WO2016151733A1 - Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device - Google Patents

Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device Download PDF

Info

Publication number
WO2016151733A1
WO2016151733A1 PCT/JP2015/058767 JP2015058767W WO2016151733A1 WO 2016151733 A1 WO2016151733 A1 WO 2016151733A1 JP 2015058767 W JP2015058767 W JP 2015058767W WO 2016151733 A1 WO2016151733 A1 WO 2016151733A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
sealing
semiconductor element
semiconductor device
Prior art date
Application number
PCT/JP2015/058767
Other languages
French (fr)
Japanese (ja)
Inventor
関 秀俊
慎吾 伊藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020177023577A priority Critical patent/KR102264524B1/en
Priority to PCT/JP2015/058767 priority patent/WO2016151733A1/en
Priority to CN201580078021.8A priority patent/CN107429040B/en
Publication of WO2016151733A1 publication Critical patent/WO2016151733A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a sealing resin composition, a semiconductor device, and a method for manufacturing a semiconductor device.
  • Patent Document 1 describes an epoxy resin composition for semiconductor encapsulation containing a biphenyl type epoxy resin having a hydrolyzable chlorine content of 10 to 20 ppm.
  • a semiconductor device formed by sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component with a cured product of a sealing resin composition is required to improve its reliability. It has been.
  • Condition 1 A cured product obtained by thermally curing the sealing resin composition under the conditions of 175 ° C. for 4 hours to obtain a pulverized product. Next, 150 ° C. for 8 hours with respect to the pulverized product.
  • the gas generated when the heat treatment is performed under the conditions of hydrogen peroxide is collected by a hydrogen peroxide solution, and the sulfur extraction amount W 1 for the whole sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. calculate)
  • a semiconductor element A bonding wire connected to the semiconductor element and containing Cu as a main component; A sealing resin that is composed of a cured product of the above-described sealing resin composition and seals the semiconductor element and the bonding wire; A semiconductor device is provided.
  • a method for manufacturing a semiconductor device comprising a step of sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component with the above-described sealing resin composition.
  • the reliability of the semiconductor device can be improved.
  • FIG. 1 is a cross-sectional view showing a semiconductor device 100 according to this embodiment.
  • the sealing resin composition according to this embodiment is a sealing resin composition used for sealing a semiconductor element and a bonding wire that is connected to the semiconductor element and contains Cu as a main component. And an epoxy resin (A) and a curing agent (B). Further, sealing resin composition, when the sulfur extraction amount to the whole resin composition for sealing which is calculated by the following conditions 1 was W 1, W 1 is less than 0.55ppm than 0.04 ppm.
  • Condition 1 The cured product obtained by thermally curing the resin composition for sealing under conditions of 175 ° C. for 4 hours is pulverized to obtain a pulverized product.
  • the pulverized product is subjected to 150 ° C. for 8 hours.
  • the gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 1 for the entire sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution.
  • the present inventor has found that the reliability of a semiconductor device can be improved by adjusting the amount of sulfur extracted in a sealing resin composition extracted under conditions of 150 ° C. and 8 hours, and this embodiment It came to the resin composition for sealing concerning.
  • examples of the reliability of the semiconductor device include reflow resistance and high-temperature storage characteristics. That is, according to the present embodiment, based on the above knowledge, the sealing is performed so that the sulfur extraction amount W 1 with respect to the entire sealing resin composition calculated by the condition 1 is 0.04 ppm or more and 0.55 ppm or less.
  • the resin composition can be adjusted. This makes it possible to improve the reliability of a semiconductor device in which a semiconductor element and a bonding wire containing Cu as a main component are sealed with a cured product of the sealing resin composition.
  • the semiconductor device 100 including the sealing resin composition according to the present embodiment and the sealing resin 50 constituted by a cured product of the sealing resin composition will be described in detail.
  • the sealing resin composition is used for sealing a semiconductor element and a bonding wire that is connected to the semiconductor element and contains Cu as a main component.
  • a semiconductor package is formed by sealing a semiconductor element and a bonding wire with a sealing resin composed of a cured product of the sealing resin composition is exemplified.
  • the semiconductor element is mounted, for example, on a base material such as a die pad or an organic substrate constituting the lead frame, or on another semiconductor element. At this time, the semiconductor element is electrically connected to the outer lead, the organic substrate, or another semiconductor element constituting the lead frame via the bonding wire.
  • a bonding wire is comprised with the metal material which has Cu as a main component. Examples of such a metal material include a metal material made of Cu alone, or an alloy material containing Cu as a main component and other metals.
  • the bonding wire is connected to, for example, an electrode pad provided on the semiconductor element.
  • the electrode pad of the semiconductor element is made of, for example, a metal material whose surface is mainly Al.
  • Encapsulating resin composition when the sulfur extraction amount to the whole resin composition for sealing which is calculated by the following conditions 1 was W 1, W 1 is less than 0.55ppm than 0.04 ppm.
  • Condition 1 The cured product obtained by thermally curing the resin composition for sealing under conditions of 175 ° C. for 4 hours is pulverized to obtain a pulverized product. Next, the pulverized product is subjected to 150 ° C. for 8 hours. The gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 1 for the entire sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution.
  • ppm is a unit of sulfur extraction amount W 1 represents a mass fraction. The same applies to the sulfur extraction amount W 2 described later.
  • the present inventor has found that there is a correlation between the amount of sulfur extracted from the sealing resin composition extracted under low temperature conditions of 150 ° C. and 8 hours and the reliability of the semiconductor device.
  • the present embodiment has been made on the basis of such knowledge, and by adjusting the sulfur extraction amount W 1 , a semiconductor device that suppresses a phenomenon that induces a defect, for example, a change in a bonding wire or an electrode surface. It is to improve the reliability.
  • examples of the reliability of the semiconductor device include reflow resistance, high temperature storage characteristics, moisture resistance reliability, and high temperature operation characteristics.
  • the adhesion to the chip can be improved. Therefore, it is possible to realize a semiconductor device that is excellent in reflow resistance, moisture resistance reliability, and high-temperature operability.
  • sulfur extraction amount W 1 and less 0.55 ppm it is possible to improve the high-temperature storage characteristics of the semiconductor device.
  • this high temperature storage characteristic for example, maintenance of connection reliability under high temperature conditions for a connection portion between a bonding wire mainly composed of Cu and a semiconductor element can be mentioned.
  • the sulfur extraction amount W 1 is more preferably 0.1 ppm or more and 0.55 ppm or less, and 0.2 ppm or more and 0 It is particularly preferably 5 ppm or less.
  • the sealing resin composition has W 2 / W 1 of 120 or less, for example, when the sulfur extraction amount for the entire sealing resin composition calculated under the following condition 2 is W 2 .
  • Condition 2 A cured product obtained by thermally curing the sealing resin composition under the condition of 175 ° C. for 4 hours is pulverized to obtain a pulverized product. Next, the pulverized product is subjected to 175 ° C. for 8 hours. The gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 2 for the whole sealing resin composition is calculated from the sulfate ion amount in the hydrogen peroxide solution. )
  • W 2 / W 1 which is the ratio of the sulfur extraction amount W 2 in the sealing resin composition extracted under a high temperature condition of 175 ° C. and 8 hours to the sulfur extraction amount W 1 , is responsible for the occurrence of the above-mentioned defects. It is considered that there is a correlation with the phenomenon that turns to the occurrence of defects after the phenomenon.
  • the reliability of the semiconductor device can be improved by adjusting W 2 / W 1 based on such knowledge.
  • W 2 / W 1 by setting W 2 / W 1 to 120 or less, the high-temperature storage characteristics can be improved more effectively.
  • this high temperature storage characteristic for example, maintenance of connection reliability under high temperature conditions for a connection portion between a bonding wire mainly composed of Cu and a semiconductor element can be mentioned.
  • W 2 / W 1 is more preferably 95 or less, and particularly preferably 90 or less. Further, the lower limit value of W 2 / W 1 is not particularly limited, but can be, for example, 10 or more.
  • the sulfur extraction amount W 2 to the whole resin composition for sealing which is calculated by the condition 2, for example, is preferably 3ppm than 65ppm or less, and more preferably 5ppm or 60ppm or less.
  • Sulfur extraction amount W 2 by the above-described upper limit or less it becomes possible to more effectively improve the high-temperature storage characteristics of the semiconductor device.
  • the adhesion with respect to can be further improved. For this reason, it becomes possible to improve the reliability of semiconductor devices, such as reflow resistance, moisture-proof reliability, and high temperature operability, more effectively.
  • the sulfur extraction amount W 1 and the sulfur extraction amount W 2 are for evaluating the reliability of the semiconductor device by using an index different from the sulfur content contained in the sealing resin composition.
  • Such sulfur extraction amount W 1 and sulfur extraction amount W 2 for example the type and content of each component included in the encapsulating resin composition, and appropriately adjusting the preparation method and the like of the sealing resin composition It is possible to control by this.
  • the preparation method of this resin composition for sealing the surface treatment by the coupling agent (D) with respect to the inorganic filler (C) mentioned later is mentioned.
  • the sealing resin composition contains an epoxy resin (A) and a curing agent (B). Thereby, it becomes possible to form sealing resin for sealing a bonding wire and a semiconductor element using the sealing resin composition.
  • epoxy resin (A) As the epoxy resin (A), monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • the epoxy resin (A) for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin; stilbene type epoxy resin; Novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins; polyfunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton; Aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a biphenylene skeleton; dihydroxynaphthalene-type epoxy resin, dihydroxynaphthalene
  • aralkyl type epoxy resins biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol type epoxy resins such as tetramethylbisphenol F type epoxy resins, and stilbene type epoxy resins have crystallinity. It is preferable to have it.
  • the epoxy resin (A) is selected from the group consisting of an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), and an epoxy resin represented by the following formula (3). It is particularly preferable to use a material containing at least one kind.
  • Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the ⁇ -position or the ⁇ -position.
  • Ar 2 is a phenylene group.
  • R 5 and R 6 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5 and h represents a group selected from the group consisting of a biphenylene group and a naphthylene group. Is an integer from 0 to 8.
  • n 3 represents the degree of polymerization, and the average value is from 1 to 3.
  • a plurality of R 9 s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • N 5 represents a degree of polymerization, and an average value thereof is 0 to 4)
  • a plurality of R 10 and R 11 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • N 6 represents a degree of polymerization, and an average value thereof is 0 to 4)
  • the content of the epoxy resin (A) in the sealing resin composition is not particularly limited.
  • the content is preferably 1% by mass or more and 50% by mass or less with respect to the entire sealing resin composition.
  • the content is more preferably no less than 30% by mass and no greater than 30% by mass, and particularly preferably no less than 5% by mass and no greater than 20% by mass.
  • the curing agent (B) contained in the encapsulating resin composition can be roughly classified into three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
  • Examples of the polyaddition type curing agent used in the curing agent (B) include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), In addition to aromatic polyamines such as m-phenylenediamine (MPDA) and diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride ( Acid anhydrides including alicyclic acid anhydrides such as MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .; novolac type Phenol resins, phenol resin-based curing agent such as polyviny
  • Examples of the catalyst-type curing agent used in the curing agent (B) include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); Examples thereof include imidazole compounds such as imidazole and 2-ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complex.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • Examples thereof include imidazole compounds such as imidazole and 2-ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complex.
  • condensation type curing agent used for the curing agent (B) examples include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
  • a phenol resin-based curing agent is preferable from the viewpoint of improving the balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, and the like.
  • the phenol resin-based curing agent monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • novolac resins such as phenol novolac resin, cresol novolac resin, and bisphenol novolac
  • polyvinylphenol polyfunctional phenol resins such as triphenolmethane phenol resin
  • curing agent (B) it is particularly preferable to use at least one curing agent selected from the group consisting of compounds represented by the following formula (4).
  • Ar 3 represents a phenylene group or a naphthylene group, and when Ar 3 is a naphthylene group, the hydroxyl group may be bonded to either the ⁇ -position or the ⁇ -position.
  • Ar 4 represents a phenylene group, R 7 and R 8 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, i is an integer of 0 to 5, and j is a biphenylene group or a naphthylene group. (It is an integer of 0 to 8. n 4 represents the degree of polymerization, and the average value is 1 to 3.)
  • curing agent (B) in the resin composition for sealing is not specifically limited, For example, it is preferable that they are 2 mass% or more and 15 mass% or less with respect to the whole resin composition for sealing.
