WO2016148058A1 - マグネトロンスパッタリング用磁場発生装置 - Google Patents

マグネトロンスパッタリング用磁場発生装置 Download PDF

Info

Publication number
WO2016148058A1
WO2016148058A1 PCT/JP2016/057752 JP2016057752W WO2016148058A1 WO 2016148058 A1 WO2016148058 A1 WO 2016148058A1 JP 2016057752 W JP2016057752 W JP 2016057752W WO 2016148058 A1 WO2016148058 A1 WO 2016148058A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
target
magnetic field
central
magnetic
Prior art date
Application number
PCT/JP2016/057752
Other languages
English (en)
French (fr)
Inventor
栗山 義彦
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2017506523A priority Critical patent/JP6607251B2/ja
Priority to US15/547,541 priority patent/US10280503B2/en
Publication of WO2016148058A1 publication Critical patent/WO2016148058A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution

Definitions

  • the present invention relates to a magnetic field generator incorporated in a magnetron sputtering apparatus used for forming a thin film on a substrate surface.
  • Sputtering is a phenomenon in which atoms and molecules constituting the target are knocked out by colliding with an inert substance such as Ar at a high speed. By depositing these knocked-out atoms and molecules on the substrate, a thin film is formed. Can be formed.
  • Magnetron sputtering is a technique that can increase the deposition rate of the target material on the substrate by incorporating a magnetic field inside the cathode, and that enables film formation at low temperatures because no collision of electrons with the substrate occurs. . Therefore, in the manufacturing process of electronic components such as semiconductor ICs, flat panel displays, solar cells, and reflective films, a magnetron sputtering method is often used to form a thin film on the substrate surface.
  • the magnetron sputtering apparatus includes a substrate on the anode side in a vacuum chamber, a target (cathode) disposed to face the substrate, and a magnetic field generator disposed below the target.
  • Glow discharge is caused by applying a voltage between the anode and cathode, ionizing inert gas (such as Ar gas of about 0.1 Pa) in the vacuum chamber, while secondary electrons emitted from the target are magnetically applied. It is captured by the magnetic field formed by the generator and causes a cycloid motion on the target surface. Since the ionization of gas molecules is promoted by the cycloid motion of electrons, the film formation rate is remarkably increased as compared with the case where no magnetic field is used, and the adhesion strength of the film is increased.
  • the magnetic field generator provided in the magnetron sputtering apparatus is an apparatus that can generate a magnetic field in a circular shape or a racetrack shape.
  • a linear shape is used.
  • One having a plurality of permanent magnets installed so as to face the central magnetic pole member has been conventionally used.
  • magnetron sputtering is performed using a magnetic field generator having such a configuration, the cross-sectional shape of the erosion of the target becomes V-shaped as shown in FIG. 11, and the target utilization efficiency is not necessarily sufficient. I can not say.
  • a method of making the erosion region of the target more uniform that is, a method of changing the cross-sectional shape of the erosion from a V shape to a U shape has been considered.
  • Examples of a method for making the erosion region of the target more uniform include a method of mechanically swinging the target or the magnetic circuit, a method of moving and rotating a part of the magnet in the magnetic circuit, and the like.
  • the method of mechanically swinging the target or the magnetic circuit in order to make the erosion of the target uniform makes the apparatus larger and greatly increases the cost. Is the current situation.
  • Japanese Patent Laid-Open No. 2004-83974 discloses a magnetic field having a magnetic force line shape that spreads outward from the center of the target as the position where the vertical component of the magnetic flux density becomes zero on the substrate side with respect to the target surface moves away from the target in the vertical direction.
  • a sputtering film forming method for forming a uniform film thickness distribution and film quality distribution by suppressing the diffusion of plasma to the substrate side by a magnetic field having the magnetic field line shape, and specifically, A magnetic field generator as shown in FIGS. 1 and 2 of JP-A-2004-83974 is disclosed.
  • Japanese Patent Laid-Open No. 2004-83974 can form an erosion region in a wide range from the center of the target to the outer edge of the target by forming the magnetic field lines near the target surface almost parallel to the target surface. It describes that the efficiency can be increased.
  • the magnetic field generator described in JP-A-2004-83974 forms a magnetic tunnel between the center and the outer edge of the target on the target surface, and the horizontal component of the magnetic flux density is near the center of the target surface.
  • Magnetic field lines at which the ratio (B1 / B2) of the absolute value B1 of the vertical component of the magnetic flux density at the zero position to the maximum absolute value B2 of the vertical component of the magnetic flux density near the outer edge of the target surface is 2.5 or more Since the vertical component (B1) of the magnetic flux density in the vicinity of the shape, that is, the central portion is characterized by 2.5 times or more larger than that in the vicinity of the outer edge portion (B2), the erosion region is not sufficiently uniform, and further Improvement is desired.
  • an object of the present invention is to provide a magnetic field generator for magtron sputtering that can average the distribution of magnetic flux density on the target and improve the utilization efficiency of the target.
  • the inventors of the present invention have developed a racetrack-shaped magnetron sputtering magnetic field generator that is magnetized perpendicularly to the target surface (hereinafter referred to as perpendicular magnetization) and has a linear central portion.
  • a permanent magnet and an outer peripheral permanent magnet (perpendicular magnetization) arranged so as to surround the permanent magnet are provided, and a first intermediate permanent magnet ( Vertical magnetization) and a third intermediate permanent magnet (perpendicular magnetization), a second intermediate magnetized in a horizontal direction with respect to the target surface between the first intermediate permanent magnet and the third intermediate permanent magnet
  • the magnetic field generator provided with an intermediate permanent magnet and further provided with a fourth intermediate permanent magnet (perpendicular magnetization) at the corner of the racetrack shape has three locations where the vertical component of the magnetic flux density is zero.
  • the magnetic field generator for magnetron sputtering which is composed of a straight portion and a corner portion for facing a target and generating a magnetic field on the target surface,
  • a central permanent magnet arranged linearly in the linear portion so that the magnetization direction is perpendicular to the target surface;
  • the racetrack shape arranged so that the magnetization direction is perpendicular to the target surface and the magnetic pole facing the target is opposite to the central permanent magnet so as to surround the central permanent magnet
  • An outer peripheral permanent magnet that forms the outer periphery of
  • a first intermediate permanent magnet provided in a straight line in order toward the outer peripheral permanent magnet in parallel with the central permanent magnet on both sides of the central permanent magnet of the linear portion A second intermediate permanent magnet and a third intermediate permanent magnet;
  • the corner portion spaced apart from both ends of the central permanent magnet in the longitudinal direction, the magnetization direction is perpendicular to the target surface, and the magnetic pole facing the target is opposite to the
  • the third intermediate permanent magnet is arranged such that the magnetization direction is perpendicular to the target surface and the magnetic pole facing the target is the same as the central permanent magnet.
  • a vertical component of the magnetic flux density is formed on the target surface from a position facing the longitudinal center of the central permanent magnet in a direction perpendicular to the longitudinal direction. It is preferable that there are three places that become zero.
  • the central permanent magnet, the first intermediate permanent magnet and the outer peripheral permanent magnet are neodymium magnets
  • the second intermediate permanent magnet, the third intermediate permanent magnet and the fourth intermediate permanent magnet are made of ferrite magnets, It is preferable that the residual magnetic flux density of the central permanent magnet is smaller than the residual magnetic flux density of the first intermediate permanent magnet.
  • the magnetic flux density in the direction parallel to the target surface at the position where the magnetic flux density in the direction perpendicular to the target surface is zero is 10 ⁇ mT or more.
  • the number of the vertical component of the magnetic flux density on the target is increased to three, and the erosion region is expanded in a U shape compared to the conventional magnetic field generator, so that the target The progress of erosion can be made more uniform, and the utilization efficiency of the target can be improved.
  • FIG. 2 is an AA cross-sectional view of FIG.
  • FIG. 2 is a BB cross-sectional view of FIG. 1 (a).
  • It is a schematic diagram which shows the mode of a magnetic field when extracting only the linear part of the magnetic field generator for magnetron sputtering of this invention, and performing a magnetic field analysis with a magnetic flux line.
  • 1 is a plan view showing a magnetron sputtering magnetic field generator of Example 1.
  • FIG. FIG. 5 is a cross-sectional view taken along the line CC in FIG. FIG.
  • FIG. 5 is a cross-sectional view taken along the line DD in FIG. 5 is a plan view showing a magnetron sputtering magnetic field generator of Comparative Example 1.
  • FIG. FIG. 6 is an EE cross-sectional view of FIG. 5 (a).
  • FIG. 6 is an FF sectional view of FIG. 5 (a).
  • 3 is a graph in which a parallel component and a vertical component of magnetic flux density generated on a target surface by the magnetic field generator of Example 1 are plotted in the Y direction in a straight line portion.
  • 3 is a graph in which a parallel component and a vertical component of magnetic flux density generated on a target surface by the magnetic field generator of Example 1 are plotted in the X direction at a corner portion.
  • 6 is a graph in which a parallel component and a vertical component of magnetic flux density generated on a target surface by the magnetic field generator of Comparative Example 1 are plotted in the Y direction in a straight line portion. 6 is a graph in which a parallel component and a vertical component of magnetic flux density generated on a target surface by the magnetic field generator of Comparative Example 1 are plotted in the X direction at a corner portion.
  • the magnetic field generator of the present invention 1 it is a schematic diagram showing the points where the magnetic flux density vertical component becomes zero connected by a dotted line.
  • the magnetic field generator of Comparative Example 1 it is a schematic diagram showing the point where the magnetic flux density vertical component becomes zero connected by a dotted line.
  • FIG. 11 is a GG sectional view of FIG. 10 (a).
  • FIG. 11 is a cross-sectional view taken along the line H-H in FIG.
