WO2016151693A1 - 水処理装置、及び水処理装置の運転方法 - Google Patents

水処理装置、及び水処理装置の運転方法 Download PDF

Info

Publication number
WO2016151693A1
WO2016151693A1 PCT/JP2015/058550 JP2015058550W WO2016151693A1 WO 2016151693 A1 WO2016151693 A1 WO 2016151693A1 JP 2015058550 W JP2015058550 W JP 2015058550W WO 2016151693 A1 WO2016151693 A1 WO 2016151693A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
primary
line
valve
unit
Prior art date
Application number
PCT/JP2015/058550
Other languages
English (en)
French (fr)
Inventor
英正 垣上
嘉晃 伊藤
横濱 克彦
英夫 岩橋
孝義 堀
克憲 松井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/557,934 priority Critical patent/US20180085709A1/en
Priority to PCT/JP2015/058550 priority patent/WO2016151693A1/ja
Publication of WO2016151693A1 publication Critical patent/WO2016151693A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/263Chemical reaction
    • B01D2311/2634Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment apparatus and an operation method thereof.
  • Patent Document 1 Water treatment equipment using reverse osmosis membranes has been put into practical use as a technology for desalinating seawater and purifying industrial water.
  • a technique described in Patent Document 1 below is known.
  • the membrane treatment apparatus described in Patent Literature 1 is configured to supply raw water (covered water) to an upstream membrane module bank, a downstream membrane module bank, and an upstream membrane module bank each having a plurality of membrane modules. And a pump for pumping treated water).
  • a target value is determined in advance with respect to the ratio of fresh water recovered from the treated water such as seawater (fresh water recovery rate).
  • fresh water recovery rate is excessively high, the salt concentration contained in the concentrated water, which is the remaining component from which the fresh water is separated, is excessively increased.
  • concentrated water with a high salt concentration is discharged into the environment, there is a concern that the environmental load will increase. For this reason, for example, when seawater is desalinated, the freshwater recovery rate is set to about 25 to 40%.
  • the fresh water recovery rate relatively decreases.
  • the supply pressure of the water to be treated to the reverse osmosis membrane can be increased by increasing the output of the pump. By increasing the pressure of the water to be treated, the amount of fresh water separated in the reverse osmosis membrane increases, and the fresh water recovery rate starts to increase.
  • the apparatus described in Patent Document 1 As the fresh water recovery rate increases as described above, the amount of concentrated water separated from the treated water decreases. That is, in the apparatus described in Patent Document 1, the amount of concentrated water supplied from the upstream membrane module bank to the downstream membrane module bank is reduced. Furthermore, in a device using a reverse osmosis membrane, a lower limit is set for the amount (flow rate) of concentrated water discharged from one element. If the amount of concentrated water falls below this lower limit value, there is a possibility that problems such as scale deposition occur due to an increase in membrane surface concentration due to concentration polarization in the membrane module, and sufficient separation and concentration cannot be performed. Therefore, the apparatus described in Patent Document 1 has a limited fresh water recovery rate.
  • This invention is made
  • the water treatment device has a plurality of primary elements as a reverse osmosis membrane device that is disposed in parallel with each other and performs a process of separating the treated water into primary concentrated water and fresh water.
  • a primary unit, a pump for pumping the water to be treated to the primary unit, and a smaller number than the primary element are provided and arranged in parallel with each other, and the primary concentrated water is converted into secondary concentrated water and fresh water.
  • a secondary unit having a secondary element as a reverse osmosis membrane device for performing a separation process, and the primary unit and the secondary unit are provided only in the secondary unit.
  • a switching unit that disconnects at least one of the unprocessable.
  • recovered from a secondary unit accounts with respect to accumulation of to-be-processed water increases by raising the output of a pump.
  • the secondary unit reduces the amount of primary concentrated water flowing into each secondary element.
  • a reverse osmosis membrane device such as a primary element and a secondary element
  • a lower limit is set for the amount of concentrated water to be introduced.
  • the primary concentrated water exceeding said lower limit can be guide
  • the secondary elements guides the primary concentrated water supplied from the primary unit to the secondary element.
  • the switching unit comprising: an introduction line; a secondary concentrated water line through which the secondary concentrated water separated from the primary concentrated water flows; and a fresh water line through which the fresh water separated from the primary concentrated water flows. May have a second valve provided on the secondary concentrated water line, a first valve provided on the fresh water line, and a third valve provided on the introduction line. .
  • the specific secondary element can be easily separated by closing the first valve, the second valve, and the third valve, respectively.
  • the valve can be opened and closed during operation of the apparatus.
  • a 2nd element can be cut off, without stopping a water treatment apparatus.
  • the secondary element can be separated without reducing the operating rate of the water treatment device.
  • the water treatment device is provided between the third valve and the secondary element on the introduction line, and is stored from the outside.
  • the storage liquid is discharged from the secondary element to the outside.
  • a fourth valve provided on the storage liquid discharge line.
  • the storage solution can be supplied to the secondary element that has been cut off and cannot be processed. Thereby, the contamination of the reverse osmosis membrane in the secondary element can be reduced. Furthermore, when the separated secondary element is returned to the system again, it may be discharged through the storage liquid discharge line by opening the fourth valve. In addition, the storage solution can be supplied and discharged only by opening and closing the valve without stopping the water treatment apparatus. Thereby, the fall of the operation rate of a water treatment apparatus can be suppressed.
  • the characteristic value is measured in at least one of the treated water, the primary concentrated water, the secondary concentrated water, and the fresh water.
  • a control unit that controls the operation of the switching unit based on a comparison between the characteristic value and a predetermined reference value.
  • the measurement unit is at least one of the treated water, the primary concentrated water, the secondary concentrated water, and the fresh water.
  • the control unit may include a calculation unit that calculates a Langeria saturation index (LSI) as the characteristic value based on the temperature or the electric conductivity value. .
  • LSI Langeria saturation index
  • the fresh water recovery rate by the water treatment device can be maximized according to the water quality of at least one of the water to be treated, the primary concentrated water, the secondary concentrated water, and the fresh water.
  • the water treatment device can be provided by providing a measurement unit and a control unit, it is possible to flexibly cope with this change by autonomously adjusting the performance of the water treatment apparatus with respect to a change in water quality due to seasonal fluctuations.
  • the operation method of the water treatment apparatus for separating at least one secondary element from the water treatment apparatus includes the first valve. Closing the fresh water line by closing, closing the second valve after closing the first valve, closing the secondary concentrated water line by closing the second valve, and closing the second valve And closing the introduction line by closing the third valve.
  • the fresh water line is closed by first closing the first valve. Thereby, discharge of fresh water is stopped. At this time, the primary concentrated water is discharged through the secondary concentrated water line without being substantially concentrated from the secondary element to be separated. Thereafter, by closing the third valve, the introduction of the primary concentrated water to the secondary element is also stopped. Thereby, precipitation of scale in the secondary element can be suppressed.
  • the second valve is closed prior to the closing of the first valve, high-pressure primary concentrated water continues to be supplied to the secondary element, so that a high load is applied to the secondary element. In other words, the primary concentrated water is excessively concentrated in the secondary element. As a result, salts contained in the primary concentrated water may be precipitated in the secondary element as a scale.
  • the separation and concentration in the secondary element becomes impossible by first stopping the discharge of fresh water. Therefore, scale precipitation can be sufficiently suppressed.
  • the fresh water recovery rate and the operation rate can be improved.
  • the water treatment apparatus 1 includes a water intake line L1 through which the water to be treated SW circulates, a pump P that pumps the water to be treated SW upstream from the upstream of the water line L1, and a plurality of A primary unit U1 having a reverse osmosis membrane device (primary element E1, secondary element E2), a secondary unit U2, and a connection line Lc for connecting the primary unit U1 and the secondary unit U2 to each other.
  • the water treatment apparatus 1 includes a switching unit 2 for disconnecting the secondary element E2 in the secondary unit U2 so as not to be processed, and a storage liquid supply for supplying the storage liquid to the disconnected secondary element E2.
  • a device 3 for disconnecting the secondary element E2 in the secondary unit U2 so as not to be processed, and a storage liquid supply for supplying the storage liquid to the disconnected secondary element E2.
  • the water intake line L1 is a flow path for guiding the water to be treated SW supplied from the outside to the water treatment apparatus 1.
  • a pretreatment device (not shown) is provided on the upstream side of the intake line L1.
  • an oxidizing agent for suppressing the organisms contained in the seawater from adhering to the apparatus an aggregating agent for aggregating fine particles, colloids, and the like, and pH adjustment are performed. More specifically, hypochlorous acid or the like is preferably used as the oxidizing agent.
  • an inorganic flocculant such as ferric chloride or a polymer flocculant such as PAC is used as the suspension aggregated by these flocculants is removed by a sand filter.
  • the pretreated water SW subjected to the pretreatment is pumped from the upstream side to the downstream side in the water intake line L1 by the pump P provided on the water intake line L1.
