WO2016151740A1 - レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 - Google Patents
レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 Download PDFInfo
- Publication number
- WO2016151740A1 WO2016151740A1 PCT/JP2015/058784 JP2015058784W WO2016151740A1 WO 2016151740 A1 WO2016151740 A1 WO 2016151740A1 JP 2015058784 W JP2015058784 W JP 2015058784W WO 2016151740 A1 WO2016151740 A1 WO 2016151740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- heating
- heating control
- optical system
- laser light
- Prior art date
Links
- 238000004093 laser heating Methods 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims description 21
- 238000000465 moulding Methods 0.000 title abstract 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 71
- 230000003287 optical effect Effects 0.000 claims abstract description 68
- 239000013307 optical fiber Substances 0.000 claims abstract description 23
- 238000002844 melting Methods 0.000 claims description 27
- 230000008018 melting Effects 0.000 claims description 27
- 238000010586 diagram Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 230000010365 information processing Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/354—Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/60—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to a laser heating technique for preheating or afterheating in a three-dimensional modeling apparatus.
- Patent Document 1 discloses a technique in which laser light is converted into parallel light by a collimating lens, and then condensed by a lens for adjusting a focal position and irradiated with a photocurable resin to perform optical modeling. Is disclosed.
- Patent Document 2 one laser beam is divided into a high energy laser beam and a low energy laser by different convex lenses, the high energy laser beam is used for melting metal powder, and the low energy laser beam is used as a metal. Techniques used for preheating or afterheating powder are disclosed.
- Patent Document 1 when the technique described in Patent Document 1 is applied to adjustment of the irradiation range of laser light necessary for preheating and afterheating, adjustment of a collimating lens and a focal position adjusting lens is necessary. Is bad. Moreover, in the technique disclosed in Patent Document 2, adjustment of preheating, melting, and afterheating is integrated, and appropriate preheating and afterheating cannot be adjusted with a simple operation.
- An object of the present invention is to provide a technique for solving the above-described problems.
- the mechanism according to the present invention includes: A laser heating control mechanism for preheating or afterheating a heating object, An optical fiber that transmits laser light and emits it from the end face of the opening; A collimating optical system for condensing the laser light emitted from the opening end face onto a heating object; An irradiation range adjustment mechanism that adjusts the distance between the opening end face and the collimating optical system along the irradiation axis of the laser light so that the laser light is irradiated on the object to be heated with a predetermined beam diameter; Is provided.
- a three-dimensional modeling apparatus includes: It has the laser heating control mechanism described above.
- the method according to the present invention comprises: An optical fiber that transmits laser light and emits the laser light from the opening end face; and a collimating optical system that focuses the laser light emitted from the opening end face on the heating object, and preheats the heating object or A laser heating control method in a laser heating mechanism for post-heating, An irradiation range adjusting step of adjusting a distance between the opening end surface and the collimating optical system along the irradiation axis of the laser light so that the laser light is irradiated on the object to be heated with a predetermined beam diameter; A condensing position adjusting step of adjusting a condensing position of the laser beam on the heating object by a reflecting mirror between the collimating optical system and the heating object; including.
- a program provides: An optical fiber that transmits laser light and emits the laser light from the opening end face; and a collimating optical system that focuses the laser light emitted from the opening end face on the heating object, and preheats the heating object or A laser heating control program in a laser heating mechanism for post-heating, An irradiation range adjusting step of adjusting a distance between the opening end surface and the collimating optical system along the irradiation axis of the laser light so that the laser light is irradiated on the object to be heated with a predetermined beam diameter; A condensing position adjusting step of adjusting a condensing position of the laser beam on the heating object by a reflecting mirror between the collimating optical system and the heating object; Is executed on the computer.
- a laser heating control mechanism 100 as a first embodiment of the present invention will be described with reference to FIG.
- the laser heating control mechanism 100 is a mechanism for pre-heating or after-heating the object to be heated.
- the laser heating control mechanism 100 includes an optical fiber 101, a collimating optical system 102, and an irradiation range adjustment mechanism 103.
- the optical fiber 101 transmits laser light and emits it from the opening end face 101a.
- the collimating optical system 102 condenses the laser light emitted from the opening end surface 101a on the heating object 110.
- the irradiation range adjustment mechanism 103 adjusts the distance D between the opening end surface 101a and the collimating optical system 102 along the irradiation axis of the laser beam so that the laser beam irradiates the heating target 110 with a predetermined beam diameter. .
- the beam diameter of the laser beam on the heating object is controlled by one collimating optical system in the three-dimensional modeling, it is possible to perform appropriate preheating and afterheating adjustment with a simple operation. .
- the laser heating control mechanism according to the present embodiment performs preheating by moving the position of one collimating optical system composed of a plurality of lenses so as to adjust the distance from the opening end face of an optical fiber that transmits laser light.
- the beam diameter on the surface of the object to be heated after heating is controlled.
- a fixed reflecting mirror and a movable reflecting mirror are provided between the collimating optical system and the surface of the heating object, and the beam position is controlled by adjusting the rotational position of the movable reflecting mirror.
- the desired beam diameter is secured by shaking the beam with a movable reflecting mirror.
- the intensity of the laser beam is controlled in consideration of the material of the heating object, the modeled object, the lamination thickness, the beam diameter, the scanning speed, and the like.