  • the content is more preferably no less than 13% by mass and no greater than 13% by mass, and particularly preferably no less than 4% by mass and no greater than 11% by mass.
  • the resin composition for sealing can further contain a filler (C), for example.
  • a filler (C) those used in general epoxy resin compositions for semiconductor encapsulation can be used.
  • fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, nitriding Examples include inorganic fillers such as silicon, and organic fillers such as organosilicone powder and polyethylene powder. Of these, it is particularly preferable to use fused spherical silica. These fillers may be used alone or in combination of two or more.
  • the shape of the filler (C) is not particularly limited, but from the viewpoint of increasing the filler content while suppressing an increase in the melt viscosity of the sealing resin composition, the shape of the filler (C) is as spherical as possible.
  • the distribution is preferably broad.
  • the content of the filler (C) in the encapsulating resin composition is not particularly limited, but is preferably 35% by mass or more and 95% by mass or less, for example, with respect to the entire encapsulating resin composition. More preferably, it is more than mass% and below 93 mass%, and it is especially preferable that they are 65 mass% or more and 90 mass% or less.
  • the content of the filler (C) not more than the above upper limit value, a decrease in moldability accompanying a decrease in fluidity of the encapsulating resin composition, a bonding wire flow resulting from the increase in viscosity, etc. It becomes possible to suppress.
  • the filler (C) can be subjected to a surface treatment using the coupling agent (D).
  • the coupling agent (D) include epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, methacryl silane and other various silane compounds, titanium compounds, aluminum chelates, aluminum / zirconium compounds, and the like.
  • a known coupling agent can be used.
  • Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, or vinyl silane are more preferable. From the viewpoint of improving the reliability of the semiconductor device such as reflow resistance, it is particularly preferable to use mercaptosilane.
  • the surface treatment with the coupling agent (D) for the filler (C) can be performed, for example, as follows. First, after the filler (C) is charged into the mixer, stirring is started, and then the coupling agent (D) is further charged and stirred for 1 to 5 minutes. The filler (C) and the coupling agent A mixture of (D) is obtained. The mixture is then removed from the mixer and left to stand. The standing time can be appropriately selected and can be, for example, 3 minutes to 1 hour. Thereby, the filler (C) surface-treated with the coupling agent (D) is obtained. Moreover, you may heat-process with respect to the filler (C) after a leaving process. The heat treatment can be performed, for example, under conditions of 30 to 80 ° C.
  • the filler (C) is stirred by spraying the coupling agent (D) with a sprayer onto the filler (C) in the mixer. And a mixture of coupling agents (D) may be obtained.
  • the sprayer for example, a device that can spray fine droplets equipped with a two-fluid nozzle or the like can be used.
  • the surface of the filler (C) is preferably treated more uniformly with the coupling agent.
  • the sulfur extraction amounts W 1 and W 2 can be controlled by adjusting the surface treatment conditions. Examples of the surface treatment conditions include presence / absence of use of a nebulizer, standing time, presence / absence of heat treatment, and heat treatment conditions.
  • the coupling agent (D) is added directly to the mixer and mixed with other components, in addition to the case where it is included in the sealing resin composition by performing the above surface treatment on the filler (C). By doing so, it may be contained in the sealing resin composition.
  • the content of the coupling agent (D) in the encapsulating resin composition is not particularly limited. For example, it may be 0.05% by mass or more and 2% by mass or less with respect to the entire encapsulating resin composition. Preferably, it is more preferably 0.1% by mass or more and 1% by mass or less, and particularly preferably 0.15% by mass or more and 0.5% by mass or less.
  • content of a coupling agent (D) more than the said lower limit, the dispersibility of the filler (C) in the resin composition for sealing can be made favorable. For this reason, it becomes possible to improve moisture resistance reliability, reflow resistance, etc. more effectively.
  • content of a coupling agent (D) below the said upper limit the fluidity
  • the resin composition for sealing can further contain, for example, an ion scavenger (E).
  • the ion scavenger (E) is not particularly limited, and examples thereof include inorganic ion exchangers such as hydrotalcites and polyvalent metal acid salts. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, it is particularly preferable to use hydrotalcites from the viewpoint of improving high-temperature storage characteristics.
  • the content of the ion scavenger (E) in the sealing resin composition is not particularly limited. For example, it may be 0.05% by mass or more and 1% by mass or less with respect to the entire sealing resin composition. Preferably, it is more preferably 0.1% by mass or more and 0.8% by mass or less, and particularly preferably 0.15% by mass or more and 0.5% by mass or less.
  • the content of the ion scavenger (E) is not particularly limited. For example, it may be 0.05% by mass or more and 1% by mass or less with respect to the entire sealing resin composition. Preferably, it is more preferably 0.1% by mass or more and 0.8% by mass or less, and particularly preferably 0.15% by mass or more and 0.5% by mass or less.
  • the resin composition for sealing can further contain, for example, a curing accelerator (F).
  • the curing accelerator (F) may be any one that promotes the crosslinking reaction between the epoxy group of the epoxy resin (A) and the curing agent (B) (for example, the phenolic hydroxyl group of the phenol resin curing agent) What is used for the general epoxy resin composition for semiconductor sealing can be used.
  • Examples of the curing accelerator (F) include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; Amidines and tertiary amines exemplified by 8-diazabicyclo (5,4,0) undecene-7, benzyldimethylamine, 2-methylimidazole and the like, and nitrogen atom-containing compounds such as amidines and quaternary salts of amines, etc. These may be used alone or in combination of two or more.
  • the content of the curing accelerator (F) is preferably 0.05% by mass or more and 1% by mass or less, and 0.1% by mass or more and 0.8% by mass or less with respect to the entire sealing resin composition. It is more preferable that By making content of a hardening accelerator (F) more than the said lower limit, it can suppress that sclerosis
  • the sealing resin composition may further include a colorant such as carbon black or bengara; a low stress component such as silicone rubber; a natural wax such as carnauba wax; a synthetic wax; a higher fatty acid such as zinc stearate; Release agents such as metal salts or paraffins; flame retardants such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and various additives such as antioxidants may be appropriately blended.
  • a colorant such as carbon black or bengara
  • a low stress component such as silicone rubber
  • a natural wax such as carnauba wax
  • a synthetic wax a higher fatty acid such as zinc stearate
  • Release agents such as metal salts or paraffins
  • flame retardants such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and various additives such as antioxidants may be appropriately blended.
  • the above-mentioned components are mixed by a known means, melt-kneaded with a kneader such as a roll, a kneader or an extruder, cooled and pulverized, as necessary. Can be used as long as the degree of dispersion and fluidity are adjusted.
  • the semiconductor device 100 includes a semiconductor element 20, a bonding wire 40, and a sealing resin 50.
  • the bonding wire 40 is connected to the semiconductor element 20 and contains Cu as a main component.
  • the sealing resin 50 is made of a cured product of the above-described sealing resin composition, and seals the semiconductor element 20 and the bonding wire 40.
  • the semiconductor element 20 is mounted on the base material 30.
  • the base material 30 is, for example, a lead frame or an organic substrate.
  • the base material 30 is connected to the bonding wire 40.
  • FIG. 2 illustrates a case where the semiconductor element 20 is mounted on the die pad 32 of the base material 30 that is a lead frame via the die attach material 10.
  • the base material 30 which is a lead frame is made of, for example, a metal material whose main component is Cu or 42 alloy.
  • the semiconductor element 20 may be disposed on another semiconductor element.
  • a plurality of electrode pads 22 are formed on the upper surface of the semiconductor element 20.
  • At least the surface layer of the electrode pad 22 provided in the semiconductor element 20 is made of, for example, a metal material mainly composed of Al.
  • the connection reliability of the bonding wire 40 which has Cu as a main component, and the electrode pad 22 can be improved.
  • FIG. 2 a case where the bonding wire 40 electrically connects the electrode pad 22 of the semiconductor element 20 and the outer lead 34 of the base material 30 is illustrated.
  • the sealing resin 50 is composed of a cured product of the above-described sealing resin composition. For this reason, the adhesiveness with respect to the base material 30 and the bonding wire 40 is favorable, and the semiconductor device 100 excellent in reflow resistance, moisture resistance reliability, and high-temperature operating characteristics can be obtained. This effect is particularly prominent when the bonding wire 40 is made of a metal material containing Cu as a main component and the substrate 30 is made of a metal material containing Cu or a 42 alloy as a main component. It is also possible to improve the high temperature storage characteristics of the semiconductor device 100.
  • the semiconductor device 100 is manufactured as follows, for example. First, the semiconductor element 20 is mounted on the base material 30. Next, the base material 30 and the semiconductor element 20 are connected to each other by a bonding wire 40 containing Cu as a main component. Next, the semiconductor element 20 and the bonding wire 40 are sealed with the above-described sealing resin composition. Although it does not specifically limit as a sealing molding method, For example, the transfer molding method or the compression molding method is mentioned. As a result, the semiconductor device 100 is manufactured.
  • sealing resin compositions were prepared as follows. First, the inorganic filler (C) was subjected to a surface treatment with a coupling agent (D) having a blending amount shown in Table 1. Then, according to the formulation shown in Table 1, each component was mixed at 15 to 28 ° C. using a mixer. Next, the obtained mixture was roll kneaded at 70 to 100 ° C. Next, the kneaded mixture was cooled and pulverized to obtain an epoxy resin composition. The details of each component in Table 1 are as follows. Moreover, the unit in Table 1 is mass%.
  • Epoxy resin Epoxy resin 1 phenol aralkyl type epoxy resin containing biphenylene skeleton (NC-3000P, manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin 2 biphenyl type epoxy resin (YX4000K, manufactured by Mitsubishi Chemical Corporation)
  • Hardener Curing Agent 1 Biphenylene skeleton-containing phenol aralkyl resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
  • Curing agent 2 Phenol aralkyl resin containing phenylene skeleton (XLC-4L, manufactured by Mitsui Chemicals, Inc.)
  • C Filler Filler 1: Silica (average particle size 26 ⁇ m, specific surface area 2.4 mm 2 / g)
  • Filler 2 Silica (SO-25R, manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m, specific surface area 6.0 mm 2 / g)
  • D Coupling agent ⁇ -
  • Curing accelerator 2 Compound represented by the following formula (6)
  • Example 1 the surface treatment with the coupling agent (D) on the inorganic filler (C) was performed as follows. First, the filler 1 and the filler 2 are charged into the mixer, and then the stirring is started. The coupling agent (D) is further charged therein and stirred for 3.0 minutes. 2 and a coupling agent (D) were obtained. Subsequently, this mixture was taken out from the mixer and allowed to stand for the time shown in Table 1 (the standing time in Table 1). Thereby, the filler (C) surface-treated with the coupling agent (D) was obtained. In Example 5, the mixture was allowed to stand, and then surface treatment was performed in the same manner as in Example 1 except that the mixture was heat-treated at 55 ° C.
  • Example 6 a surface treatment was performed in the same manner as in Example 1 except that a mixture of filler 1, filler 2 and coupling agent (D) was obtained as follows. First, filler 1 and filler 2 were put into a mixer and mixed. Then, while spraying the coupling agent onto the filler 1 and the filler 2 in the mixer using a sprayer, these are stirred for 3.0 minutes, and the filler 1, the filler 2 and the coupling agent (D) are stirred. A mixture of was obtained. Subsequently, this mixture was taken out from the mixer and allowed to stand for the time shown in Table 1 (the standing time in Table 1).
  • the sulfur extraction amount W 1 to the entire resin composition for encapsulation obtained was measured as follows. First, the cured product obtained by thermally curing the resin composition for sealing at 175 ° C. for 4 hours was pulverized to obtain a pulverized product. Next, the gas generated when the pulverized product was heat-treated at 150 ° C. for 8 hours was collected with hydrogen peroxide. Then, the sulfate ion amount of the hydrogen peroxide water, was calculated sulfur extraction amount W 1 to the entire sealing resin composition. The unit in Table 1 is ppm.
  • the sulfur extraction amount W 2 to the entire resin composition for encapsulation obtained was measured as follows. First, the cured product obtained by thermally curing the resin composition for sealing at 175 ° C. for 4 hours was pulverized to obtain a pulverized product. Next, the gas generated when the pulverized product was heat-treated at 175 ° C. for 8 hours was collected by hydrogen peroxide. Then, the sulfate ion amount of the hydrogen peroxide water, was calculated sulfur extraction amount W 2 for the entire sealing resin composition.
  • the unit in Table 1 is ppm.
  • Examples 1 to 12 and Comparative Examples 1 to 3 semiconductor devices were fabricated as follows.
  • the electrode pads of the TEG chip (hereinafter referred to as electrode pads) and the outer lead portions of the lead frame were wire-bonded at a wire pitch of 120 ⁇ m using bonding wires made of a metal material of 99.9% Cu.
  • the structure thus obtained was sealed using a sealing resin composition using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 10.0 MPa, and a curing time of 2 minutes, A semiconductor package was produced. Thereafter, the obtained semiconductor package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device.
  • the obtained semiconductor device was stored in an environment of 150 ° C., and the electrical resistance value between the electrode pad of the semiconductor chip and the bonding wire was measured every 24 hours. A semiconductor device was measured and its value increased by 20% with respect to the initial value. The case where no defect occurred even after storage for 2,000 hours was marked as ⁇ , the case where defect occurred between 1000 and 2000 hours, and the case where defect occurred within 1000 hours as x.
  • Examples 1 to 12 good results were obtained with respect to reflow resistance and high-temperature storage characteristics. Examples 1 to 6, 8, 10, and 12 exhibited more excellent high-temperature storage characteristics than Examples 7, 9, and 11.

