。 For example, when LiPF 6 or LiBF 4 is used as the electrolyte, austenitic stainless steel, Ni, Al, Ti, or the like can be used, but it is preferable to select them appropriately in consideration of the operating potential of the positive electrode active material to be used. For example, when LiPF 6 is used as the electrolyte, it can be used even at 6 V with respect to the Li / Li + electrode. However, when LiBF 4 is used as the electrolyte, SUS304 is 5.8 V or less with respect to the Li / Li + electrode. It can be used only when charge / discharge is possible. More preferable are SUS316, SUS316L and SUS317 to which molybdenum is added for improving corrosion resistance. Further, when LiTFSI is used as the electrolyte, it is preferable that LiPF 6 coexists in order to form a corrosion-resistant film on the surface of the positive electrode current collector. LiBETI and LiTFS are the same as in LiTFSI.

また、Al、Ni、チタン、オーステナイト系ステンレス等の導電金属材料へ導電性DLC(ダイヤモンドライクカーボン)、グラッシーカーボン、金及び白金のうちの一種又は二種以上からなる導電性の耐食性皮膜が形成されたものを集電体として用いることもできる。電解質がLiBFやLiPFなど、容易にフッ化物皮膜を形成するようなリチウム塩の場合は、アルミニウム上へ厚いフッ化皮膜が形成し、耐食性は向上するものの、電子伝導性が低下し、ひいてはオーミック過電圧増加に伴う、高出力化が阻害されることとなる。Al等の導電金属材料へ導電性DLCを被覆すれば、フッ化物皮膜は導電性DLCの欠陥部分の極わずかな面積でのみ発生するだけである。 In addition, a conductive corrosion-resistant film made of one or more of conductive DLC (diamond-like carbon), glassy carbon, gold, and platinum is formed on a conductive metal material such as Al, Ni, titanium, and austenitic stainless steel. Can also be used as a current collector. When the electrolyte is a lithium salt such as LiBF 4 or LiPF 6 that easily forms a fluoride film, a thick fluoride film is formed on the aluminum and the corrosion resistance is improved, but the electronic conductivity is lowered, and consequently The increase in output accompanying the increase in ohmic overvoltage is impeded. If the conductive metal material such as Al is coated with the conductive DLC, the fluoride film is generated only in a very small area of the defective portion of the conductive DLC.

ここで、導電性ダイヤモンドライクカーボンとは、ダイヤモンド結合(炭素同士のSP混成軌道結合)とグラファイト結合(炭素同士のSP混成軌道結合)の両方の結合が混在しているアモルファス構造をとるカーボンのうち、導電性が1000Ωcm以下のものをいう。ただし、アモルファス構造以外に、部分的にグラファイト構造からなる結晶構造(すなわちSP混成軌道結合からなる六方晶系結晶構造)からなる相を有し、これにより導電性が発揮されるものも含まれる。グラファイトとダイヤモンドの中間の性質を有するダイヤモンドライクカーボンは、成膜時にダイヤモンドライクカーボンを構成する炭素原子のSP混成軌道結合とSP混成軌道結合の比率を調整することで、導電性を調節することができる。
勿論、上記耐食性導電性金属材料を導電性DLCで被覆してもよい。
集電体の形状及び構造は、正極活物質や電池の構造に応じて、任意に設計可能である。
Here, the conductive diamond-like carbon is carbon having an amorphous structure in which both diamond bonds (SP 3 hybrid orbital bonds between carbons) and graphite bonds (SP 2 hybrid orbital bonds between carbons) are mixed. Among them, the one whose conductivity is 1000 Ωcm or less. However, in addition to the amorphous structure, those having a phase composed of a crystal structure partially composed of a graphite structure (that is, a hexagonal crystal structure composed of SP 2 hybrid orbital bonds) and thereby exhibiting conductivity are also included. . Diamond-like carbon having properties intermediate between graphite and diamond adjusts the conductivity by adjusting the ratio of SP 2 hybrid orbital bonds and SP 3 hybrid orbital bonds of the carbon atoms constituting diamond-like carbon during film formation. be able to.
Of course, you may coat | cover the said corrosion-resistant electroconductive metal material with electroconductive DLC.
The shape and structure of the current collector can be arbitrarily designed according to the structure of the positive electrode active material and the battery.