- FIG. 2 is a diagram showing a configuration of the preheating or postheating laser heating control mechanism 200 according to the present embodiment.
- the preheating or postheating laser heating control mechanism 200 according to the present embodiment is provided separately from the melting laser heating control mechanism in a three-dimensional modeling apparatus that generates a three-dimensional structure while melting a material with laser light. Control mechanism for preheating or afterheating.
- a laser beam oscillator is not shown in FIG. 2, the laser beam to be oscillated is a preheating laser beam or a postheating laser beam whose energy is lower than that of the melting laser beam for melting the object to be heated. It is.
- the preheating or postheating laser heating control mechanism 200 includes an optical fiber 201, a collimating optical system 202, a fixed reflecting mirror 203, a first movable reflecting mirror 204, and a second movable reflecting mirror 205.
- the optical fiber 201 transmits the laser light oscillated from the laser light oscillator and radiates it to the collimating optical system 202 from the opening end face.
- the collimating optical system 202 collimates the laser light emitted from the opening end face of the optical fiber 201.
- the fixed reflecting mirror 203 reflects the direction of the laser light collimated by the collimating optical system 202 from the vertical direction to the horizontal direction.
- the first movable reflecting mirror 204 and the second movable reflecting mirror 205 reflect the laser beam in the horizontal direction from the fixed reflecting mirror 203 toward the preheating or postheating position associated with the melting position of the heating object 210.
- the preheating or postheating laser heating control mechanism 200 collects the laser light at the preheating or postheating position of the heating object 210, the position of the collimating optical system 202, the first movable reflecting mirror 204, and A laser heating control unit 220 that adjusts the angle of the second movable reflecting mirror 205 is provided.
- the laser heating control unit 220 may be controlled by software, may be configured by hardware, or may be a one-chip IC controlled by a microprogram.
- the laser heating control unit 220 controls the collimating optical system driving unit 230 to move the collimating optical system 202 and adjust the distance from the opening end surface of the optical fiber 201, thereby preheating or postheating on the heating object 210.
- the beam diameter of the laser beam is set.
- the laser heating control unit 220 controls the first movable reflector driving unit 240 to rotate the first movable reflector 204 and moves the beam position of the laser light on the heating object 210 in the horizontal direction in FIG. By doing this, the beam position of the preheated or postheated laser light on the heating object 210 is set.
- the laser heating control unit 220 controls the second movable reflecting mirror driving unit 250 to rotate the second movable reflecting mirror 205 so that the beam position of the laser light on the heating target 210 is the front of the drawing in FIG. By moving in the direction, the beam position of the preheated or postheated laser light on the heating object 210 is set.
- the collimating optical system 202 is composed of three lenses, but is not limited to this. It may be realized by one lens or may be realized by another number of lenses.
- FIG. 3B is a diagram for explaining the principle of the laser heating control mechanism according to the base technology.
- a predetermined beam diameter is set from laser light by two optical systems.
- the two optical systems are a collimating optical system 302 for generating parallel light from a laser beam having a numerical aperture (Numerical Aperture: NA) radiated from the opening end face of the optical fiber 301, and a condensing light for condensing the parallel light.
- NA numerical aperture
- the ratio of the core diameter c of the opening end face of the optical fiber 301 to the spot diameter d is the distance Lf1 from the opening end face of the optical fiber 301 to the collimating optical system 302. This is the same as the ratio to the distance Lf2 from the condensing optical system 303 to the spot position.
- FIG. 3A is a view for explaining the principle of the preheating or postheating laser heating control mechanism 200 according to this embodiment.
- a predetermined beam diameter is set from laser light by one optical system.
- One optical system is a collimating optical system 202 for generating light to be collected from laser light having NA emitted from the opening end face of the optical fiber 201.
- the beam diameter d on the heating object 210 can be adjusted by adjusting the distance D from the opening end face of the optical fiber 201 to the collimating optical system 202. . That is, in the present embodiment, the beam diameter d on the heating object 210 is not a complicated adjustment of the spot diameter, but the heating object 210 is arranged at a predetermined position where the beam diameter of the focused laser beam is ( This is realized by changing the condensing distance of the laser light at the position of the collimating optical system 202).
- FIG. 4 is a diagram for explaining the beam diameter on the heating object according to the present embodiment.
- the beam diameter is enlarged when the laser beam condensing position is lengthened, and the beam diameter is reduced when the laser light condensing position is shortened.
- the minor axis (beat width) of the beam diameter is adjusted to 1 mm to 4 mm, but is not limited to this.
- the major axis direction of the beam diameter is expanded to 10 mm or 20 mm, it is realized by finely shaking the movable reflecting mirrors 204 and 205.
- FIG. 3A the relationship between the distance D from the opening end face of the optical fiber 201 to the collimating optical system 202 and the beam diameter d on the heating object 210 is shown by specific numerical values.
- FIG. 5A is a diagram showing a configuration of the laser heating assembly 510 according to the present embodiment.
- the laser heating assembly 510 includes a melting laser heating control mechanism 511 and the preheating or postheating laser heating control mechanism 200 of the present embodiment.
- the preheating or postheating laser heating control mechanism 200 of the present embodiment has a beam diameter based on the spot position of the laser beam melted by the melting laser heating control mechanism 511, the material of the heating object 210, the scanning speed, and the like. Set the beam position and execute adjustment.