Abstract

A resin composition for encapsulation which is for use in encapsulating a semiconductor element and bonding wires connected to the semiconductor element and comprising Cu as the main component, the resin composition having a value of W1 of 0.04-0.55 ppm, wherein W1 is the amount of extracted sulfur relative to the whole resin composition for encapsulation, W1 being calculated in accordance with condition 1. Condition 1: The resin composition for encapsulation is thermally cured under the conditions of 175ºC and 4 hours to obtain a cured object. The cured object is pulverized to obtain a powder. Subsequently, the powder is subjected to a heat treatment under the conditions of 150ºC and 8 hours to thereby generate a gas, which is collected with an aqueous hydrogen peroxide solution. Subsequently, the amount of extracted sulfur relative to the whole resin composition for encapsulation, W1, is calculated from the amount of sulfuric acid ions contained in the aqueous hydrogen peroxide solution.

Description

封止用樹脂組成物、半導体装置および半導体装置の製造方法Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
 本発明は、封止用樹脂組成物、半導体装置および半導体装置の製造方法に関する。 The present invention relates to a sealing resin composition, a semiconductor device, and a method for manufacturing a semiconductor device.
 ボンディングワイヤを備える半導体装置における信頼性向上のため、封止用樹脂組成物について様々な検討がなされている。このような技術としては、たとえば特許文献1に記載のものが挙げられる。 In order to improve the reliability of a semiconductor device provided with a bonding wire, various studies have been made on a sealing resin composition. As such a technique, for example, one described in Patent Document 1 can be cited.
 特許文献1には、加水分解性塩素量が10~20ppmのビフェニル型エポキシ樹脂を含有する半導体封止用エポキシ樹脂組成物が記載されている。 Patent Document 1 describes an epoxy resin composition for semiconductor encapsulation containing a biphenyl type epoxy resin having a hydrolyzable chlorine content of 10 to 20 ppm.
特開2013-67694号公報JP 2013-67694 A
 半導体素子と、半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を封止用樹脂組成物の硬化物により封止してなる半導体装置について、その信頼性を向上させることが求められている。 A semiconductor device formed by sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component with a cured product of a sealing resin composition is required to improve its reliability. It has been.
 本発明によれば、
 半導体素子と、前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を封止するために用いられる封止用樹脂組成物であって、
 エポキシ樹脂(A)と、
 硬化剤(B)と、
 を含み、
 条件1により算出される前記封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、Wが0.04ppm以上0.55ppm以下である封止用樹脂組成物が提供される。
(条件1:前記封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、前記粉砕物に対して150℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、前記過酸化水素水中の硫酸イオン量から、前記封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
According to the present invention,
A sealing resin composition used for sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component,
Epoxy resin (A),
A curing agent (B);
Including
Sulfur extraction amount to the whole the sealing resin composition is calculated by the condition 1 to the case of the W 1, sealing resin composition W 1 is less than 0.55ppm than 0.04ppm is provided.
(Condition 1: A cured product obtained by thermally curing the sealing resin composition under the conditions of 175 ° C. for 4 hours to obtain a pulverized product. Next, 150 ° C. for 8 hours with respect to the pulverized product. The gas generated when the heat treatment is performed under the conditions of hydrogen peroxide is collected by a hydrogen peroxide solution, and the sulfur extraction amount W 1 for the whole sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. calculate)
 また、本発明によれば、
 半導体素子と、
 前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、
 上述の封止用樹脂組成物の硬化物により構成され、かつ前記半導体素子と前記ボンディングワイヤを封止する封止樹脂と、
 を備える半導体装置が提供される。
Moreover, according to the present invention,
A semiconductor element;
A bonding wire connected to the semiconductor element and containing Cu as a main component;
A sealing resin that is composed of a cured product of the above-described sealing resin composition and seals the semiconductor element and the bonding wire;
A semiconductor device is provided.
 また、本発明によれば、
 半導体素子と、前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を上述の封止用樹脂組成物により封止する工程を備える半導体装置の製造方法が提供される。
Moreover, according to the present invention,
There is provided a method for manufacturing a semiconductor device, comprising a step of sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component with the above-described sealing resin composition.
 本発明によれば、半導体装置の信頼性を向上させることができる。 According to the present invention, the reliability of the semiconductor device can be improved.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on this embodiment.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、本実施形態に係る半導体装置100を示す断面図である。
 本実施形態に係る封止用樹脂組成物は、半導体素子と、半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を封止するために用いられる封止樹脂組成物であって、エポキシ樹脂(A)と、硬化剤(B)と、を含む。また、封止用樹脂組成物は、下記条件1により算出される封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、Wが0.04ppm以上0.55ppm以下である。
(条件1:封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、当該粉砕物に対して150℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、当該過酸化水素水中の硫酸イオン量から、封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
(First embodiment)
FIG. 1 is a cross-sectional view showing a semiconductor device 100 according to this embodiment.
The sealing resin composition according to this embodiment is a sealing resin composition used for sealing a semiconductor element and a bonding wire that is connected to the semiconductor element and contains Cu as a main component. And an epoxy resin (A) and a curing agent (B). Further, sealing resin composition, when the sulfur extraction amount to the whole resin composition for sealing which is calculated by the following conditions 1 was W 1, W 1 is less than 0.55ppm than 0.04 ppm.
(Condition 1: The cured product obtained by thermally curing the resin composition for sealing under conditions of 175 ° C. for 4 hours is pulverized to obtain a pulverized product. Next, the pulverized product is subjected to 150 ° C. for 8 hours. The gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 1 for the entire sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. )
 本発明者は、150℃、8時間の条件により抽出される封止用樹脂組成物中の硫黄抽出量を調整することにより、半導体装置の信頼性を向上させることができることを見出し、本実施形態に係る封止用樹脂組成物に至った。ここで、半導体装置の信頼性としては、たとえば耐リフロー性、および高温保管特性等が挙げられる。
 すなわち、本実施形態によれば、上記知見に基づいて、上記条件1により算出される封止用樹脂組成物全体に対する硫黄抽出量Wが0.04ppm以上0.55ppm以下となるよう、封止用樹脂組成物を調整することができる。これにより、半導体素子と、Cuを主成分とするボンディングワイヤと、を封止用樹脂組成物の硬化物により封止してなる半導体装置について、その信頼性を向上させることが可能となる。
The present inventor has found that the reliability of a semiconductor device can be improved by adjusting the amount of sulfur extracted in a sealing resin composition extracted under conditions of 150 ° C. and 8 hours, and this embodiment It came to the resin composition for sealing concerning. Here, examples of the reliability of the semiconductor device include reflow resistance and high-temperature storage characteristics.
That is, according to the present embodiment, based on the above knowledge, the sealing is performed so that the sulfur extraction amount W 1 with respect to the entire sealing resin composition calculated by the condition 1 is 0.04 ppm or more and 0.55 ppm or less. The resin composition can be adjusted. This makes it possible to improve the reliability of a semiconductor device in which a semiconductor element and a bonding wire containing Cu as a main component are sealed with a cured product of the sealing resin composition.
 以下、本実施形態に係る封止用樹脂組成物、および封止用樹脂組成物の硬化物により構成される封止樹脂50を備える半導体装置100について詳細に説明する。 Hereinafter, the semiconductor device 100 including the sealing resin composition according to the present embodiment and the sealing resin 50 constituted by a cured product of the sealing resin composition will be described in detail.
 まず、本実施形態に係る封止用樹脂組成物について説明する。
 封止用樹脂組成物は、半導体素子と、半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を封止するために用いられる。本実施形態においては、半導体素子およびボンディングワイヤを、封止用樹脂組成物の硬化物により構成される封止樹脂により封止することにより、半導体パッケージが形成される場合が例示される。
First, the sealing resin composition according to this embodiment will be described.
The sealing resin composition is used for sealing a semiconductor element and a bonding wire that is connected to the semiconductor element and contains Cu as a main component. In this embodiment, the case where a semiconductor package is formed by sealing a semiconductor element and a bonding wire with a sealing resin composed of a cured product of the sealing resin composition is exemplified.
 半導体素子は、たとえばリードフレームを構成するダイパッドもしくは有機基板等の基材上、または他の半導体素子上に搭載される。このとき、半導体素子は、ボンディングワイヤを介して、リードフレームを構成するアウターリード、有機基板または他の半導体素子と電気的に接続することとなる。
 ボンディングワイヤは、Cuを主成分とする金属材料により構成される。このような金属材料としては、たとえばCu単体からなる金属材料、またはCuを主成分として他の金属を含む合金材料が挙げられる。ボンディングワイヤは、たとえば半導体素子に設けられる電極パッドに接続される。半導体素子の電極パッドは、たとえば少なくとも表面がAlを主成分とする金属材料により構成される。
The semiconductor element is mounted, for example, on a base material such as a die pad or an organic substrate constituting the lead frame, or on another semiconductor element. At this time, the semiconductor element is electrically connected to the outer lead, the organic substrate, or another semiconductor element constituting the lead frame via the bonding wire.
A bonding wire is comprised with the metal material which has Cu as a main component. Examples of such a metal material include a metal material made of Cu alone, or an alloy material containing Cu as a main component and other metals. The bonding wire is connected to, for example, an electrode pad provided on the semiconductor element. The electrode pad of the semiconductor element is made of, for example, a metal material whose surface is mainly Al.
 封止用樹脂組成物は、下記条件1により算出される封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、Wが0.04ppm以上0.55ppm以下である。
(条件1:封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、当該粉砕物に対して150℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、当該過酸化水素水中の硫酸イオン量から、封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
 本明細書において、硫黄抽出量Wの単位であるppmは、質量分率を示す。また、後述する硫黄抽出量Wについても同様である。
Encapsulating resin composition, when the sulfur extraction amount to the whole resin composition for sealing which is calculated by the following conditions 1 was W 1, W 1 is less than 0.55ppm than 0.04 ppm.
(Condition 1: The cured product obtained by thermally curing the resin composition for sealing under conditions of 175 ° C. for 4 hours is pulverized to obtain a pulverized product. Next, the pulverized product is subjected to 150 ° C. for 8 hours. The gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 1 for the entire sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. )
In the present specification, ppm is a unit of sulfur extraction amount W 1 represents a mass fraction. The same applies to the sulfur extraction amount W 2 described later.
 本発明者は、150℃、8時間という低温条件下により抽出される封止用樹脂組成物中の硫黄抽出量と、半導体装置の信頼性の間に相関があることを見出した。本実施形態は、このような知見に基づいてなされたものであり、硫黄抽出量Wを調整することにより、不良発生を誘因する現象、たとえばボンディングワイヤや電極表面の変化を抑制して半導体装置の信頼性を向上させるというものである。ここで、半導体装置の信頼性としては、たとえば耐リフロー性、高温保管特性、耐湿信頼性および高温動作特性が挙げられる。 The present inventor has found that there is a correlation between the amount of sulfur extracted from the sealing resin composition extracted under low temperature conditions of 150 ° C. and 8 hours and the reliability of the semiconductor device. The present embodiment has been made on the basis of such knowledge, and by adjusting the sulfur extraction amount W 1 , a semiconductor device that suppresses a phenomenon that induces a defect, for example, a change in a bonding wire or an electrode surface. It is to improve the reliability. Here, examples of the reliability of the semiconductor device include reflow resistance, high temperature storage characteristics, moisture resistance reliability, and high temperature operation characteristics.
 硫黄抽出量Wを0.04ppm以上とすることにより、封止用樹脂組成物を用いて形成される封止樹脂の、Cuを主成分とするボンディングワイヤや、リードフレーム等の基材、半導体チップに対する密着性を向上させることができる。このため、耐リフロー性や耐湿信頼性、高温動作性に優れた半導体装置を実現することが可能となる。また、硫黄抽出量Wを0.55ppm以下とすることにより、半導体装置における高温保管特性の向上を図ることができる。この高温保管特性としては、たとえばCuを主成分とするボンディングワイヤと半導体素子との接続部についての、高温条件下における接続信頼性の維持が挙げられる。本発明者によれば、Cuを主成分とするボンディングワイヤと、表面がAlを主成分とする金属材料により構成される電極パッドと、の間においてCuとAlの組成が徐々に遷移する遷移層が形成され、その一部が腐食してしまう場合があることが知見された。本実施形態においては、たとえばこの腐食を抑制することにより、接続信頼性を良好に保つことができるものと推測される。
 なお、耐リフロー性や高温保管特性等の半導体装置の信頼性を向上させる観点からは、硫黄抽出量Wが、0.1ppm以上0.55ppm以下であることがより好ましく、0.2ppm以上0.5ppm以下であることがとくに好ましい。
By sulfur extraction amount W 1 and more 0.04 ppm, the sealing resin formed by using a resin composition for encapsulating, and the bonding wire whose main component is Cu, substrate such as a lead frame, a semiconductor The adhesion to the chip can be improved. Therefore, it is possible to realize a semiconductor device that is excellent in reflow resistance, moisture resistance reliability, and high-temperature operability. Further, by sulfur extraction amount W 1 and less 0.55 ppm, it is possible to improve the high-temperature storage characteristics of the semiconductor device. As this high temperature storage characteristic, for example, maintenance of connection reliability under high temperature conditions for a connection portion between a bonding wire mainly composed of Cu and a semiconductor element can be mentioned. According to the present inventors, a transition layer in which the composition of Cu and Al gradually transitions between a bonding wire mainly composed of Cu and an electrode pad whose surface is composed of a metal material mainly composed of Al. It has been found that some of them may be corroded. In the present embodiment, it is presumed that the connection reliability can be kept good, for example, by suppressing this corrosion.