(負極用集電体)
負極用の集電体は汎用的な導電性金属材料、Cu、Al、Ni、Ti、オーステナイト系ステンレス等で形成することができる。
但し、電解液にニトリル化合物を用いたとき(他の有機溶剤との併用を含む)には、電解液中のLi塩に応じて適宜選択する必要がある。すなわち、電解質としてLiPF、LiBFを使用する場合、オーステナイト系ステンレス、Ni、Al、Ti等の使用が可能となる。ただし、使用する負極活物質の動作電位に応じて、適宜選択する必要がある。負極活物質としてカーボン系やSi系を使用する場合において、電解質としてLiBFを使用した場合は、Cu以外のAl、Ni、Ti、オーステナイト系ステンレス等からなる集電体を使用することができる。負極活物質としてチタン酸リチウムやFe系の化合物を用いた場合は、Cuを含む上記材料の全てが適用可能である。一方、電解質としてLiPF使用時はAl、Ni及びTiが好ましく、オーステナイト系ステンレス及びCuは好ましくない。また、電解質としてLiTFSIや、LiBETI、やLiTFSを使用する場合、Ni、Ti、Al、Cu、オーステナイト系ステンレスの何れも使用することができる。
(Current collector for negative electrode)
The current collector for the negative electrode can be formed of a general-purpose conductive metal material, Cu, Al, Ni, Ti, austenitic stainless steel, or the like.
However, when a nitrile compound is used for the electrolytic solution (including combined use with other organic solvents), it is necessary to select appropriately according to the Li salt in the electrolytic solution. That is, when LiPF 6 or LiBF 4 is used as the electrolyte, austenitic stainless steel, Ni, Al, Ti, or the like can be used. However, it is necessary to select appropriately according to the operating potential of the negative electrode active material to be used. In the case of using carbon or Si as the negative electrode active material, when LiBF 4 is used as the electrolyte, a current collector made of Al, Ni, Ti, austenitic stainless or the like other than Cu can be used. In the case where lithium titanate or a Fe 2 O 3 based compound is used as the negative electrode active material, all of the above materials containing Cu are applicable. On the other hand, when LiPF 6 is used as the electrolyte, Al, Ni and Ti are preferable, and austenitic stainless steel and Cu are not preferable. In addition, when LiTFSI, LiBETI, or LiTFS is used as the electrolyte, any of Ni, Ti, Al, Cu, and austenitic stainless steel can be used.

(正極用電子伝導部材)
正極活物質には導電性の小さいものがある。従って、正極活物質と集電体との間に導電性の電子伝導部材を介在させて、両者の間に十分な電子伝導パスを確保することが好ましい。
(Electroconductive member for positive electrode)
Some positive electrode active materials have low electrical conductivity. Therefore, it is preferable to provide a sufficient electron conduction path between the positive electrode active material and the current collector by interposing a conductive electron conduction member.

ここで電子伝導部材は正極活物質と集電体との間に電子伝導パスを形成できればその形態は特に限定されるものではなく、例えばアセチレンブラック等のカーボンブラック、グラファイト粉、ダイヤモンドライクカーボン、グラッシーカーボン等の導電性粉体(導電助剤)を用いることができる。ダイヤモンドライクカーボン及びグラッシーカーボンは、カーボンブラックやグラファイトよりもはるかに広い電位窓を有しており、高電位を付与した場合の耐食性に優れているため、好適に用いることができる。また、これらの導電助剤に金属微粒子が担持されていることも好ましい。金属微粒子としては、例えばPt、Au、Ni等が挙げられる。これらは、単独で用いても良いし、これらの合金であっても良い。   Here, the form of the electron conducting member is not particularly limited as long as an electron conducting path can be formed between the positive electrode active material and the current collector. For example, carbon black such as acetylene black, graphite powder, diamond-like carbon, glassy Conductive powder (conductive aid) such as carbon can be used. Diamond-like carbon and glassy carbon have a much wider potential window than carbon black and graphite, and are excellent in corrosion resistance when a high potential is applied, and therefore can be suitably used. Moreover, it is also preferable that metal fine particles are supported on these conductive assistants. Examples of the metal fine particles include Pt, Au, Ni and the like. These may be used alone or an alloy thereof.

また、正極活物質からなる粒子に、乾式めっき法によって導電性ダイヤモンドライクカーボンを付着させてもよい。こうであれば、導電性ダイヤモンドライクカーボンが導電助剤の役割を果たし、二次電池用正極のために必要な特性である電子伝導性が付与される。さらに、導電性ダイヤモンドライクカーボンは電位窓が広くて高い電位に対する耐久性に優れているため、高い電位で充電反応が行われる、エネルギー密度の高い正極活物質を有効に活用することができる。   Further, conductive diamond-like carbon may be attached to the particles made of the positive electrode active material by a dry plating method. In this case, the conductive diamond-like carbon plays the role of a conductive auxiliary agent, and the electron conductivity that is a characteristic necessary for the positive electrode for the secondary battery is imparted. Furthermore, since conductive diamond-like carbon has a wide potential window and is excellent in durability against a high potential, a positive electrode active material having a high energy density in which a charging reaction is performed at a high potential can be effectively used.