  • FIG. 11 is a schematic diagram showing an erosion cross-sectional shape of a target when magnetron sputtering is performed using the conventional magnetron sputtering magnetic field generator shown in FIG. 10 (a).
  • a magnetron sputtering magnetic field generator of the present invention is a device for generating a racetrack-like magnetic field on a target surface.
  • a target 9 has a racetrack shape including a straight portion 1a and two corner portions 1b and 1b.
  • the magnetron sputtering magnetic field generator 1 includes a central permanent magnet arranged on a base 8 made of a magnetic material in a linear manner so that (a) the linear portion 1a has a magnetization direction perpendicular to the target surface 9a. 2 and (b) Arranged so that the magnetization direction is perpendicular to the target surface 9a and the magnetic pole facing the target 9 is opposite to the central permanent magnet 2 so as to surround the central permanent magnet 2.
  • An outer peripheral permanent magnet 3 that forms the outer periphery of the racetrack shape, (c) First linearly provided on both sides of the linear portion 1a with the central permanent magnet 2 in between, in parallel with the central permanent magnet 2 and sequentially toward the outer peripheral permanent magnet 3.
  • the first intermediate permanent magnet 4 is arranged in the linear portion 1a so that the magnetization direction is perpendicular to the target surface 9a and the magnetic pole facing the target 9 is opposite to the central permanent magnet 2.
  • the second intermediate permanent magnet 5 has a magnetization direction parallel to the target surface 9a, and one magnetic pole faces the target side surface 4a of the first intermediate permanent magnet 4, and faces the side surface 4a.
  • a magnetic air gap 11 is preferably provided between the magnet 5 and the base 8.
  • magnetic air gaps 12a and 12b between the central permanent magnet 2 and the fourth intermediate permanent magnet 7, and between the fourth intermediate permanent magnet 7 and the outer peripheral permanent magnet 3, respectively.
  • These magnetic gaps 10a, 10b, 10c, 10d, 11, 12a, 12b may be spaces or may be filled with nonmagnetic spacers.
  • the lengths of the central permanent magnet 2, the outer peripheral permanent magnet 3, the first intermediate permanent magnet 4 and the fourth intermediate permanent magnet 7 in the direction perpendicular to the target surface 9a are preferably substantially the same.
  • the length of the third intermediate permanent magnet 6 in the direction perpendicular to the target surface 9a is preferably shorter than the length of the central permanent magnet 2 in the direction perpendicular to the target surface 9a.
  • the surfaces of the central permanent magnet 2, the outer peripheral permanent magnet 3, the first intermediate permanent magnet 4, the second intermediate permanent magnet 5, and the fourth intermediate permanent magnet 7 on the target 9 side are on the same plane S.
  • the surface of the third intermediate permanent magnet 6 on the target 9 side is preferably on the base 8 side of the same plane S.
  • the central permanent magnet 2, the first intermediate permanent magnet 4, the second intermediate permanent magnet 5, the third intermediate permanent magnet 6, and the fourth intermediate permanent magnet 7 are integrally formed, respectively.
  • a plurality of permanent magnets may be combined.
  • the outer peripheral permanent magnet 3 is preferably configured by combining a plurality of permanent magnets.
  • each permanent magnet may be configured to be affixed to the base 8 with an adhesive or the like, or a permanent magnet unit that is integrally formed by pasting together several permanent magnets may be affixed to the base 8 You may do it.
  • the second intermediate permanent magnet 5 is preferably bonded to the base 8 with an adhesive or the like via a spacer made of a non-magnetic material.
  • 1 (a), 1 (b) and 1 (c) show an example in which the target-side magnetic pole of the central permanent magnet 2 is an S pole, but this magnetic pole may be an N pole. Absent. In that case, all the magnetic poles of the other permanent magnets are also reversed.
  • the central permanent magnet 2 is provided on the straight portion 1a of the racetrack. It is preferable that they are arranged so as to be vertically connected and arranged in a straight line.
  • the size and number of permanent magnets of each rectangular parallelepiped constituting the central permanent magnet 2 are not particularly limited, and may be set as appropriate for reasons such as ease of manufacturing a magnet and ease of assembly of a magnetic field generator. .
  • Each permanent magnet may not have the same shape.
  • the length in the longitudinal direction of the central permanent magnet 2, the width (the length in the direction perpendicular to the major axis direction in plan view) and the length in the direction perpendicular to the target surface 9a are the overall shape of the magnetic field generator 1, It can be arbitrarily set depending on the intensity of the magnetic field to be generated.
  • the size of the magnetic field generator is configured to be approximately the same as or slightly smaller than the target due to requirements from the fixing method and the cooling method.
  • the size of the rectangular target and the magnetic field generator are equal, if the length in the longitudinal direction of the target (or the magnetic field generator) is W1, and the length in the short direction is W2, the central permanent magnet 2
  • the length L2 in the longitudinal direction is preferably greater than or equal to the difference between W1 and W2.
  • Peripheral Permanent Magnet Peripheral permanent magnet 3 includes the central permanent magnet 2, the first intermediate permanent magnet 4, the second intermediate permanent magnet 5, the third intermediate permanent magnet 6, and the fourth.
  • the magnetic poles facing the target 9 are arranged so as to be opposite to the target 9 side magnetic poles (S pole in the figure) of the central permanent magnet 2 so as to surround the intermediate permanent magnet 7 of To do. That is, the outer peripheral permanent magnet 3 is provided so as to form a racetrack-shaped outer periphery.
  • the outer peripheral permanent magnet 3 is preferably composed of a plurality of rectangular parallelepiped permanent magnets, and the size and number of permanent magnets used in each rectangular parallelepiped are not particularly limited. What is necessary is just to set suitably for reasons, such as assembly ease of an apparatus. Each permanent magnet may not have the same shape.
  • the width of the outer peripheral permanent magnet 3 and the length in the direction perpendicular to the target surface 9a can be arbitrarily set according to the overall shape of the magnetic field generator 1, the strength of the generated magnetic field, and the like.
  • the length in the direction perpendicular to the target surface 9a is preferably the same as the length of the central permanent magnet 2 in the direction perpendicular to the target surface 9a.
  • the first intermediate permanent magnet 4 has a predetermined distance from the central permanent magnet 2 on both sides of the central permanent magnet 2 and in parallel with the central permanent magnet 2. Set aside. The first intermediate permanent magnet 4 has a magnetization direction perpendicular to the target surface 9a and a magnetic pole (N pole in the figure) facing the target 9 on the target 9 side magnetic pole of the central permanent magnet 2 (see FIG. Then, arrange so that it is the opposite of S pole). A magnetic air gap 10a is provided between the central permanent magnet 2 and the first intermediate permanent magnet 4.
  • the first intermediate permanent magnet 4 is preferably provided on the straight portion 1a of the racetrack, and in the same manner as the central permanent magnet 2, a plurality of rectangular parallelepiped permanent magnets are preferably connected.
  • the size and number of permanent magnets of various shapes constituting the first intermediate permanent magnet 4 are not particularly limited, and are appropriately selected for reasons such as ease of manufacturing the magnet and ease of assembly of the magnetic field generator. You only have to set it.
  • the length in the longitudinal direction of the target is W1
  • the length in the short direction is W2.
  • the longitudinal length of the first intermediate permanent magnet 4 is preferably greater than or equal to the difference between W1 and W2.
  • the width of the first intermediate permanent magnet 4 (the length in the direction perpendicular to the major axis direction in plan view) and the length in the direction perpendicular to the target surface 9a are not particularly limited, but the overall shape of the magnetic field generator It can be arbitrarily set depending on the intensity of the magnetic field to be generated.
  • the length in the direction perpendicular to the target surface 9a is preferably the same as the length of the central permanent magnet 2 in the direction perpendicular to the target surface 9a.
  • Second intermediate permanent magnet The second intermediate permanent magnet 5 is parallel to the central permanent magnet 2 between the first intermediate permanent magnet 4 and the third intermediate permanent magnet 6. To place.
  • the second intermediate permanent magnet 5 has a magnetization direction parallel to the target surface 9a, one magnetic pole faces the side surface 4a closer to the target of the first intermediate permanent magnet 4, and the other magnetic pole It is installed to face the middle permanent magnet 6 side.
  • the magnetic pole on the side of the second intermediate permanent magnet 5 facing the target side surface 4a of the first intermediate permanent magnet 4 (N pole in the figure) is the target side magnetic pole of the central permanent magnet 2 (FIG. Then, it is configured to be the opposite of S pole).
  • the second intermediate permanent magnet 5 is preferably provided in the straight portion 1a of the racetrack, and is constituted by connecting a plurality of rectangular parallelepiped permanent magnets in the longitudinal direction and / or the width direction.
  • the size and number of permanent magnets of various shapes constituting the second intermediate permanent magnet 5 are not particularly limited, and are appropriately selected for reasons such as ease of manufacturing the magnet and ease of assembly of the magnetic field generator. You only have to set it.
  • a magnetic air gap 10b is provided between the first intermediate permanent magnet 4 and the second intermediate permanent magnet 5, and a magnetic air gap 11 is provided between the second intermediate permanent magnet 5 and the base 8. .
  • the magnetic gaps 10b and 11 need only be magnetic gaps, and may be spaces, for example, or may be filled with spacers made of a nonmagnetic material.
  • the magnetic air gap 11 between the second intermediate permanent magnet 5 and the base 8 is preferably filled with a spacer made of a nonmagnetic material.
  • the longitudinal length of the second intermediate permanent magnet 5 is preferably the same as the longitudinal length of the first intermediate permanent magnet 4.
  • the length of the second intermediate permanent magnet 5 in the direction perpendicular to the target surface 9a is not particularly limited, and can be arbitrarily set according to the overall shape of the magnetic field generator, the strength of the generated magnetic field, and the like.
  • the width of the second intermediate permanent magnet 5 (the length in the direction perpendicular to the major axis direction in plan view) is 5 to 200 of the length in the direction perpendicular to the target surface 9a of the central permanent magnet 2 % Is preferable, and 50 to 150% is more preferable.