From the viewpoint of improving the reliability of the semiconductor device such as reflow resistance and high-temperature storage characteristics, the sulfur extraction amount W 1 is more preferably 0.1 ppm or more and 0.55 ppm or less, and 0.2 ppm or more and 0 It is particularly preferably 5 ppm or less.
 封止用樹脂組成物は、たとえば下記条件2により算出される封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、W/Wが120以下である。
(条件2:封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、当該粉砕物に対して175℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、当該過酸化水素水中の硫酸イオン量から、封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
The sealing resin composition has W 2 / W 1 of 120 or less, for example, when the sulfur extraction amount for the entire sealing resin composition calculated under the following condition 2 is W 2 .
(Condition 2: A cured product obtained by thermally curing the sealing resin composition under the condition of 175 ° C. for 4 hours is pulverized to obtain a pulverized product. Next, the pulverized product is subjected to 175 ° C. for 8 hours. The gas generated when heat treatment is performed under the conditions is collected by hydrogen peroxide solution, and the sulfur extraction amount W 2 for the whole sealing resin composition is calculated from the sulfate ion amount in the hydrogen peroxide solution. )
 175℃、8時間という高温条件下により抽出される封止用樹脂組成物中の硫黄抽出量Wの硫黄抽出量Wに対する比率であるW/Wについては、上述の不良発生を誘因する現象の後の不良発生に転じる現象と相関があるものと考えられる。本実施形態では、このような知見に基づきW/Wを調整することにより、半導体装置の信頼性を向上させることができる。
 本実施形態においては、W/Wを120以下とすることにより、高温保管特性をより効果的に向上させることができる。この高温保管特性としては、たとえばCuを主成分とするボンディングワイヤと半導体素子との接続部についての、高温条件下における接続信頼性の維持が挙げられる。これにより、半導体装置の信頼性を向上させることができる。なお、高温保管特性を向上させる観点からは、W/Wが、95以下であることがより好ましく、90以下であることがとくに好ましい。また、W/Wの下限値は、とくに限定されないが、たとえば10以上とすることができる。
W 2 / W 1 , which is the ratio of the sulfur extraction amount W 2 in the sealing resin composition extracted under a high temperature condition of 175 ° C. and 8 hours to the sulfur extraction amount W 1 , is responsible for the occurrence of the above-mentioned defects. It is considered that there is a correlation with the phenomenon that turns to the occurrence of defects after the phenomenon. In this embodiment, the reliability of the semiconductor device can be improved by adjusting W 2 / W 1 based on such knowledge.
In the present embodiment, by setting W 2 / W 1 to 120 or less, the high-temperature storage characteristics can be improved more effectively. As this high temperature storage characteristic, for example, maintenance of connection reliability under high temperature conditions for a connection portion between a bonding wire mainly composed of Cu and a semiconductor element can be mentioned. Thereby, the reliability of the semiconductor device can be improved. From the viewpoint of improving the high-temperature storage characteristics, W 2 / W 1 is more preferably 95 or less, and particularly preferably 90 or less. Further, the lower limit value of W 2 / W 1 is not particularly limited, but can be, for example, 10 or more.
 本実施形態において、上記条件2により算出される封止用樹脂組成物全体に対する硫黄抽出量Wは、たとえば3ppm以上65ppm以下であることが好ましく、5ppm以上60ppm以下であることがより好ましい。硫黄抽出量Wを上記上限値以下とすることにより、半導体装置の高温保管特性をより効果的に向上させることが可能となる。また、硫黄抽出量Wを上記下限値以上とすることにより、封止用樹脂組成物を用いて形成される封止樹脂の、Cuを主成分とするボンディングワイヤやリードフレーム等の基材等に対する密着性をさらに向上させることができる。このため、耐リフロー性や耐湿信頼性、高温動作性等の半導体装置の信頼性をより効果的に向上させることが可能となる。 In the present embodiment, the sulfur extraction amount W 2 to the whole resin composition for sealing which is calculated by the condition 2, for example, is preferably 3ppm than 65ppm or less, and more preferably 5ppm or 60ppm or less. Sulfur extraction amount W 2 by the above-described upper limit or less, it becomes possible to more effectively improve the high-temperature storage characteristics of the semiconductor device. Also, sulfur extraction amount W 2 by the above-described lower limit, the sealing resin formed by using a resin composition for encapsulating a substrate such as a bonding wire or lead frame containing Cu as a main component, etc. The adhesion with respect to can be further improved. For this reason, it becomes possible to improve the reliability of semiconductor devices, such as reflow resistance, moisture-proof reliability, and high temperature operability, more effectively.
 上述のように、硫黄抽出量Wおよび硫黄抽出量Wは、封止用樹脂組成物中に含まれる硫黄含有量とは異なる指標により半導体装置の信頼性を評価するためのものである。このような硫黄抽出量Wおよび硫黄抽出量Wは、たとえば封止用樹脂組成物に含まれる各成分の種類および含有量、ならびに封止用樹脂組成物の調製方法等を適切に調整することにより制御することが可能である。この封止用樹脂組成物の調製方法の例としては、後述する無機充填剤(C)に対するカップリング剤(D)による表面処理が挙げられる。 As described above, the sulfur extraction amount W 1 and the sulfur extraction amount W 2 are for evaluating the reliability of the semiconductor device by using an index different from the sulfur content contained in the sealing resin composition. Such sulfur extraction amount W 1 and sulfur extraction amount W 2, for example the type and content of each component included in the encapsulating resin composition, and appropriately adjusting the preparation method and the like of the sealing resin composition It is possible to control by this. As an example of the preparation method of this resin composition for sealing, the surface treatment by the coupling agent (D) with respect to the inorganic filler (C) mentioned later is mentioned.
 封止用樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、を含む。これにより、封止用樹脂組成物を用いて、ボンディングワイヤおよび半導体素子を封止するための封止樹脂を形成することが可能となる。 The sealing resin composition contains an epoxy resin (A) and a curing agent (B). Thereby, it becomes possible to form sealing resin for sealing a bonding wire and a semiconductor element using the sealing resin composition.
((A)エポキシ樹脂)
 エポキシ樹脂(A)としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。
 本実施形態において、エポキシ樹脂(A)としては、たとえばビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、およびテトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ならびにスチルベン型エポキシ樹脂は結晶性を有するものであることが好ましい。
((A) Epoxy resin)
As the epoxy resin (A), monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
In the present embodiment, as the epoxy resin (A), for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin; stilbene type epoxy resin; Novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins; polyfunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton; Aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a biphenylene skeleton; dihydroxynaphthalene-type epoxy resin, dihydroxynaphthalene Naphthol type epoxy resins such as epoxy resins obtained by glycidyl ether conversion; triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; bridged cyclic hydrocarbons such as dicyclopentadiene modified phenol type epoxy resins Compound-modified phenol type epoxy resins may be mentioned, and these may be used alone or in combination of two or more. Of these, aralkyl type epoxy resins, biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol type epoxy resins such as tetramethylbisphenol F type epoxy resins, and stilbene type epoxy resins have crystallinity. It is preferable to have it.
 エポキシ樹脂(A)としては、下記式(1)で表されるエポキシ樹脂、下記式(2)で表されるエポキシ樹脂、および下記式(3)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることがとくに好ましい。 The epoxy resin (A) is selected from the group consisting of an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), and an epoxy resin represented by the following formula (3). It is particularly preferable to use a material containing at least one kind.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Arはフェニレン基またはナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよい。Arはフェニレン基、ビフェニレン基またはナフチレン基のうちのいずれか1つの基を表す。RおよびRは、それぞれ独立に炭素数1~10の炭化水素基を表す。gは0~5の整数であり、hは0~8の整数である。nは重合度を表し、その平均値は1~3である)
Figure JPOXMLDOC01-appb-C000001
(In Formula (1), Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the α-position or the β-position. Ar 2 is a phenylene group. R 5 and R 6 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5 and h represents a group selected from the group consisting of a biphenylene group and a naphthylene group. Is an integer from 0 to 8. n 3 represents the degree of polymerization, and the average value is from 1 to 3.
Figure JPOXMLDOC01-appb-C000002
(式(2)中、複数存在するRは、それぞれ独立に水素原子または炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である)
Figure JPOXMLDOC01-appb-C000002
(In the formula (2), a plurality of R 9 s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. N 5 represents a degree of polymerization, and an average value thereof is 0 to 4)
Figure JPOXMLDOC01-appb-C000003
(式(3)中、複数存在するR10およびR11は、それぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である)
Figure JPOXMLDOC01-appb-C000003
(In the formula (3), a plurality of R 10 and R 11 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. N 6 represents a degree of polymerization, and an average value thereof is 0 to 4) Is)
 封止用樹脂組成物中におけるエポキシ樹脂(A)の含有量は、とくに限定されないが、たとえば封止用樹脂組成物全体に対して、1質量%以上50質量%以下であることが好ましく、2質量%以上30質量%以下であることがより好ましく、5質量%以上20質量%以下であることがとくに好ましい。エポキシ樹脂(A)の含有量を上記下限値以上とすることにより、封止用樹脂組成物の粘度上昇に起因したボンディングワイヤ切れを抑制することができる。また、エポキシ樹脂(A)の含有量を上記上限値以下とすることにより、半導体装置の耐湿信頼性や耐リフロー性を向上させることができる。 The content of the epoxy resin (A) in the sealing resin composition is not particularly limited. For example, the content is preferably 1% by mass or more and 50% by mass or less with respect to the entire sealing resin composition. The content is more preferably no less than 30% by mass and no greater than 30% by mass, and particularly preferably no less than 5% by mass and no greater than 20% by mass. By setting the content of the epoxy resin (A) to the lower limit value or more, it is possible to suppress the bonding wire from being cut off due to the increase in the viscosity of the sealing resin composition. Moreover, the moisture resistance reliability and reflow resistance of a semiconductor device can be improved by making content of an epoxy resin (A) below the said upper limit.
((B)硬化剤)
 封止用樹脂組成物に含まれる硬化剤(B)としては、たとえば重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤の3タイプに大別することができる。
((B) curing agent)
The curing agent (B) contained in the encapsulating resin composition can be roughly classified into three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
 硬化剤(B)に用いられる重付加型の硬化剤としては、たとえばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノールなどのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。 Examples of the polyaddition type curing agent used in the curing agent (B) include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), In addition to aromatic polyamines such as m-phenylenediamine (MPDA) and diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride ( Acid anhydrides including alicyclic acid anhydrides such as MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc .; novolac type Phenol resins, phenol resin-based curing agent such as polyvinyl phenol; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.
 硬化剤(B)に用いられる触媒型の硬化剤としては、たとえばベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。 Examples of the catalyst-type curing agent used in the curing agent (B) include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); Examples thereof include imidazole compounds such as imidazole and 2-ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complex.
 硬化剤(B)に用いられる縮合型の硬化剤としては、たとえばレゾール型フェノール樹脂;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。 Examples of the condensation type curing agent used for the curing agent (B) include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、および保存安定性等についてのバランスを向上させる観点から、フェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤としては、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は特に限定されない。
 硬化剤(B)に用いられるフェノール樹脂系硬化剤としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型樹脂;ポリビニルフェノール;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
Among these, a phenol resin-based curing agent is preferable from the viewpoint of improving the balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, and the like. As the phenol resin-based curing agent, monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
Examples of the phenol resin-based curing agent used in the curing agent (B) include novolac resins such as phenol novolac resin, cresol novolac resin, and bisphenol novolac; polyvinylphenol; polyfunctional phenol resins such as triphenolmethane phenol resin; Modified phenolic resins such as terpene modified phenolic resin and dicyclopentadiene modified phenolic resin; aralkyl type resins such as phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resin having phenylene and / or biphenylene skeleton; Examples thereof include bisphenol compounds such as bisphenol F, and these may be used alone or in combination of two or more.
 硬化剤(B)としては、下記式(4)で表される化合物からなる群から選択される少なくとも1種の硬化剤を用いることがとくに好ましい。 As the curing agent (B), it is particularly preferable to use at least one curing agent selected from the group consisting of compounds represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
(式(4)中、Arはフェニレン基またはナフチレン基を表し、Arがナフチレン基の場合、水酸基はα位、β位のいずれに結合していてもよい。Arは、フェニレン基、ビフェニレン基またはナフチレン基のうちのいずれか1つの基を表す。RおよびRは、それぞれ独立に炭素数1~10の炭化水素基を表す。iは0~5の整数であり、jは0~8の整数である。nは重合度を表し、その平均値は1~3である)
Figure JPOXMLDOC01-appb-C000004
(In Formula (4), Ar 3 represents a phenylene group or a naphthylene group, and when Ar 3 is a naphthylene group, the hydroxyl group may be bonded to either the α-position or the β-position. Ar 4 represents a phenylene group, R 7 and R 8 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, i is an integer of 0 to 5, and j is a biphenylene group or a naphthylene group. (It is an integer of 0 to 8. n 4 represents the degree of polymerization, and the average value is 1 to 3.)