  • the primary unit U1 and the secondary unit U2 are devices for separating and concentrating the treated water SW guided by the water intake line L1 by reverse osmosis.
  • the primary unit U1 includes a plurality of primary elements E1 arranged in parallel to each other, a primary distribution line Ld1 that distributes the treated water SW in the water intake line L1 to the plurality of primary elements E1, and a discharge from the primary element E1.
  • the primary concentrated water CW1 and the primary water collection line Lg1 through which fresh water (primary fresh water FW1) flows and the primary fresh water line Lf1 are provided.
  • the primary element E1 is a reverse osmosis membrane device including a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane) such as a hollow fiber membrane or a spiral membrane.
  • RO membrane Reverse Osmosis Membrane
  • Each primary element E1 is mainly provided with the exterior member called a vessel, and the reverse osmosis membrane arrange
  • the vessel is provided with a primary inlet E11 connected to the distribution line, a primary catchment line Eg connected to the primary catchment line Lg1, and the primary freshwater line Lf1, and a primary freshwater catchment E13. It has been.
  • the primary unit U1 is configured by arranging the primary elements E1 in parallel with each other. As an example, in the present embodiment, five primary elements E1 are arranged in parallel. More specifically, the downstream end of the intake line L1 and the primary inlet E11 of each primary element E1 are connected to each other by the distribution line. Furthermore, the primary water collection line Lg1 connects the primary water collection port E12 of each primary element E1 and the upstream end of the connection line Lc (described later).
  • the primary fresh water line Lf1 is a flow path for discharging / recovering fresh water separated in each primary element E1 to the outside. On the downstream side of the primary fresh water line Lf1, a tank for storing the collected fresh water and equipment for performing further filtration and the like are connected (both not shown).
  • the secondary unit U2 is a device for further separating and concentrating the primary concentrated water CW1 generated in the primary unit U1 with the same configuration as the primary unit U1. More specifically, the secondary unit U2 distributes a plurality of secondary elements E2 arranged in parallel to each other and the primary concentrated water CW1 generated in the primary unit U1 to the plurality of secondary elements E2. Secondary distribution line Ld2 (introduction line), secondary concentrated water CW2 discharged from the secondary element E2, and secondary water collection line Lg2 (secondary concentrated water line) through which fresh water (secondary fresh water FW2) flows. ) And a secondary fresh water line Lf2 (fresh water line).
  • Secondary distribution line Ld2 introduction line
  • secondary concentrated water CW2 discharged from the secondary element E2
  • secondary water collection line Lg2 secondary concentrated water line
  • Lf2 fresh water line
  • the secondary element E2 is a reverse osmosis membrane device having a configuration and performance equivalent to those of the primary element E1, but these will be distinguished in the following description.
  • the vessel of the secondary element E2 includes a secondary inlet E21 connected to the secondary distribution line Ld2, a secondary water collection line Lg2, and a secondary water collection port E22 connected to the secondary fresh water line Lf2, respectively. And a secondary fresh water collecting port E23.
  • the secondary unit U2 is configured by arranging a plurality of secondary elements E2 in parallel with each other.
  • the number of secondary elements E2 in the secondary unit U2 is set to be smaller than the number of primary elements E1 in the primary unit U1.
  • the secondary unit U2 is provided with three secondary elements E2.
  • connection line Lc connects the downstream side of the primary unit U1 and the secondary unit U2. More specifically, the connection line Lc connects the downstream end of each primary water collection line Lg1 in the primary unit U1 and the upstream end of each secondary distribution line Ld2 in the secondary unit U2. ing.
  • the primary concentrated water CW1 is further separated and concentrated to produce fresh water (secondary fresh water FW2) and secondary concentrated water CW2 as a remaining component excluding the secondary fresh water FW2. Is done.
  • Fresh water is collected through the secondary fresh water line Lf2.
  • the secondary concentrated water CW2 is collected through the secondary water collection line Lg2, and then discharged to the outside through post-treatment and the like by an external facility (not shown).
  • a switching unit 2 for separating one secondary element E2 in the secondary unit U2 from the system is provided.
  • the secondary element E2 provided with the switching unit 2 is referred to as a switching secondary element E2x.
  • the switching unit 2 has three valves (first valve V1, second valve V2, and third valve V3) provided in each line of the switching secondary element E2x. By adjusting the opening degree of these valves, it is possible to switch the flow state (open / close state) of each line.
  • the first valve V1 is provided on the secondary fresh water line Lf2 in the switching secondary element E2x. Thereby, the distribution
  • the second valve V2 is provided on the secondary water collection line Lg2 in the switching secondary element E2x. Thereby, the distribution
  • the third valve V3 is provided on the secondary distribution line Ld2 in the switching secondary element E2x. Thereby, the distribution
  • Each line is closed by closing the first valve V1, the second valve V2, and the third valve V3.
  • the supply of the primary concentrated water CW1 to the switching secondary element E2x and the discharge of the secondary fresh water FW2 and the secondary concentrated water CW2 are stopped, and the processing becomes impossible. That is, the switching secondary element E2x is disconnected from the system.
  • a storage liquid supply device 3 for supplying the storage liquid to the separated secondary element E2 is provided.
  • This device is a device for supplying a preservation solution to the switching secondary element E2x separated from the system by the switching unit 2.
  • water is not passed through the reverse osmosis membrane, so that the concentrated water remains.
  • the performance of the reverse osmosis membrane in the secondary element E2 may be deteriorated due to deterioration or corrosion of the concentrated water. Therefore, in the water treatment apparatus 1, the secondary element E2 is protected by supplying the storage liquid into the secondary element E2 by the storage liquid supply apparatus 3 described above.
  • the storage liquid supply device 3 includes a storage liquid supply line Lp1 connected to the secondary distribution line Ld2 in the switching secondary element E2x, and a storage liquid discharge line Lp2 connected to the secondary water collection line Lg2. And a fourth valve V4 for adjusting the flow state of the storage liquid discharge line Lp2.
  • the storage liquid supply line Lp1 is a tank (not shown) for storing the storage liquid and a region on the secondary distribution line Ld2 between the third valve V3 and the secondary element E2 (secondary inlet E21). And connected.
  • the storage solution in the tank is supplied into the secondary distribution line Ld2 through the storage solution supply line Lp1.
  • the storage liquid discharge line Lp2 is on the secondary water collection line Lg2, and extends outward from the region between the second valve V2 and the secondary element E2.
  • the first valve V1, the second valve V2, and the third valve V3 in the switching unit 2 are all open.
  • the fourth valve V4 is closed.
  • the pump P By driving the pump P in this state, the water to be treated SW is guided to the primary unit U1 through the intake line L1.
  • the treated water SW pressurized by the pump P is passed through the reverse osmosis membrane of each primary element E1 in a high pressure state.
  • reverse osmosis with respect to the water to be treated SW is performed in each primary element E1.
  • primary concentrated water CW1 in which the salinity or the like in the water to be treated SW is concentrated, and primary fresh water FW1 that is a remaining component (fresh water) excluding the primary concentrated water CW1 are generated.
  • fresh water component of the water to be treated SW passes through the reverse osmosis membrane and reaches the downstream side to become the primary fresh water FW1. Since the primary fresh water FW1 permeates downstream, salts contained in the water to be treated SW are concentrated on the upstream side of the reverse osmosis membrane.
  • the primary freshwater FW1 is collected outside via the primary freshwater line Lf1.
  • the primary concentrated water CW1 is collected in the primary water collection line Lg1, and then flows into the secondary unit U2 on the downstream side via the connection line Lc.
  • the secondary unit U2 the primary concentrated water CW1 that has flowed in via the connection line Lc is distributed to each secondary element E2 by the secondary distribution line Ld2.
  • the separation of fresh water from the primary concentrated water CW1 and the concentration of salts are performed in the same manner as the primary element E1. That is, the secondary fresh water FW2 that is a fresh water component in the primary concentrated water CW1 and the secondary concentrated water CW2 that is a remaining component excluding the secondary fresh water FW2 are generated.
  • Secondary freshwater FW2 is collected outside by the secondary freshwater FW2 water collection line.
  • the secondary concentrated water CW2 is collected in the secondary water collection line Lg2, and then discharged into the external environment.
  • the treated water SW (seawater) is desalinated.
  • a target value is determined in advance for the volume ratio (fresh water recovery rate) of fresh water recovered from the water to be treated SW.
  • the freshwater recovery rate is set to about 25 to 40%.
  • the fresh water recovery rate is relatively lowered and may be lower than the above target value.
  • the supply pressure of the treated water SW to the reverse osmosis membrane can be increased.
  • the pressure of the water to be treated SW increases, the amount of fresh water separated in the reverse osmosis membrane increases, and the fresh water recovery rate starts to increase.
  • the amount of the secondary concentrated water CW2 separated from the treated water SW decreases. That is, the amount of concentrated water discharged from one element of the secondary unit U2 decreases.
  • a lower limit is set for the amount (flow rate) of concentrated water discharged from one element. If the amount of secondary concentrated water falls below this lower limit value, problems such as scale precipitation may occur due to concentration polarization in the secondary unit U2 (secondary element E2), and sufficient separation and concentration may not be possible.