電子伝導材料として、正極活物質を被覆する導電性皮膜(DLC膜等)、正極活物質を埋入させた導電性薄膜(金の薄膜等)を用いることができる。
特に、LiNiPOF系の正極活物質はそれ自身の及び/又はその表面皮膜の導電性が小さいので、これを集電体へ単に担持させてなるものではリチウムイオン電池の正極として機能しない場合がある。LiNiPOF系の正極活物質の性能評価のために、これを金等の導電薄膜へハンマー等で物理的に打ち込み、電池の正極を形成することができる。
ここにLiNiPOF系正極活物質とはLiNiPOF及びこれへ適宜ドーパントをドープしたものを指す。
As the electron conductive material, a conductive film (such as a DLC film) covering the positive electrode active material or a conductive thin film (such as a gold thin film) in which the positive electrode active material is embedded can be used.
In particular, since the Li 2 NiPO 4 F-based positive electrode active material has low conductivity of its own and / or its surface coating, it does not function as a positive electrode of a lithium ion battery if it is simply supported on a current collector. There is a case. In order to evaluate the performance of the Li 2 NiPO 4 F-based positive electrode active material, it can be physically driven into a conductive thin film such as gold with a hammer or the like to form the positive electrode of the battery.
Here, the Li 2 NiPO 4 F-based positive electrode active material refers to Li 2 NiPO 4 F and a material appropriately doped with dopant.

(負極用電子伝導部材)
正極用電子伝導部材と同様な物を用いることができる。
(Electroconductive member for negative electrode)
The thing similar to the electron conductive member for positive electrodes can be used.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

リチウムイオン電池に用いた電池ケースの断面図である。It is sectional drawing of the battery case used for the lithium ion battery. リチウムイオン電池の断面図であるである。It is sectional drawing of a lithium ion battery. 電解液1を用いたリチウムイオン電池の充放電特性を示すグラフである。2 is a graph showing charge / discharge characteristics of a lithium ion battery using an electrolytic solution 1. 電解液2を用いたリチウムイオン電池の充放電特性を示すグラフである。4 is a graph showing charge / discharge characteristics of a lithium ion battery using an electrolytic solution 2. 電解液1を用いたリチウムイオン電池の充放電特性を示すグラフである。2 is a graph showing charge / discharge characteristics of a lithium ion battery using an electrolytic solution 1. 電解液1の電位−電流曲線である(作用極:グラッシーカーボン電極)。It is the electric potential-current curve of the electrolyte solution 1 (working electrode: glassy carbon electrode). 電解液2の電位−電流曲線である(作用極:グラッシーカーボン電極)。It is the electric potential-current curve of the electrolyte solution 2 (working electrode: glassy carbon electrode). 電解液1及び電解液3のを用いたリチウムイオン電池の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the lithium ion battery using the electrolyte solution 1 and the electrolyte solution 3. FIG. 電解液1及び電解液3の電位−電流曲線である(作用極:グラッシーカーボン電極)。It is the electric potential-current curve of the electrolyte solution 1 and the electrolyte solution 3 (working electrode: glassy carbon electrode).

Claims (4)

Li1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1以下の数を示す)を正極活物質とする二次電池用正極と、二次電池用負極と、評価対象の電解液とを備えた二次電池を組み立て、
該二次電池の定電圧充電後の放電特性を測定することにより該電解液の評価を行うことを特徴とする電解液の評価方法。
Li 1-x FePO 4 (However, part of Fe may be substituted with one or more of Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti, and Zr. , X represents a number of 0 or more and 1 or less), and a secondary battery including a positive electrode for a secondary battery having a positive electrode active material, a negative electrode for a secondary battery, and an electrolyte to be evaluated,
An evaluation method of an electrolytic solution, wherein the electrolytic solution is evaluated by measuring discharge characteristics after constant voltage charging of the secondary battery.
Na1−xFePO(ただし、Feの一部はCo、Ni、Mn、Fe、Mg、Cu、Cr、V、Li、Nb、Ti及びZrのうちの1種以上で置換されていてもよく、xは0以上1未満の数を示す)を正極活物質とする二次電池用正極と、二次電池用負極と、評価対象の電解液とを備えた二次電池を組み立て、
該二次電池の定電圧充電後の放電特性を測定することにより該電解液の評価を行うことを特徴とする電解液の評価方法。
Na 1-x FePO 4 (However, part of Fe may be substituted with one or more of Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti, and Zr. , X represents a number from 0 to less than 1), and a secondary battery comprising a positive electrode for a secondary battery having a positive electrode active material, a negative electrode for a secondary battery, and an electrolyte to be evaluated,
An evaluation method of an electrolytic solution, wherein the electrolytic solution is evaluated by measuring discharge characteristics after constant voltage charging of the secondary battery.
前記二次電池用正極には導電助剤としてグラッシーカーボン及び/又は導電性ダイヤモンドライクカーボンが含まれていることを特徴とする請求項1又は2に記載の電解液の評価方法。   The method for evaluating an electrolytic solution according to claim 1, wherein the positive electrode for a secondary battery contains glassy carbon and / or conductive diamond-like carbon as a conductive auxiliary agent. 前記正極活物質がグラッシーカーボン及び/又は導電性ダイヤモンドライクカーボンによって包囲されていることを特徴とする請求項1乃至3のいずれか1項に記載の二次電池用電解液の評価方法。   4. The method for evaluating an electrolyte solution for a secondary battery according to claim 1, wherein the positive electrode active material is surrounded by glassy carbon and / or conductive diamond-like carbon. 5.
JP2010071159A 2009-08-28 2010-03-26 Evaluation method of electrolyte for secondary battery Pending JP2011181486A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010071159A JP2011181486A (en) 2009-08-28 2010-03-26 Evaluation method of electrolyte for secondary battery
PCT/JP2010/064339 WO2011024837A1 (en) 2009-08-28 2010-08-25 Electrolyte for lithium-ion cell
CN201080038112.6A CN102576906B (en) 2009-08-28 2010-08-25 electrolyte for lithium ion battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009199088 2009-08-28
JP2009199088 2009-08-28
JP2010024973 2010-02-08
JP2010024973 2010-02-08
JP2010071159A JP2011181486A (en) 2009-08-28 2010-03-26 Evaluation method of electrolyte for secondary battery