 封止用樹脂組成物中における硬化剤(B)の含有量は、とくに限定されないが、たとえば封止用樹脂組成物全体に対して、2質量%以上15質量%以下であることが好ましく、3質量%以上13質量%以下であることがより好ましく、4質量%以上11質量%以下であることがとくに好ましい。硬化剤(B)の含有量を上記下限値以上とすることにより、十分な流動性を有する封止用樹脂組成物を実現し、成型性の向上を図ることができる。また、硬化剤(B)の含有量を上記上限値以下とすることにより、半導体装置の耐湿信頼性や耐リフロー性を向上させることができる。 Although content of the hardening | curing agent (B) in the resin composition for sealing is not specifically limited, For example, it is preferable that they are 2 mass% or more and 15 mass% or less with respect to the whole resin composition for sealing. The content is more preferably no less than 13% by mass and no greater than 13% by mass, and particularly preferably no less than 4% by mass and no greater than 11% by mass. By making content of a hardening | curing agent (B) more than the said lower limit, the resin composition for sealing which has sufficient fluidity | liquidity is implement | achieved, and a moldability can be aimed at. Moreover, moisture resistance reliability and reflow resistance of a semiconductor device can be improved by making content of a hardening | curing agent (B) below the said upper limit.
((C)充填剤)
 封止用樹脂組成物は、たとえば充填剤(C)をさらに含むことができる。充填材(C)としては、一般の半導体封止用エポキシ樹脂組成物に使用されているものを用いることができ、たとえば溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等の無機充填材、オルガノシリコーンパウダー、ポリエチレンパウダー等の有機充填材が挙げられる。これらのうち、溶融球状シリカを用いることがとくに好ましい。これらの充填材は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、充填材(C)の形状としては、とくに限定されないが、封止用樹脂組成物の溶融粘度の上昇を抑えつつ、充填材の含有量を高める観点から、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。
((C) filler)
The resin composition for sealing can further contain a filler (C), for example. As the filler (C), those used in general epoxy resin compositions for semiconductor encapsulation can be used. For example, fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, nitriding Examples include inorganic fillers such as silicon, and organic fillers such as organosilicone powder and polyethylene powder. Of these, it is particularly preferable to use fused spherical silica. These fillers may be used alone or in combination of two or more.
Further, the shape of the filler (C) is not particularly limited, but from the viewpoint of increasing the filler content while suppressing an increase in the melt viscosity of the sealing resin composition, the shape of the filler (C) is as spherical as possible. The distribution is preferably broad.
 封止用樹脂組成物中における充填剤(C)の含有量は、とくに限定されないが、たとえば封止用樹脂組成物全体に対して、35質量%以上95質量%以下であることが好ましく、50質量%以上93質量%以下であることがより好ましく、65質量%以上90質量%以下であることがとくに好ましい。充填剤(C)の含有量を上記下限値以上とすることにより、低吸湿性および低熱膨張性を向上させ、耐湿信頼性や耐リフロー性をより効果的に向上させることができる。また、充填剤(C)の含有量を上記上限値以下とすることにより、封止用樹脂組成物の流動性の低下にともなう成型性の低下や、高粘度化に起因したボンディングワイヤ流れ等を抑制することが可能となる。 The content of the filler (C) in the encapsulating resin composition is not particularly limited, but is preferably 35% by mass or more and 95% by mass or less, for example, with respect to the entire encapsulating resin composition. More preferably, it is more than mass% and below 93 mass%, and it is especially preferable that they are 65 mass% or more and 90 mass% or less. By setting the content of the filler (C) to the above lower limit or more, low moisture absorption and low thermal expansion can be improved, and moisture resistance reliability and reflow resistance can be more effectively improved. Moreover, by making the content of the filler (C) not more than the above upper limit value, a decrease in moldability accompanying a decrease in fluidity of the encapsulating resin composition, a bonding wire flow resulting from the increase in viscosity, etc. It becomes possible to suppress.
((D)カップリング剤)
 充填剤(C)には、カップリング剤(D)を用いて表面処理が施すことができる。カップリング剤(D)としては、たとえばエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、メタクリルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。これらを例示すると、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシランまたはビニルシランのシラン系化合物がより好ましい。また、耐リフロー性等の半導体装置の信頼性を向上させる観点からは、メルカプトシランを用いることがとくに好ましい。
((D) coupling agent)
The filler (C) can be subjected to a surface treatment using the coupling agent (D). Examples of the coupling agent (D) include epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, methacryl silane and other various silane compounds, titanium compounds, aluminum chelates, aluminum / zirconium compounds, and the like. A known coupling agent can be used. Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane Vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropylmethyldimethoxysilane, -[Bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ) Ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ- Chloropropyltrime Xysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl) Silane coupling agents such as rubylidene) propylamine hydrolyzate, isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) Oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tric Examples include titanate coupling agents such as milphenyl titanate and tetraisopropyl bis (dioctyl phosphite) titanate. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, or vinyl silane are more preferable. From the viewpoint of improving the reliability of the semiconductor device such as reflow resistance, it is particularly preferable to use mercaptosilane.
 充填剤(C)に対するカップリング剤(D)による表面処理は、たとえば次のように行うことができる。まず、充填剤(C)をミキサーに投入した後、撹拌を開始し、そこにさらにカップリング剤(D)を投入してこれらを1~5分間撹拌し、充填剤(C)およびカップリング剤(D)の混合物を得る。次いで、この混合物をミキサーから取り出して放置する。放置時間は、適宜選択することができ、たとえば3分~1時間とすることができる。これにより、カップリング剤(D)により表面処理が施された充填剤(C)が得られる。また、放置処理後の充填剤(C)に対して、さらに熱処理を施してもよい。熱処理は、たとえば30~80℃、0.1~10時間の条件下において行うことができる。さらに、本実施形態においては、ミキサー内の充填剤(C)に対して噴霧器を用いてカップリング剤(D)を噴霧しながら、充填剤(C)を撹拌することにより、充填剤(C)およびカップリング剤(D)の混合物を得てもよい。噴霧器としては、たとえば二流体ノズル等を備えた微細な液滴を噴霧し得る装置を用いることができる。このような噴霧器を使用することにより、充填剤(C)表面がより均一にカップリング剤で処理され好ましい。
 本実施形態においては、たとえば上記表面処理の条件を調整することにより、硫黄抽出量WおよびWを制御することができる。この表面処理の条件とは、噴霧器の使用の有無、放置時間、熱処理の有無および熱処理条件等が挙げられる。
The surface treatment with the coupling agent (D) for the filler (C) can be performed, for example, as follows. First, after the filler (C) is charged into the mixer, stirring is started, and then the coupling agent (D) is further charged and stirred for 1 to 5 minutes. The filler (C) and the coupling agent A mixture of (D) is obtained. The mixture is then removed from the mixer and left to stand. The standing time can be appropriately selected and can be, for example, 3 minutes to 1 hour. Thereby, the filler (C) surface-treated with the coupling agent (D) is obtained. Moreover, you may heat-process with respect to the filler (C) after a leaving process. The heat treatment can be performed, for example, under conditions of 30 to 80 ° C. and 0.1 to 10 hours. Further, in this embodiment, the filler (C) is stirred by spraying the coupling agent (D) with a sprayer onto the filler (C) in the mixer. And a mixture of coupling agents (D) may be obtained. As the sprayer, for example, a device that can spray fine droplets equipped with a two-fluid nozzle or the like can be used. By using such an atomizer, the surface of the filler (C) is preferably treated more uniformly with the coupling agent.
In the present embodiment, for example, the sulfur extraction amounts W 1 and W 2 can be controlled by adjusting the surface treatment conditions. Examples of the surface treatment conditions include presence / absence of use of a nebulizer, standing time, presence / absence of heat treatment, and heat treatment conditions.
 なお、カップリング剤(D)は、充填剤(C)に対して上記表面処理を行うことにより封止用樹脂組成物に含まれる場合以外に、ミキサー内に直接投入して他の成分と混合することにより封止用樹脂組成物内に含まれていてもよい。 The coupling agent (D) is added directly to the mixer and mixed with other components, in addition to the case where it is included in the sealing resin composition by performing the above surface treatment on the filler (C). By doing so, it may be contained in the sealing resin composition.
 封止用樹脂組成物中におけるカップリング剤(D)の含有量は、とくに限定されないが、たとえば封止用樹脂組成物全体に対して、0.05質量%以上2質量%以下であることが好ましく、0.1質量%以上1質量%以下であることがより好ましく、0.15質量%以上0.5質量%以下であることがとくに好ましい。カップリング剤(D)の含有量を上記下限値以上とすることにより、封止用樹脂組成物中における充填剤(C)の分散性を良好なものとすることができる。このため、耐湿信頼性や耐リフロー性等をより効果的に向上させることが可能となる。カップリング剤(D)の含有量を上記上限値以下とすることにより、封止用樹脂組成物の流動性を良好なものとし、成形性の向上を図ることができる。 The content of the coupling agent (D) in the encapsulating resin composition is not particularly limited. For example, it may be 0.05% by mass or more and 2% by mass or less with respect to the entire encapsulating resin composition. Preferably, it is more preferably 0.1% by mass or more and 1% by mass or less, and particularly preferably 0.15% by mass or more and 0.5% by mass or less. By making content of a coupling agent (D) more than the said lower limit, the dispersibility of the filler (C) in the resin composition for sealing can be made favorable. For this reason, it becomes possible to improve moisture resistance reliability, reflow resistance, etc. more effectively. By making content of a coupling agent (D) below the said upper limit, the fluidity | liquidity of the resin composition for sealing can be made favorable, and a moldability can be aimed at.
((E)イオン捕捉剤)
 封止用樹脂組成物は、たとえばイオン捕捉剤(E)をさらに含むことができる。
 イオン捕捉剤(E)としては、とくに限定されないが、たとえばハイドロタルサイト類および多価金属酸性塩等の無機イオン交換体が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、高温保管特性を向上させる観点からは、ハイドロタルサイト類を用いることがとくに好ましい。
((E) ion scavenger)
The resin composition for sealing can further contain, for example, an ion scavenger (E).
The ion scavenger (E) is not particularly limited, and examples thereof include inorganic ion exchangers such as hydrotalcites and polyvalent metal acid salts. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, it is particularly preferable to use hydrotalcites from the viewpoint of improving high-temperature storage characteristics.
 封止用樹脂組成物中におけるイオン捕捉剤(E)の含有量は、とくに限定されないが、たとえば封止用樹脂組成物全体に対して、0.05質量%以上1質量%以下であることが好ましく、0.1質量%以上0.8質量%以下であることがより好ましく、0.15質量%以上0.5質量%以下であることがとくに好ましい。イオン捕捉剤(E)の含有量を上記下限値以上とすることにより、高温保管特性をより効果的に向上させることができる。また、ボンディングワイヤと半導体素子との間における腐食を確実に抑制し、接続信頼性を良好に保つことができる。また、イオン捕捉剤(E)の含有量を上記上限値以下とすることにより、半導体装置の耐湿信頼性や耐リフロー性を向上させることができる。 The content of the ion scavenger (E) in the sealing resin composition is not particularly limited. For example, it may be 0.05% by mass or more and 1% by mass or less with respect to the entire sealing resin composition. Preferably, it is more preferably 0.1% by mass or more and 0.8% by mass or less, and particularly preferably 0.15% by mass or more and 0.5% by mass or less. By setting the content of the ion scavenger (E) to the lower limit value or more, the high-temperature storage characteristics can be improved more effectively. Further, corrosion between the bonding wire and the semiconductor element can be reliably suppressed, and the connection reliability can be kept good. Moreover, the moisture resistance reliability and reflow resistance of a semiconductor device can be improved by making content of an ion trapping agent (E) below the said upper limit.
((F)硬化促進剤)
 封止用樹脂組成物は、たとえば硬化促進剤(F)をさらに含むことができる。
 硬化促進剤(F)は、エポキシ樹脂(A)のエポキシ基と、硬化剤(B)(たとえば、フェノール樹脂系硬化剤のフェノール性水酸基)と、の架橋反応を促進させるものであればよく、一般の半導体封止用エポキシ樹脂組成物に使用するものを用いることができる。硬化促進剤(F)としては、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等が例示されるアミジンや3級アミン、さらには前記アミジン、アミンの4級塩等の窒素原子含有化合物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。
((F) curing accelerator)
The resin composition for sealing can further contain, for example, a curing accelerator (F).
The curing accelerator (F) may be any one that promotes the crosslinking reaction between the epoxy group of the epoxy resin (A) and the curing agent (B) (for example, the phenolic hydroxyl group of the phenol resin curing agent) What is used for the general epoxy resin composition for semiconductor sealing can be used. Examples of the curing accelerator (F) include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; Amidines and tertiary amines exemplified by 8-diazabicyclo (5,4,0) undecene-7, benzyldimethylamine, 2-methylimidazole and the like, and nitrogen atom-containing compounds such as amidines and quaternary salts of amines, etc. These may be used alone or in combination of two or more.
 硬化促進剤(F)の含有量は、封止用樹脂組成物全体に対して、0.05質量%以上1質量%以下であることが好ましく、0.1質量%以上0.8質量%以下であることがより好ましい。硬化促進剤(F)の含有量を上記下限値以上とすることにより、封止用樹脂組成物の硬化性が低下することを抑制できる。また、硬化促進剤(F)の含有量を上記上限値以下とすることにより、封止用樹脂組成物の流動性が低下することを抑制できる。 The content of the curing accelerator (F) is preferably 0.05% by mass or more and 1% by mass or less, and 0.1% by mass or more and 0.8% by mass or less with respect to the entire sealing resin composition. It is more preferable that By making content of a hardening accelerator (F) more than the said lower limit, it can suppress that sclerosis | hardenability of the resin composition for sealing falls. Moreover, it can suppress that the fluidity | liquidity of the resin composition for sealing falls by making content of a hardening accelerator (F) below into the said upper limit.
 封止用樹脂組成物には、さらに必要に応じて、カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等の難燃剤、酸化防止剤等の各種添加剤を適宜配合してもよい。 If necessary, the sealing resin composition may further include a colorant such as carbon black or bengara; a low stress component such as silicone rubber; a natural wax such as carnauba wax; a synthetic wax; a higher fatty acid such as zinc stearate; Release agents such as metal salts or paraffins; flame retardants such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and various additives such as antioxidants may be appropriately blended.
 封止用樹脂組成物としては、たとえば前述の各成分を、公知の手段で混合し、さらにロール、ニーダーまたは押出機等の混練機で溶融混練し、冷却した後に粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。 As the sealing resin composition, for example, the above-mentioned components are mixed by a known means, melt-kneaded with a kneader such as a roll, a kneader or an extruder, cooled and pulverized, as necessary. Can be used as long as the degree of dispersion and fluidity are adjusted.
 次に、本実施形態に係る半導体装置100について説明する。
 半導体装置100は、半導体素子20と、ボンディングワイヤ40と、封止樹脂50と、を備えている。ボンディングワイヤ40は、半導体素子20に接続され、かつCuを主成分とする。また、封止樹脂50は、上述した封止用樹脂組成物の硬化物により構成され、半導体素子20およびボンディングワイヤ40を封止する。
Next, the semiconductor device 100 according to the present embodiment will be described.