  • the switching unit 2 separates the switching secondary element E2x from the system so that one element in the remaining secondary element E2 excluding the switching secondary element E2x.
  • the amount of concentrated water is relatively increased.
  • emitted from each secondary element E2 can be made larger than the said lower limit.
  • the operation method of the water treatment apparatus 1 for cutting off the secondary element for switching E2x includes a step of closing the first valve V1, a step of closing the second valve V2,
  • the step of closing the three valves V3 is executed in the above order.
  • the circulation of the secondary fresh water FW2 in the secondary fresh water line Lf2 fresh water line
  • the circulation of the secondary concentrated water CW2 in the secondary water collection line Lg2 (secondary concentrated water CW2 line) is stopped.
  • the secondary water collection line Lg2 is closed by closing the third valve V3 after closing the second valve V2.
  • supply of the primary concentrated water CW1 by the secondary water collection line Lg2 is stopped.
  • the switching secondary element E2x is separated from the other secondary elements E2.
  • the primary concentrated water CW1 is temporarily retained in the switching secondary element E2x.
  • the fourth valve V4 on the storage liquid discharge line Lp2 is opened.
  • the storage solution is filled into the switching secondary element E2x through the storage solution supply line Lp1. That is, the primary concentrated water CW1 staying in the switching secondary element E2x is pushed out by the storage liquid and discharged from the storage liquid discharge line Lp2.
  • the inside of the switching secondary element E2x is filled with the storage solution.
  • the amount of fresh water recovered from the primary unit U1 and the secondary unit U2 increases by increasing the output of the pump P, respectively.
  • the amount of the secondary concentrated water CW2 discharged from each secondary element E21 in the secondary unit U2 decreases.
  • a lower limit is set for the amount of concentrated water discharged from each element.
  • the amount of the secondary concentrated water CW2 is reduced as described above, at least one secondary element E2 is separated by the switching unit 2 and cannot be treated. Thereby, secondary concentrated water CW2 exceeding the lower limit value can be guided to the remaining secondary elements E2 excluding the separated secondary element E2 (secondary element E2x for switching).
  • the switching secondary element E2x can be easily separated by closing the first valve V1, the second valve V2, and the third valve V3, respectively.
  • the first valve V1, the second valve V2, and the third valve V3 can be opened and closed while the water treatment apparatus 1 is in water (during operation). That is, in the water treatment apparatus 1 according to the present embodiment, the switching secondary element E2x can be disconnected without stopping the operation. Thereby, the secondary element E2 can be cut off without lowering the operating rate of the water treatment apparatus 1, and as a result, the maximum value of the fresh water recovery rate can be improved.
  • the switching unit 2 when a configuration in which a part of the secondary elements E2 is blocked by a plug and separated from the system is adopted, water is supplied to the device when the plug is installed (operation of the device). Will need to be stopped.
  • the switching secondary element E2x since the switching unit 2 is used, the switching secondary element E2x can be disconnected without stopping the operation of the water treatment apparatus 1. it can. Thereby, the fall of the operation rate of the water treatment apparatus 1 can be avoided.
  • the storage solution is supplied to the switching secondary element E2x that has become disconnected and cannot be processed. Since the primary concentrated water CW1 is pushed out by being filled with the storage solution, the contamination of the secondary element E2 can be reduced. Further, when the switching secondary element E2x is returned to the system again, it can be easily discharged through the storage liquid discharge line Lp2 by opening the fourth valve V4. That is, it is possible to supply and discharge the preserving liquid only by opening and closing the valve without stopping the water treatment apparatus 1. Thereby, the fall of the operation rate of the water treatment apparatus 1 can further be suppressed.
  • the fresh water line is closed by first closing the first valve V1. Thereby, discharge of fresh water is stopped.
  • the primary concentrated water CW1 is discharged from the secondary element E2 to be separated through the secondary concentrated water CW2 line without being substantially concentrated.
  • the introduction of the primary concentrated water CW1 to the secondary element E2 is also stopped by closing the third valve V3. Thereby, precipitation of the scale in the switching secondary element E2x can be suppressed.
  • the high-pressure primary concentrated water CW1 continues to be supplied to the switching secondary element E2x, so that the switching secondary element E2x has a high load. It will take. In other words, the primary concentrated water CW1 is excessively concentrated in the switching secondary element E2x. As a result, the salts contained in the primary concentrated water CW1 may be deposited as scale. However, according to the operation method as described above, first, the discharge of fresh water (secondary fresh water FW2) is stopped, so that separation and concentration in the switching secondary element E2x become impossible. Therefore, scale precipitation can be sufficiently suppressed.
  • the two secondary elements E2 in the secondary unit U2 are respectively used as the switching secondary elements E2x. Further, these two switching secondary elements E2x are each provided with the switching unit 2 (first valve V1, second valve V2, third valve V3) and the storage liquid supply device 3. . That is, in the water treatment apparatus 1 in the present embodiment, the two secondary elements E2 are configured to be individually separable.
  • the two switching secondary elements E2x are separated from the system by repeating the same steps as those described in the first embodiment. That is, in one of the two switching secondary elements E2x, the first valve V1, the second valve V2, and the third valve V3 are sequentially closed, and then the fourth valve V4 is opened and closed to thereby perform the switching.
  • the secondary element E2x is cut off and the storage solution is filled.
  • the other switching secondary element E2x is further cut off.
  • a sufficient amount of secondary concentrated water can be secured in each secondary element E2. That is, in the water treatment apparatus 1 according to the present embodiment, since the two switching secondary elements E2x are provided, the output of the pump P can be further increased as compared with the first embodiment described above. Thereby, the fresh water collection
  • the number of switching secondary elements E2x is not limited, and for example, all three secondary elements E2 may be set as switching secondary elements E2x. In short, it is sufficient that at least one secondary element E2 in the secondary unit U2 can be separated. Thus, the upper limit value of the fresh water recovery rate can be further improved as the number of secondary elements E2x for switching is increased.
  • the switching unit 2 and the storage liquid supply device 3 when operating the switching unit 2 and the storage liquid supply device 3 in each of the above-described embodiments, it may be performed by an operator's hand or may be performed by the control unit 4 as shown in FIG. .
  • the control unit 4 when the control unit 4 is used, by providing the measurement unit 5 on the above-described intake line L1 and the connection line Lc, water in each line (treated water SW, primary concentrated water CW1, secondary concentrated water CW2, The characteristic values of the primary freshwater FW1 and the secondary freshwater FW2) are measured. Based on these characteristic values, the control unit 4 controls the switching unit 2 (opening and closing of the first valve V1, the second valve V2, and the third valve V3).
  • the measurement unit 5 a device capable of measuring the electrical conductivity of water, a thermometer, or the like is appropriately used.
  • the control unit 4 calculates a characteristic value based on the value obtained by the measurement by the measurement unit 5 and determines whether the switching unit 2 needs to operate based on the characteristic value calculated by the calculation unit 41. And determining the opening of each valve (first valve V1, second valve V2, third valve V3, fourth valve V4) of the switching unit 2 as an electrical signal based on the determination of the determination unit 42 And a signal generation unit 43.
  • the measurement unit 5 continuously measures characteristic values such as the electrical conductivity of water, temperature, and LSI (Langeria saturation index).
  • the determination unit 42 in the control unit 4 compares these characteristic values with a predetermined reference value or reference range. When the reference value or the reference range is satisfied, the determination unit 42 determines that the fresh water recovery rate can be increased, and the switching unit 2 separates the switching secondary element E2x. In addition, it is good also as a structure which fills the preservation
  • the determination of whether or not the freshwater recovery rate can be increased is usually performed by confirming the presence / absence of element scale deposition by LSI, but the same determination may be made based on the electrical conductivity and temperature.
  • the value of LSI depends on the electrical conductivity of water to be measured and the temperature values. Furthermore, the electrical conductivity is determined by the concentration of dissolved salt in water (that is, the concentration of salt dissolved in an ionic state as an electrolyte). Further, as the temperature of the water rises by 1 ° C., the value of LSI generally increases by 1.5 ⁇ 10 ⁇ 2 .
  • the calculation unit 41 in the control unit 4 performs calculation based on these characteristic values, thereby calculating the LSI converted value.
  • the determination unit 42 of the control unit 4 determines whether or not the freshwater recovery rate can be increased based on the LSI conversion value.
  • the determination unit 42 determines that the fresh water recovery rate can be increased, and the switching by the switching unit 2 is performed.
  • the secondary element E2x for use is cut off and the storage solution is filled.
  • the performance of the water treatment device 1 can be flexibly adapted to changes in water quality due to seasonal fluctuations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 水処理装置(1)は、互いに並列に配置されて、被処理水(SW)を一次濃縮水(CW1)と淡水(FW1)に分離する処理を行う逆浸透膜装置としての複数の一次エレメント(E1)を有する一次ユニット(U1)と、一次ユニット(U1)に被処理水(SW)を圧送するポンプ(P)と、一次エレメント(E1)よりも少ない個数が設けられるとともに、互いに並列に配置されて、一次濃縮水(CW1)を二次濃縮水(CW2)と淡水(FW2)とに分離する処理を行う逆浸透膜装置としての二次エレメント(E2)を有する二次ユニット(U2)と、一次ユニット(U1)と二次ユニット(U2)とのうち、二次ユニット(U2)のみに設けられて、複数の二次エレメント(E2)のうちの少なくとも1つを処理不能に切り離す切替部(2)と、を備える。