  • the third intermediate permanent magnet 6 is provided between the second intermediate permanent magnet 5 and the outer peripheral permanent magnet 3 from the second intermediate permanent magnet 5. At a predetermined distance, in parallel with the central permanent magnet 2, the magnetic pole (S pole in the figure) facing the target 9 is the target 9 side magnetic pole (S pole in the figure) of the central permanent magnet 2. Arrange them to be the same.
  • the third intermediate permanent magnet 6 is preferably provided on the straight portion 1a of the racetrack, and in the same way as the central permanent magnet 2, a plurality of rectangular parallelepiped permanent magnets are preferably connected.
  • the size and number of permanent magnets of various shapes constituting the third intermediate permanent magnet 6 are not particularly limited, and are appropriately selected for reasons such as ease of manufacturing the magnet and ease of assembly of the magnetic field generator. You only have to set it.
  • a magnetic gap 10d is provided between the third intermediate permanent magnet 6 and the outer peripheral permanent magnet 3.
  • the magnetic gap 10 may be a magnetic gap, may be a space, or may be filled with a spacer made of a nonmagnetic material.
  • the longitudinal length of the third intermediate permanent magnet 6 is preferably the same as the longitudinal length of the first intermediate permanent magnet 4. Further, it may be longer than the length of the first intermediate permanent magnet 4 in the longitudinal direction.
  • the width of the third intermediate permanent magnet 6 (the length in the direction perpendicular to the long axis direction in plan view) is not particularly limited, and is arbitrarily set depending on the overall shape of the magnetic field generator, the strength of the generated magnetic field, and the like. be able to.
  • the surface of the third intermediate permanent magnet 6 on the target 9 side is preferably closer to the base 8 than the surface of the central permanent magnet 2 on the target 9 side.
  • the length in the direction perpendicular to the target surface 9a is preferably 5 to 70% of the length of the central permanent magnet 2 in the direction perpendicular to the target surface 9a.
  • the fourth intermediate part permanent magnet 7 has the central part permanent magnet 2 arranged at the corner part 1b so that the longitudinal direction thereof is perpendicular to the longitudinal direction of the central part permanent magnet 2. And provided in the longitudinal direction away from both ends.
  • the fourth intermediate permanent magnet 7 has a magnetization direction perpendicular to the target surface 9a and a magnetic pole (N pole in the drawing) facing the target 9, the magnetic pole on the target 9 side of the central permanent magnet 2 ( In the figure, it is arranged so that it is opposite to the S pole).
  • Magnetic gaps 12a and 12b are provided between the central permanent magnet 2 and the fourth intermediate permanent magnet 7, and between the fourth intermediate permanent magnet 7 and the outer peripheral permanent magnet 3, respectively.
  • the length in the longitudinal direction of the fourth intermediate permanent magnet 7 is the width between the two first intermediate permanent magnets 4 and 4 positioned in parallel across the central permanent magnet 2 (the distance between the four permanent magnets 4 and 4). It is preferable that the first intermediate permanent magnets 4 and 4 and the fourth intermediate permanent magnets 7 and 7 are arranged so as to constitute the inner wall of the racetrack.
  • the width of the fourth intermediate permanent magnet 7 and the length in the direction perpendicular to the target surface 9a are not particularly limited, and are arbitrarily set depending on the overall shape of the magnetic field generator, the strength of the generated magnetic field, and the like. can do.
  • the length in the direction perpendicular to the target surface 9a is preferably the same as the length of the central permanent magnet 2 in the direction perpendicular to the target surface 9a.
  • the permanent magnet constituting the magnetic field generator for magnetron sputtering can be formed of a known permanent magnet material.
  • the material of the permanent magnet to be used may be appropriately set according to the equipment configuration (distance from the magnetic field generator to the target) and the required magnetic field strength, but R (at least one of rare earth elements such as Nd), T (Fe Or rare earth iron-based boron magnets (neodymium magnets) such as Fe and Co) and B as essential components, rare earth sintered magnets (with various surface treatments from the point of corrosion resistance) or ferrite magnets Is preferred.
  • R at least one of rare earth elements such as Nd
  • T Fe Or rare earth iron-based boron magnets (neodymium magnets) such as Fe and Co
  • B as essential components
  • rare earth sintered magnets with various surface treatments from the point of corrosion resistance
  • ferrite magnets Is preferred.
  • the rare earth sintered magnet a neodymium magnet is particularly preferable.
  • the central permanent magnet 2, the outer peripheral permanent magnet 3 and the first intermediate permanent magnet 4 are preferably made of a rare earth sintered magnet (particularly a neodymium magnet), and the residual of the central permanent magnet 2
  • the magnetic flux density is preferably smaller than the residual magnetic flux density of the first intermediate permanent magnet 4.
  • the second intermediate permanent magnet 5, the third intermediate permanent magnet 6, and the fourth intermediate permanent magnet 7 are preferably made of ferrite magnets.
  • the second intermediate permanent magnet 5, the third intermediate permanent magnet 6 and the fourth intermediate permanent magnet 7 have a nonmagnetic spacer disposed between the magnet size, the distance from the target, or the base.
  • a rare earth sintered magnet can also be used if it is adjusted by such a method.
  • the material of the permanent magnet for the straight part and the permanent magnet for the corner part may be changed according to the required magnetic flux density.
  • the permanent magnet and the magnetic member are configured such that the parallel component of the magnetic flux density at the position where the perpendicular component of the magnetic flux density is zero on the target surface 9a is 10 ⁇ mT or more.
  • the vertical component of the magnetic flux density is zero in the range from the position facing the longitudinal center of the central permanent magnet 2 to the end of the magnetic field generator in the direction orthogonal to the longitudinal direction. It is preferable that there are three locations.
  • FIG. 3 schematically shows the state of the magnetic field by magnetic flux lines when only the straight portion of the magnetron sputtering magnetic field generator 1 of the present invention is extracted and the magnetic field analysis is performed.
  • the point where the vertical component of the magnetic flux density is zero is a point P1 facing the first intermediate permanent magnet 4 and a point facing the second intermediate permanent magnet 5 P2 and the portion P3 facing the third intermediate permanent magnet 6 exist.
  • the configuration of the straight portion 101a is shown in a sectional view in FIG. 4 (b), and the configuration of the corner portion 101b is shown in a sectional view in FIG. 4 (c).
  • the magnetic gaps 110b, 110c, 111 surrounded by the first intermediate permanent magnet 104, the second intermediate permanent magnet 105, the third intermediate permanent magnet 106 and the base 108 are: Filled with non-magnetic (aluminum) spacers.
  • Comparative Example 1 As shown in FIGS. 5 (a) to 5 (c), on a base 208 made of austenitic stainless steel (SUS304), a central magnetic pole member 202 and an outer magnetic pole member 203 made of ferritic stainless steel (SUS430), and ferrite
  • the permanent magnet 204 for linear part and the permanent magnet 205 for corner part made of sintered magnet (Hitachi Metals NMX-5D, residual magnetic flux density: about 360 mT) are magnetized in parallel with the target surface and with the same polarity.
  • the magnetic flux density at a position [corresponding to the position of the target surface (not shown)] of 20 mm from the surface (surface facing the target) of the magnetic field generator of Example 1 is obtained by magnetic field analysis, and the straight portion 101a and the corner portion 101b
  • the component of the magnetic flux density in the direction parallel to the target surface (magnetic flux density parallel component) and the component perpendicular to the magnetic flux density (magnetic flux density vertical component) from the center of the central permanent magnet 102 to the outer peripheral permanent magnet 103 (described in FIG. 4
  • the magnetic flux density distribution was obtained by plotting in the Y direction and the X direction.
  • FIG. 6 (a) shows the magnetic flux density distribution in the straight portion 101a (Y direction)
  • FIG. 6 (b) shows the magnetic flux density distribution in the corner portion 101b (X direction).
  • the horizontal axis represents the distance from the center of the central permanent magnet 102.
  • the vertical component of the magnetic flux density is indicated by a dotted line, and the parallel component of the magnetic flux density is indicated by a solid line.
  • the magnetic flux density at a position 20 [mm] (corresponding to the position of the target surface (not shown)) from the surface (surface facing the target) of the magnetic field generator of Comparative Example 1 is obtained by magnetic field analysis, and the linear portion 201a And a component parallel to the target surface of the magnetic flux density at the corner portion 201b (magnetic flux density parallel component) and a perpendicular component (magnetic flux density vertical component) from the center of the central magnetic pole member 202 toward the outer magnetic pole member 203 (FIG.
  • the magnetic flux density distribution was obtained by plotting in the Y direction and X direction) described in a).
  • FIG. 7 (a) shows the magnetic flux density distribution in the straight portion 201a (Y direction)
  • FIG. 7 (b) shows the magnetic flux density distribution in the corner portion 201b (X direction).
  • the horizontal axis represents the distance from the center of the central magnetic pole member 202.
  • the magnetic field generator 201 of comparative example 1 has the magnetic flux density in the magnetic flux density distribution of the straight part 201a (Y direction). Whereas there is only one point (P1) where the vertical component is zero, the magnetic field generator 101 (Example 1) of the present invention is perpendicular to the magnetic flux density in the magnetic flux density distribution of the straight portion 101a (Y direction). It can be seen that there are three points (P1, P2 and P3) where the component becomes zero.
  • FIGS. 8 (a) and 8 (b) show lines (dotted lines) connecting points at which the magnetic flux density vertical component becomes zero in the magnetic field generators of the present invention 1 and comparative example 1, respectively.
  • the magnetic field generator 101 (Example 1) of the present invention has an erosion region as shown in FIG. 11 compared to the magnetic field generator 201 of Comparative Example 1. 9 is expected to spread from a V shape to a U shape as shown in FIG. 9, and the erosion progress of the target can be made more uniform and the utilization efficiency of the target can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 ターゲット表面に磁場を発生させるためのレーストラック形状のマグネトロンスパッタリング用磁場発生装置であって、磁性体からなるベース上に、(a)直線状に配置された中央部永久磁石(垂直方向に磁化)と、(b)中央部永久磁石を取り囲むように配置された外周部永久磁石(垂直方向に磁化)と、(c)中央部永久磁石の両側に配置された第一の中間部永久磁石(垂直方向に磁化)、第二の中間部永久磁石(水平方向に磁化)及び第三の中間部永久磁石(垂直方向に磁化)と、(d)中央部永久磁石の長手方向両端部から離間して配置された第四の中間部永久磁石(垂直方向に磁化)とを有し、第二の中間部永久磁石は一方の磁極が第一の中間部永久磁石のターゲット寄り側面と対向するように配置されることを特徴とする。