The semiconductor device 100 includes a semiconductor element 20, a bonding wire 40, and a sealing resin 50. The bonding wire 40 is connected to the semiconductor element 20 and contains Cu as a main component. The sealing resin 50 is made of a cured product of the above-described sealing resin composition, and seals the semiconductor element 20 and the bonding wire 40.
 半導体素子20は、基材30上に搭載される。基材30は、たとえばリードフレームまたは有機基板である。また、基材30は、ボンディングワイヤ40に接続される。図2では、リードフレームである基材30のうちのダイパッド32上に、ダイアタッチ材10を介して半導体素子20が搭載される場合が例示される。リードフレームである基材30は、たとえばCuまたは42アロイを主成分とする金属材料により構成される。なお、半導体素子20は、他の半導体素子上に配置されていてもよい。 The semiconductor element 20 is mounted on the base material 30. The base material 30 is, for example, a lead frame or an organic substrate. The base material 30 is connected to the bonding wire 40. FIG. 2 illustrates a case where the semiconductor element 20 is mounted on the die pad 32 of the base material 30 that is a lead frame via the die attach material 10. The base material 30 which is a lead frame is made of, for example, a metal material whose main component is Cu or 42 alloy. The semiconductor element 20 may be disposed on another semiconductor element.
 半導体素子20の上面には、たとえば複数の電極パッド22が形成されている。半導体素子20に設けられた電極パッド22の少なくとも表面層は、たとえばAlを主成分とする金属材料により構成されている。これにより、Cuを主成分とするボンディングワイヤ40と電極パッド22との接続信頼性を向上させることができる。
 図2においては、ボンディングワイヤ40が、半導体素子20の電極パッド22と、基材30のうちのアウターリード34と、を電気的に接続する場合が例示されている。
For example, a plurality of electrode pads 22 are formed on the upper surface of the semiconductor element 20. At least the surface layer of the electrode pad 22 provided in the semiconductor element 20 is made of, for example, a metal material mainly composed of Al. Thereby, the connection reliability of the bonding wire 40 which has Cu as a main component, and the electrode pad 22 can be improved.
In FIG. 2, a case where the bonding wire 40 electrically connects the electrode pad 22 of the semiconductor element 20 and the outer lead 34 of the base material 30 is illustrated.
 封止樹脂50は、上述の封止用樹脂組成物の硬化物により構成されている。このため、基材30やボンディングワイヤ40に対する密着性が良好であり、耐リフロー性や耐湿信頼性、高温動作特性に優れた半導体装置100が得られることとなる。この効果は、ボンディングワイヤ40がCuを主成分とする金属材料により構成され、かつ基材30がCuまたは42アロイを主成分とする金属材料により構成される場合に、とくに顕著に得られる。また、半導体装置100の高温保管特性の向上を図ることも可能である。 The sealing resin 50 is composed of a cured product of the above-described sealing resin composition. For this reason, the adhesiveness with respect to the base material 30 and the bonding wire 40 is favorable, and the semiconductor device 100 excellent in reflow resistance, moisture resistance reliability, and high-temperature operating characteristics can be obtained. This effect is particularly prominent when the bonding wire 40 is made of a metal material containing Cu as a main component and the substrate 30 is made of a metal material containing Cu or a 42 alloy as a main component. It is also possible to improve the high temperature storage characteristics of the semiconductor device 100.
 半導体装置100は、たとえば次のように製造される。
 まず、基材30上に、半導体素子20を搭載する。次いで、基材30と半導体素子20を、Cuを主成分とするボンディングワイヤ40により互いに接続させる。次いで、半導体素子20と、ボンディングワイヤ40と、を上述の封止用樹脂組成物により封止する。封止成形の方法としては、とくに限定されないが、たとえばトランスファー成形法または圧縮成形法が挙げられる。これにより、半導体装置100が製造されることとなる。
The semiconductor device 100 is manufactured as follows, for example.
First, the semiconductor element 20 is mounted on the base material 30. Next, the base material 30 and the semiconductor element 20 are connected to each other by a bonding wire 40 containing Cu as a main component. Next, the semiconductor element 20 and the bonding wire 40 are sealed with the above-described sealing resin composition. Although it does not specifically limit as a sealing molding method, For example, the transfer molding method or the compression molding method is mentioned. As a result, the semiconductor device 100 is manufactured.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(封止用樹脂組成物)
 実施例1~10および比較例1~3のそれぞれについて、以下のように封止用樹脂組成物を調製した。まず、無機充填剤(C)に対して、表1に示す配合量のカップリング剤(D)により表面処理を施した。次いで、表1に示す配合に従い、各成分を、ミキサーを用いて15~28℃で混合した。次いで、得られた混合物を、70~100℃でロール混練した。次いで、混練後の混合物を冷却し、粉砕してエポキシ樹脂組成物を得た。なお、表1中における各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
(Resin composition for sealing)
For each of Examples 1 to 10 and Comparative Examples 1 to 3, sealing resin compositions were prepared as follows. First, the inorganic filler (C) was subjected to a surface treatment with a coupling agent (D) having a blending amount shown in Table 1. Then, according to the formulation shown in Table 1, each component was mixed at 15 to 28 ° C. using a mixer. Next, the obtained mixture was roll kneaded at 70 to 100 ° C. Next, the kneaded mixture was cooled and pulverized to obtain an epoxy resin composition. The details of each component in Table 1 are as follows. Moreover, the unit in Table 1 is mass%.
(A)エポキシ樹脂
エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC-3000P、日本化薬(株)製)
エポキシ樹脂2:ビフェニル型エポキシ樹脂(YX4000K、三菱化学(株)製)
(B)硬化剤
硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(MEH-7851SS、明和化成(株)製)
硬化剤2:フェニレン骨格含有フェノールアラルキル樹脂(XLC-4L、三井化学(株)製)
(C)充填剤
充填剤1:シリカ(平均粒径26μm、比表面積2.4mm/g)
充填剤2:シリカ(SO-25R、(株)アドマテックス製、平均粒径0.5μm、比表面積6.0mm/g)
(D)カップリング剤
γ-メルカプトプロピルトリメトキシシラン(信越化学工業(株)製、KBM-803)
(E)イオン捕捉剤
ハイドロタルサイト(DHT-4H、協和化学工業(株)製)
(F)硬化促進剤
硬化促進剤1:下記式(5)にて表される化合物
(A) Epoxy resin Epoxy resin 1: phenol aralkyl type epoxy resin containing biphenylene skeleton (NC-3000P, manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 2: biphenyl type epoxy resin (YX4000K, manufactured by Mitsubishi Chemical Corporation)
(B) Hardener Curing Agent 1: Biphenylene skeleton-containing phenol aralkyl resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
Curing agent 2: Phenol aralkyl resin containing phenylene skeleton (XLC-4L, manufactured by Mitsui Chemicals, Inc.)
(C) Filler Filler 1: Silica (average particle size 26 μm, specific surface area 2.4 mm 2 / g)
Filler 2: Silica (SO-25R, manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, specific surface area 6.0 mm 2 / g)
(D) Coupling agent γ-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803)
(E) Ion scavenger hydrotalcite (DHT-4H, manufactured by Kyowa Chemical Industry Co., Ltd.)
(F) Curing accelerator Curing accelerator 1: Compound represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000005
硬化促進剤2:下記式(6)にて表される化合物
Figure JPOXMLDOC01-appb-C000005
Curing accelerator 2: Compound represented by the following formula (6)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(G)離型剤
カルナバワックス
(G) Release agent carnauba wax
 実施例1~4、7~12および比較例1~3において、無機充填剤(C)に対するカップリング剤(D)による表面処理は、次のように行った。まず、充填剤1および充填剤2をミキサーに投入した後、撹拌を開始し、そこにさらにカップリング剤(D)を投入してこれらを3.0分間撹拌して、充填剤1、充填剤2およびカップリング剤(D)の混合物を得た。次いで、この混合物をミキサーから取り出し、表1に示す時間(表1の放置時間)放置した。これにより、カップリング剤(D)により表面処理が施された充填剤(C)を得た。
 実施例5においては、上記混合物を放置した後、55℃、3時間の条件下で上記混合物に対して熱処理を行う点を除いて、実施例1と同様に表面処理を行った。
 実施例6においては、次のようにして充填剤1、充填剤2およびカップリング剤(D)の混合物を得た点を除いて、実施例1と同様に表面処理を行った。まず、充填剤1および充填剤2をミキサーに投入して、これらを混合した。そして、ミキサー内の充填剤1および充填剤2に対して噴霧器を用いてカップリング剤を噴霧しながら、これらを3.0分間撹拌し、充填剤1、充填剤2およびカップリング剤(D)の混合物を得た。次いで、この混合物をミキサーから取り出し、表1に示す時間(表1の放置時間)放置した。
In Examples 1 to 4, 7 to 12 and Comparative Examples 1 to 3, the surface treatment with the coupling agent (D) on the inorganic filler (C) was performed as follows. First, the filler 1 and the filler 2 are charged into the mixer, and then the stirring is started. The coupling agent (D) is further charged therein and stirred for 3.0 minutes. 2 and a coupling agent (D) were obtained. Subsequently, this mixture was taken out from the mixer and allowed to stand for the time shown in Table 1 (the standing time in Table 1). Thereby, the filler (C) surface-treated with the coupling agent (D) was obtained.
In Example 5, the mixture was allowed to stand, and then surface treatment was performed in the same manner as in Example 1 except that the mixture was heat-treated at 55 ° C. for 3 hours.
In Example 6, a surface treatment was performed in the same manner as in Example 1 except that a mixture of filler 1, filler 2 and coupling agent (D) was obtained as follows. First, filler 1 and filler 2 were put into a mixer and mixed. Then, while spraying the coupling agent onto the filler 1 and the filler 2 in the mixer using a sprayer, these are stirred for 3.0 minutes, and the filler 1, the filler 2 and the coupling agent (D) are stirred. A mixture of was obtained. Subsequently, this mixture was taken out from the mixer and allowed to stand for the time shown in Table 1 (the standing time in Table 1).
(硫黄抽出量Wの測定)
 各実施例および各比較例について、得られた封止用樹脂組成物全体に対する硫黄抽出量Wを、以下のように測定した。まず、封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得た。次いで、上記粉砕物に対して150℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集した。次いで、上記過酸化水素水中の硫酸イオン量から、封止用樹脂組成物全体に対する硫黄抽出量Wを算出した。表1中における単位は、ppmである。
(Measurement of sulfur extraction amount W 1)
For each of Examples and Comparative Examples, the sulfur extraction amount W 1 to the entire resin composition for encapsulation obtained was measured as follows. First, the cured product obtained by thermally curing the resin composition for sealing at 175 ° C. for 4 hours was pulverized to obtain a pulverized product. Next, the gas generated when the pulverized product was heat-treated at 150 ° C. for 8 hours was collected with hydrogen peroxide. Then, the sulfate ion amount of the hydrogen peroxide water, was calculated sulfur extraction amount W 1 to the entire sealing resin composition. The unit in Table 1 is ppm.
(硫黄抽出量Wの測定)
 各実施例および各比較例について、得られた封止用樹脂組成物全体に対する硫黄抽出量Wを、以下のように測定した。まず、封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得た。次いで、上記粉砕物に対して175℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集した。次いで、上記過酸化水素水中の硫酸イオン量から、封止用樹脂組成物全体に対する硫黄抽出量Wを算出した。表1中における単位は、ppmである。
(Measurement of sulfur extraction amount W 2)
For each of Examples and Comparative Examples, the sulfur extraction amount W 2 to the entire resin composition for encapsulation obtained was measured as follows. First, the cured product obtained by thermally curing the resin composition for sealing at 175 ° C. for 4 hours was pulverized to obtain a pulverized product. Next, the gas generated when the pulverized product was heat-treated at 175 ° C. for 8 hours was collected by hydrogen peroxide. Then, the sulfate ion amount of the hydrogen peroxide water, was calculated sulfur extraction amount W 2 for the entire sealing resin composition. The unit in Table 1 is ppm.
(半導体装置の作製)
 実施例1~12、比較例1~3のそれぞれについて、次のように半導体装置を作製した。
 アルミニウム製電極パッドを備えるTEG(Test Element Group)チップ(3.5mm×3.5mm)を、表面がAgによりめっきされたリードフレームのダイパッド部上に搭載した。次いで、TEGチップの電極パッド(以下、電極パッド)と、リードフレームのアウターリード部と、をCu99.9%の金属材料により構成されるボンディングワイヤを用いて、ワイヤピッチ120μmでワイヤボンディングした。
 これにより得られた構造体を、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力10.0MPa、硬化時間2分の条件で封止用樹脂組成物を用いて封止成形し、半導体パッケージを作製した。その後、得られた半導体パッケージを175℃、4時間の条件で後硬化し、半導体装置を得た。
(Fabrication of semiconductor devices)
For each of Examples 1 to 12 and Comparative Examples 1 to 3, semiconductor devices were fabricated as follows.
A TEG (Test Element Group) chip (3.5 mm × 3.5 mm) having an aluminum electrode pad was mounted on a die pad portion of a lead frame whose surface was plated with Ag. Next, the electrode pads of the TEG chip (hereinafter referred to as electrode pads) and the outer lead portions of the lead frame were wire-bonded at a wire pitch of 120 μm using bonding wires made of a metal material of 99.9% Cu.
The structure thus obtained was sealed using a sealing resin composition using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 10.0 MPa, and a curing time of 2 minutes, A semiconductor package was produced. Thereafter, the obtained semiconductor package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device.
(MSL(耐リフロー性評価))
 実施例1~12、比較例1~3のそれぞれについて、得られた半導体装置12個に対し85℃相対湿度60%の環境下に168時間放置した後、IRリフロー処理(260℃)を行った。次いで、処理後の半導体装置内部を超音波探傷装置で観察し、封止樹脂と、リードフレームと、の界面において剥離が生じた面積を算出した。全ての半導体装置について剥離面積が5%未満の場合を◎、5%以上10%以下の場合を○、10%を超える場合を×とした。
(MSL (Reflow resistance evaluation))
For each of Examples 1 to 12 and Comparative Examples 1 to 3, 12 semiconductor devices obtained were left in an environment of 85 ° C. and 60% relative humidity for 168 hours, and then subjected to IR reflow treatment (260 ° C.). . Next, the inside of the processed semiconductor device was observed with an ultrasonic flaw detector, and the area where peeling occurred at the interface between the sealing resin and the lead frame was calculated. For all semiconductor devices, the case where the peeled area was less than 5% was marked as ◎, the case where it was 5% or more and 10% or less, and the case where it exceeded 10%.
(HTSL(高温保管特性評価))
 実施例1~12、比較例1~3のそれぞれについて、得られた半導体装置を150℃の環境下に保管し、24時間ごとに半導体チップの電極パッドとボンディングワイヤとの間における電気抵抗値を測定し、その値が初期値に対して20%増加した半導体装置を不良とした。2000時間保管しても不良が発生しなかったものを◎、1000~2000時間の間に不良が発生したものを○、1000時間以内に不良が発生したものを×とした。
(HTSL (high temperature storage characteristics evaluation))
For each of Examples 1 to 12 and Comparative Examples 1 to 3, the obtained semiconductor device was stored in an environment of 150 ° C., and the electrical resistance value between the electrode pad of the semiconductor chip and the bonding wire was measured every 24 hours. A semiconductor device was measured and its value increased by 20% with respect to the initial value. The case where no defect occurred even after storage for 2,000 hours was marked as ◎, the case where defect occurred between 1000 and 2000 hours, and the case where defect occurred within 1000 hours as x.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、実施例1~12においては、耐リフロー性および高温保管特性について良好な結果が得られた。実施例1~6、8、10、12については、実施例7、9、11と比較して、さらに優れた高温保管特性を示した。 As shown in Table 1, in Examples 1 to 12, good results were obtained with respect to reflow resistance and high-temperature storage characteristics. Examples 1 to 6, 8, 10, and 12 exhibited more excellent high-temperature storage characteristics than Examples 7, 9, and 11.