Description

水処理装置、及び水処理装置の運転方法
 本発明は、水処理装置、及びその運転方法に関する。
 海水の淡水化や、工業用水の浄化を行うための技術として、逆浸透膜を用いた水処理装置が実用化されている。その具体例として、下記特許文献1に記載された技術が知られている。特許文献1に記載された膜処理装置は、それぞれ複数の膜モジュールを有する上流段側の膜モジュールバンク、及び下流段側の膜モジュールバンクと、上流段側の膜モジュールバンクに対して原水(被処理水)を圧送するポンプと、を有している。
 ところで、このような装置では、海水等の被処理水から回収される淡水の比率(淡水回収率)に対して、予め目標値が定められている。淡水回収率が過度に高い場合には、淡水が分離された残余の成分である濃縮水中に含まれる塩濃度が過度に上昇してしまう。高い塩濃度の濃縮水を環境中に排出した場合、環境負荷が高まることが懸念される。このため、例えば海水を淡水化する場合、淡水回収率は、25~40%程度に設定される。
 一方で、装置の連続的な運用に伴って、逆浸透膜の性能が低下した場合には、淡水回収率は相対的に低下する。この場合、逆浸透膜に対する被処理水の供給圧力を高めることで、淡水回収率の低下を補う必要がある。淡水回収率を上げるため、ポンプの出力を上げることで、逆浸透膜に対する被処理水の供給圧力が高められる。被処理水の圧力が上がることにより、逆浸透膜において分離される淡水の量が増加し、淡水回収率が上昇に転じる。
特開2013-22544号公報
 しかしながら、上記のように淡水回収率が上昇するに伴って、被処理水から分離される濃縮水の量は減少する。すなわち、上記特許文献1に記載された装置では、上流段側の膜モジュールバンクから下流段側の膜モジュールバンクに対して供給される濃縮水の量が減少する。さらに、逆浸透膜を用いた装置では、エレメント1つあたりから排出される濃縮水の量(流量)に下限値が設定されている。濃縮水の量がこの下限値を下回ると、膜モジュール内で濃度分極による膜面濃度の増加によりスケール析出等の不具合が生じ、十分な分離、濃縮が行えない可能性がある。したがって、上記特許文献1に記載された装置では、淡水回収率が限定的となってしまう。
 本発明は、上記事情に鑑みてなされたものであり、水処理装置における淡水回収率と稼働率を向上させることを目的とする。
 本発明は、上記課題を解決するために以下の手段を採用する。
 本発明の第一の態様によれば、水処理装置は、互いに並列に配置されて、被処理水を一次濃縮水と淡水に分離する処理を行う逆浸透膜装置としての複数の一次エレメントを有する一次ユニットと、前記一次ユニットに前記被処理水を圧送するポンプと、前記一次エレメントよりも少ない個数が設けられるとともに、互いに並列に配置されて、前記一次濃縮水を二次濃縮水と淡水とに分離する処理を行う逆浸透膜装置としての二次エレメントを有する二次ユニットと、前記一次ユニットと前記二次ユニットとのうち、二次ユニットのみに設けられて、複数の前記二次エレメントのうちの少なくとも1つを処理不能に切り離す切替部と、を備える。
 上記の構成によれば、ポンプの出力を上げることで、二次ユニットから回収される淡水が被処理水の堆積に対して占める割合(淡水回収率)が増加する。淡水回収率が増加すると、二次ユニットでは二次エレメント1つあたりに流入する一次濃縮水の量が減少する。
 ここで、一次エレメント、及び二次エレメントのような逆浸透膜装置では、導入される濃縮水の量に下限値が設定されている。当該水処理装置では、上記のように一次濃縮水の量が減少した場合に、切替部によって少なくとも1つの二次エレメントが切り離されて処理不能となる。これにより、切り離された二次エレメントを除く残余の二次エレメントに対しては、上記の下限値を上回る一次濃縮水を導くことができる。
 本発明の第二の態様によれば、上記第一の態様に係る水処理装置において、少なくとも1つの前記二次エレメントは、前記一次ユニットから供給された前記一次濃縮水を前記二次エレメントに導く導入ラインと、前記一次濃縮水から分離された前記二次濃縮水が流通する二次濃縮水ラインと、前記一次濃縮水から分離された前記淡水が流通する淡水ラインと、を備え、前記切替部は、前記二次濃縮水ライン上に設けられた第二弁と、前記淡水ライン上に設けられた第一弁と、前記導入ライン上に設けられた第三弁と、を有してもよい。
 上記の構成によれば、第一弁、第二弁、第三弁をそれぞれ閉止することによって、特定の二次エレメントを容易に切り離すことができる。特に、これら第一弁、第二弁、第三弁を切替部として用いることから、装置の運転中に弁の開閉を行うことができる。これにより、水処理装置を停止させることなく、第二エレメントを切り離すことができる。言い換えれば、水処理装置の稼働率を下げることなく、二次エレメントを切り離すことができる。
 本発明の第三の態様によれば、上記第二の態様に係る水処理装置は、前記導入ライン上における前記第三弁と前記二次エレメントとの間に設けられ、外部から供給された保存液を該二次エレメントに導く保存液供給ラインと、前記二次濃縮水ライン上における前記第二弁と前記二次エレメントとの間に設けられ、前記二次エレメントから前記保存液を外部に排出する保存液排出ラインと、前記保存液排出ライン上に設けられた第四弁と、を備えてもよい。
 上記の構成によれば、切り離されて処理不能となった二次エレメントに対して、保存液を供給することができる。これにより、二次エレメントにおける逆浸透膜の汚損を低減することができる。さらに、当該切り離された二次エレメントを再び系統に復帰させる場合には、第四弁を開放することにより、保存液排出ラインを通じてこれを排出すればよい。加えて、水処理装置を停止させることなく、弁の開閉のみによって上記保存液の供給と排出とを行うことができる。これにより、水処理装置の稼働率の低下を抑制することができる。
 本発明の第四の態様によれば、上記いずれか一態様に係る水処理装置において、前記被処理水、前記一次濃縮水、前記二次濃縮水、前記淡水の少なくとも1つにおける特性値を計測する計測部と、前記特性値と、予め定められた基準値との比較に基づいて、前記切替部の動作を制御する制御部と、を備えてもよい。
 本発明の第五の態様によれば、上記第四の態様に係る水処理装置において、前記計測部は、前記被処理水、前記一次濃縮水、前記二次濃縮水、前記淡水の少なくとも1つにおける温度、又は電気伝導度を計測し、前記制御部は、前記温度、又は電気伝導度の値に基づいて、前記特性値としてのランゲリア飽和指数(LSI)を算出する演算部を備えてもよい。
 上記の構成によれば、被処理水、一次濃縮水、二次濃縮水、淡水の少なくとも1つにおける水質に応じて、水処理装置による淡水回収率を最大化することが可能となる。特に、計測部と制御部を備えることで、季節変動などによる水質の変化に対して水処理装置の性能を自律的に調整することで、この変化に柔軟に対応することができる。
 本発明の第六の態様によれば、上記第二から第五のいずれか一態様に係る水処理装置から少なくとも1つの二次エレメントを切り離す、水処理装置の運転方法は、前記第一弁を閉じることで、前記淡水ラインを閉止するステップと、前記第一弁を閉じた後で、前記第二弁を閉じることで前記二次濃縮水ラインを閉止するステップと、前記第二弁を閉じた後で、前記第三弁を閉じることで前記導入ラインを閉止するステップと、を含む。
 上記の方法によれば、まず第一弁を閉じることで淡水ラインが閉止される。これにより、淡水の排出が停止される。このとき、切り離しの対象となった二次エレメントからは、一次濃縮水がほぼ濃縮されることなく、二次濃縮水ラインを通じて排出される。その後、第三弁を閉じることで、当該二次エレメントに対する一次濃縮水の導入も停止される。これにより、当該二次エレメントにおけるスケールの析出を抑制することができる。
 一方で、第一弁の閉止に先立って第二弁を閉止した場合、高圧の一次濃縮水が二次エレメントに供給され続けるため、当該二次エレメントには高い負荷がかかってしまう。言い換えると、当該二次エレメントでは一次濃縮水が過度に濃縮されてしまう。その結果、一次濃縮水に含まれる塩類がスケールとして二次エレメント内で析出する可能性がある。しかしながら、上述のような運転方法によれば、はじめに淡水の排出が停止されることで、二次エレメントにおける分離と濃縮が不能となる。したがって、スケールの析出を十分に抑制することができる。