Description

マグネトロンスパッタリング用磁場発生装置
 本発明は、基板表面に薄膜を形成するために使用されるマグネトロンスパッタリング装置に組み込まれる磁場発生装置に関する。
 スパッタリングとは、Ar等の不活性物質を高速で衝突させることによりターゲットを構成する原子や分子がたたき出される現象をいい、このたたき出された原子や分子を基板上に付着させることで、薄膜を形成することができる。マグネトロンスパッタリング法は、陰極内部に磁場を組み込むことにより、基板へのターゲット物質の堆積速度を向上させることができ、しかも基板への電子の衝突が起こらないため低温で成膜が可能な手法である。従って、半導体IC、フラットパネルディスプレー、太陽電池等の電子部品や、反射膜等の製造プロセスにおいては、基板表面に薄膜を形成するためにマグネトロンスパッタリング法が多く用いられている。
 マグネトロンスパッタリング装置は、真空チャンバー内に陽極側の基板と、基板と相対するように配置したターゲット(陰極)と、ターゲットの下方に配置した磁場発生装置とを具備する。陽極と陰極との間に電圧を印加することによりグロー放電を起こし、真空チャンバー内の不活性ガス(0.1 Pa程度のArガス等)をイオン化させ、一方でターゲットから放出された二次電子を磁場発生装置により形成した磁場により捕獲し、ターゲット表面でサイクロイド運動を行わせる。電子のサイクロイド運動によりガス分子のイオン化が促進されるため、膜の生成速度は磁場を用いない場合に比べ格段に大きくなり、膜の付着強度が大きくなる。
 マグネトロンスパッタリング装置に具備される磁場発生装置は、円状又はレーストラック状に磁場を発生させることができる装置であり、例えば図10(a)~図10(c)に示すように、直線状の中央磁極部材と、前記中央磁極部材を取り囲むように配置された外周磁極部材と、前記中央磁極部材と前記外周磁極部材との間に磁化方向が水平になるように、かつ同極性の磁極が前記中央磁極部材に対向するように設置された複数の永久磁石とを有するものが従来から使用されている。このような構成の磁場発生装置を用いてマグネトロンスパッタを行うと、ターゲッ卜のエロージョンの断面形状は、図11に示すように、V字状になってしまい、ターゲットの利用効率が必ずしも十分とは言えない。
 従来のマグネトロンスパッタリングにおいて、ターゲットの利用効率を高めるため、ターゲットのエロージョン領域をより均一にする方法、すなわちエロージョンの断面形状をV字状からU字状にする方法が考えられてきた。ターゲットのエロージョン領域をより均一にする方法としては、例えば、ターゲット、又は磁気回路を機械的に揺動する方法、磁気回路内の磁石の一部を移動、回転させる方法等が挙げられる。しかしながら、ターゲッ卜のエロージョンを均一にするためにターゲット又は磁気回路を機械的に揺動する方法は、装置の大型化、大幅なコストアップとなってしまうため、現実的には実用化が難しいのが現状である。
 特開2004-83974号は、ターゲット面に対して基板側に、磁束密度の垂直成分がゼロとなる位置が、ターゲットから垂直方向に離れるに従いターゲットの中心部から外側に広がる磁力線形状を有する磁場を形成し、前記磁力線形状を有する磁場によって前記基板側へのプラズマの拡散を抑制することにより膜厚分布及び膜質分布の均一化を図ったスパッタ成膜方法を開示しており、具体的には、特開2004-83974号の図1及び図2に示すような磁場発生装置を開示している。特開2004-83974号は、ターゲット表面近傍の磁力線形状をターゲット表面とほぼ平行に形成することで、ターゲットの中心部からターゲットの外縁部にわたる広い範囲にエロージョン領域を形成でき、ターゲットの材料の利用効率を高めることができると記載している。
 しかしながら、特開2004-83974号に記載の磁場発生装置は、ターゲット表面において前記ターゲットの中心部から外縁部の間に磁気トンネルを形成し、前記ターゲット表面の中心部近傍において磁束密度の水平成分がゼロとなる位置における磁束密度の垂直成分の絶対値B1と、前記ターゲット表面の外縁部近傍において磁束密度の垂直成分の絶対値の最大値B2との比(B1/B2)が2.5以上となる磁力線形状、すなわち、前記中心部近傍における磁束密度の垂直成分(B1)が、前記外縁部近傍(B2)よりも2.5倍以上大きいことを特徴としているため、エロージョン領域の均一化が十分ではなく、さらなる改良が望まれている。
 従って、本発明の目的は、ターゲット上の磁束密度の分布を平均化し、ターゲットの利用効率を向上させることのできるマグトロンスパッタリング用磁場発生装置を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者らは、レーストラック形状のマグネトロンスパッタリング用磁場発生装置であって、ターゲット表面に垂直に磁化された(以下、垂直磁化という。)直線状の中央部永久磁石と、それを取り囲むように配置された外周部永久磁石(垂直磁化)とを設け、前記レーストラック形状の直線部に、前記中央部永久磁石と平行に、第一の中間部永久磁石(垂直磁化)及び第三の中間部永久磁石(垂直磁化)を設け、第一の中間部永久磁石及び第三の中間部永久磁石の間にターゲット表面に対して水平方向に磁化された第二の中間部永久磁石を設け、さらに前記レーストラック形状のコーナー部に第四の中間部永久磁石(垂直磁化)を設けてなる磁場発生装置は、磁束密度の垂直成分がゼロとなる箇所が3箇所存在することにより、従来の磁場発生装置に比べてエロージョン領域がU字状に広がり、その結果、ターゲットの利用効率を著しく高めることができることを見出し、本発明に想到した。
 すなわち、ターゲットに対向し、ターゲット表面に磁場を発生させるための直線部及びコーナー部からなる、本発明のマグネトロンスパッタリング用磁場発生装置は、
 磁性体からなるベース上に、
(a)前記直線部に、磁化方向が前記ターゲット表面に垂直になるように直線状に配置された中央部永久磁石と、
(b)前記中央部永久磁石を取り囲むように、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置された、前記レーストラック形状の外周を形成する外周部永久磁石と、
(c)前記直線部の前記中央部永久磁石を挟んだ両側に、前記中央部永久磁石と平行に、前記外周部永久磁石に向けて順に、直線状に設けられた第一の中間部永久磁石、第二の中間部永久磁石及び第三の中間部永久磁石と、
(d)前記コーナー部に、前記中央部永久磁石の両端部から長手方向に離間して、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置された第四の中間部永久磁石とを有し、
 前記第一の中間部永久磁石は、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置され、
 前記第二の中間部永久磁石は、磁化方向が前記ターゲット表面に平行で、一方の磁極が前記第一の中間部永久磁石のターゲット寄り側面と対向し、前記側面と対向する磁極が前記中央部永久磁石の前記ターゲットに対向する磁極と逆になるように磁気空隙を介してベース上に配置され、
 前記第三の中間部永久磁石は、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と同じなるように配置されることを特徴とする。
 本発明のマグネトロンスパッタリング用磁場発生装置を用いた場合、前記ターゲット表面において、前記中央部永久磁石の長手方向中心に対向する位置から前記長手方向と直交する方向に向かって、磁束密度の垂直成分がゼロとなる箇所が3箇所存在するのが好ましい。
 前記中央部永久磁石、前記第一の中間部永久磁石及び前記外周部永久磁石がネオジム磁石からなり、
 前記第二の中間部永久磁石、前記第三の中間部永久磁石及び前記第四の中間部永久磁石がフェライト磁石からなり、
 前記中央部永久磁石の残留磁束密度が、前記第一の中間部永久磁石の残留磁束密度よりも小さいのが好ましい。
 前記ターゲット表面に対して垂直な方向の磁束密度がゼロとなる位置における、前記ターゲット表面に対して平行な方向の磁束密度が10 mT以上であるのが好ましい。
 本発明の磁場発生装置を用いることにより、ターゲット上の磁束密度の垂直成分がゼロとなる箇所が3箇所に増え、従来の磁場発生装置に比べてエロージョン領域がU字状に広がるので、ターゲットのエロージョン進行をより均一にし、ターゲットの利用効率を向上させることができる。
本発明のマグネトロンスパッタリング用磁場発生装置の一例を示す平面図である。 図1(a)のA-A断面図である。 図1(a)のB-B断面図である。 本発明のマグネトロンスパッタリング用磁場発生装置の他の一例を示す平面図である。 本発明のマグネトロンスパッタリング用磁場発生装置の直線部のみを抜き出して磁場解析を行った時の磁界の様子を磁束線によって示す模式図である。 実施例1のマグネトロンスパッタリング用磁場発生装置を示す平面図である。 図4(a)のC-C断面図である。 図4(a)のD-D断面図である。 比較例1のマグネトロンスパッタリング用磁場発生装置を示す平面図である。 図5(a)のE-E断面図である。 図5(a)のF-F断面図である。 実施例1の磁場発生装置によってターゲット面上に発生する磁束密度の平行成分及び垂直成分を直線部においてY方向にプロットしたグラフである。 実施例1の磁場発生装置によってターゲット面上に発生する磁束密度の平行成分及び垂直成分をコーナー部においてX方向にプロットしたグラフである。 比較例1の磁場発生装置によってターゲット面上に発生する磁束密度の平行成分及び垂直成分を直線部においてY方向にプロットしたグラフである。 比較例1の磁場発生装置によってターゲット面上に発生する磁束密度の平行成分及び垂直成分をコーナー部においてX方向にプロットしたグラフである。 本発明1の磁場発生装置において、磁束密度垂直成分がゼロとなる点を点線で結んで示す模式図である。 比較例1の磁場発生装置において、磁束密度垂直成分がゼロとなる点を点線で結んで示す模式図である。 本発明のマグネトロンスパッタリング用磁場発生装置を用いてマグネトロンスパッタを行ったときのターゲッ卜のエロージョン断面形状を示す模式図である。 従来のマグネトロンスパッタリング用磁場発生装置の一例を示す平面図である。 図10(a)のG-G断面図である。 図10(a)のH-H断面図である。 図10(a)に示す従来のマグネトロンスパッタリング用磁場発生装置を用いてマグネトロンスパッタを行ったときのターゲッ卜のエロージョン断面形状を示す模式図である。
[1] マグネトロンスパッタリング用磁場発生装置
(1)構成
 本発明のマグネトロンスパッタリング用磁場発生装置は、ターゲット表面にレーストラック状の磁場を発生させるための装置であり、例えば図1(a)及び図1(b)に示すように、ターゲット9に対向し、直線部1a及び2つのコーナー部1b,1bからなるレーストラック形状を有している。
 マグネトロンスパッタリング用磁場発生装置1は、磁性体からなるベース8上に、(a)前記直線部1aに、磁化方向が前記ターゲット表面9aに垂直になるように直線状に配置された中央部永久磁石2と、
(b)前記中央部永久磁石2を取り囲むように、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極が前記中央部永久磁石2と逆になるように配置された、前記レーストラック形状の外周を形成する外周部永久磁石3と、
(c)前記直線部1aの前記中央部永久磁石2を挟んだ両側に、前記中央部永久磁石2と平行に、前記外周部永久磁石3に向けて順に、直線状に設けられた第一の中間部永久磁石4、第二の中間部永久磁石5及び第三の中間部永久磁石6と、
(d)前記中央部永久磁石2と前記外周部永久磁石3との間の前記コーナー部1b、1bに、前記中央部永久磁石2の両端部から長手方向に離間して、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極が前記中央部永久磁石2と逆になるように配置された第四の中間部永久磁石7とを有する。
 前記第一の中間部永久磁石4は、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極が前記中央部永久磁石2と逆になるように前記直線部1aに配置され、前記第二の中間部永久磁石5は、磁化方向が前記ターゲット表面9aに平行で、一方の磁極が前記第一の中間部永久磁石4のターゲット寄り側面4aと対向し、前記側面4aと対向する磁極が前記中央部永久磁石2の前記ターゲット9に対向する磁極と逆になるように磁気空隙を介してベース8上に配置され、前記第三の中間部永久磁石6は、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極が前記中央部永久磁石2と同じなるように配置される。
 中央部永久磁石2と第一の中間部永久磁石4との間、第一の中間部永久磁石4と第二の中間部永久磁石5との間、第二の中間部永久磁石5と第三の中間部永久磁石6との間、第三の中間部永久磁石6と外周部永久磁石3との間には、それぞれ磁気空隙10a、10b、10c、10dを有し、第二の中間部永久磁石5とベース8との間には磁気空隙11を有するのが好ましい。また中央部永久磁石2と第四の中間部永久磁石7との間、第四の中間部永久磁石7と外周部永久磁石3との間には、それぞれ磁気空隙12a、12bを有するのが好ましい。これらの磁気空隙10a、10b、10c、10d、11、12a、12bは、空間であってもよいし、非磁性のスペーサで充填されていてもよい。
 中央部永久磁石2、外周部永久磁石3、第一の中間部永久磁石4及び第四の中間部永久磁石7の、ターゲット表面9aに垂直な方向の長さはほぼ同じであるのが好ましい。第三の中間部永久磁石6のターゲット表面9aに垂直な方向の長さは、中央部永久磁石2のターゲット表面9aに垂直な方向の長さよりも短いのが好ましい。
 中央部永久磁石2、外周部永久磁石3、第一の中間部永久磁石4、第二の中間部永久磁石5及び第四の中間部永久磁石7のターゲット9側の面は同一平面S上にあるのが好ましい。第三の中間部永久磁石6のターゲット9側の面は、前記同一平面Sよりもベース8側にあるのが好ましい。
 中央部永久磁石2、第一の中間部永久磁石4、第二の中間部永久磁石5、第三の中間部永久磁石6及び第四の中間部永久磁石7は、それぞれ一体的に形成しても良いし、図2に示すように、複数の永久磁石を組み合わせて構成しても良い。外周部永久磁石3は、図2に示すように、複数の永久磁石を組み合わせて構成するのが好ましい。中央部永久磁石2、外周部永久磁石3、第一の中間部永久磁石4、第三の中間部永久磁石6及び第四の中間部永久磁石7は、複数の永久磁石を組み合わせて構成する場合、個々の永久磁石をベース8上に接着剤等で貼りつけて構成してもよいし、あらかじめいくつかの永久磁石を貼り合わせて一体に形成した永久磁石ユニットをベース8上に貼りつけて構成しても良い。第二の中間部永久磁石5は、非磁性体からなるスペーサ等を介して永久磁石をベース8上に接着剤等で貼りつけるのが好ましい。
 なお図1(a)、図1(b)及び図1(c)は、中央部永久磁石2のターゲット側磁極がS極である例を示したが、この磁極がN極であってもかまわない。その場合は、他の永久磁石の磁極も全て逆に構成されることになる。
(2)中央部永久磁石
 中央部永久磁石2は、レーストラックの直線部1aに設けられ、磁性体からなるベース8上に、複数個の直方体の永久磁石を、磁化方向が前記ターゲット表面9aに垂直になるように連接して並べ、直線状に配置して構成するのが好ましい。中央部永久磁石2を構成する各直方体の永久磁石の大きさ、使用する数は特に限定されず、磁石の製造のしやすさ、磁場発生装置の組み立てやすさ等の理由で適宜設定すればよい。各永久磁石は、同じ形状でなくてもかまわない。
 中央部永久磁石2の長手方向長さ、幅(平面視で長軸方向に垂直な方向の長さ)及び前記ターゲット表面9aに垂直な方向の長さは、磁場発生装置1の全体の形状、発生させる磁場の強度等により任意に設定することができる。
 一般的なマグネトロンスパッタリング装置において、矩形ターゲットを使用する場合、磁場発生装置の大きさは、その固定方法や冷却方法からの要求から、ターゲットとほぼ同じ大きさ又は若干小さくなるように構成する。ここで、矩形ターゲットと磁場発生装置との大きさが等しいとして考えたとき、ターゲット(又は磁場発生装置)の長手方向長さをW1、短手方向長さをW2とすると、中央部永久磁石2の長手方向長さL2は、W1とW2との差以上とするのが好ましい。
(3)外周部永久磁石
 外周部永久磁石3は、前記中央部永久磁石2、第一の中間部永久磁石4、第二の中間部永久磁石5、第三の中間部永久磁石6及び第四の中間部永久磁石7を取り囲むように、前記ターゲット9に対向する磁極(図ではN極)が前記中央部永久磁石2の前記ターゲット9側磁極(図ではS極)と逆になるように配置する。すなわち、外周部永久磁石3は、レーストラック形状の外周を形成するように設けられる。外周部永久磁石3は、複数個の直方体の永久磁石から構成されるのが好ましく、各直方体の永久磁石の大きさ、使用する数は特に限定されず、磁石の製造のしやすさ、磁場発生装置の組み立てやすさ等の理由で適宜設定すればよい。各永久磁石は、同じ形状でなくてもかまわない。
 外周部永久磁石3の幅及び前記ターゲット表面9aに垂直な方向の長さは、磁場発生装置1の全体の形状、発生させる磁場の強度等により任意に設定することができる。ただし前記ターゲット表面9aに垂直な方向の長さは、中央部永久磁石2の前記ターゲット表面9aに垂直な方向の長さと同じであるのが好ましい。
(4)第一の中間部永久磁石
 第一の中間部永久磁石4は、前記中央部永久磁石2の両側に、前記中央部永久磁石2と平行に、前記中央部永久磁石2から所定の距離をおいて配置する。第一の中間部永久磁石4は、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極(図ではN極)が前記中央部永久磁石2の前記ターゲット9側磁極(図ではS極)と逆になるように配置する。中央部永久磁石2と第一の中間部永久磁石4との間には磁気空隙10aを設ける。
 第一の中間部永久磁石4は、レーストラックの直線部1aに設けられ、前記中央部永久磁石2の場合と同様、複数個の直方体の永久磁石を連接して構成するのが好ましい。第一の中間部永久磁石4を構成する各種形状の永久磁石の大きさ、使用する数等は特に限定されず、磁石の製造のしやすさ、磁場発生装置の組み立てやすさ等の理由で適宜設定すればよい。
 前記中央部永久磁石2と同様に、矩形ターゲットと磁場発生装置との大きさが等しいとして考えたとき、ターゲット(磁場発生装置)の長手方向長さをW1、短手方向長さをW2とすると、第一の中間部永久磁石4の長手方向長さは、W1とW2との差以上で構成するのが好ましい。第一の中間部永久磁石4の幅(平面視で長軸方向に垂直な方向の長さ)及び前記ターゲット表面9aに垂直な方向の長さは、特に限定されず磁場発生装置の全体の形状、発生させる磁場の強度等により任意に設定することができる。ただし前記ターゲット表面9aに垂直な方向の長さは、中央部永久磁石2の前記ターゲット表面9aに垂直な方向の長さと同じであるのが好ましい。
(5)第二の中間部永久磁石
 第二の中間部永久磁石5は、第一の中間部永久磁石4と第三の中間部永久磁石6との間に、前記中央部永久磁石2と平行に配置する。第二の中間部永久磁石5は、磁化方向が前記ターゲット表面9aに平行で、一方の磁極が前記第一の中間部永久磁石4のターゲット寄り側面4aと対向し、他方の磁極が前記第三の中間部永久磁石6側を向くように設置する。第二の中間部永久磁石5の、前記第一の中間部永久磁石4のターゲット寄り側面4aと対向する側の磁極(図ではN極)は、前記中央部永久磁石2のターゲット側磁極(図ではS極)と逆になるように構成する。第二の中間部永久磁石5は、レーストラックの直線部1aに設けられ、複数個の直方体の永久磁石を長手方向及び/又は幅方向に連接して構成するのが好ましい。第二の中間部永久磁石5を構成する各種形状の永久磁石の大きさ、使用する数等は特に限定されず、磁石の製造のしやすさ、磁場発生装置の組み立てやすさ等の理由で適宜設定すればよい。
 第一の中間部永久磁石4と第二の中間部永久磁石5との間には磁気空隙10bを設け、第二の中間部永久磁石5と前記ベース8との間には磁気空隙11を設ける。この磁気空隙10b、11は、磁気的に空隙となっていれば良く、例えば空間であっても良いし、非磁性体からなるスペーサで充填されていても良い。特に、第二の中間部永久磁石5と前記ベース8との間の磁気空隙11は、非磁性体からなるスペーサで充填するのが好ましい。
 第二の中間部永久磁石5の長手方向長さは、第一の中間部永久磁石4の長手方向長さと同じにするのが好ましい。第二の中間部永久磁石5の前記ターゲット表面9aに垂直な方向の長さは、特に限定されず磁場発生装置の全体の形状、発生させる磁場の強度等により任意に設定することができる。ただし、第二の中間部永久磁石5の幅(平面視で長軸方向に垂直な方向の長さ)は、中央部永久磁石2の前記ターゲット表面9aに垂直な方向の長さの5~200%であるのが好ましく、50~150%であるのがより好ましい。
(6)第三の中間部永久磁石
 第三の中間部永久磁石6は、前記第二の中間部永久磁石5と外周部永久磁石3との間に、前記第二の中間部永久磁石5から所定の距離をおいて、前記中央部永久磁石2と平行に、前記ターゲット9に対向する磁極(図ではS極)が前記中央部永久磁石2の前記ターゲット9側磁極(図ではS極)と同じになるように配置する。第三の中間部永久磁石6は、レーストラックの直線部1aに設けられ、前記中央部永久磁石2の場合と同様、複数個の直方体の永久磁石を連接して構成するのが好ましい。第三の中間部永久磁石6を構成する各種形状の永久磁石の大きさ、使用する数等は特に限定されず、磁石の製造のしやすさ、磁場発生装置の組み立てやすさ等の理由で適宜設定すればよい。
 第三の中間部永久磁石6と外周部永久磁石3との間には、磁気空隙10dを設ける。この磁気空隙10は、磁気的に空隙となっていれば良く、空間であってもよいし、非磁性体からなるスペーサで充填されていても良い。
 第三の中間部永久磁石6の長手方向長さは、第一の中間部永久磁石4の長手方向長さと同じにするのが好ましい。また第一の中間部永久磁石4の長手方向の長さより長くても良い。第三の中間部永久磁石6の幅(平面視で長軸方向に垂直な方向の長さ)は、特に限定されず磁場発生装置の全体の形状、発生させる磁場の強度等により任意に設定することができる。第三の中間部永久磁石6のターゲット9側の面は、中央部永久磁石2のターゲット9側の面よりもベース8側にあるのが好ましい。ターゲット表面9aに垂直な方向の長さは、中央部永久磁石2の前記ターゲット表面9aに垂直な方向の長さの5~70%であるのが好ましい。
(7)第四の中間部永久磁石
 第四の中間部永久磁石7は、前記コーナー部1bに、その長手方向が中央部永久磁石2の長手方向と直交するように、前記中央部永久磁石2の両端部から長手方向に離間して設ける。第四の中間部永久磁石7は、磁化方向が前記ターゲット表面9aに垂直で、かつ前記ターゲット9に対向する磁極(図ではN極)が、前記中央部永久磁石2の前記ターゲット9側磁極(図ではS極)と逆になるように配置する。中央部永久磁石2と第四の中間部永久磁石7との間、第四の中間部永久磁石7と外周部永久磁石3との間には、それぞれ磁気空隙12a、12bを設ける。