Claims (7)

  1.  半導体素子と、前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を封止するために用いられる封止用樹脂組成物であって、
     エポキシ樹脂(A)と、
     硬化剤(B)と、
     を含み、
     条件1により算出される前記封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、Wが0.04ppm以上0.55ppm以下である封止用樹脂組成物。
    (条件1:前記封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、前記粉砕物に対して150℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、前記過酸化水素水中の硫酸イオン量から、前記封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
    A sealing resin composition used for sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component,
    Epoxy resin (A),
    A curing agent (B);
    Including
    Sulfur extraction amount to the whole the sealing resin composition is calculated by the condition 1 to the case of the W 1, sealing resin composition W 1 is less than 0.55ppm than 0.04 ppm.
    (Condition 1: A cured product obtained by thermally curing the sealing resin composition under the conditions of 175 ° C. for 4 hours to obtain a pulverized product. Next, 150 ° C. for 8 hours with respect to the pulverized product. The gas generated when the heat treatment is performed under the conditions of hydrogen peroxide is collected by a hydrogen peroxide solution, and the sulfur extraction amount W 1 for the whole sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. calculate)
  2.  請求項1に記載の封止用樹脂組成物において、
     条件2により算出される前記封止用樹脂組成物全体に対する硫黄抽出量をWとした場合に、W/Wが120以下である封止用樹脂組成物。
    (条件2:前記封止用樹脂組成物を175℃、4時間の条件により熱硬化させて得られる硬化物を粉砕し、粉砕物を得る。次いで、前記粉砕物に対して175℃、8時間の条件下で熱処理を施した際に生じるガスを過酸化水素水により捕集する。次いで、前記過酸化水素水中の硫酸イオン量から、前記封止用樹脂組成物全体に対する硫黄抽出量Wを算出する)
    In the sealing resin composition according to claim 1,
    A sealing resin composition in which W 2 / W 1 is 120 or less, where W 2 is a sulfur extraction amount for the whole sealing resin composition calculated according to Condition 2.
    (Condition 2: A cured product obtained by thermally curing the sealing resin composition under conditions of 175 ° C. for 4 hours to obtain a pulverized product. Next, 175 ° C. for 8 hours with respect to the pulverized product. The gas generated when the heat treatment is performed under the conditions of hydrogen peroxide is collected by a hydrogen peroxide solution, and the sulfur extraction amount W 2 with respect to the whole sealing resin composition is calculated from the amount of sulfate ions in the hydrogen peroxide solution. calculate)
  3.  請求項1または2に記載の封止用樹脂組成物において、
     イオン捕捉剤(E)をさらに含む封止用樹脂組成物。
    In the sealing resin composition according to claim 1 or 2,
    A sealing resin composition further comprising an ion scavenger (E).
  4.  請求項3に記載の封止用樹脂組成物において、
     前記封止用樹脂組成物の固形分全体に対する前記イオン捕捉剤(E)の含有量は、0.05質量%以上1質量%以下である封止用樹脂組成物。
    In the sealing resin composition according to claim 3,
    Content of the said ion scavenger (E) with respect to the whole solid of the said resin composition for sealing is 0.05 mass% or more and 1 mass% or less of the resin composition for sealing.
  5.  半導体素子と、
     前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、
     請求項1~4いずれか一項に記載の封止用樹脂組成物の硬化物により構成され、かつ前記半導体素子と前記ボンディングワイヤを封止する封止樹脂と、
     を備える半導体装置。
    A semiconductor element;
    A bonding wire connected to the semiconductor element and containing Cu as a main component;
    A sealing resin comprising a cured product of the sealing resin composition according to any one of claims 1 to 4 and sealing the semiconductor element and the bonding wire;
    A semiconductor device comprising:
  6.  請求項5に記載の半導体装置において、
     前記半導体素子を搭載し、かつ前記ボンディングワイヤに接続される、Cuもしくは42アロイを主成分とするリードフレームまたは有機基板をさらに備える半導体装置。
    The semiconductor device according to claim 5,
    A semiconductor device further comprising a lead frame or an organic substrate mainly composed of Cu or 42 alloy on which the semiconductor element is mounted and connected to the bonding wire.
  7.  半導体素子と、前記半導体素子に接続され、かつCuを主成分とするボンディングワイヤと、を請求項1~4いずれか一項に記載の封止用樹脂組成物により封止する工程を備える半導体装置の製造方法。 A semiconductor device comprising a step of sealing a semiconductor element and a bonding wire connected to the semiconductor element and containing Cu as a main component with the sealing resin composition according to any one of claims 1 to 4. Manufacturing method.
PCT/JP2015/058767 2015-03-23 2015-03-23 Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device WO2016151733A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177023577A KR102264524B1 (en) 2015-03-23 2015-03-23 Resin composition for encapsulation, semiconductor device and method for manufacturing semiconductor device
PCT/JP2015/058767 WO2016151733A1 (en) 2015-03-23 2015-03-23 Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device
CN201580078021.8A CN107429040B (en) 2015-03-23 2015-03-23 Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058767 WO2016151733A1 (en) 2015-03-23 2015-03-23 Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016151733A1 true WO2016151733A1 (en) 2016-09-29