 本発明の水処理装置、及び水処理装置の運転方法によれば、淡水回収率と稼働率を向上させることができる。
本発明の第一実施形態に係る水処理装置を示す系統図である。 本発明の実施形態に係る水処理装置の運転方法を示す工程図である。 本発明の第二実施形態に係る水処理装置を示す系統図である。 本発明の変形例に係る水処理装置を示す系統図である。
[第一実施形態]
 本発明の第一実施形態について、図面を参照して説明する。図1に示すように、本実施形態に係る水処理装置1は、被処理水SWが流通する取水ラインL1と、被処理水SWを取水ラインL1の上流から下流に圧送するポンプPと、複数の逆浸透膜装置(一次エレメントE1,二次エレメントE2)を有する一次ユニットU1、及び二次ユニットU2と、これら一次ユニットU1と二次ユニットU2とを互いに接続する接続ラインLcと、を備えている。さらに、この水処理装置1は、上記二次ユニットU2中における二次エレメントE2を処理不能に切り離すための切替部2と、切り離された二次エレメントE2に保存液を供給するための保存液供給装置3と、を有している。
 取水ラインL1は、外部から供給される被処理水SWを水処理装置1に導くための流路である。この取水ラインL1の上流側には、例えば前処理装置(不図示)が設けられている。この前処理装置では、海水中に含まれる生物が装置に付着することを抑制するための酸化剤や、微粒子、コロイド等を凝集させるための凝集剤の添加、及びpHの調整等が行われる。より具体的には、酸化剤としては次亜塩素酸などが好適に用いられる。さらに、凝集剤としては塩化第二鉄などの無機凝集剤や、PACなどの高分子凝集剤が用いられる。これら凝集剤によって凝集された懸濁物は、砂ろ過器によって取り除かれる。
 このように、前処理を施された被処理水SWは、取水ラインL1上に設けられたポンプPによって、該取水ラインL1中の上流側から下流側に向かって圧送される。
 一次ユニットU1、及び二次ユニットU2は、上記取水ラインL1によって導かれた被処理水SWを逆浸透によって分離・濃縮するための装置である。一次ユニットU1は、互いに並列に配置された複数の一次エレメントE1と、これら複数の一次エレメントE1に対して取水ラインL1中の被処理水SWを分配する一次分配ラインLd1と、一次エレメントE1から排出された一次濃縮水CW1、及び淡水(一次淡水FW1)がそれぞれ流通する一次集水ラインLg1、及び一次淡水ラインLf1と、を有している。
 一次エレメントE1は、中空糸膜やスパイラル膜などの逆浸透膜(RO膜:Reverse Osmosis Membrane)を内部に備える逆浸透膜装置である。それぞれの一次エレメントE1は、ベッセルと呼ばれる外装部材と、このベッセル内部に配置された逆浸透膜と、を主に備えている。さらに、ベッセルには、上記分配ラインに接続される一次流入口E11と、一次集水ラインLg1、及び一次淡水ラインLf1にそれぞれ接続される一次集水口E12、及び一次淡水集水口E13と、が設けられている。
 一次ユニットU1は、上記一次エレメントE1が互いに並列に配置されることで構成されている。一例として本実施形態では、5つの一次エレメントE1が並列に配置されている。より具体的には、取水ラインL1の下流側端部と、それぞれの一次エレメントE1の一次流入口E11とが、上記の分配ラインによって互いに接続されている。さらに、一次集水ラインLg1は、それぞれの一次エレメントE1の一次集水口E12と、接続ラインLc(後述)の上流側端部とを互いに接続している。一次淡水ラインLf1は、各一次エレメントE1中で分離された淡水を外部に排出・回収するための流路である。一次淡水ラインLf1の下流側には、回収された淡水を貯留するためのタンクや、さらなるろ過等を施すための設備が接続される(いずれも不図示)。
 二次ユニットU2は、上記一次ユニットU1と同様の構成により、一次ユニットU1にて生成された一次濃縮水CW1をさらに分離・濃縮するための装置である。より詳細には、二次ユニットU2は、互いに並列に配置された複数の二次エレメントE2と、これら複数の二次エレメントE2に対して、一次ユニットU1にて生成された一次濃縮水CW1を分配する二次分配ラインLd2(導入ライン)と、二次エレメントE2から排出された二次濃縮水CW2、及び淡水(二次淡水FW2)がそれぞれ流通する二次集水ラインLg2(二次濃縮水ライン)、及び二次淡水ラインLf2(淡水ライン)と、を有している。
 二次エレメントE2は上記の一次エレメントE1と同等の構成と性能を有する逆浸透膜装置であるが、以下の説明ではこれらを区別する。二次エレメントE2のベッセルには、二次分配ラインLd2に接続される二次流入口E21と、二次集水ラインLg2、及び二次淡水ラインLf2にそれぞれ接続される二次集水口E22、及び二次淡水集水口E23と、が設けられている。
 一次ユニットU1と同様に、二次ユニットU2は、複数の二次エレメントE2が互いに並列に配置されることで構成されている。なお、二次ユニットU2における二次エレメントE2の個数は、上記一次ユニットU1における一次エレメントE1の個数よりも少なく設定される。本実施形態では、二次ユニットU2には3つの二次エレメントE2が設けられている。
 接続ラインLcは、上記一次ユニットU1の下流側と、二次ユニットU2とを接続している。より詳細には、接続ラインLcは、一次ユニットU1におけるそれぞれの一次集水ラインLg1の下流側端部と、二次ユニットU2におけるそれぞれの二次分配ラインLd2の上流側端部とを互いに接続している。これにより、一次ユニットU1で生成された一次濃縮水CW1は、一次集水ラインLg1、接続ラインLc、及び二次分配ラインLd2の順に流通することで、二次ユニットU2の各二次エレメントE2に分配される。二次エレメントE2では、この一次濃縮水CW1がさらに分離・濃縮されることで、淡水(二次淡水FW2)と、この二次淡水FW2を除く残余の成分としての二次濃縮水CW2とが生成される。淡水は二次淡水ラインLf2を通じて回収される。二次濃縮水CW2は二次集水ラインLg2を通じて回収された後、不図示の外部設備によって後処理等を経て外部に排出される。
 さらに、本実施形態における水処理装置1では、二次ユニットU2における1つの二次エレメントE2を系統から切り離すための切替部2が設けられている。以下の説明では、計3つの二次エレメントE2のうち、切替部2が設けられる二次エレメントE2を、切替用二次エレメントE2xと呼ぶ。
 より具体的には、切替部2は、切替用二次エレメントE2xの各ラインに設けられた3つの弁(第一弁V1,第二弁V2,第三弁V3)を有している。これら弁の開度を調節することで、各ラインの流通状態(開閉状態)を切り替えることが可能となっている。
 第一弁V1は、切替用二次エレメントE2xにおける二次淡水ラインLf2上に設けられる。これにより、二次淡水ラインLf2中を流通する二次淡水FW2の流通状態が調節される。第二弁V2は、切替用二次エレメントE2xにおける二次集水ラインLg2上に設けられる。これにより、二次集水ラインLg2中を流通する二次濃縮水CW2の流通状態が調節される。第三弁V3は、切替用二次エレメントE2xにおける二次分配ラインLd2上に設けられる。これにより、二次分配ラインLd2中を流通する一次濃縮水CW1の流通状態が調節される。
 これら第一弁V1,第二弁V2,第三弁V3をそれぞれ閉じることで各ラインが閉止される。これにより、切替用二次エレメントE2xに対する一次濃縮水CW1の供給、及び二次淡水FW2と二次濃縮水CW2の排出とが停止されて、処理不能となる。すなわち、切替用二次エレメントE2xは、系統から切り離された状態となる。
 さらに、本実施形態に係る水処理装置1では、切り離された二次エレメントE2に保存液を供給するための保存液供給装置3が設けられている。この装置は、上記の切替部2によって系統から切り離された切替用二次エレメントE2xに、保存液を供給するための装置である。切り離された切替用二次エレメントE2xでは、逆浸透膜に対する通水が行われないため、濃縮水が滞留した状態となる。長期にわたってこのような状態が継続した場合、濃縮水の劣化や腐食に起因して、二次エレメントE2中の逆浸透膜の性能低下が生じる可能性がある。そこで、この水処理装置1では、上記の保存液供給装置3によって、保存液を二次エレメントE2中に供給することで、二次エレメントE2の保護を図っている。