- FIG. 5B is a diagram illustrating a configuration of a three-dimensional modeling apparatus 500 including the laser heating assembly 510 according to the present embodiment.
- the same reference number is attached
- the three-dimensional modeling apparatus 500 includes a laser heating assembly 510 including the preheating or postheating laser heating control mechanism 200 of the present embodiment, a recoater as the material supply control mechanism 520, and a model support base that descends in units of stacking thickness.
- a control mechanism 530 includes a laser heating assembly 510 including the preheating or postheating laser heating control mechanism 200 of the present embodiment, a recoater as the material supply control mechanism 520, and a model support base that descends in units of stacking thickness.
- the three-dimensional structure 542 is formed by melting and bonding the material to be a three-dimensional structure in a stack thickness unit.
- FIG. 5B shows a three-dimensional structure 541 being stacked.
- preheating is performed in order to increase the forming speed and prevent problems caused by rapid heating.
- post-heating is performed in order to prevent problems caused by rapid cooling after heating.
- the configuration of the three-dimensional modeling apparatus having the preheating or postheating laser heating control mechanism 200 of the present embodiment is not limited to FIG. 5B.
- FIG. 6A is a block diagram illustrating a configuration of a three-dimensional modeling system 600 including a three-dimensional modeling apparatus 500 according to the present embodiment. Components similar to those in FIGS. 5A and 5B are denoted by the same reference numerals, and description thereof is omitted.
- the three-dimensional modeling system 600 includes a three-dimensional modeling apparatus 500 having the preheating or post-heating laser heating control mechanism 200 of the present embodiment, and an information processing apparatus 610 that generates additive modeling data for additive modeling of the three-dimensional modeling model. .
- the information processing apparatus 610 includes a communication control unit 611, a layered modeling data generation unit 612, a display unit 613, an operation unit 614, and a three-dimensional modeling model acquisition unit 615.
- the communication control unit 611 controls communication with the 3D modeling apparatus 500 or another apparatus.
- the additive manufacturing data generation unit 612 generates additive manufacturing data for the additive manufacturing of the three-dimensional modeling apparatus 500 from the data of the three-dimensional modeling model acquired by the three-dimensional modeling model acquisition unit 615.
- the display unit 613 generates and displays the 3D modeling model, the layered modeling state, and the like acquired by the 3D modeling model acquisition unit 615 in the virtual space. In addition, a processing menu is displayed.
- the operation unit 614 inputs an instruction such as acquisition of the data of the three-dimensional modeling model by the user, a generation unit of the layered modeling data, or parameters to be used.
- the 3D modeling model acquisition unit 615 acquires the data of the 3D modeling model from the storage medium or from another device via the communication control unit 611.
- the 3D modeling apparatus 500 includes a modeling control unit 601 and a layered modeling unit 602.
- the modeling control unit 601 receives the layered modeling data of the three-dimensional modeling model from the information processing device 610, controls the layered modeling unit 602, and layer-models the three-dimensional modeled object.
- the layered modeling unit 602 includes a material supply control mechanism 520, a laser heating control mechanism 511 for melting, a preheating or postheating laser heating control mechanism 200 of the present embodiment, and a model support support control mechanism 530.
- the pre-heating or post-heating laser heating control mechanism 200 includes a laser heating control unit 220, a collimating optical system 202 as an irradiation range adjusting mechanism, and movable reflecting mirrors 204 and 205 as a condensing position adjusting mechanism. And having.
- the data of the three-dimensional modeling model is generated outside, but may be generated by the information processing device 610. Further, the information processing apparatus 610 may be incorporated in the three-dimensional modeling apparatus 500.
- FIG. 6B is a block diagram illustrating a configuration of the laser heating control unit 220 according to the present embodiment.
- Laser heating control unit 220 may be realized by software, hardware, or a one-chip IC executed by a microprogram.
- the laser heating control unit 220 includes a laser light intensity control unit 621, a laser drive driver 622, a collimating optical system position control unit 623, a position control driver 624, a reflector angle control unit 625, an angle control driver 626, An angle control driver 627.
- the laser light intensity control unit 621 controls the intensity of the laser oscillated from the laser oscillator.
- strength of a laser is set based on the material of the heating target object which carries out layered modeling, lamination
- the laser drive driver 622 is a driver that drives the laser oscillator with the intensity set by the laser light intensity control unit 621.
- the collimating optical system position control unit 623 controls the position of the collimating optical system for generating the beam diameter of the laser beam corresponding to the target irradiation area on the heating target.
- the beam diameter of the laser beam is set based on the irradiation area and beat width by the melting laser heating control mechanism 511, the material of the heating object, the stacking thickness, the scanning speed, and the like. Note that the beam diameter of the laser light is usually set to be slightly wider than the beat width by the melting laser heating control mechanism 511.
- the position control driver 624 is a driver that moves the collimating optical system 202 to the position set by the collimating optical system position control unit 623.
- the reflector angle control unit 625 controls the target irradiation position of preheating or postheating on the object to be heated corresponding to the irradiation position by the laser heating control mechanism 511 for melting.
- the target irradiation position of preheating or postheating is set based on the material of the heating object to be layered, the layer thickness, the scanning speed, and the like in addition to the irradiation position by the laser heating control mechanism 511 for melting.
- the angle control driver 626 is a driver for setting the first movable reflecting mirror 204 to an angle set by the reflecting mirror angle control unit 625.
- the angle control driver 627 is a driver for setting the second movable reflecting mirror 205 to an angle set by the reflecting mirror angle control unit 625.
- the arrow to each control part is a feedback signal when performing the food back control. This is not necessary if food back control is not used.
- each control unit of the laser heating control unit 220 is illustrated as not being connected to the outside, but a higher-level control unit, for example, the modeling control unit 601 performs integrated control. May be.
- the change of the vertical distance from the object to be heated by the melting laser heating control mechanism 511 is not mentioned.
- the collimating optical system position control unit 623 and the reflector angle control unit 625 are accompanied by the change of the vertical position. Requires further control.
- FIG. 7A is a diagram illustrating a configuration of data used by the laser heating control unit 220 according to the present embodiment.
- FIG. 7A is a target value setting table 710 used by each control unit in FIG. 6B to set a target value.
- the target value 714 of the laser beam for melting and the target value 715 of the laser beam for preheating or postheating are stored based on the target layered object 711, the layered material 712, the layer thickness 713, and the like.
- the melting laser beam target value 714 includes the beam diameter, scanning speed, laser beam intensity, and the like.
- the target value 715 of the preheating or postheating laser beam includes the beam diameter, beam position, laser beam intensity, and the like.
- the target value of each control unit may be calculated or calculated in advance and stored in a table and read.
- FIG. 7B is a diagram illustrating a configuration of data used by the laser heating control unit 220 according to the present embodiment.
- the data in FIG. 7B is used to determine parameters that realize each target value in FIG. 7A.
- a beam diameter related parameter 720, a beam position related parameter 730, and a laser light intensity related parameter 740 are shown. Show.
- the beam diameter related parameter 720 stores the distance 722 between the fiber end face and the collimating optical system for realizing the target beam diameter 721 and the collimating optical system position parameter 723 used for setting the distance 722. For the range that cannot be covered by the collimating optical system position parameter 723, the amplitude parameter 724 by the movable reflector is stored.
- the beam position related parameter 730 stores an angle parameter 732 of the first movable reflector and an angle parameter 733 of the second movable reflector for realizing the target beam position 731.
- the laser beam intensity related parameter 740 stores a laser drive parameter 742 for realizing the target laser beam intensity 741.
- the parameters of each driver may be calculated by calculation or may be calculated in advance and stored in a table and read.
- FIG. 8 is a flowchart showing a processing procedure of the laser heating control unit 220 according to the present embodiment.
- the laser heating control program shown in this flowchart is executed by a CPU (Central Processing Unit) of the laser heating control unit 220 in FIG. 6B using a memory to realize the functional configuration unit in FIG. 6B.
- CPU Central Processing Unit
- Laser heating control unit 220 acquires a target value for preheating or afterheating in step S801.
- the laser heating control unit 220 calculates (or reads) the beam diameter and the beam position of the laser light based on the acquired preheating or postheating target value.
- the laser heating control unit 220 executes collimator optical system position setting processing. If necessary, the amplitude of the movable reflecting mirror may be set.
- the laser heating control unit 220 executes the angle setting process of the movable reflecting mirror. When the feedback process is not performed, the setting process of the laser heating control unit 220 ends.
- the laser heating control unit 220 determines whether or not the target value is set in step S809. If not set to the target value, the laser heating control unit 220 returns to step S805 and repeats the setting process. If it is set to the target value, the setting process of the laser heating control unit 220 ends.
- the beam diameter of the laser light on the heating object is controlled by one collimating optical system, and the beam position is controlled by a possible reflector, so that appropriate preheating and postheating can be performed with a simple operation. Can be adjusted.
- a heating target to be preheated or postheated by moving the position of one collimating optical system composed of a plurality of lenses so as to adjust the distance from the opening end face of the optical fiber that transmits the laser light. Since the beam diameter on the surface of the object is controlled, an appropriate beam diameter can be created with a simple operation.
- a fixed reflecting mirror and a movable reflecting mirror are provided between the collimating optical system and the surface of the object to be heated, and the beam position is controlled by adjusting the rotational position of the movable reflecting mirror. It is possible to set the correct beam position.
- the desired beam diameter is ensured by shaking the beam with the movable reflecting mirror, so that various beam diameters can be made with a simple operation.
- the intensity of the laser beam is controlled in consideration of the material to be heated, the object to be heated, the layer thickness, the beam diameter, the scanning speed, etc., so that more accurate preheating and postheating adjustments can be made with simple operations. can do.
- the laser heating assembly according to this embodiment is different from the second embodiment in that the positional relationship between the laser heating mechanism for melting and the laser heating mechanism for preheating or postheating is reversed. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 9 is a diagram showing the configuration of the laser heating assembly 910 according to this embodiment.
- the same reference number is attached
- FIG. 9 shows only the positional relationship between the configuration of FIG. 5A of the second embodiment and the laser heating control mechanism for melting 511 and the laser heating control mechanism for preheating or postheating 200 is reversed. It is the same.
- the positional relationship between the melting laser heating mechanism and the preheating or postheating laser heating mechanism is not limited to the positional relationship shown in FIG.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
加熱対象物を予熱または後熱ためのレーザ加熱制御機構であって、
レーザ光を伝送して開口端面から放射する光ファイバと、
前記開口端面から放射された前記レーザ光を加熱対象物上に集光するコリメート光学系と、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整機構と、
を備える。
上記記載のレーザ加熱制御機構を有する。
レーザ光を伝送して開口端面から放射する光ファイバと、前記開口端面から放射された前記レーザ光を、加熱対象物上に集光するコリメート光学系と、を備え、加熱対象物を予熱するまたは後熱するためのレーザ加熱機構におけるレーザ加熱制御方法であって、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整ステップと、
前記コリメート光学系と前記加熱対象物との間にある反射鏡によって、前記レーザ光の前記加熱対象物上の集光位置を調整する集光位置調整ステップと、
を含む。
レーザ光を伝送して開口端面から放射する光ファイバと、前記開口端面から放射された前記レーザ光を、加熱対象物上に集光するコリメート光学系と、を備え、加熱対象物を予熱するまたは後熱するためのレーザ加熱機構におけるレーザ加熱制御プログラムであって、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整ステップと、
前記コリメート光学系と前記加熱対象物との間にある反射鏡によって、前記レーザ光の前記加熱対象物上の集光位置を調整する集光位置調整ステップと、
をコンピュータに実行させる。
本発明の第1実施形態としてのレーザ加熱制御機構100について、図1を用いて説明する。レーザ加熱制御機構100は、加熱対象物を予熱または後熱するための機構である。
次に、本発明の第2実施形態に係るレーザ加熱制御機構とそれを使用する3次元造形装置について説明する。本実施形態に係るレーザ加熱制御機構は、複数レンズで構成された1つのコリメート光学系の位置を、レーザ光を伝送する光ファイバの開口端面との距離を調整するように移動することによって、予熱または後熱する加熱対象物の表面におけるビーム径を制御する。また、コリメート光学系と加熱対象物の表面との間に、固定反射鏡と可動反射鏡を設け、可動反射鏡の回転位置を調整することにより、ビーム位置を制御する。また、ビーム径が所望の径に満たない場合は、可動反射鏡によりビームを振ることで所望のビーム径を確保する。さらに、加熱対象物の材料や造形物、積層厚さ、ビーム径や走査速度などを考慮して、レーザ光の強度を制御する。
(構成)
図2は、本実施形態に係る予熱用または後熱用レーザ加熱制御機構200の構成を示す図である。本実施形態に係る予熱用または後熱用レーザ加熱制御機構200は、レーザ光で材料を溶融しながら3次元造形物を生成する3次元造形装置において、溶融用レーザ加熱制御機構とは別に設けた予熱または後熱用の制御機構である。なお、図2には、レーザ光発振器は図示されていないが、発振されるレーザ光は、加熱対象物を溶融する溶融用レーザ光よりもエネルギーが低い、予熱用レーザ光または後熱用レーザ光である。
図3Aを参照して、本実施形態における1つのコリメート光学系によるレーザ光のビーム径の設定を説明する前に、従来から行なわれてきたレーザ光のビーム径を設定する前提技術を説明する。
図3Aは、本実施形態に係る予熱用または後熱用レーザ加熱制御機構200の原理を説明する図である。図3Aにおいては、1つの光学系によってレーザ光から所定のビーム径を設定する。1つの光学系は、光ファイバ201の開口端面から放射されたNAを有するレーザ光から集光する光を生成するためのコリメート光学系202である。
図4は、本実施形態に係る加熱対象物上のビーム径を説明する図である。図4のように、レーザ光の集光位置を長くすればビーム径が拡大し、レーザ光の集光位置を短くすればビーム径が縮小する。本実施形態においては、ビーム径の短径(ビート幅)を1mm~4mmで調整するが、これに限定されない。後述するが、ビーム径の長径方向を10mmや20mmに拡大する場合には、可動反射鏡204,205を細かく振ることによって実現する。
・照射スポット(楕円)の短径近似値
ds = (L12+L22)1/2
・途中算出数値
L1 = c×m
L2 = D×{m×(m-1)}×2×a/m, D = z-z0
・変数・変数
z …ピント調整ステージの座標値[mm]
z0 …ピント調整ステージの基準座標[mm]
m = 4.7 …光学系倍率
a = 0.1 …ファイバ出射NA(1/e2)
c = 0.2 …ファイバコア径
図5Aは、本実施形態に係るレーザ加熱アッセンブリ510の構成を示す図である。なお、図5Aにおいて、図2と同様の構成要素には同じ参照番号を付して、説明は省略する。また、図5Aの構成は一例であり、この構成に限定されない。
図5Bは、本実施形態に係るレーザ加熱アッセンブリ510を有する3次元造形装置500の構成を示す図である。なお、図5Aと同様の構成要素には同じ参照番号を付して、説明は省略する。
図6Aは、本実施形態に係る3次元造形装置500を含む3次元造形システム600の構成を示すブロック図である。なお、図5Aおよび図5Bと同様の構成要素には同じ参照番号を付して、説明は省略する。
図6Bは、本実施形態に係るレーザ加熱制御部220の構成を示すブロック図である。なお、レーザ加熱制御部220は、ソフトウェアで実現されるものであっても、ハードウェアで実現されるものであっても、マイクロプログラムで実行される1チップICで実現されてもよい。
図7Aは、本実施形態に係るレーザ加熱制御部220が使用するデータの構成を示す図である。図7Aは、図6Bの各制御部が目標値を設定するために使用される目標値設定テーブル710である。
図8は、本実施形態に係るレーザ加熱制御部220の処理手順を示すフローチャートである。このフローチャートで示したレーザ加熱制御プログラムは、図6Bのレーザ加熱制御部220のCPU(Central Processing Unit)がメモリを使用して実行し、図6Bの機能構成部を実現する。
次に、本発明の第3実施形態に係るレーザ加熱アッセンブリについて説明する。本実施形態に係るレーザ加熱アッセンブリは、上記第2実施形態と比べると、溶融用レーザ加熱機構と予熱または後熱用レーザ加熱機構との位置関係が逆である点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
図9は、本実施形態に係るレーザ加熱アッセンブリ910の構成を示す図である。なお、図5Aと同様の構成要素には同じ参照番号を付して、説明を省略する。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
Claims (7)
- 加熱対象物を予熱または後熱ためのレーザ加熱制御機構であって、
レーザ光を伝送して開口端面から放射する光ファイバと、
前記開口端面から放射された前記レーザ光を加熱対象物上に集光するコリメート光学系と、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整機構と、
を備えるレーザ加熱制御機構。 - 前記照射範囲調整機構は、固定された前記開口端面に対して、前記コリメート光学系の位置を調整する、請求項1に記載のレーザ加熱制御機構。
- 前記レーザ光は、前記加熱対象物を溶融する溶融用レーザ光よりもエネルギーが低い、予熱用レーザ光または後熱用レーザ光である、請求項1または2に記載のレーザ加熱制御機構。
- 前記コリメート光学系と前記加熱対象物との間にあって、前記レーザ光の前記加熱対象物上の集光位置を調整する集光位置調整機構、をさらに備える請求項1乃至3のいずれか1項に記載のレーザ加熱制御機構。
- 請求項1乃至4のいずれか1項に記載のレーザ加熱制御機構と、
前記加熱対象物を溶融するための溶融用レーザ加熱制御機構と、を有する3次元造形装置。 - レーザ光を伝送して開口端面から放射する光ファイバと、前記開口端面から放射された前記レーザ光を、加熱対象物上に集光するコリメート光学系と、を備え、加熱対象物を予熱するまたは後熱するためのレーザ加熱機構におけるレーザ加熱制御方法であって、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整ステップと、
前記コリメート光学系と前記加熱対象物との間にある反射鏡によって、前記レーザ光の前記加熱対象物上の集光位置を調整する集光位置調整ステップと、
を含むレーザ加熱制御方法。 - レーザ光を伝送して開口端面から放射する光ファイバと、前記開口端面から放射された前記レーザ光を、加熱対象物上に集光するコリメート光学系と、を備え、加熱対象物を予熱するまたは後熱するためのレーザ加熱機構におけるレーザ加熱制御プログラムであって、
前記レーザ光が前記加熱対象物上を所定のビーム径で照射するように、前記レーザ光の照射軸に沿った、前記開口端面と前記コリメート光学系との距離を調整する照射範囲調整ステップと、
前記コリメート光学系と前記加熱対象物との間にある反射鏡によって、前記レーザ光の前記加熱対象物上の集光位置を調整する集光位置調整ステップと、
をコンピュータに実行させるレーザ加熱制御プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015549114A JP6170175B2 (ja) | 2015-03-23 | 2015-03-23 | レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 |
US14/908,417 US20170036299A1 (en) | 2015-03-23 | 2015-03-23 | Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional shaping apparatus |
EP15812930.4A EP3153273A4 (en) | 2015-03-23 | 2015-03-23 | Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device |
PCT/JP2015/058784 WO2016151740A1 (ja) | 2015-03-23 | 2015-03-23 | レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/058784 WO2016151740A1 (ja) | 2015-03-23 | 2015-03-23 | レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016151740A1 true WO2016151740A1 (ja) | 2016-09-29 |
Family
ID=56979104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058784 WO2016151740A1 (ja) | 2015-03-23 | 2015-03-23 | レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170036299A1 (ja) |
EP (1) | EP3153273A4 (ja) |
JP (1) | JP6170175B2 (ja) |
WO (1) | WO2016151740A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213082A1 (ja) * | 2016-06-07 | 2017-12-14 | 三菱重工業株式会社 | 選択型ビーム積層造形装置及び選択型ビーム積層造形方法 |
CN108453261A (zh) * | 2018-06-21 | 2018-08-28 | 西安增材制造国家研究院有限公司 | 一种具有预热和缓冷功能的激光增材制造的装置 |
JP2019039064A (ja) * | 2017-08-25 | 2019-03-14 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 3次元の物体を付加製造する装置 |
JP2019142147A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社リコー | 造形装置、造形方法および造形システム |
JP2019142148A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社リコー | 造形装置、造形方法および造形システム |
WO2019189623A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
WO2019188914A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
JP2020073288A (ja) * | 2017-03-09 | 2020-05-14 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 三次元的な物体を付加的に製造するための方法 |
KR20200092498A (ko) * | 2019-01-11 | 2020-08-04 | 울산대학교 산학협력단 | 펀치금형 고강도소재 적층장치 및 방법 |
CN112024875A (zh) * | 2020-08-18 | 2020-12-04 | 清华大学 | 一种粉末床同步加热熔化增材制造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10618131B2 (en) | 2014-06-05 | 2020-04-14 | Nlight, Inc. | Laser patterning skew correction |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
JP6785858B2 (ja) | 2015-11-23 | 2020-11-18 | エヌライト,インコーポレーテッド | レーザ加工のための微細スケールでの時間的制御 |
DE112017002948T5 (de) * | 2016-06-13 | 2019-03-07 | Dmg Mori Co., Ltd. | Systeme und verfahren zur temperaturregelung in einem additiven fertigungsverfahren |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
WO2018063452A1 (en) | 2016-09-29 | 2018-04-05 | Nlight, Inc. | Adjustable beam characteristics |
EP3607389B1 (en) | 2017-04-04 | 2023-06-07 | Nlight, Inc. | Optical fiducial generation for galvanometric scanner calibration |
EP3810404A4 (en) * | 2018-05-09 | 2022-02-09 | Applied Materials, Inc. | ADDITIVE MANUFACTURING WITH A POLYGON SCANNER |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09182983A (ja) * | 1995-12-30 | 1997-07-15 | Kawasaki Heavy Ind Ltd | レーザ溶接用照射器 |
JPH10128854A (ja) | 1996-10-25 | 1998-05-19 | Mitsui Chem Inc | 光造形方法および装置 |
JP2000301376A (ja) * | 1999-04-05 | 2000-10-31 | General Electric Co <Ge> | 溶接ビードの熱処理方法 |
JP2002069507A (ja) | 2000-09-01 | 2002-03-08 | Hitachi Ltd | 金属物品の製造方法及びその装置並びにレーザ光集光装置 |
JP2007181840A (ja) * | 2005-12-29 | 2007-07-19 | Daihen Corp | レーザ照射アーク溶接ヘッド |
US20080173386A1 (en) * | 2006-08-12 | 2008-07-24 | Daniel Clark | Method of forming a component on a substrate |
JP2009148781A (ja) * | 2007-12-19 | 2009-07-09 | Mazda Motor Corp | レーザ溶接方法 |
JP2009208093A (ja) * | 2008-02-29 | 2009-09-17 | Sunx Ltd | レーザマーキング装置 |
JP2009226473A (ja) * | 2008-03-25 | 2009-10-08 | Amada Co Ltd | ファイバレーザ加工機における集光直径の変換制御方法及びその装置 |
JP2010214393A (ja) * | 2009-03-13 | 2010-09-30 | Nissan Motor Co Ltd | レーザー溶接装置 |
JP2012091217A (ja) * | 2010-10-28 | 2012-05-17 | Mitsubishi Heavy Ind Ltd | レーザ加工装置及びレーザビーム調整方法 |
WO2014061438A1 (ja) * | 2012-10-18 | 2014-04-24 | 住友電気工業株式会社 | レーザ加工方法およびレーザ光照射装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60251138A (ja) * | 1984-05-28 | 1985-12-11 | Hoya Corp | ガラスの切断方法 |
US7436423B2 (en) * | 2005-05-23 | 2008-10-14 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method of making a grayscale photo mask and an optical grayscale element |
JP5266647B2 (ja) * | 2006-03-23 | 2013-08-21 | 日産自動車株式会社 | レーザ溶接装置およびその調整方法 |
GB2453945A (en) * | 2007-10-23 | 2009-04-29 | Rolls Royce Plc | Apparatus for Additive Manufacture Welding |
JP5983613B2 (ja) * | 2011-08-31 | 2016-09-06 | 住友電気工業株式会社 | コリメータ装置及びレーザ光源 |
JP6163384B2 (ja) * | 2013-08-19 | 2017-07-12 | 日立Geニュークリア・エナジー株式会社 | レーザ溶接装置、原子力プラントの炉内構造物の保全方法及びレーザ加工装置 |
-
2015
- 2015-03-23 US US14/908,417 patent/US20170036299A1/en not_active Abandoned
- 2015-03-23 WO PCT/JP2015/058784 patent/WO2016151740A1/ja active Application Filing
- 2015-03-23 JP JP2015549114A patent/JP6170175B2/ja active Active
- 2015-03-23 EP EP15812930.4A patent/EP3153273A4/en not_active Withdrawn
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09182983A (ja) * | 1995-12-30 | 1997-07-15 | Kawasaki Heavy Ind Ltd | レーザ溶接用照射器 |
JPH10128854A (ja) | 1996-10-25 | 1998-05-19 | Mitsui Chem Inc | 光造形方法および装置 |
JP2000301376A (ja) * | 1999-04-05 | 2000-10-31 | General Electric Co <Ge> | 溶接ビードの熱処理方法 |
JP2002069507A (ja) | 2000-09-01 | 2002-03-08 | Hitachi Ltd | 金属物品の製造方法及びその装置並びにレーザ光集光装置 |
JP2007181840A (ja) * | 2005-12-29 | 2007-07-19 | Daihen Corp | レーザ照射アーク溶接ヘッド |
US20080173386A1 (en) * | 2006-08-12 | 2008-07-24 | Daniel Clark | Method of forming a component on a substrate |
JP2009148781A (ja) * | 2007-12-19 | 2009-07-09 | Mazda Motor Corp | レーザ溶接方法 |
JP2009208093A (ja) * | 2008-02-29 | 2009-09-17 | Sunx Ltd | レーザマーキング装置 |
JP2009226473A (ja) * | 2008-03-25 | 2009-10-08 | Amada Co Ltd | ファイバレーザ加工機における集光直径の変換制御方法及びその装置 |
JP2010214393A (ja) * | 2009-03-13 | 2010-09-30 | Nissan Motor Co Ltd | レーザー溶接装置 |
JP2012091217A (ja) * | 2010-10-28 | 2012-05-17 | Mitsubishi Heavy Ind Ltd | レーザ加工装置及びレーザビーム調整方法 |
WO2014061438A1 (ja) * | 2012-10-18 | 2014-04-24 | 住友電気工業株式会社 | レーザ加工方法およびレーザ光照射装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213082A1 (ja) * | 2016-06-07 | 2017-12-14 | 三菱重工業株式会社 | 選択型ビーム積層造形装置及び選択型ビーム積層造形方法 |
JP2020073288A (ja) * | 2017-03-09 | 2020-05-14 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 三次元的な物体を付加的に製造するための方法 |
JP2019039064A (ja) * | 2017-08-25 | 2019-03-14 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 3次元の物体を付加製造する装置 |
US11383441B2 (en) | 2017-08-25 | 2022-07-12 | Concept Laser Gmbh | Apparatus for additively manufacturing of three-dimensional objects |
JP7122794B2 (ja) | 2018-02-22 | 2022-08-22 | エス.ラボ株式会社 | 造形装置、造形方法および造形システム |
JP2019142147A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社リコー | 造形装置、造形方法および造形システム |
JP2019142148A (ja) * | 2018-02-22 | 2019-08-29 | 株式会社リコー | 造形装置、造形方法および造形システム |
JP7058140B2 (ja) | 2018-02-22 | 2022-04-21 | エス.ラボ株式会社 | 造形装置、造形方法および造形システム |
JP2019178408A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
JP2019178410A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
WO2019188914A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
WO2019189623A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
CN108453261A (zh) * | 2018-06-21 | 2018-08-28 | 西安增材制造国家研究院有限公司 | 一种具有预热和缓冷功能的激光增材制造的装置 |
CN108453261B (zh) * | 2018-06-21 | 2023-08-15 | 北京万维增材科技有限公司 | 一种具有预热和缓冷功能的激光增材制造的装置 |
KR20200092498A (ko) * | 2019-01-11 | 2020-08-04 | 울산대학교 산학협력단 | 펀치금형 고강도소재 적층장치 및 방법 |
KR102162916B1 (ko) | 2019-01-11 | 2020-10-07 | 울산대학교 산학협력단 | 펀치금형 고강도소재 적층장치 및 방법 |
CN112024875A (zh) * | 2020-08-18 | 2020-12-04 | 清华大学 | 一种粉末床同步加热熔化增材制造方法 |
CN112024875B (zh) * | 2020-08-18 | 2021-05-07 | 清华大学 | 一种粉末床同步加热熔化增材制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3153273A4 (en) | 2018-05-23 |
US20170036299A1 (en) | 2017-02-09 |
EP3153273A1 (en) | 2017-04-12 |
JPWO2016151740A1 (ja) | 2017-04-27 |
JP6170175B2 (ja) | 2017-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6170175B2 (ja) | レーザ加熱制御機構、レーザ加熱制御方法、レーザ加熱制御プログラムおよび3次元造形装置 | |
JP6771076B2 (ja) | 三次元の部材の生成的な製造の為の装置 | |
JP5018076B2 (ja) | 光造形装置及び光造形方法 | |
JP4957242B2 (ja) | 光造形装置 | |
TWI659821B (zh) | 具有改良的光學單元之立體平版印刷機 | |
JP5023975B2 (ja) | 光造形装置及び光造形方法 | |
CN102084282B (zh) | 控制激光束焦斑尺寸的方法和设备 | |
CN105301768B (zh) | 振镜式激光扫描系统 | |
EP3743233B1 (en) | Systems and methods for dynamic shaping of laser beam profiles for control of micro-structures in additively manufactured metals | |
JP2009113294A (ja) | 光造形装置及び光造形方法 | |
JP5062838B2 (ja) | レーザマーキング装置 | |
JP6785264B2 (ja) | 3次元の物体を付加製造する装置用の照射デバイス | |
US20180193956A1 (en) | Systems and methods for additive manufacturing in-build assessment and correction of laser pointing accuracy | |
CN110696356A (zh) | 一种投影式3d打印机 | |
JP2009083240A (ja) | 光造形装置 | |
US11325299B2 (en) | Additive manufacturing via optical aperture division multiplexing | |
JP2008162189A (ja) | 光造形装置 | |
TW202135965A (zh) | 雷射加工裝置和雷射加工工件的方法 | |
JP5921343B2 (ja) | レーザ照射装置 | |
JP2008012538A5 (ja) | ||
CN210553104U (zh) | 一种光加热固化装置 | |
JP2020105055A (ja) | ガラスの曲げ加工方法および加工装置 | |
JP2020066193A (ja) | 3次元造形装置、3次元造形装置の制御方法および3次元造形装置の制御プログラム | |
JP6667068B2 (ja) | 画像表示装置 | |
JP7221107B2 (ja) | 三次元造形物の製造装置及び三次元造形物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015549114 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015812930 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015812930 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14908417 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15812930 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |