WO2016147273A1 - レーザ加工装置、校正データ生成方法およびプログラム - Google Patents

レーザ加工装置、校正データ生成方法およびプログラム Download PDF

Info

Publication number
WO2016147273A1
WO2016147273A1 PCT/JP2015/057589 JP2015057589W WO2016147273A1 WO 2016147273 A1 WO2016147273 A1 WO 2016147273A1 JP 2015057589 W JP2015057589 W JP 2015057589W WO 2016147273 A1 WO2016147273 A1 WO 2016147273A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
calibration data
nozzle
distance
machining
Prior art date
Application number
PCT/JP2015/057589
Other languages
English (en)
French (fr)
Inventor
浩嘉 大村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015546363A priority Critical patent/JP5897233B1/ja
Priority to CN201580001534.9A priority patent/CN106163723B/zh
Priority to PCT/JP2015/057589 priority patent/WO2016147273A1/ja
Publication of WO2016147273A1 publication Critical patent/WO2016147273A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam

Definitions

  • the present invention relates to a laser processing apparatus that performs laser processing while performing scanning control, a calibration data generation method that generates calibration data used in the laser processing apparatus, and a program executed by the laser processing apparatus.
  • a laser processing apparatus laser processing is performed while performing scanning control that maintains a constant distance between a workpiece and a processing head by means such as a capacitance type sensor.
  • the voltage value of the scanning sensor for the upper surface of the workpiece, the end surface of the workpiece, and the place without the workpiece is stored in advance before processing, and it is determined whether the end surface is based on the voltage value stored at the start of processing. And a technique of instructing the start of machining is disclosed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing apparatus capable of performing a stable approach operation and a trace operation regardless of the distance from the end face of the workpiece.
  • the present invention relates to the relationship between the output value of a sensor that measures the capacitance between the machining nozzle and the workpiece and the distance between the machining nozzle and the workpiece.
  • a laser processing apparatus that executes laser processing by following the distance between the processing nozzle and the workpiece based on the calibration data that defines the first position on the surface of the workpiece.
  • the position of the machining nozzle in the vertical direction is adjusted based on the calibration data, and based on the second calibration data different from the first calibration data at the second location different from the first location on the surface of the workpiece. Adjust the vertical position of the machining nozzle.
  • the laser processing apparatus has an effect that a stable approach operation and a trace operation can be executed regardless of the distance from the end face of the workpiece.
  • FIG. 1 The figure which shows the structure of the laser processing apparatus concerning Embodiment 1 of this invention.
  • the height of the machining nozzle is the same at the center and the end surface edge on the workpiece surface during the approach operation.
  • the figure which shows the mode at the time of copying control to become Approach operation based on the first calibration data obtained from the measurement value at the center on the workpiece surface and the second calibration data obtained from the measurement value at the edge of the end surface on the workpiece surface in the first embodiment The figure which shows the situation when copying is controlled so that the height of the processing nozzle is the same at the center and end face edge on the workpiece surface
  • work in Embodiment 1 are used when the horizontal position of a process nozzle exists in an interpolation area
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus 10 according to the first embodiment of the present invention.
  • the laser processing apparatus 10 three-dimensionally includes a processing head 1 that irradiates a workpiece 5 with a laser, a processing nozzle 2 that is attached to the tip of the processing head 1 and emits a laser while jetting an assist gas, and the processing head 1
  • a machining head drive unit 3 for driving and a control unit 4 for controlling the machining head drive unit 3 are provided.
  • the processing nozzle 2 also has a function of a capacitance type sensor.
  • the workpiece 5 has an end face 51.
  • the machining head drive unit 3 and the control unit 4 constitute an NC (Numerical Control) device, that is, a numerical control device.
  • the laser processing apparatus 10 processes the workpiece 5 with a laser beam irradiated from the tip of the processing nozzle 2.
  • An assist gas is also ejected from the processing nozzle 2 during processing.
  • FIG. 2 is a diagram illustrating an example of the configuration of the control unit 4 of the laser processing apparatus 10 according to the first embodiment.
  • the control unit 4 includes a calculation unit 41 that executes various types of control and calculation processing, a memory 42 that the calculation unit 41 uses as a work area, and a storage unit 43 that stores various types of information.
  • the calculation unit 41 is a central processing unit (CPU) or a system LSI (Large Scale Integration).
  • the memory 42 is a volatile storage device such as a random access memory (RAM: Random Access Memory).
  • the storage unit 43 is a nonvolatile storage device such as a hard disk drive or a solid state drive.
  • the control unit 4 controls the machining head drive unit 3 based on a machining program held in the storage unit 43.
  • the machining nozzle 2 also serves as a capacitance type sensor that measures the capacitance between the machining nozzle 2 and the workpiece 5.
  • the capacitance type sensor is a sensor that measures the capacitance between the machining nozzle 2 and the workpiece 5 and outputs a physical quantity based on the measurement result, and a sensor output voltage value that is a voltage value as the physical quantity. Is output.
  • the capacitance between the machining nozzle 2 and the workpiece 5 is a value that depends on the distance between the machining nozzle 2 and the workpiece 5.
  • the control unit 4 controls the distance between the processing nozzle 2 and the workpiece 5 to be constant based on the sensor output voltage value corresponding to the measured capacitance. To do.
  • FIG. 3 is a diagram illustrating the relationship between the height of the machining nozzle 2 from the workpiece 5 and the sensor output voltage value immediately after the machining nozzle replacement in the laser machining apparatus 10 according to the first embodiment.
  • the height of the machining nozzle 2 from the workpiece 5 is the distance between the machining nozzle 2 and the workpiece 5.
  • FIG. 4 is a diagram illustrating the relationship between the height of the machining nozzle 2 from the workpiece 5 and the sensor output voltage value after the scanning calibration in the laser machining apparatus 10 according to the first embodiment. 3 and 4, the sensor output voltage value is shown in logarithm.
  • the laser processing apparatus 10 determines and controls the relationship between the height of the processing nozzle 2 from the workpiece 5 and the sensor output voltage value so as to be a “positive” graph indicated by a one-dot chain line in FIG. Specifically, the relationship between the height of the machining nozzle 2 from the workpiece 5 and the sensor output voltage value is such that if the height of the machining nozzle 2 from the workpiece 5 is 10 mm, the sensor output voltage value is 10V.
  • the relationship of the “positive” graph is held in the storage unit 43 or a storage area provided in the control unit 4 as a relationship serving as a reference for copying calibration. In FIG.
  • the calibration data obtained by measuring the sensor output voltage value by changing the height of the machining nozzle 2 from the workpiece 5 after the machining nozzle 2 is replaced is indicated by a solid line.
  • the calibration data is data that defines the relationship between the sensor output voltage value, which is the output value of the sensor, and the distance between the machining nozzle 2 and the workpiece 5.
  • the control unit 4 causes the machining head driving unit 3 to set the height of the machining nozzle 2 from the workpiece 5 to a plurality of different values, and sets the sensor output voltage value at each height. taking measurement.
  • the solid line in FIG. 3 is calibration data obtained based on the measurement results at the plurality of points. Therefore, the calibration data corresponds to different distances between the machining nozzle 2 and the workpiece 5, and defines sensor output values corresponding to the different distances.
  • a procedure for generating calibration data from a set of measurement data consisting of a plurality of heights of the machining nozzle 2 from the workpiece 5 and sensor output values corresponding thereto may be a known interpolation method such as linear interpolation or polynomial interpolation. Not.
  • the sensor output voltage value so that the relationship between the height of the machining nozzle 2 from the workpiece 5 immediately after the machining nozzle replacement in FIG. 3 and the sensor output voltage value overlaps with the “positive” graph as shown in FIG. Copy calibration is executed by calculation such as multiplying by a constant.
  • This calibration is executed by the control unit 4.
  • the controller 4 controls the distance between the machining nozzle 2 and the workpiece 5 based on a value after calibration obtained by multiplying the sensor output voltage value by a constant. That is, the control unit 4 controls the machining head driving unit 3 so that the distance between the machining nozzle 2 and the workpiece 5 becomes a target value.
  • the scanning calibration is performed based on the sensor output voltage value measured at the center of the workpiece 5, so that the capacitance value between the machining nozzle 2 and the workpiece 5 approximates the workpiece 5 to an infinite plane. It does not matter as a value when However, the laser processing apparatus 10 may process not only the center of the workpiece 5 but also the end surface 51 of the workpiece 5 or the edge of the portion cut off from the workpiece 5.
  • FIG. 5 is a diagram showing the capacitance detection region 20 and the capacitance when the machining nozzle 2 is positioned at the center or edge of the workpiece 5.
  • the positional relationship between the machining nozzle 2 and the machining head 1 and the workpiece 5 is shown in the upper part of FIG.
  • the lower part of FIG. 5 shows the capacitance at the position of the machining nozzle 2 corresponding to the upper part of FIG.
  • the work 5 can be approximated to an infinite plane to obtain the capacitance, and the distance between the machining nozzle 2 and the work 5 is the same.
  • FIG. 6 is a diagram showing the relationship between the height of the machining nozzle 2 from the workpiece 5 and the capacitance at the center of the workpiece 5 and the edge of the end surface.
  • the relationship between the height of the machining nozzle 2 from the workpiece 5 and the capacitance at the center of the workpiece 5 is a solid line, and the relationship between the height of the machining nozzle 2 from the workpiece 5 at the edge of the workpiece 5 and the capacitance is one point.
  • Each is indicated by a chain line. It is shown that when the height of the machining nozzle 2 from the workpiece 5 is the same, the capacitance value is smaller at the edge of the end face than the center of the workpiece 5.
  • the capacitance is fixed at C1 that is, when the sensor output voltage value is fixed, the height value of the machining nozzle 2 from the workpiece 5 is smaller than H3 at the center, and H4 at the edge of the end surface is smaller. Become.
  • FIG. 7 is a conceptual diagram showing how the calibration data generated from the measurement value at the center of the workpiece 5 is used regardless of the horizontal position of the machining nozzle 2 on the surface of the workpiece 5.
  • FIG. 7 shows a sensor output voltage value corresponding to the height of the target value of the machining nozzle 2 from the workpiece 5 in the calibration data generated from the measurement value at the center of the workpiece 5. It shows a state where it is used regardless of the position in the horizontal direction.
  • the scanning calibration is performed using only the calibration data generated from the measurement value at the center of the workpiece 5, the relationship between the height of the machining nozzle 2 from the workpiece 5 and the capacitance is the center. Since it differs from the end face edge, the distance between the machining nozzle 2 and the work 5 cannot be accurately controlled at the end face edge of the work 5.
  • FIG. 8 shows the work 5 of the machining nozzle 2 at the center and end face edge on the surface of the work 5 based on only the calibration data obtained from the measured sensor output voltage value at the center on the work 5 surface. It is a figure which shows the mode at the time of copying control so that the height from may become the same.
  • the approach operation is an operation for moving the machining nozzle 2 and the machining head 1 in order to bring the machining nozzle 2 closer to the laser machining start position of the workpiece 5.
  • the laser is not irradiated during the approach operation, but is irradiated after the approach operation is completed.
  • 8 shows the positional relationship between the machining nozzle 2, the machining head 1, and the workpiece 5. In the lower part of FIG. 8, the time change of the height of the machining nozzle 2 during the approach operation at the center of the workpiece 5 and the time change of the height of the machining nozzle 2 during the approach operation at the edge of the workpiece 5 are shown.
  • the sensor output voltage value is controlled to be constant in order to fix the height of the machining nozzle 2 from the workpiece 5. Even so, at the edge of the end face of the workpiece 5, as described with reference to FIG. 6, the height of the machining nozzle 2 from the surface of the workpiece 5 becomes smaller than the target. That is, the position of the machining nozzle 2 in the direction perpendicular to the surface of the workpiece 5 becomes lower than the target position. This is shown in the difference between the state at the center and the state at the edge of the edge when the height of the machining nozzle 2 becomes a constant value over time during the approach operation shown in the lower part of FIG. Yes.
  • the first calibration data that generates the first calibration data based on the data obtained in the first data acquisition step executed at the center on the surface of the workpiece 5.
  • a second calibration data generation step for generating second calibration data based on the data obtained in the second data acquisition step executed at the end face edge on the surface of the workpiece 5 is executed.
  • the distance between the machining nozzle 2 and the workpiece 5 is set to a plurality of different values at the center of the workpiece 5 which is the first location on the surface of the workpiece 5, and the distance and
  • the control unit 4 measures a sensor output voltage value that is an output value of the sensor at the distance.
  • the measurement of the distance between the machining nozzle 2 and the workpiece 5 is performed as follows. The origin position in the direction perpendicular to the surface of the work 5 is set, and the control unit 4 first measures the position of the surface of the work 5 with respect to the origin position.
  • control unit 4 obtains the position of the tip of the machining nozzle 2 in the direction perpendicular to the surface of the workpiece 5 with reference to the origin position based on information from the machining head drive unit 3.
  • the controller 4 can determine the distance between the machining nozzle 2 and the workpiece 5 based on the obtained position of the surface of the workpiece 5 and the position of the tip of the machining nozzle 2.
  • the first calibration data at the first location is based on the distance between the processing nozzle 2 and the workpiece 5 measured in the first data acquisition step and the sensor output voltage value. Is generated by the control unit 4.
  • the processing nozzle 2 and the workpiece 5 are connected to each other at the end surface edge that is a second location different from the first location on the surface of the workpiece 5.
  • the control unit 4 measures the distance and the sensor output voltage value, which is the sensor output value at the distance, with a plurality of different values.
  • the second calibration data at the second location is obtained based on the distance between the processing nozzle 2 and the workpiece 5 measured in the second data acquisition step and the sensor output voltage value. Generated by the control unit 4.
  • scanning calibration is performed using the first and second calibration data, respectively, so that the vertical position of the machining nozzle 2, that is, the machining nozzle 2 is obtained.
  • the control unit 4 adjusts the height of the workpiece 5 from the surface.
  • the measurement in the first and second data acquisition steps does not need to be performed on the workpiece 5 that is actually processed, and a measurement workpiece that is different from the workpiece 5 that is actually processed is arranged near the workpiece 5.
  • the above measurement may be performed at two different points on the center of the measurement workpiece and the edge of the end face.
  • the first and second calibration data may be generated in the first and second calibration data generation steps. It is necessary to perform the measurement at these two different locations before executing the approach operation and the tracing operation described later, that is, before executing the copying control.
  • the first and second calibration data obtained by a known interpolation method based on the measurement result is held in the memory 42, the storage unit 43, or a storage area provided in the control unit 4 separately from these.
  • FIG. 9 shows the first calibration data obtained from the measurement value at the center on the surface of the workpiece 5 and the second calibration data obtained from the measurement value at the edge of the end surface on the workpiece 5 surface in the first embodiment.
  • FIG. 6 is a diagram illustrating a state in which copying control is performed so that the height of the machining nozzle 2 is the same at the center and the end surface edge portion on the surface of the work 5 during the approach operation. The positional relationship among the machining nozzle 2 and the machining head 1 and the workpiece 5 is shown in the upper part of FIG. In the lower part of FIG.
  • the control unit 4 is executing the approach operation based on the second calibration data obtained from the measured value of the sensor output voltage value at the end surface edge portion, so that a constant value is obtained over time.
  • the height of the machining nozzle 2 at the time can be matched with the height of the machining nozzle 2 at the center when the approach operation is executed based on the first calibration data. Therefore, the collision due to the overshoot described with reference to FIG. 8 can be prevented.
  • the first and second calibration data are used.
  • the height of the machining nozzle 2 from the workpiece 5 can be controlled using the interpolation calibration data obtained by the interpolation.
  • FIG. 10 is a conceptual diagram showing a state in which the interpolation calibration data generated from the measured values at the center and end face edge of the workpiece 5 in Embodiment 1 is used when the horizontal position of the machining nozzle 2 is in the interpolation region. It is.
  • FIG. 10 shows how the sensor output voltage value corresponding to the height of the target value from the workpiece 5 of the machining nozzle 2 in the interpolation calibration data is used in the interpolation area.
  • the interpolation area is set to an area where the horizontal position of the machining nozzle 2 is close to the end surface 51 of the workpiece 5. Since the width of the interpolation area depends on the nozzle diameter of the machining nozzle 2, it is changed every time the machining nozzle 2 is replaced.
  • FIG. 11 is a diagram showing workpiece center calibration data, workpiece edge surface calibration data, and interpolation calibration data in the first embodiment.
  • the horizontal axis in FIG. 11 is the height of the machining nozzle 2 from the workpiece 5, and the vertical axis is the sensor output voltage.
  • the “workpiece center calibration data” in FIG. 11 is obtained by setting the height of the machining nozzle 2 from the work 5 to a plurality of different values at the center of the work 5 that is the first location on the surface of the work 5. It is the 1st calibration data obtained by the control part 4 measuring the sensor output voltage value in height.
  • 11 shows a plurality of heights of the machining nozzle 2 from the work 5 at the end face edge that is a second place different from the first place on the surface of the work 5. Is the second calibration data obtained by the control unit 4 measuring the sensor output voltage value at each height.
  • the interpolation calibration data are “first interpolation calibration data”, “second interpolation calibration data”,... “(N ⁇ 1) interpolation calibration data” in FIG.
  • the “first interpolation calibration data”, “second interpolation calibration data”,... (N ⁇ 1) interpolation calibration data are the most on the end face 51 in the divided area obtained by dividing the interpolation area of FIG. Used in (n-1) divided areas excluding near divided areas.
  • “First interpolation calibration data”, “second interpolation calibration data”,... (N-1) interpolation calibration data are based on “work center calibration data” and “work edge edge calibration data”. Interpolation is performed by a known interpolation method such as linear interpolation or polynomial interpolation.
  • Simple linear interpolation is performed by weighting “workpiece center calibration data” and “workpiece end face edge calibration data” according to the distance of the divided area from the work end face 51 to determine interpolation calibration data to be used in the divided area.
  • the interpolation calibration data of the divided area close to the workpiece end surface 51 is set to a value close to “the calibration data of the workpiece end surface edge”, and the interpolation calibration data of the divided area close to the workpiece center is “the calibration of the workpiece center”. It is calculated and weighted so that it becomes a value close to “data”. This calculation may be executed immediately after acquiring the “workpiece center calibration data” and “workpiece end face edge calibration data”, or may be executed when the interpolation calibration data is actually used.
  • the interpolation calibration data is held in the memory 42, the storage unit 43, or a storage area provided in the control unit 4 separately from these.
  • FIG. 12 is a diagram for explaining a divided region obtained by dividing the interpolation region in the first embodiment.
  • x, x is the following regions interpolation region l 1 or l n, l 1, l 2 , interpolated by ⁇ l n-1
  • the area is divided into a plurality of divided areas.
  • Distance from the end face 51 to the center is l M.
  • the relationship between the distance x from the end face 51 and the calibration data to be used is as follows for each divided region.
  • the distance from the left end surface 51 of the workpiece 5 is described as x.
  • the interpolation region corresponding to the right end surface 51 of the workpiece 5 is similarly determined, and calibration data to be used is determined. Since l n determines the width of the interpolation area, it is changed every time the machining nozzle 2 is replaced as described above. If l n is determined, l 1 , l 2 ,..., l n-1 may be appropriately determined within a range of errors in which the same calibration data can be used.
  • FIG. 13 is a flowchart for explaining the approach operation in the first embodiment.
  • step S11 when the user presses a start button (not shown) of the laser processing apparatus 10, the control unit 4 starts the program operation (step S11). Specifically, the control unit 4 starts preparation for the approach operation based on the machining program held in the storage unit 43.
  • step S12 the control unit 4 determines position information. That is, the control unit 4 confirms the current shape of the workpiece 5 based on the camera information, the data related to the shape of the workpiece 5 and the machining program, and the position and workpiece that the machining head 1 approaches on the two-dimensional surface of the workpiece 5. 5 position of the end face 51 is determined. For this determination, a known means may be used.
  • the control unit 4 can determine the calibration data to be used (step S13). Specifically, as calibration data, “workpiece center calibration data”, “workpiece edge surface calibration data”, “first interpolation calibration data”, “second interpolation calibration data”,. ) Interpolated calibration data "can be determined as calibration data.
  • the control unit 4 sets the calibration data in a storage area such as the memory 42 or the storage unit 43 holding the machining program (step S14).
  • the calibration data may be set in a storage area (not shown) provided in the control unit 4 separately from the memory 42 and the storage unit 43.
  • the control unit 4 executes a scanning calibration based on the calibration data set in the storage area and starts an approach operation (step S15). Since the calibration data defines sensor output voltage values that are sensor output values corresponding to different distances between the machining nozzle 2 and the workpiece 5, the machining nozzle 2 and the workpiece 5 targeted by the approach operation are defined. May be changed depending on the position in the horizontal direction on the surface of the workpiece 5 to which the machining head 1 approaches.
  • the target value of the distance between the machining nozzle 2 and the workpiece 5 when performing laser machining after the approach operation is not a fixed value, but varies depending on the horizontal position on the surface of the workpiece 5 on which laser machining is performed. It doesn't matter if you let them.
  • the calibration data is switched depending on the position to which the processing head 1 approaches, so that the height of the processing nozzle 2 from the workpiece 5 can be accurately determined. Detection is possible.
  • a stable approach operation is possible, and a stable approach operation can be performed regardless of the distance from the end surface 51. That is, a stable approach operation can be realized regardless of the two-dimensional position on the workpiece surface.
  • even if an overshoot occurs in the approach operation at the edge of the end face it is possible to avoid a collision between the machining nozzle 2 and the workpiece 5.
  • FIG. 14 is a flowchart for explaining the trace operation in the second embodiment.
  • the trace operation is started in step S21.
  • the control unit 4 starts the trace operation. Specifically, first, in step S22, the control unit 4 determines position information. That is, the control unit 4 confirms the current shape of the workpiece 5 based on the camera information, the data relating to the shape of the workpiece 5 and the machining program, and the position and workpiece that the machining head 1 traces on the two-dimensional surface of the workpiece 5. 5 position of the end face 51 is determined. For this determination, a known means may be used.
  • the control unit 4 can determine the calibration data to be used (step S23). Specifically, as calibration data, “workpiece center calibration data”, “workpiece edge surface calibration data”, “first interpolation calibration data”, “second interpolation calibration data”,. ) Interpolated calibration data "can be determined as calibration data.
  • the control unit 4 sets the calibration data in a storage area such as the memory 42 or the storage unit 43 holding the machining program (step S24).
  • the calibration data may be set in a storage area (not shown) provided in the control unit 4 separately from the memory 42 and the storage unit 43.
  • the control unit 4 starts the tracing operation in the divided area obtained in step S23 while performing the copy calibration based on the calibration data set in the storage area (step S25).
  • the machining head 1 also moves in the horizontal direction due to the movement of the drive shaft of the machining head drive unit 3.
  • the target distance between the machining nozzle 2 and the workpiece 5 in the tracing operation may be changed depending on the horizontal position on the surface of the workpiece 5 to be traced by the machining head 1. That is, the target value of the distance between the machining nozzle 2 and the workpiece 5 when performing laser machining during the trace operation is not a fixed value, but varies depending on the horizontal position on the surface of the workpiece 5 on which laser machining is performed. It doesn't matter if you let them.
  • step S25 when the tracing operation in the divided area obtained in step S23 is completed, that is, when the machining head 1 needs to trace a different area from the divided area, the process returns to step S22, Repeat the operation.
  • the calibration data is switched depending on the position traced by the processing head 1 so that the height of the processing nozzle 2 from the workpiece 5 can be accurately determined. Detection is possible.
  • a stable tracing operation can be performed, and a stable tracing operation can be performed regardless of the distance from the end surface 51. That is, a stable trace operation can be realized regardless of the two-dimensional position on the workpiece surface.
  • even if an overshoot occurs in the trace operation at the edge of the end face it is possible to avoid a collision between the machining nozzle 2 and the workpiece 5.
  • the capacitance type sensor outputs a sensor output voltage value that is a voltage value corresponding to the capacitance between the machining nozzle 2 and the workpiece 5. It may be a sensor that outputs the value of capacitance between the workpiece 5 and the workpiece 5, that is, the capacitance value itself.
  • the calibration data indicates the relationship between the distance between the machining nozzle 2 and the workpiece 5 and the voltage value corresponding to the capacitance between the machining nozzle 2 and the workpiece 5.
  • work 5 is regarded as the first calibration data generated by the measurement at the workpiece center and the second calibration data generated by the measurement at the edge portion of the workpiece, respectively.
  • Interpolation calibration data exists between the solid line and the alternate long and short dash line in FIG.
  • the relationship between the distance corresponding to the “positive” graph in FIG. 3 and the capacitance value may be set in advance in the storage area in the control unit 4 as a relationship serving as a reference for copying calibration.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 加工ノズル(2)とワーク(5)との間の静電容量を測定するセンサの出力値と、前記加工ノズルと前記ワークとの間の距離との関係を規定した校正データに基づいて、前記加工ノズルと前記ワークとの間の距離を制御してレーザ加工を実行するレーザ加工装置であって、前記ワークの表面上の第1の箇所においては、第1の校正データに基づいて前記加工ノズルの鉛直方向の位置を調整し、前記ワークの表面上の前記第1の箇所とは異なる第2の箇所においては、前記第1の校正データとは異なる第2の校正データに基づいて前記加工ノズルの鉛直方向の位置を調整する。

Description

レーザ加工装置、校正データ生成方法およびプログラム
 本発明は、倣い制御を行いながらレーザ加工するレーザ加工装置、レーザ加工装置に用いる校正データを生成する校正データ生成方法およびレーザ加工装置が実行するプログラムに関する。
 レーザ加工装置においては、静電容量型のセンサといった手段によりワークと加工ヘッドとの間の距離を一定に保つ倣い制御を行いつつレーザ加工を実行することが行われている。特許文献1においては、加工前に予めワークの上面、ワークの端面およびワークの無い場所に対する倣いセンサの電圧値を記憶しておき、加工開始時に記憶された電圧値から端面であるか否か判断を行い、加工の開始を指令するという技術が開示されている。
特開2000-33486号公報
 しかしながら、上記従来の技術によれば、センサがワーク表面上におけるワークの端面に位置しているかどうかの判断は可能であるが、ワークの中央、ワークの端面またはワークの角といったワーク表面上のどの位置に加工ヘッドがあったとしてもワークの端面からの距離に関わらず安定したアプローチ動作およびトレース動作の実現を保証することはできなかった。
 本発明は、上記に鑑みてなされたものであって、ワークの端面からの距離に関わらず安定したアプローチ動作およびトレース動作の実行が可能になるレーザ加工装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、加工ノズルとワークとの間の静電容量を測定するセンサの出力値と、加工ノズルとワークとの間の距離との関係を規定した校正データに基づいて、加工ノズルとワークとの間の距離を倣い制御してレーザ加工を実行するレーザ加工装置であって、ワークの表面上の第1の箇所においては、第1の校正データに基づいて加工ノズルの鉛直方向の位置を調整し、ワークの表面上の第1の箇所とは異なる第2の箇所においては、第1の校正データとは異なる第2の校正データに基づいて加工ノズルの鉛直方向の位置を調整する。
 本発明にかかるレーザ加工装置は、ワークの端面からの距離に関わらず安定したアプローチ動作およびトレース動作の実行が可能になるという効果を奏する。
本発明の実施の形態1にかかるレーザ加工装置の構成を示す図 実施の形態1にかかるレーザ加工装置の制御部の構成の一例を示す図 実施の形態1にかかるレーザ加工装置において加工ノズル交換直後における加工ノズルのワークからの高さとセンサ出力電圧値の関係を示す図 実施の形態1にかかるレーザ加工装置において倣い校正後における加工ノズルのワークからの高さとセンサ出力電圧値の関係を示す図 実施の形態1における加工ノズルをワークの中央あるいは端面縁部に位置させた場合の静電容量検出領域および静電容量を示した図 実施の形態1における加工ノズルのワークからの高さと静電容量の関係をワークの中央および端面縁部について示した図 実施の形態1においてワークの中央での測定値から生成した校正データを、ワーク表面上での加工ノズルの水平方向の位置によらずに用いる様子を示す概念図 実施の形態1においてワーク表面上の中央でのセンサ出力電圧値の測定値から得られた校正データのみに基づいて、アプローチ動作時にワーク表面上の中央および端面縁部で加工ノズルの高さが同じになるように倣い制御した場合の様子を示す図 実施の形態1においてワーク表面上の中央での測定値から得られた第1の校正データおよびワーク表面上の端面縁部での測定値から得られた第2の校正データに基づいて、アプローチ動作時にワーク表面上の中央および端面縁部で加工ノズルの高さが同じになるように倣い制御した場合の様子を示す図 実施の形態1においてワークの中央および端面縁部での測定値から生成した補間校正データを、加工ノズルの水平方向の位置が補間領域にあるときに用いる様子を示す概念図 実施の形態1におけるワーク中央の校正データ、ワーク端面縁部の校正データおよび補間校正データを示す図 実施の形態1における補間領域を分割した分割領域を説明する図 実施の形態1におけるアプローチ動作を説明するフローチャート 実施の形態2におけるトレース動作を説明するフローチャート
 以下に、本発明の実施の形態にかかるレーザ加工装置、校正データ生成方法およびプログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるレーザ加工装置10の構成を示す図である。レーザ加工装置10は、ワーク5にレーザを照射する加工ヘッド1と、加工ヘッド1の先端に取り付けられてアシストガスを噴出しつつレーザを射出する加工ノズル2と、加工ヘッド1を3次元的に駆動する加工ヘッド駆動部3と、加工ヘッド駆動部3を制御する制御部4と、を備える。加工ノズル2は、静電容量型のセンサの機能も備えている。ワーク5は端面51を有する。加工ヘッド駆動部3および制御部4がNC(Numerical Control)装置、即ち数値制御装置を構成する。レーザ加工装置10は、加工ノズル2の先端部から照射されるレーザビームによりワーク5を加工する。加工ノズル2からは加工時にアシストガスも噴出される。
 図2は、実施の形態1にかかるレーザ加工装置10の制御部4の構成の一例を示す図である。制御部4は、各種の制御および演算処理を実行する演算部41、演算部41がワークエリアに用いるメモリ42、および各種の情報を記憶する記憶部43と、を備える。演算部41は、中央演算処理装置(CPU:Central Processing Unit)またはシステムLSI(Large Scale Integration)である。メモリ42は、ランダムアクセスメモリ(RAM:Random Access Memory)といった揮発性記憶装置である。記憶部43は、ハードディスクドライブまたはソリッドステートドライブといった不揮発性記憶装置である。制御部4は、記憶部43に保持される加工プログラムに基づいて加工ヘッド駆動部3を制御する。
 加工ノズル2は、加工ノズル2とワーク5との間の静電容量を測定する静電容量型のセンサを兼ねている。静電容量型のセンサは、加工ノズル2とワーク5との間の静電容量を測定して、測定結果に基づいた物理量を出力するセンサであり、当該物理量として電圧値であるセンサ出力電圧値を出力する。加工ノズル2とワーク5との間の静電容量は、加工ノズル2とワーク5との間の距離に依存した値となる。このことを利用して、レーザ加工装置10においては、測定された静電容量に対応するセンサ出力電圧値に基づいて、制御部4が加工ノズル2とワーク5との間の距離を一定に制御する。但し、各種材料および板厚ごとに穴径または形状の異なる加工ノズル2を使用しているため、加工ノズル2ごとに静電容量型のセンサとしての特性が異なる。そこで、新たな加工ノズル2を取り付けた際には、加工ノズル2とワーク5との間の距離とセンサ出力電圧値の関係を校正する必要がある。この校正を倣い校正と呼んでいる。
 図3は、実施の形態1にかかるレーザ加工装置10において加工ノズル交換直後における加工ノズル2のワーク5からの高さとセンサ出力電圧値の関係を示す図である。加工ノズル2のワーク5からの高さとは、加工ノズル2とワーク5との間の距離である。図4は、実施の形態1にかかるレーザ加工装置10において倣い校正後における加工ノズル2のワーク5からの高さとセンサ出力電圧値の関係を示す図である。図3および図4において、センサ出力電圧値は対数で示してある。
 レーザ加工装置10は、加工ノズル2のワーク5からの高さとセンサ出力電圧値との関係を図3の一点鎖線で示した「正」のグラフとなるように定めて制御を実行する。加工ノズル2のワーク5からの高さとセンサ出力電圧値との関係は、具体的には、加工ノズル2のワーク5からの高さが10mmならば、センサ出力電圧値は10Vといった関係である。この「正」のグラフの関係は、倣い校正の基準となる関係として記憶部43またはこれとは別に制御部4内に設けられた記憶領域に保持されている。図3には、加工ノズル2の交換後に、加工ノズル2のワーク5からの高さを変えてセンサ出力電圧値を測定して求めた校正データが実線で示されている。校正データは、センサの出力値であるセンサ出力電圧値と、加工ノズル2とワーク5との間の距離との関係を規定するデータである。
 具体的には、制御部4は、ワーク5の中央において、加工ヘッド駆動部3が加工ノズル2のワーク5からの高さを複数の異なる値にして、それぞれの高さにおけるセンサ出力電圧値を測定する。図3の実線はこの複数点での測定結果に基づいて得られた校正データである。従って、校正データは、加工ノズル2とワーク5との間の異なる距離に対応しており、異なる距離のそれぞれに対応するセンサ出力値を規定している。加工ノズル2のワーク5からの複数の高さおよびそれに対応するセンサ出力値からなる測定データの組から校正データを生成する手順は一次補間もしくは多項式補間といった公知の補間手法を用いればよく、特に限定されない。
 図3では、実線で示された加工ノズル交換直後における加工ノズル2のワーク5からの高さとセンサ出力電圧値との関係が「正」のグラフに一致していない。従って、加工ノズル2のワーク5からの高さをH1とするために、センサ出力電圧値がV1となるように制御部4が加工ヘッド駆動部3を制御したとしても、実際には加工ノズル2のワーク5からの高さがH2になってしまうという誤差が発生する。
 このため、図3の加工ノズル交換直後における加工ノズル2のワーク5からの高さとセンサ出力電圧値との関係が、図4に示すように「正」のグラフに重なるように、センサ出力電圧値に定数を乗ずるといった計算により倣い校正が実行される。この校正は、制御部4によって実行される。そして、センサ出力電圧値に定数を乗じた校正後の値に基づいて、制御部4は加工ノズル2とワーク5との間の距離を制御する。即ち、制御部4は加工ノズル2とワーク5との間の距離が目標値となるように加工ヘッド駆動部3を制御する。
 通常、倣い校正はワーク5の中央で測定されたセンサ出力電圧値に基づいて実施しているため、加工ノズル2とワーク5との間の静電容量の値は、ワーク5を無限平面と近似した場合の値としてかまわない。しかし、レーザ加工装置10はワーク5の中央だけでなく、ワーク5の端面51あるいはワーク5から切り落ちた部分の縁部を加工することがあり得る。
 図5は、加工ノズル2をワーク5の中央あるいは端面縁部に位置させた場合の静電容量検出領域20および静電容量を示した図である。図5の上部に加工ノズル2および加工ヘッド1とワーク5との位置関係を示す。図5の中部に、図5の上部に対応する加工ノズル位置2’および静電容量検出領域20をワーク5の表面図において示す。図5の下部に、図5の上部に対応する加工ノズル2の位置における静電容量を示す。図5に示されるように、ワーク5の端面51に近づくと、ワーク5を無限平面と近似して静電容量を求めることができず、加工ノズル2とワーク5との距離が同じであっても静電容量の値がワーク5の中央での値に比べて小さくなる。図6は、加工ノズル2のワーク5からの高さと静電容量との関係をワーク5の中央および端面縁部について示した図である。ワーク5の中央における加工ノズル2のワーク5からの高さと静電容量との関係が実線で、ワーク5の端面縁部における加工ノズル2のワーク5からの高さと静電容量との関係が一点鎖線で、それぞれ示される。加工ノズル2のワーク5からの高さが同じ場合は、静電容量の値はワーク5の中央より端面縁部で小さくなることが示されている。また、静電容量をC1に固定した場合、即ちセンサ出力電圧値を固定した場合には、加工ノズル2のワーク5からの高さの値が中央でのH3より端面縁部でのH4が小さくなる。
 図7は、ワーク5の中央での測定値から生成した校正データを、ワーク5表面上での加工ノズル2の水平方向の位置によらずに用いる様子を示す概念図である。図7は、ワーク5の中央での測定値から生成した校正データにおいて、加工ノズル2のワーク5からの目標値の高さに対応するセンサ出力電圧値をワーク5表面上での加工ノズル2の水平方向の位置によらずに用いる様子を示している。図7に示すように、ワーク5の中央での測定値から生成した校正データのみを用いて倣い校正を行ってしまうと、加工ノズル2のワーク5からの高さと静電容量の関係が中央と端面縁部とでは異なることから、ワーク5の端面縁部においては、加工ノズル2とワーク5との間の距離を正確に制御することができなくなる。
 図8は、ワーク5表面上の中央でのセンサ出力電圧値の測定値から得られた校正データのみに基づいて、アプローチ動作時にワーク5表面上の中央および端面縁部で加工ノズル2のワーク5からの高さが同じになるように倣い制御した場合の様子を示す図である。アプローチ動作とは、加工ノズル2をワーク5のレーザ加工の開始位置へ接近させるために加工ノズル2および加工ヘッド1を移動させる動作である。アプローチ動作中にはレーザは照射されないが、アプローチ動作が完了した後にレーザが照射される。図8の上部に、加工ノズル2および加工ヘッド1とワーク5の位置関係を示す。図8の下部に、ワーク5の中央でのアプローチ動作時の加工ノズル2の高さの時間変化およびワーク5の端面縁部でのアプローチ動作時の加工ノズル2の高さの時間変化を示す。
 ワーク5の中央でのセンサ出力電圧値の測定値に基づいた校正データのみに基づいた場合、加工ノズル2のワーク5からの高さを固定するためにセンサ出力電圧値が一定となるように制御しても、ワーク5の端面縁部においては、図6で説明したように加工ノズル2のワーク5の表面からの高さが目標より小さくなってしまう。即ち、ワーク5の表面に鉛直な方向における加工ノズル2の位置が目標位置より低くなってしまう。このことは、図8の下部に示したアプローチ動作時において加工ノズル2の高さが時間を経て一定値となった時の中央での様子と端面縁部での様子との違いに示されている。さらに、アプローチ動作時における駆動制御によるオーバーシュートの発生の可能性を考慮すると、端面縁部における加工ノズル2の高さの制御においては、中央で実現される目標値より低くなった状態でオーバーシュートが加わることが考えられる。したがって、図8の下部に示したワーク5の端面縁部でのアプローチ動作の様子から想定されるように、加工ノズル2とワーク5が衝突してしまうという事態も生じ得る。このことから、ワーク5の端面縁部を加工する場合は、ワーク5の中央でのセンサ出力電圧値の測定値に基づいた校正データを適用すべきではないことがわかる。
 そこで、実施の形態1にかかるレーザ加工装置10においては、ワーク5表面上の中央で実行する第1のデータ取得ステップで得たデータに基づいて第1の校正データを生成する第1の校正データ生成ステップに加えて、ワーク5表面上の端面縁部で実行する第2のデータ取得ステップで得たデータに基づいて第2の校正データを生成する第2の校正データ生成ステップを実行する。
 即ち、第1のデータ取得ステップでは、ワーク5の表面上の第1の箇所であるワーク5の中央において、加工ノズル2とワーク5との間の距離を複数の異なる値にして、当該距離および当該距離におけるセンサの出力値であるセンサ出力電圧値を制御部4が測定する。ここで、加工ノズル2とワーク5との間の距離の測定は、以下のように実行される。ワーク5の表面に鉛直な方向における原点位置は設定されており、制御部4は、まず、原点位置を基準としたワーク5の表面の位置を計測しておく。そして、原点位置を基準としてワーク5の表面に鉛直な方向における加工ノズル2先端の位置を加工ヘッド駆動部3からの情報に基づいて制御部4が求める。制御部4は、得られたワーク5の表面の位置および加工ノズル2先端の位置に基づいて、加工ノズル2とワーク5との間の距離を求めることができる。
 次に、第1の校正データ生成ステップでは、第1のデータ取得ステップで測定した加工ノズル2とワーク5との間の距離およびセンサ出力電圧値に基づき、第1の箇所における第1の校正データを制御部4が生成する。
 第1のデータ取得ステップに加えて、第2のデータ取得ステップでは、ワーク5の表面上の第1の箇所とは異なる第2の箇所である端面縁部において、加工ノズル2とワーク5との間の距離を複数の異なる値にして、当該距離および当該距離におけるセンサの出力値であるセンサ出力電圧値を制御部4が測定する。そして、第2の校正データ生成ステップでは、第2のデータ取得ステップで測定した加工ノズル2とワーク5との間の距離およびセンサ出力電圧値に基づき、第2の箇所における第2の校正データを制御部4が生成する。
 そして、ワーク5の表面上の第1および第2の箇所においては、それぞれ第1および第2の校正データを用いて倣い校正を行って、加工ノズル2の鉛直方向の位置、即ち、加工ノズル2のワーク5の表面からの高さを制御部4が調整する。
 なお、第1および第2のデータ取得ステップにおける測定は、実際に加工するワーク5で行われる必要はなく、実際に加工するワーク5とは別の測定用ワークをワーク5のそばに配置しておき、測定用ワークの中央と端面縁部の異なる2箇所で上記測定を実施してもかまわない。この測定結果に基づいて、第1および第2の校正データ生成ステップにて、第1および第2の校正データを生成すればよい。この異なる2箇所での測定は、アプローチ動作および後述するトレース動作の実行前、即ち倣い制御を実行する前に行っておく必要がある。測定結果に基づいて公知の補間手法によって求められた第1および第2の校正データは、メモリ42、記憶部43またはこれらとは別途制御部4内に設けられた記憶領域に保持される。
 図9は、実施の形態1においてワーク5表面上の中央での測定値から得られた第1の校正データおよびワーク5表面上の端面縁部での測定値から得られた第2の校正データに基づいて、アプローチ動作時にワーク5表面上の中央および端面縁部で加工ノズル2の高さが同じになるように倣い制御した場合の様子を示す図である。図9の上部に、加工ノズル2および加工ヘッド1とワーク5との位置関係を示す。図9の下部に、ワーク5の中央でのアプローチ動作時における加工ノズル2の高さの時間変化およびワーク5の端面縁部でのアプローチ動作時における加工ノズル2の高さの時間変化を示す。ワーク5の端面縁部では、端面縁部でのセンサ出力電圧値の測定値から得られた第2の校正データに基づいて制御部4がアプローチ動作を実行しているので、時間を経て一定値となった時の加工ノズル2の高さは、第1の校正データに基づいてアプローチ動作を実行した場合における中央での加工ノズル2の高さに一致させることができる。従って、図8で説明したオーバーシュートによる衝突も防ぐことが可能となる。
 さらには、第1の箇所であるワーク中央および第2の箇所であるワーク端面縁部のいずれとも異なる箇所である補間領域において加工ノズル2がアプローチするときは、第1および第2の校正データから補間して得られた補間校正データを用いて加工ノズル2のワーク5からの高さを制御することができる。
 図10は、実施の形態1においてワーク5の中央および端面縁部での測定値から生成した補間校正データを、加工ノズル2の水平方向の位置が補間領域にあるときに用いる様子を示す概念図である。図10は、加工ノズル2のワーク5からの目標値の高さに補間校正データにおいて対応するセンサ出力電圧値を補間領域で用いる様子を示している。補間領域は、加工ノズル2の水平方向の位置がワーク5の端面51に近い領域に設定されている。補間領域の幅は、加工ノズル2のノズル径に依存するので、加工ノズル2を取り替える毎に変更する。
 図11は、実施の形態1におけるワーク中央の校正データ、ワーク端面縁部の校正データおよび補間校正データを示す図である。図11の横軸は加工ノズル2のワーク5からの高さであり、縦軸はセンサ出力電圧である。図11の「ワーク中央の校正データ」は、ワーク5の表面上の第1の箇所であるワーク5の中央において、加工ノズル2のワーク5からの高さを複数の異なる値にして、それぞれの高さにおけるセンサ出力電圧値を制御部4が測定して得た第1の校正データである。図11の「ワーク端面縁部の校正データ」は、ワーク5の表面上の第1の箇所とは異なる第2の箇所である端面縁部において、加工ノズル2のワーク5からの高さを複数の異なる値にして、それぞれの高さにおけるセンサ出力電圧値を制御部4が測定して得た第2の校正データである。
 補間校正データは、図11の「第1補間校正データ」、「第2補間校正データ」、…「第(n-1)補間校正データ」である。「第1補間校正データ」、「第2補間校正データ」、…「第(n-1)補間校正データ」は、図10の補間領域をn個に分割した分割領域の内の端面51に最も近い分割領域を除いた(n-1)個の分割領域で使用される。「第1補間校正データ」、「第2補間校正データ」、…「第(n-1)補間校正データ」は、「ワーク中央の校正データ」および「ワーク端面縁部の校正データ」に基づいて一次補間もしくは多項式補間といった公知の補間手法で補間して計算する。簡単な一次補間は、「ワーク中央の校正データ」および「ワーク端面縁部の校正データ」をワーク端面51からの分割領域の距離に応じて重み付けして当該分割領域で使用する補間校正データを決定する。具体的には、ワーク端面51に近い分割領域の補間校正データは「ワーク端面縁部の校正データ」に近い値となるようにし、ワーク中央に近い分割領域の補間校正データは「ワーク中央の校正データ」に近い値となるように重み付けをして計算して求めておく。この計算は、「ワーク中央の校正データ」および「ワーク端面縁部の校正データ」を取得後直ちに実行してもよいし、実際に補間校正データを使用するときに実行してもかまわない。倣い制御の実行前に補間校正データを計算して求めた場合は、当該補間校正データは、メモリ42、記憶部43またはこれらとは別途制御部4内に設けられた記憶領域に保持される。
 図12は、実施の形態1における補間領域を分割した分割領域を説明する図である。加工ノズル2のワーク5の左側の端面51からの距離をxとすると、xがl1以上ln以下の領域が補間領域であり、l1,l2,・・・ln-1により補間領域が複数の分割領域に分割される。端面51から中央までの距離がlMである。端面51からの距離xと使用する校正データの関係は、分割領域ごとに以下のようになる。
  x<l1  「ワーク端面縁部の校正データ」,
1≦x<l2  「第1補間校正データ」,
2≦x<l3  「第2補間校正データ」,
・・・
n-1≦x<ln  「第(n-1)補間校正データ」,
n≦x<lM  「ワーク中央の校正データ」
 図12では、ワーク5の左側の端面51からの距離をxとして説明したが、ワーク5の右側の端面51に対応する補間領域も同様に決定されて、使用する校正データが定められる。lnは補間領域の幅を決定するので上述したように加工ノズル2を取り替える毎に変更する。lnが定められれば、l1,l2,・・・ln-1は同一の校正データを使用できる誤差の範囲で適切に決定すればよい。
 上記のようにして定めた補間校正データを用いて加工ノズル2をアプローチ動作させる動作例を以下に説明する。図13は、実施の形態1におけるアプローチ動作を説明するフローチャートである。
 最初に、ユーザがレーザ加工装置10の図示せぬスタートボタンを押すと制御部4がプログラム運転をスタートする(ステップS11)。具体的には、記憶部43に保持される加工プログラムに基づいて制御部4がアプローチ動作の準備を開始する。まず、ステップS12において、制御部4は位置情報を決定する。即ち、制御部4は、カメラ情報、ワーク5の形状に関するデータおよび加工プログラムに基づいてワーク5の現在の形状を確認して、ワーク5表面の2次元上における加工ヘッド1がアプローチする位置およびワーク5の端面51の位置を決定する。この決定には公知の手段を用いてかまわない。
 ステップS12で加工ヘッド1がアプローチする位置および端面51の位置が決定されると、アプローチする位置から最も近い端面51から加工ノズル2までのワーク表面上での距離xが決定されるので、分割領域が決定される。即ち、上述した複数の分割領域のうちのどの分割領域内を加工ヘッド1がアプローチするかが決まる。従って、制御部4は使用する校正データを決定することができる(ステップS13)。具体的には、校正データとして、「ワーク中央の校正データ」、「ワーク端面縁部の校正データ」、「第1補間校正データ」、「第2補間校正データ」、…「第(n-1)補間校正データ」のいずれを校正データとして使用するか決定できる。
 ステップS13で使用する校正データが決定されれば、制御部4は、当該校正データをメモリ42あるいは加工プログラムを保持している記憶部43といった記憶領域に設定する(ステップS14)。なお、校正データは、メモリ42および記憶部43とは別に制御部4内に設けられた図示せぬ記憶領域に設定されるようにしてもかまわない。その後、制御部4は、記憶領域に設定された校正データに基づいて倣い校正を実行してアプローチ動作を開始する(ステップS15)。校正データは、加工ノズル2とワーク5との間の異なる距離のそれぞれに対応するセンサの出力値であるセンサ出力電圧値を規定しているので、アプローチ動作が目標とする加工ノズル2とワーク5との間の距離は、加工ヘッド1がアプローチするワーク5表面上の水平方向の位置によって変化させてもかまわない。即ち、アプローチ動作後のレーザ加工を実行するときの加工ノズル2とワーク5との間の距離の目標値は固定値とせずに、レーザ加工を実行するワーク5表面上の水平方向の位置によって変化させてもかまわない。
 以上説明したように、実施の形態1にかかるレーザ加工装置10によれば、加工ヘッド1がアプローチする位置に依存して校正データを切り替えることで、加工ノズル2のワーク5からの高さの正確な検出が可能となる。その結果、ワーク5の端面51に近づいたとしても安定したアプローチ動作が可能となり、端面51からの距離に関わらず安定したアプローチ動作の実行が可能になる。即ち、ワーク表面上の2次元での位置によらず安定したアプローチ動作を実現することができる。これにより、加工不良を発生させずに端面縁部でのアプローチ動作を実行することが可能となり、レーザ加工装置10の歩留まりの向上が期待できる。さらに、端面縁部でのアプローチ動作においてオーバーシュートが発生したとしても加工ノズル2とワーク5との衝突を回避することが可能となる。
実施の形態2.
 実施の形態2においては、実施の形態1にかかるレーザ加工装置10のアプローチ動作に引き続く動作であるトレース動作について説明する。従って、実施の形態2にかかるレーザ加工装置10は実施の形態1と同じである。トレース動作においては加工ノズル2がワーク5の表面上を2次元的に移動する。トレース動作においても倣い制御が実行される。トレース動作中に、ワーク5にレーザを照射するレーザ加工が実行されるが、レーザの照射が停止されている期間があってもかまわない。図14は、実施の形態2におけるトレース動作を説明するフローチャートである。
 ステップS21でトレース動作が開始される。記憶部43に保持される加工プログラムに基づいて制御部4がトレース動作を開始する。具体的には、まず、ステップS22において、制御部4は位置情報を決定する。即ち、制御部4は、カメラ情報、ワーク5の形状に関するデータおよび加工プログラムに基づいてワーク5の現在の形状を確認して、ワーク5表面の2次元上における加工ヘッド1がトレースする位置およびワーク5の端面51の位置を決定する。この決定には公知の手段を用いてかまわない。
 ステップS22で加工ヘッド1がトレースする位置および端面51の位置が決定されると、トレースする位置から最も近い端面51から加工ノズル2までのワーク表面上での距離xが決定されるので、分割領域が決定される。即ち、実施の形態1で説明した複数の分割領域のうちどの分割領域を加工ヘッド1がトレースするかが決まる。従って、制御部4は使用する校正データを決定することができる(ステップS23)。具体的には、校正データとして、「ワーク中央の校正データ」、「ワーク端面縁部の校正データ」、「第1補間校正データ」、「第2補間校正データ」、…「第(n-1)補間校正データ」のいずれを校正データとして使用するか決定できる。
 ステップS23で使用する校正データが決定されれば、制御部4は、当該校正データをメモリ42あるいは加工プログラムを保持している記憶部43といった記憶領域に設定する(ステップS24)。なお、校正データは、メモリ42および記憶部43とは別に制御部4内に設けられた図示せぬ記憶領域に設定されるようにしてもかまわない。その後、制御部4は、記憶領域に設定された校正データに基づいて倣い校正を実行しつつ、ステップS23で求めた分割領域の中におけるトレース動作を開始する(ステップS25)。トレース動作においては、加工ヘッド駆動部3の駆動軸の移動により加工ヘッド1が水平方向にも移動する。アプローチ動作と同様に、トレース動作においても目標とする加工ノズル2とワーク5との間の距離は、加工ヘッド1がトレースするワーク5表面上の水平方向の位置によって変化させてもかまわない。即ち、トレース動作中にレーザ加工を実行するときの加工ノズル2とワーク5との間の距離の目標値は固定値とせずに、レーザ加工を実行するワーク5表面上の水平方向の位置によって変化させてもかまわない。
 ステップS25において、ステップS23で求めた分割領域内でのトレース動作が終了した場合、即ち加工ヘッド1が当該分割領域とは別の領域をトレースする必要が生じた場合は、ステップS22に戻り、上記動作を繰り返す。
 以上説明したように、実施の形態2にかかるレーザ加工装置10によれば、加工ヘッド1がトレースする位置に依存して校正データを切り替えることで、加工ノズル2のワーク5からの高さの正確な検出が可能となる。その結果、ワーク5の端面51に近づいたとしても安定したトレース動作が可能となり、端面51からの距離に関わらず安定したトレース動作の実行が可能になる。即ち、ワーク表面上の2次元での位置によらず安定したトレース動作を実現することができる。これにより、加工不良を発生させずに端面縁部でのトレース動作を実行することが可能となり、レーザ加工装置10の歩留まりの向上が期待できる。さらに、端面縁部でのトレース動作においてオーバーシュートが発生したとしても加工ノズル2とワーク5との衝突を回避することが可能となる。
 実施の形態1および2において、静電容量型のセンサは加工ノズル2とワーク5との間の静電容量に対応する電圧値であるセンサ出力電圧値を出力するとして説明したが、加工ノズル2とワーク5との間の静電容量の値、即ち静電容量値そのものを出力するセンサであってもかまわない。
 また、実施の形態1および2において、校正データは、加工ノズル2とワーク5との間の距離と、加工ノズル2とワーク5との間の静電容量に対応する電圧値との関係を示すものとして説明したが、加工ノズル2とワーク5との間の距離と、加工ノズル2とワーク5との間の静電容量値との関係を示すものであってもかまわない。この場合、図6の実線および一点鎖線の関係をそれぞれワーク中央での測定により生成された第1の校正データおよびワーク端面縁部での測定により生成された第2の校正データと見做せば、補間校正データは、図6の実線と一点鎖線との間に存在することになる。そして、図3の「正」のグラフに相当する距離と静電容量値との関係は、倣い校正の基準となる関係として予め制御部4内の記憶領域に設定しておけばよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 加工ヘッド、2 加工ノズル、2’ 加工ノズル位置、3 加工ヘッド駆動部、4 制御部、5 ワーク、10 レーザ加工装置、20 静電容量検出領域、41 演算部、42 メモリ、43 記憶部、51 端面。

Claims (16)

  1.  加工ノズルとワークとの間の静電容量を測定するセンサの出力値と、前記加工ノズルと前記ワークとの間の距離との関係を規定した校正データに基づいて、前記加工ノズルと前記ワークとの間の距離を制御してレーザ加工を実行するレーザ加工装置であって、
     前記ワークの表面上の第1の箇所においては、第1の校正データに基づいて前記加工ノズルの鉛直方向の位置を調整し、前記ワークの表面上の前記第1の箇所とは異なる第2の箇所においては、前記第1の校正データとは異なる第2の校正データに基づいて前記加工ノズルの鉛直方向の位置を調整する
     ことを特徴とするレーザ加工装置。
  2.  前記加工ノズルが取り付けられる加工ヘッドと、
     前記加工ヘッドを駆動する加工ヘッド駆動部と、
     前記第1の箇所においては、前記第1の校正データに基づいて前記加工ヘッド駆動部を制御し、前記第2の箇所においては、前記第2の校正データに基づいて前記加工ヘッド駆動部を制御する制御部と、
     を備える
     ことを特徴とする請求項1に記載のレーザ加工装置。
  3.  前記ワークの表面上の前記第1および第2の箇所とは異なる箇所においては、前記第1の校正データおよび前記第2の校正データに基づいて補間して得られた補間校正データに基づいて前記加工ノズルの鉛直方向の位置を調整する
     ことを特徴とする請求項1に記載のレーザ加工装置。
  4.  前記レーザ加工中における前記加工ノズルと前記ワークとの間の距離を変化させる
     ことを特徴とする請求項1に記載のレーザ加工装置。
  5.  前記第1の箇所において前記加工ノズルと前記ワークとの間の距離および前記センサの出力値を測定して前記第1の校正データを生成し、前記第2の箇所において前記加工ノズルと前記ワークとの間の距離および前記センサの出力値を測定して前記第2の校正データを生成する
     ことを特徴とする請求項1から4のいずれか1つに記載のレーザ加工装置。
  6.  加工ノズルとワークとの間の静電容量を測定するセンサの出力値と、前記加工ノズルと前記ワークとの間の距離との関係を規定した校正データに基づいて、前記加工ノズルと前記ワークとの間の距離を制御してレーザ加工を実行するレーザ加工装置であって、
     前記ワークの表面上の第1の箇所および前記ワークの表面上の前記第1の箇所とは異なる第2の箇所において、前記校正データを生成するために前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する
     ことを特徴とするレーザ加工装置。
  7.  前記加工ノズルが取り付けられる加工ヘッドと、
     前記加工ヘッドを駆動する加工ヘッド駆動部と、
     前記校正データを生成するために、前記第1の箇所および前記第2の箇所において、前記加工ノズルと前記ワークとの間の距離および前記センサの出力値を測定する制御部と、
     を備える
     ことを特徴とする請求項6に記載のレーザ加工装置。
  8.  前記レーザ加工を実行するワークとは別のワークにおいて、前記レーザ加工の実行前に、前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する
     ことを特徴とする請求項6に記載のレーザ加工装置。
  9.  前記校正データは、前記距離と前記静電容量に対応する電圧値との関係を示す
     ことを特徴とする請求項1から4および6から8のいずれか1つに記載のレーザ加工装置。
  10.  前記校正データは、前記距離と前記静電容量の値との関係を示す
     ことを特徴とする請求項1から4および6から8のいずれか1つに記載のレーザ加工装置。
  11.  加工ノズルとワークとの間の静電容量を測定するセンサの出力値と、前記加工ノズルと前記ワークとの間の距離との関係を規定した校正データに基づいて、前記加工ノズルと前記ワークとの間の距離を制御してレーザ加工を実行するレーザ加工装置に用いる校正データを生成する校正データ生成方法であって、
     前記ワークの表面上の第1の箇所において、前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する第1のデータ取得ステップと、
     前記第1のデータ取得ステップで測定した前記加工ノズルと前記ワークとの距離および前記センサの出力値に基づき、前記第1の箇所における第1の校正データを生成する第1の校正データ生成ステップと、
     前記ワークの表面上の前記第1の箇所とは異なる第2の箇所において、前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する第2のデータ取得ステップと、
     前記第2のデータ取得ステップで測定した前記加工ノズルと前記ワークとの距離および前記センサの出力値に基づき、前記第2の箇所における第2の校正データを生成する第2の校正データ生成ステップと、
     を備える
     ことを特徴とする校正データ生成方法。
  12.  前記校正データは、前記距離と前記静電容量に対応する電圧値との関係を示す
     ことを特徴とする請求項11に記載の校正データ生成方法。
  13.  前記校正データは、前記距離と前記静電容量の値との関係を示す
     ことを特徴とする請求項11に記載の校正データ生成方法。
  14.  加工ノズルとワークとの間の静電容量を測定するセンサの出力値と、前記加工ノズルと前記ワークとの間の距離との関係を規定した校正データに基づいて、前記加工ノズルと前記ワークとの間の距離を制御してレーザ加工を実行するレーザ加工装置に
     前記ワークの表面上の第1の箇所において、前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する第1のデータ取得ステップと、
     前記第1のデータ取得ステップで測定した前記加工ノズルと前記ワークとの距離および前記センサの出力値に基づき、前記第1の箇所における第1の校正データを生成する第1の校正データ生成ステップと、
     前記ワークの表面上の前記第1の箇所とは異なる第2の箇所において、前記加工ノズルと前記ワークとの距離および前記センサの出力値を測定する第2のデータ取得ステップと、
     前記第2のデータ取得ステップで測定した前記加工ノズルと前記ワークとの距離および前記センサの出力値に基づき、前記第2の箇所における第2の校正データを生成する第2の校正データ生成ステップと、
     を実行させるプログラム。
  15.  前記校正データは、前記距離と前記静電容量に対応する電圧値との関係を示す
     ことを特徴とする請求項14に記載のプログラム。
  16.  前記校正データは、前記距離と前記静電容量の値との関係を示す
     ことを特徴とする請求項14に記載のプログラム。
PCT/JP2015/057589 2015-03-13 2015-03-13 レーザ加工装置、校正データ生成方法およびプログラム WO2016147273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015546363A JP5897233B1 (ja) 2015-03-13 2015-03-13 レーザ加工装置、校正データ生成方法およびプログラム
CN201580001534.9A CN106163723B (zh) 2015-03-13 2015-03-13 激光加工装置以及校正数据生成方法
PCT/JP2015/057589 WO2016147273A1 (ja) 2015-03-13 2015-03-13 レーザ加工装置、校正データ生成方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057589 WO2016147273A1 (ja) 2015-03-13 2015-03-13 レーザ加工装置、校正データ生成方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2016147273A1 true WO2016147273A1 (ja) 2016-09-22

Family

ID=55628651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057589 WO2016147273A1 (ja) 2015-03-13 2015-03-13 レーザ加工装置、校正データ生成方法およびプログラム

Country Status (3)

Country Link
JP (1) JP5897233B1 (ja)
CN (1) CN106163723B (ja)
WO (1) WO2016147273A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115971691A (zh) * 2023-03-21 2023-04-18 济南森峰激光科技股份有限公司 一种用于激光切割的电容测距系统及方法
WO2024111062A1 (ja) * 2022-11-22 2024-05-30 ファナック株式会社 制御装置、及びコンピュータ読み取り可能な記録媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039190B (zh) * 2019-04-03 2021-05-28 大族激光科技产业集团股份有限公司 一种激光切割控制方法、装置及计算机可读存储介质
CN111026036B (zh) * 2019-12-26 2023-02-28 大族激光科技产业集团股份有限公司 一种激光头空移控制方法及控制系统
JP7446843B2 (ja) * 2020-02-10 2024-03-11 キヤノン株式会社 レーザ加工装置、レーザ加工方法及び物品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395187U (ja) * 1990-01-11 1991-09-27
US6034348A (en) * 1996-12-18 2000-03-07 Electronics And Telecommunications Research Institute Micro etching system using laser ablation
JP2002011587A (ja) * 2000-06-29 2002-01-15 Koike Sanso Kogyo Co Ltd 高さ倣い装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981976B (zh) * 2005-12-12 2012-07-18 普雷茨特两合公司 激光加工设备及运行控制这样一个激光加工设备的方法
DE102007063627B4 (de) * 2007-10-02 2010-08-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Bestimmung der Lage eines Laserstrahls relativ zu einer Öffnung, sowie Laserbearbeitungsmaschine
JP5213783B2 (ja) * 2009-03-31 2013-06-19 三菱電機株式会社 レーザ加工装置およびレーザ加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395187U (ja) * 1990-01-11 1991-09-27
US6034348A (en) * 1996-12-18 2000-03-07 Electronics And Telecommunications Research Institute Micro etching system using laser ablation
JP2002011587A (ja) * 2000-06-29 2002-01-15 Koike Sanso Kogyo Co Ltd 高さ倣い装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111062A1 (ja) * 2022-11-22 2024-05-30 ファナック株式会社 制御装置、及びコンピュータ読み取り可能な記録媒体
CN115971691A (zh) * 2023-03-21 2023-04-18 济南森峰激光科技股份有限公司 一种用于激光切割的电容测距系统及方法

Also Published As

Publication number Publication date
JPWO2016147273A1 (ja) 2017-04-27
CN106163723B (zh) 2018-05-29
JP5897233B1 (ja) 2016-03-30
CN106163723A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5897233B1 (ja) レーザ加工装置、校正データ生成方法およびプログラム
US10744599B2 (en) Metal additive manufacturing welding condition control device and method
US10175684B2 (en) Laser processing robot system and control method of laser processing robot system
KR101939801B1 (ko) 레이저 빔과 레이저 툴과 레이저 장치와 제어 장치를 이용한 피가공물 가공 방법
JP5832569B2 (ja) ギャップ制御中に干渉回避が可能な数値制御装置
US10814422B2 (en) Determining distance correction values for laser machining a workpiece
JP5881912B1 (ja) レーザ加工機及び数値制御プログラム作成ソフトウェア
JP6918603B2 (ja) 三次元レーザ加工機および三次元レーザ加工機の制御方法
KR101722916B1 (ko) 레이저 스캐너 기반 5축 표면 연속 가공 장치 및 그 제어 방법
US9720225B2 (en) Processing system with galvano scanner capable of high speed laser scanning
JP2014163757A (ja) 工作機械の空間精度測定方法および空間精度測定装置
JP5576211B2 (ja) レーザ加工装置及びレーザ加工方法
JP2019136841A (ja) 加工結果に基づいた学習制御を行うロボットシステム及びその制御方法
JP6254965B2 (ja) スカイビング加工における工具補正機能を有する数値制御装置
JP6434554B2 (ja) ガルバノスキャナ
JP2009136937A (ja) 加工方法、加工プログラム、加工装置
JP5642996B2 (ja) 制御装置、レーザ加工機およびレーザ加工方法
JP2008260043A (ja) 溶接方法、および段差部の検出装置
JPWO2014174659A1 (ja) 曲率制御装置およびレーザ加工機
JP2018047478A (ja) レーザ加工装置
JP4670911B2 (ja) レーザ加工装置
JP2006007287A (ja) レーザ加工方法と加工装置
WO2022186054A1 (ja) センサの出力に基づいて教示点を生成する教示点生成装置および教示点生成方法
JP5943627B2 (ja) レーザ加工装置及びレーザ加工方法
JP2013215739A (ja) レーザ加工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015546363

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885371

Country of ref document: EP

Kind code of ref document: A1