 具体的には、保存液供給装置3は、切替用二次エレメントE2xにおける二次分配ラインLd2に接続される保存液供給ラインLp1と、二次集水ラインLg2に接続される保存液排出ラインLp2と、保存液排出ラインLp2の流通状態を調節するための第四弁V4と、を有している。
 保存液供給ラインLp1は、保存液を貯留するタンク(不図示)と、二次分配ラインLd2上であって、第三弁V3と二次エレメントE2(二次流入口E21)との間の領域とを接続している。この保存液供給ラインLp1を通じてタンク内の保存液が二次分配ラインLd2中に供給される。さらに、保存液排出ラインLp2は、二次集水ラインLg2上であって、第二弁V2と二次エレメントE2との間の領域から外部に向かって延びている。第四弁V4を開放することにより、切替用二次エレメントE2x中に滞留している一次濃縮水CW1と、保存液の余剰成分とが、それぞれ外部に押し出される。
 次に、上述のように構成された水処理装置1の運転方法について図1、又は図2を参照して説明する。
 通常の運転状態では、上記の切替部2における第一弁V1,第二弁V2,第三弁V3はいずれも開放されている。一方で、第四弁V4は閉止される。この状態でポンプPを駆動することで、被処理水SWが取水ラインL1を経て一次ユニットU1に導かれる。ポンプPによって加圧された被処理水SWは、各一次エレメントE1の逆浸透膜に対して高圧の状態で通水される。
 一次ユニットU1では、各一次エレメントE1中で被処理水SWに対する逆浸透が行われる。これにより、一次エレメントE1中では、被処理水SW中の塩分等が濃縮された一次濃縮水CW1と、この一次濃縮水CW1を除く残余の成分(淡水)である一次淡水FW1とが生成される。より詳細には、被処理水SWのうち、淡水成分が逆浸透膜を透過して下流側に達することで一次淡水FW1となる。一次淡水FW1が下流側に透過することで、逆浸透膜の上流側には、被処理水SWに含まれる塩類が濃縮される。これにより、逆浸透膜の上流側では一次濃縮水CW1が生成される。なお、逆浸透膜の下流側では、一次淡水FW1の圧力は上記の被処理水SWの圧力よりも小さくなっている。
 一次淡水FW1は、上記の一次淡水ラインLf1を経て外部に回収される。一次濃縮水CW1は、一次集水ラインLg1中に集められた後、接続ラインLcを経て下流側の二次ユニットU2に流入する。二次ユニットU2では、接続ラインLcを経て流入した一次濃縮水CW1が、二次分配ラインLd2によって各二次エレメントE2にそれぞれ分配される。
 二次エレメントE2中では、上記一次エレメントE1と同様に、一次濃縮水CW1からの淡水の分離と塩類の濃縮とが行われる。すなわち、一次濃縮水CW1中の淡水成分である二次淡水FW2と、この二次淡水FW2を除く残余の成分である二次濃縮水CW2とが生成される。
 二次淡水FW2は、二次淡水FW2集水ラインによって外部に回収される。二次濃縮水CW2は、二次集水ラインLg2中に集められた後、外部の環境中に排出される。以上の動作が連続的に行われることにより、被処理水SW(海水)が淡水化される。
 ところで、上記のような水処理装置1では、被処理水SWから回収される淡水の体積比率(淡水回収率)に対して、予め目標値が定められている。例えば海水を淡水化する場合、淡水回収率は、25~40%程度に設定される。しかしながら、装置の連続的な運用に伴って、逆浸透膜の性能が低下した場合には、淡水回収率は相対的に低下して、上記の目標値を下回る可能性がある。この場合、ポンプPの出力を上げることで、逆浸透膜に対する被処理水SWの供給圧力が高められる。被処理水SWの圧力が上がることにより、逆浸透膜において分離される淡水の量が増加し、淡水回収率が上昇に転じる。
 しかしながら、上記のように淡水回収率が上昇するに伴って、被処理水SWから分離される二次濃縮水CW2の量は減少する。すなわち、二次ユニットU2のエレメント1つあたりから排出される濃縮水の量が減少する。ここで、逆浸透膜を用いた装置では、エレメント一つあたりから排出される濃縮水の量(流量)に下限値が設定されている。二次濃縮水の量がこの下限値を下回ると、二次ユニットU2(二次エレメントE2)で濃度分極によりスケール析出等の不具合が生じ、十分な分離、濃縮が行えない可能性がある。
 そこで、本実施形態に係る水処理装置1では、上記の切替部2によって切替用二次エレメントE2xを系統から切り離すことで、切替用二次エレメントE2xを除く残余の二次エレメントE2におけるエレメント一つあたりの濃縮水の量を相対的に増加させている。これにより、それぞれの二次エレメントE2から排出される二次濃縮水の量を、上記下限値よりも大きくすることができる。
 より具体的には図2に示すように、切替用二次エレメントE2xの切り離すための水処理装置1の運転方法として、第一弁V1を閉じるステップと、第二弁V2を閉じるステップと、第三弁V3を閉じるステップが以上の順で実行される。まず、第一弁V1を閉じることで、二次淡水ラインLf2(淡水ライン)中における二次淡水FW2の流通が停止する。続いて、第一弁V1を閉じた後で第二弁V2を閉じることで、二次集水ラインLg2(二次濃縮水CW2ライン)中における二次濃縮水CW2の流通が停止する。次に、第二弁V2を閉じた後で第三弁V3を閉じることで、二次集水ラインLg2が閉止される。これにより、二次集水ラインLg2による一次濃縮水CW1の供給が停止される。
 これにより、切替用二次エレメントE2xが他の二次エレメントE2から切り離される。なお、このとき切替用二次エレメントE2x中には一次濃縮水CW1が一時的に滞留している。
 次に、保存液排出ラインLp2上の第四弁V4を開放する。これにより、保存液供給ラインLp1を通じて保存液が、切替用二次エレメントE2x中に充填される。つまり、切替用二次エレメントE2x中に滞留していた一次濃縮水CW1は、保存液によって押し出されて保存液排出ラインLp2から外部に排出される。以上により、切替用二次エレメントE2xの内部は、保存液によって満たされた状態となる。保存液の充填が完了したことが確認された後、第四弁V4は閉められる。
 以上、説明したように、本実施形態に係る水処理装置1では、ポンプPの出力を上げることで、一次ユニットU1、二次ユニットU2から回収される淡水の量がそれぞれ増加する。淡水回収率が増加すると、二次ユニットU2では二次エレメントE21つあたりから排出される二次濃縮水CW2の量が減少する。
 一般的に、逆浸透膜装置では、エレメント一つあたりから排出される濃縮水の量に下限値が設定されている。本実施形態に係る水処理装置1では、上述のように二次濃縮水CW2の量が減少した場合に、切替部2によって少なくとも1つの二次エレメントE2が切り離されて処理不能となる。これにより、切り離された二次エレメントE2(切替用二次エレメントE2x)を除く残余の二次エレメントE2に対しては、上記の下限値を上回る二次濃縮水CW2を導くことができる。
 さらに、上記の切替用二次エレメントE2xの切り離しは、第一弁V1,第二弁V2,第三弁V3をそれぞれ閉止することによって容易に行うことができる。加えて、これら第一弁V1,第二弁V2,第三弁V3は、水処理装置1の通水中(運転中)に開閉することができる。すなわち、本実施形態に係る水処理装置1では、運転を停止させることなく、切替用二次エレメントE2xを切り離すことができる。これにより、水処理装置1の稼働率を下げることなく、二次エレメントE2を切り離すことができ、結果として淡水回収率の最大値を向上させることができる。
 ここで、例えば上記の切替部2に代えて、プラグによって一部の二次エレメントE2を閉塞することで系統から切り離す構成を採った場合、プラグの設置に際して装置への通水(装置の運転)を停止する必要が生じてしまう。これに対して、本実施形態に係る水処理装置1では、上記の切替部2を用いていることから、水処理装置1の運転を停止させることなく、切替用二次エレメントE2xを切り離すことができる。これにより、水処理装置1の稼働率の低下を回避することができる。