 第四の中間部永久磁石7の長手方向長さは、中央部永久磁石2を挟んで平行に位置する2つの第一の中間部永久磁石4、4の間の幅(4,4間の距離)よりも短く設定し、第一の中間部永久磁石4、4と第四の中間部永久磁石7、7とでレーストラックの内壁を構成するように配置するのが好ましい。平面視で、第四の中間部永久磁石7の幅及び前記ターゲット表面9aに垂直な方向の長さは、特に限定されず磁場発生装置の全体の形状、発生させる磁場の強度等により任意に設定することができる。ただし前記ターゲット表面9aに垂直な方向の長さは、中央部永久磁石2の前記ターゲット表面9aに垂直な方向の長さと同じであるのが好ましい。
(8)永久磁石
 マグネトロンスパッタリング用磁場発生装置を構成する永久磁石は、公知の永久磁石材料で形成することができる。使用する永久磁石の材質は設備の構成(磁場発生装置からターゲットまでの距離)や必要な磁場強度によって適宜設定すれば良いが、R(Nd等の希土類元素のうちの少なくとも一種)、T(Fe又はFe及びCo)及びBを必須成分とする希土類鉄ボロン系異方性焼結磁石(ネオジム磁石)等の希土類系焼結磁石(耐食性の点から各種の表面処理を施したもの)又はフェライト磁石が好ましい。希土類系焼結磁石としては、特にネオジム磁石が好ましい。
 特に前記中央部永久磁石2、前記外周部永久磁石3及び前記第一の中間部永久磁石4は、希土類系焼結磁石(特にネオジム磁石)からなるのが好ましく、前記中央部永久磁石2の残留磁束密度は、前記第一の中間部永久磁石4の残留磁束密度よりも小さいのが好ましい。また前記第二の中間部永久磁石5、前記第三の中間部永久磁石6及び前記第四の中間部永久磁石7はフェライト磁石からなるのが好ましい。なお前記第二の中間部永久磁石5、第三の中間部永久磁石6及び前記第四の中間部永久磁石7は磁石の大きさやターゲットからの距離あるいはベースとの間に非磁性のスペーサを配置する等の方法で調整すれば希土類系焼結磁石も使用可能である。
 直線部とコーナー部との磁束密度分布を変えたい場合には、それぞれに必要な磁束密度にあわせ、直線部用永久磁石とコーナー部用永久磁石との材質を変えても良い。
 マグネトロンスパッタリング用磁場発生装置1において、ターゲット表面9aにおいて、磁束密度垂直成分がゼロとなる位置における磁束密度の平行成分が10 mT以上となるように永久磁石及び磁性部材を構成するのが好ましい。
 前記ターゲット表面9aにおいて、前記中央部永久磁石2の長手方向中心に対向する位置から前記長手方向と直交する方向に向かって、磁場発生装置の端部までの範囲に、磁束密度の垂直成分がゼロとなる箇所が3箇所存在するのが好ましい。例えば、図3は、本発明のマグネトロンスパッタリング用磁場発生装置1の直線部のみを抜き出して磁場解析を行った時の磁界の様子を磁束線によって模式的に示す。ターゲット表面(図中、点線で示す)において、磁束密度の垂直成分がゼロになる点が、第一の中間部永久磁石4に対向する箇所P1、第二の中間部永久磁石5に対向する箇所P2、及び第三の中間部永久磁石6に対向する箇所P3に存在する。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
 図4(a)~図4(c)に示すように、鋼板(SS400)製のベース108上に、希土類系焼結磁石(日立金属製NMX-48BH、残留磁束密度:約1,360 mT)からなる中央部永久磁石102、外周部永久磁石103及び第一の中間部永久磁石104、並びにフェライト焼結磁石(日立金属製NMF-12F、残留磁束密度:約460 mT)からなる第二の中間部永久磁石105、第三の中間部永久磁石106及び第四の中間部永久磁石107を配置した磁場発生装置101(w1=298 mm、w2=198 mm、a=5 mm、b=6 mm、c=25 mm、d=8 mm、e=10 mm、f=5 mm、h=5 mm、i=8 mm、j=14 mm、k=20 mm、L=30 mm、g1=15 mm、g2=4 mm、g3=10 mm、g4=10 mm、g5=10 mm及びg6=34 mm)を作製した。直線部101aの構成を図4(b)に断面図で示し、コーナー部101bの構成を図4(c)に断面図で示す。なお図示はしていないが、第一の中間部永久磁石104、第二の中間部永久磁石105、第三の中間部永久磁石106及びベース108によって囲まれた磁気空隙110b、110c、111は、非磁性(アルミニウム製)のスペーサで充填した。
比較例1
 図5(a)~図5(c)に示すように、オーステナイト系ステンレス鋼(SUS304)製のベース208上に、フェライト系ステンレス(SUS430)製の中央磁極部材202及び外周磁極部材203、並びにフェライト焼結磁石(日立金属製NMX-5D、残留磁束密度:約360 mT)からなる直線部用永久磁石204及びコーナー部用永久磁石205を、磁化方向がターゲット面に平行でかつ同極性の磁極が前記中央磁極部材202に対向するように配置し、磁場発生装置201(W1=298 mm、W2=198 mm、A=10 mm、B=10 mm、C=10 mm、D=35 mm、G1=84 mm及びG2=84 mm)を作製した。
 実施例1の磁場発生装置の表面(ターゲットと対向する面)から20 mmの位置[ターゲット表面(図示せず)の位置に相当]における磁束密度を磁場解析により求め、直線部101a及びコーナー部101bにおける磁束密度のターゲット表面に対して平行な成分(磁束密度平行成分)及び垂直な成分(磁束密度垂直成分)を、中央部永久磁石102の中心から外周部永久磁石103方向(図4に記載したY方向及びX方向)にプロットし磁束密度分布を求めた。直線部101a(Y方向)の磁束密度分布を図6(a)に示し、コーナー部101b(X方向)の磁束密度分布を図6(b)に示す。なお横軸は、中央部永久磁石102の中心からの距離である。なお磁束密度垂直成分を点線、磁束密度平行成分を実線で示した。
 同様にして、比較例1の磁場発生装置の表面(ターゲットと対向する面)から20 mmの位置[ターゲット表面(図示せず)の位置に相当]における磁束密度を磁場解析により求め、直線部201a及びコーナー部201bにおける磁束密度のターゲット表面に対して平行な成分(磁束密度平行成分)及び垂直な成分(磁束密度垂直成分)を、中央磁極部材202の中心から外周磁極部材203方向(図5(a)に記載したY方向及びX方向)にプロットし磁束密度分布を求めた。直線部201a(Y方向)の磁束密度分布を図7(a)に示し、コーナー部201b(X方向)の磁束密度分布を図7(b)に示す。なお横軸は、中央磁極部材202の中心からの距離である。
 図6(a)、図6(b)、図7(a)及び図7(b)から、比較例1の磁場発生装置201は、直線部201a(Y方向)の磁束密度分布において、磁束密度垂直成分がゼロとなる点が1箇所(P1)しかないのに対して、本発明の磁場発生装置101(実施例1)は、直線部101a(Y方向)の磁束密度分布において、磁束密度垂直成分がゼロとなる点が3箇所(P1、P2及びP3)有ることが分かる。図8(a)及び図8(b)に、それぞれ本発明1及び比較例1の磁場発生装置において磁束密度垂直成分がゼロとなる点を結んだ線(点線)を示す。磁束密度の垂直成分がゼロとなる点が3箇所存在するため、本発明の磁場発生装置101(実施例1)は、比較例1の磁場発生装置201に比べてエロージョン領域が図11に示すようなV字状から図9に示すようなU字状に広がると予想され、ターゲットのエロージョン進行をより均一にし、ターゲットの利用効率を向上させることができる。

Claims (4)

  1.  ターゲットに対向し、ターゲット表面に磁場を発生させるための、直線部及びコーナー部からなるレーストラック形状のマグネトロンスパッタリング用磁場発生装置であって、
     磁性体からなるベース上に、
    (a)前記直線部に、磁化方向が前記ターゲット表面に垂直になるように直線状に配置された中央部永久磁石と、
    (b)前記中央部永久磁石を取り囲むように、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置された、前記レーストラック形状の外周を形成する外周部永久磁石と、
    (c)前記直線部の前記中央部永久磁石を挟んだ両側に、前記中央部永久磁石と平行に、前記外周部永久磁石に向けて順に、直線状に設けられた第一の中間部永久磁石、第二の中間部永久磁石及び第三の中間部永久磁石と、
    (d)前記コーナー部に、前記中央部永久磁石の両端部から長手方向に離間して、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置された第四の中間部永久磁石とを有し、
     前記第一の中間部永久磁石は、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と逆になるように配置され、
     前記第二の中間部永久磁石は、磁化方向が前記ターゲット表面に平行で、一方の磁極が前記第一の中間部永久磁石のターゲット寄り側面と対向し、前記側面と対向する磁極が前記中央部永久磁石の前記ターゲットに対向する磁極と逆になるように磁気空隙を介してベース上に配置され、
     前記第三の中間部永久磁石は、磁化方向が前記ターゲット表面に垂直で、かつ前記ターゲットに対向する磁極が前記中央部永久磁石と同じなるように配置されることを特徴とするマグネトロンスパッタリング用磁場発生装置。
  2.  請求項1に記載のマグネトロンスパッタリング用磁場発生装置において、
     前記ターゲット表面において、前記中央部永久磁石の長手方向中心に対向する位置から前記長手方向と直交する方向に向かって、磁束密度の垂直成分がゼロとなる箇所が3箇所存在することを特徴とするマグネトロンスパッタリング用磁場発生装置。
  3.  請求項1又は2に記載のマグネトロンスパッタリング用磁場発生装置において、
     前記中央部永久磁石、前記第一の中間部永久磁石及び前記外周部永久磁石がネオジム磁石からなり、
     前記第二の中間部永久磁石、前記第三の中間部永久磁石及び前記第四の中間部永久磁石がフェライト磁石からなり、
     前記中央部永久磁石の残留磁束密度が、前記第一の中間部永久磁石の残留磁束密度よりも小さいことを特徴とするマグネトロンスパッタリング用磁場発生装置。
  4.  請求項1~3のいずれかに記載のマグネトロンスパッタリング用磁場発生装置において、前記ターゲット表面に対して垂直な方向の磁束密度がゼロとなる位置における、前記ターゲット表面に対して平行な方向の磁束密度が10 mT以上であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
PCT/JP2016/057752 2015-03-19 2016-03-11 マグネトロンスパッタリング用磁場発生装置 WO2016148058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506523A JP6607251B2 (ja) 2015-03-19 2016-03-11 マグネトロンスパッタリング用磁場発生装置
US15/547,541 US10280503B2 (en) 2015-03-19 2016-03-11 Magnetic-field-generating apparatus for magnetron sputtering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056455 2015-03-19
JP2015056455 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148058A1 true WO2016148058A1 (ja) 2016-09-22

Family

ID=56919224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057752 WO2016148058A1 (ja) 2015-03-19 2016-03-11 マグネトロンスパッタリング用磁場発生装置

Country Status (3)

Country Link
US (1) US10280503B2 (ja)
JP (1) JP6607251B2 (ja)
WO (1) WO2016148058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110288A1 (en) * 2017-12-05 2019-06-13 Oerlikon Surface Solutions Ag, Pfäffikon Magnetron sputtering source and coating system arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257162A (ja) * 1990-03-07 1991-11-15 Mitsubishi Kasei Corp マグネトロンスパッタ装置
JPH0463273A (ja) * 1990-06-30 1992-02-28 Mitsubishi Kasei Corp マグネトロンスパッター装置
JP2004083974A (ja) * 2002-08-26 2004-03-18 Asahi Glass Co Ltd スパッタ成膜方法及びマグネトロンスパッタ装置
JP2014210967A (ja) * 2013-04-19 2014-11-13 日立金属株式会社 マグネトロンスパッタリング用磁場発生装置
JP2015147955A (ja) * 2014-02-05 2015-08-20 日立金属株式会社 マグネトロンスパッタリング用磁場発生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262028A (en) * 1992-06-01 1993-11-16 Sierra Applied Sciences, Inc. Planar magnetron sputtering magnet assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257162A (ja) * 1990-03-07 1991-11-15 Mitsubishi Kasei Corp マグネトロンスパッタ装置
JPH0463273A (ja) * 1990-06-30 1992-02-28 Mitsubishi Kasei Corp マグネトロンスパッター装置
JP2004083974A (ja) * 2002-08-26 2004-03-18 Asahi Glass Co Ltd スパッタ成膜方法及びマグネトロンスパッタ装置
JP2014210967A (ja) * 2013-04-19 2014-11-13 日立金属株式会社 マグネトロンスパッタリング用磁場発生装置
JP2015147955A (ja) * 2014-02-05 2015-08-20 日立金属株式会社 マグネトロンスパッタリング用磁場発生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110288A1 (en) * 2017-12-05 2019-06-13 Oerlikon Surface Solutions Ag, Pfäffikon Magnetron sputtering source and coating system arrangement
CN111868877A (zh) * 2017-12-05 2020-10-30 欧瑞康表面解决方案普费菲孔股份公司 磁控溅射源和涂覆系统布置
US11594402B2 (en) 2017-12-05 2023-02-28 Oerlikon Surface Solutions Ag, Pfaffikon Magnetron sputtering source and coating system arrangement
CN111868877B (zh) * 2017-12-05 2023-08-18 欧瑞康表面解决方案普费菲孔股份公司 磁控溅射源和涂覆系统布置

Also Published As

Publication number Publication date
JPWO2016148058A1 (ja) 2018-01-11
US20180023189A1 (en) 2018-01-25
US10280503B2 (en) 2019-05-07
JP6607251B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
JP5835235B2 (ja) マグネトロンスパッタリング用磁場発生装置
US9761423B2 (en) Sputtering apparatus and magnet unit
JP2008156735A (ja) マグネトロンスパッタリング用磁気回路
US9378934B2 (en) Racetrack-shaped magnetic-field-generating apparatus for magnetron sputtering
JP5971262B2 (ja) マグネトロンスパッタリング用磁場発生装置
KR20120048510A (ko) 스퍼터 장치용 자기 회로
JP6607251B2 (ja) マグネトロンスパッタリング用磁場発生装置
JP2018044204A (ja) マグネトロンスパッタリング用磁場発生装置
JP2021001382A (ja) マグネトロンスパッタリング装置用のカソードユニット
JP5077752B2 (ja) マグネトロンスパッタリング装置
JP2015147955A (ja) マグネトロンスパッタリング用磁場発生装置
JP6090422B2 (ja) マグネトロンスパッタリング用磁場発生装置
JP2014210967A (ja) マグネトロンスパッタリング用磁場発生装置
WO2022264603A1 (ja) プラズマ源及び当該プラズマ源を用いた原子時計
JP5965686B2 (ja) スパッタリング装置
WO2022158034A1 (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
JP5781408B2 (ja) マグネトロンスパッタカソード
JP2006161062A (ja) マグネトロンスパッタリング成膜装置及びその電極構造
JP2020029577A (ja) スパッタリング装置
JP2006118052A (ja) マグネトロンスパッタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506523

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547541

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764888

Country of ref document: EP

Kind code of ref document: A1