Family

ID=56978990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058767 WO2016151733A1 (en) 2015-03-23 2015-03-23 Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device

Country Status (3)

Country Link
KR (1) KR102264524B1 (en)
CN (1) CN107429040B (en)
WO (1) WO2016151733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111707A1 (en) * 2017-12-06 2019-06-13 住友ベークライト株式会社 Epoxy resin composition and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485185B (en) * 2018-03-19 2020-06-30 长兴电子材料(昆山)有限公司 High-reliability high-fluidity epoxy resin composition for vehicles and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143348A (en) * 2002-10-28 2004-05-20 Toray Ind Inc Epoxy-based resin composition and semiconductor device
JP2007051198A (en) * 2005-08-17 2007-03-01 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor
JP2007063549A (en) * 2005-08-05 2007-03-15 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
WO2011070739A1 (en) * 2009-12-07 2011-06-16 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device using epoxy resin composition
JP2014232854A (en) * 2013-05-30 2014-12-11 住友ベークライト株式会社 Semiconductor device
JP2015074658A (en) * 2013-10-04 2015-04-20 住友ベークライト株式会社 Resin composition for encapsulation, semiconductor device, and method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502399B2 (en) * 2009-06-22 2013-08-06 Sumitomo Bakelite Co., Ltd. Resin composition for encapsulating semiconductor and semiconductor device
JP2013067694A (en) 2011-09-21 2013-04-18 Panasonic Corp Epoxy resin composition for sealing semiconductor, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143348A (en) * 2002-10-28 2004-05-20 Toray Ind Inc Epoxy-based resin composition and semiconductor device
JP2007063549A (en) * 2005-08-05 2007-03-15 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2007051198A (en) * 2005-08-17 2007-03-01 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor
WO2011070739A1 (en) * 2009-12-07 2011-06-16 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device using epoxy resin composition
JP2014232854A (en) * 2013-05-30 2014-12-11 住友ベークライト株式会社 Semiconductor device
JP2015074658A (en) * 2013-10-04 2015-04-20 住友ベークライト株式会社 Resin composition for encapsulation, semiconductor device, and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111707A1 (en) * 2017-12-06 2019-06-13 住友ベークライト株式会社 Epoxy resin composition and electronic device
JPWO2019111707A1 (en) * 2017-12-06 2020-04-02 住友ベークライト株式会社 Epoxy resin composition and electronic device

Also Published As

Publication number Publication date
KR102264524B1 (en) 2021-06-15
CN107429040B (en) 2021-02-19
CN107429040A (en) 2017-12-01
KR20170130378A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP2017179185A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP6398167B2 (en) Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
KR102340215B1 (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device
US20110147954A1 (en) Semiconductor device, and resin composition used for semiconductor device
JP2022003130A (en) Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
WO2015146764A1 (en) Resin composition for sealing and semiconductor device
JP2006219601A (en) Liquid epoxy resin composition for sealing
WO2016151733A1 (en) Resin composition for encapsulation, semiconductor device, and process for producing semiconductor device
JP2017179134A (en) Thermosetting resin composition
JP4967353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6341203B2 (en) Semiconductor device
KR102202216B1 (en) Electronic device manufacturing method
JP7155502B2 (en) SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND ENCLOSURE RESIN COMPOSITION
JP2018150456A (en) Resin composition for sealing and semiconductor device
JP2022098698A (en) Resin composition and power module
TWI653252B (en) Sealing resin composition, semiconductor device, and method of manufacturing semiconductor device
JP6750659B2 (en) Sealing resin composition and semiconductor device
JP6605190B2 (en) Resin composition for sealing, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15886288

Country of ref document: EP

Kind code of ref document: A1