Publications (1)

Publication Number Publication Date
JP2011181486A true JP2011181486A (en) 2011-09-15

Family

ID=44692765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071159A Pending JP2011181486A (en) 2009-08-28 2010-03-26 Evaluation method of electrolyte for secondary battery

Country Status (1)

Country Link
JP (1) JP2011181486A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203816A (en) * 2013-04-10 2014-10-27 株式会社豊田自動織機 Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
JP2015037039A (en) * 2013-08-13 2015-02-23 トヨタ自動車株式会社 Negative electrode active material for sodium ion battery, sodium ion battery, and method for producing negative electrode active material for sodium ion battery
WO2016151890A1 (en) * 2015-03-24 2016-09-29 太平洋セメント株式会社 Secondary battery positive electrode active material and method for producing same
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203816A (en) * 2013-04-10 2014-10-27 株式会社豊田自動織機 Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
US9583765B2 (en) 2013-04-10 2017-02-28 Kabushiki Kaisha Toyota Jidoshokki Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
JP2015037039A (en) * 2013-08-13 2015-02-23 トヨタ自動車株式会社 Negative electrode active material for sodium ion battery, sodium ion battery, and method for producing negative electrode active material for sodium ion battery
WO2016151890A1 (en) * 2015-03-24 2016-09-29 太平洋セメント株式会社 Secondary battery positive electrode active material and method for producing same
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same

Similar Documents

Publication Publication Date Title
JP5668913B2 (en) Lithium ion battery
JP5672464B2 (en) Secondary battery and manufacturing method thereof
JP5163466B2 (en) Life estimation method and deterioration suppression method of lithium secondary battery, life estimation device and deterioration suppressor, battery pack and charger using the same
JP5985486B2 (en) Electrochemical cell based on lithium technology with internal reference electrode, method for its production, and method for simultaneously monitoring the voltage or impedance of its anode and cathode
WO2011024837A1 (en) Electrolyte for lithium-ion cell
WO2010053200A1 (en) Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
JP2011210693A (en) Positive electrode for secondary battery
JP2014241304A (en) Current collector for secondary battery
JP2011049126A (en) Anode active material for sodium ion battery, and sodium ion battery in which the same is used
JP5779286B2 (en) Positive electrode active material and lithium ion battery using the same
JP2011165392A (en) Positive electrode active material, manufacturing method of positive electrode active material, and alkaline metal ion battery
JP2011071083A (en) Lithium ion battery
JP5445148B2 (en) Secondary battery and charging method thereof
KR20190009252A (en) Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
JP2011181486A (en) Evaluation method of electrolyte for secondary battery
JP2015008154A (en) Battery case
JP5560736B2 (en) Fuel cell
JP5359823B2 (en) Positive electrode active material and secondary battery using the same
JP2010186734A (en) Positive electrode for secondary battery, and secondary battery
JP2015046307A (en) Secondary battery
JP5988223B2 (en) Sodium ion battery
JP2011070773A (en) Electrode for lithium ion battery
JP2019061825A (en) Lithium ion secondary battery
JP5445151B2 (en) Secondary battery and charging method thereof
KR102576486B1 (en) Electrolytes and Electrochemical Devices