 また、切り離されて処理不能となった切替用二次エレメントE2xに対しては、保存液が供給される。保存液が充填されることにより、一次濃縮水CW1が外部に押し出されることから、二次エレメントE2の汚損を低減することができる。さらに、切替用二次エレメントE2xを再び系統に復帰させる場合には、第四弁V4を開放することにより、保存液排出ラインLp2を通じてこれを容易に排出することができる。すなわち、水処理装置1を停止させることなく、弁の開閉のみによって保存液の供給と排出を行うことができる。これにより、水処理装置1の稼働率の低下をさらに抑制することができる。
 さらに、上記の水処理装置1の運転方法によれば、切替用二次エレメントE2xを切り離すに当たって、まず第一弁V1を閉じることで淡水ラインが閉止される。これにより、淡水の排出が停止される。このとき、切り離しの対象となった二次エレメントE2からは、一次濃縮水CW1がほぼ濃縮されることなく、二次濃縮水CW2ラインを通じて排出される。その後、第三弁V3を閉じることで、当該二次エレメントE2に対する一次濃縮水CW1の導入も停止される。これにより、切替用二次エレメントE2xにおけるスケールの析出を抑制することができる。
 一方で、第一弁V1の閉止に先立って第二弁V2を閉止した場合、高圧の一次濃縮水CW1が切替用二次エレメントE2xに供給され続けるため、切替用二次エレメントE2xには高い負荷がかかってしまう。言い換えると、切替用二次エレメントE2xでは一次濃縮水CW1が過度に濃縮されてしまう。その結果、一次濃縮水CW1に含まれる塩類がスケールとして析出する可能性がある。しかしながら、上述のような運転方法によれば、はじめに淡水(二次淡水FW2)の排出が停止されることで、切替用二次エレメントE2xにおける分離と濃縮が不能となる。したがって、スケールの析出を十分に抑制することができる。
 以上、本発明の第一実施形態について図面を参照して説明した。しかしながら、上記の構成は一例に過ぎず、種々の設計変更を施すことが可能である。
[第二実施形態]
 次に、本発明の第二実施形態について、図3を参照して説明する。なお、上述の第一実施形態と同様に構成については同一の符号を付し、詳細な説明を省略する。
 図3に示すように、本実施形態に係る水処理装置1では、二次ユニットU2中における2つの二次エレメントE2がそれぞれ切替用二次エレメントE2xとされている。さらに、これら2つの切替用二次エレメントE2xには、それぞれ上述の切替部2(第一弁V1,第二弁V2,第三弁V3)と、保存液供給装置3と、が設けられている。すなわち、本実施形態における水処理装置1では、2つの二次エレメントE2が個別に切り離し可能に構成されている。
 上記2つの切替用二次エレメントE2xは、いずれも上述の第一実施形態において説明した手順と同様のステップをそれぞれ繰り返すことで系統から切り離される。すなわち、2つのうち一方の切替用二次エレメントE2xにおいて、第一弁V1,第二弁V2,第三弁V3をそれぞれ順に閉じた後、第四弁V4の開閉を行うことで、当該切替用二次エレメントE2xの切り離しと保存液の充填が行われる。
 以上のように、1つの切替用二次エレメントE2xを切り離した後で、依然として、二次エレメントE2の濃縮水量が下限値を下回っている場合には、さらに他方の切替用二次エレメントE2xを切り離すことで、各二次エレメントE2に十分な量の二次濃縮水を確保することができる。すなわち、本実施形態における水処理装置1では、2つの切替用二次エレメントE2xが設けられていることから、上述の第一実施形態に比べてさらにポンプPの出力を上げることが可能となる。これにより、水処理装置1の淡水回収率、及びその最大値をさらに向上させることができる。
 なお、以上の実施形態では、3つの二次エレメントE2のうち、2つの二次エレメントE2を切替用二次エレメントE2xとした例について説明した。しかしながら、切替用二次エレメントE2xの個数に制限はなく、例えば3つ全ての二次エレメントE2を切替用二次エレメントE2xとして設定してもよい。要するに、二次ユニットU2中における少なくとも1つの二次エレメントE2が切り離し可能であればよい。このように、切替用二次エレメントE2xの個数を増やすことに伴って、淡水回収率の上限値をさらに向上させることができる。
 さらに、上記の各実施形態における切替部2と保存液供給装置3を動作させるに当たっては、作業者の手によって行われてもよいし、図4に示すように制御部4によって行われてもよい。制御部4を用いる場合、上述の取水ラインL1上、及び接続ラインLc上に、計測部5を設けることで各ライン中の水(被処理水SW、一次濃縮水CW1、二次濃縮水CW2、一次淡水FW1、二次淡水FW2)の特性値が計測される。これら特性値に基づいて、制御部4は切替部2(第一弁V1,第二弁V2,第三弁V3の開閉)を制御する。
 より具体的には、計測部5としては、水の電気伝導度を計測することが可能な装置や、温度計などが適宜用いられる。
 制御部4は、上記計測部5による計測によって得られた値に基づいて特性値を算出する演算部41と、演算部41によって算出された特性値に基づいて切替部2の動作要否を判定する判定部42と、判定部42の判定に基づいて切替部2の各弁(第一弁V1,第二弁V2,第三弁V3,第四弁V4)の開度を電気信号として指示する信号生成部43と、を有している。
 上記のような構成を採る場合、計測部5は、水の電気伝導度、温度、LSI(ランゲリア飽和指数:Langeliar Saturation Index)等の特性値を連続的に計測する。制御部4における判定部42は、これら特性値と、予め定められた基準値又は基準範囲との比較を行う。当該基準値又は基準範囲を満たす場合には、判定部42は淡水回収率を上げることができると判定して、上記切替部2による切替用二次エレメントE2xの切り離しを行う。なお、制御部4が第四弁V4の開閉を行うことで、切替用二次エレメントE2xに対する保存液の充填を行う構成としてもよい。
 なお、LSIを指標として用いる際における、「当該基準値又は基準範囲を満たす場合」とは、LSIが当該基準値よりも小さい場合(例えば、0より小さい場合)が対応する。さらに、淡水回収率の増加可否の判定は、通常はLSIによりエレメントのスケール析出有無を確認して行うが、電気伝導度、温度に基づいて同様の判定をしてもよい。
 一般的にLSIの値は、測定対象となる水の電気伝導度、及び温度の各値に依存する。さらに、電気伝導度は水中の溶存塩濃度(すなわち、電解質としてイオン状態で溶存した塩の濃度)によって決定される。また、水の温度が1℃上昇するに従って、LSIの値はおおむね1.5×10-2増加する。
 したがって、計測部5によって電気伝導度、及び温度を計測した後、制御部4における演算部41が、これら特性値に基づく演算を行うことで、LSI換算値が算出される。制御部4の判定部42は、このLSI換算値に基づいて、淡水回収率の増加可否を判定する。
 すなわち、LSIが当該基準値よりも小さい場合に対応する電気伝導度又は温度の基準範囲となる場合に、判定部42が淡水回収率を上げることができると判定して、上記切替部2による切替用二次エレメントE2xの切り離しと、保存液の充填を行う。
 このような構成によれば、被処理水SWの水質に応じて、自律的に淡水回収率を最大化することが可能となる。特に、季節変動などによる水質の変化に対して水処理装置1の性能を柔軟に対応させることができる。
 上述した水処理装置1、及び水処理装置1の運転方法によれば、淡水回収率と稼働率とを向上させることができる。
1…水処理装置 2…切替部 3…保存液供給装置 4…制御部 41…演算部 42…判定部 43…信号生成部 5…計測部 CW1…一次濃縮水 CW2…二次濃縮水 E1…一次エレメント E11…一次流入口 E12…一次集水口 E13…一次淡水集水口 E2…二次エレメント E21…二次流入口 E22…二次集水口 E23…二次淡水集水口 E2x…切替用二次エレメント FW1…一次淡水 FW2…二次淡水 L1…取水ライン Lc…接続ライン Ld1…一次分配ライン Ld2…二次分配ライン Lf1…一次淡水ライン Lf2…二次淡水ライン Lg1…一次集水ライン Lg2…二次集水ライン Lp1…保存液供給ライン Lp2…保存液排出ライン P…ポンプ SW…被処理水 U1…一次ユニット U2…二次ユニット V1…第一弁 V2…第二弁 V3…第三弁 V4…第四弁

Claims (6)

  1.  互いに並列に配置されて、被処理水を一次濃縮水と淡水に分離する処理を行う逆浸透膜装置としての複数の一次エレメントを有する一次ユニットと、
     前記一次ユニットに前記被処理水を圧送するポンプと、
     前記一次エレメントよりも少ない個数が設けられるとともに、互いに並列に配置されて、前記一次濃縮水を二次濃縮水と淡水とに分離する処理を行う逆浸透膜装置としての二次エレメントを有する二次ユニットと、
     前記一次ユニットと前記二次ユニットとのうち、二次ユニットのみに設けられて、複数の前記二次エレメントのうちの少なくとも1つを処理不能に切り離す切替部と、
    を備える水処理装置。
  2.  少なくとも1つの前記二次エレメントは、
     前記一次ユニットから供給された前記一次濃縮水を前記二次エレメントに導く導入ラインと、
     前記一次濃縮水から分離された前記二次濃縮水が流通する二次濃縮水ラインと、
     前記一次濃縮水から分離された前記淡水が流通する淡水ラインと、
    を備え、
     前記切替部は、
     前記淡水ライン上に設けられた第一弁と、
     前記二次濃縮水ライン上に設けられた第二弁と、
     前記導入ライン上に設けられた第三弁と、
    を有する請求項1に記載の水処理装置。
  3.  前記導入ライン上における前記第三弁と前記二次エレメントとの間に設けられ、外部から供給された保存液を該二次エレメントに導く保存液供給ラインと、
     前記二次濃縮水ライン上における前記第二弁と前記二次エレメントとの間に設けられ、前記二次エレメントから前記保存液を外部に排出する保存液排出ラインと、
     前記保存液排出ライン上に設けられた第四弁と、
    を備える請求項2に記載の水処理装置。
  4.  前記被処理水、前記一次濃縮水、前記二次濃縮水、前記淡水の少なくとも1つにおける特性値を計測する計測部と、
     前記特性値から得られるランゲリア飽和指数と、予め定められた基準値との比較に基づいて、前記切替部の動作を制御する制御部と、
    を備える請求項1から3のいずれか一項に記載の水処理装置。
  5.  前記特性値は、前記被処理水、前記一次濃縮水、前記二次濃縮水、前記淡水の少なくとも1つにおける温度、又は電気伝導度であり、
     前記制御部は、前記温度、又は前記電気伝導度に基づいて、前記ランゲリア飽和指数を算出する演算部を備える請求項4に記載の水処理装置。
  6.  請求項2から5のいずれか一項に記載の水処理装置から少なくとも1つの前記二次エレメントを切り離す水処理装置運転方法であって、
     前記第一弁を閉じることで、前記淡水ラインを閉止するステップと、
     前記第一弁を閉じた後で、前記第二弁を閉じることで前記二次濃縮水ラインを閉止するステップと、
     前記第二弁を閉じた後で、前記第三弁を閉じることで前記導入ラインを閉止するステップと、
    を含む水処理装置運転方法。
PCT/JP2015/058550 2015-03-20 2015-03-20 水処理装置、及び水処理装置の運転方法 WO2016151693A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/557,934 US20180085709A1 (en) 2015-03-20 2015-03-20 Water treatment device, and method of operating water treatment device
PCT/JP2015/058550 WO2016151693A1 (ja) 2015-03-20 2015-03-20 水処理装置、及び水処理装置の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058550 WO2016151693A1 (ja) 2015-03-20 2015-03-20 水処理装置、及び水処理装置の運転方法

Publications (1)

Publication Number Publication Date
WO2016151693A1 true WO2016151693A1 (ja) 2016-09-29

Family

ID=56977856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058550 WO2016151693A1 (ja) 2015-03-20 2015-03-20 水処理装置、及び水処理装置の運転方法

Country Status (2)

Country Link
US (1) US20180085709A1 (ja)
WO (1) WO2016151693A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354941U (ja) * 1976-10-13 1978-05-11
JPS6061090A (ja) * 1983-09-12 1985-04-08 Kobe Steel Ltd 逆浸透装置の操作方法
JPS6354493U (ja) * 1986-09-30 1988-04-12
JP2011020032A (ja) * 2009-07-14 2011-02-03 Kurita Water Ind Ltd 逆浸透膜の処理方法及び逆浸透膜装置
WO2012023469A1 (ja) * 2010-08-17 2012-02-23 東レ株式会社 淡水製造装置およびその運転方法
JP2012192374A (ja) * 2011-03-17 2012-10-11 Miura Co Ltd 水処理装置
JP2013022544A (ja) * 2011-07-25 2013-02-04 Kubota Corp 膜処理装置およびその運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354941U (ja) * 1976-10-13 1978-05-11
JPS6061090A (ja) * 1983-09-12 1985-04-08 Kobe Steel Ltd 逆浸透装置の操作方法
JPS6354493U (ja) * 1986-09-30 1988-04-12
JP2011020032A (ja) * 2009-07-14 2011-02-03 Kurita Water Ind Ltd 逆浸透膜の処理方法及び逆浸透膜装置
WO2012023469A1 (ja) * 2010-08-17 2012-02-23 東レ株式会社 淡水製造装置およびその運転方法
JP2012192374A (ja) * 2011-03-17 2012-10-11 Miura Co Ltd 水処理装置
JP2013022544A (ja) * 2011-07-25 2013-02-04 Kubota Corp 膜処理装置およびその運転方法

Also Published As

Publication number Publication date
US20180085709A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5330901B2 (ja) 塩及び淡水の併産装置及び方法
CN102471100B (zh) 造水系统
WO2018150980A1 (ja) 逆浸透処理装置及び逆浸透処理方法
US20180280888A1 (en) Reverse osmosis treatment apparatus and reverse osmosis treatment method
US9833743B2 (en) Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
US20130026083A1 (en) Water treatment system
JP6269241B2 (ja) 正浸透処理システム
JP5361928B2 (ja) 海水淡水化装置およびその制御方法
JP2010082610A (ja) 純水の製造方法、及び純水製造システム
WO2013094427A1 (ja) 逆浸透処理装置
JP2015042385A (ja) 淡水化システム
WO2012111402A1 (ja) 水処理システム及びその凝集剤注入方法
US20160159671A1 (en) Method and apparatus for treating water containing boron
JP2009154070A (ja) 浄化水回収装置及び浄化水の回収方法
CN104507873A (zh) 脱盐处理装置以及脱盐处理装置的运行方法
JP5075597B2 (ja) 浄化水回収装置及び浄化水の回収方法
JP2010029757A (ja) 膜ろ過システム、及び膜ろ過システムの運転方法
WO2016151669A1 (ja) 水処理装置
KR101550702B1 (ko) 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
KR101578470B1 (ko) 통상의 역삼투 시스템들의 향상된 성능을 위한 폐회로 탈염 개량 유닛
Zhang et al. Pilot testing of outside-in MF and UF modules used for cooling tower blowdown pretreatment of power plants
JP2002085941A (ja) 造水方法および造水装置
WO2016151693A1 (ja) 水処理装置、及び水処理装置の運転方法
KR101933063B1 (ko) 정삼투막 여과 장치
CN115461133B (zh) 液体处理装置、纯水制造系统以及液体处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP