WO2016143796A1 - 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法 - Google Patents

樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法 Download PDF

Info

Publication number
WO2016143796A1
WO2016143796A1 PCT/JP2016/057208 JP2016057208W WO2016143796A1 WO 2016143796 A1 WO2016143796 A1 WO 2016143796A1 JP 2016057208 W JP2016057208 W JP 2016057208W WO 2016143796 A1 WO2016143796 A1 WO 2016143796A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
dicyclopentadiene
opening polymer
dicyclopentadiene ring
Prior art date
Application number
PCT/JP2016/057208
Other languages
English (en)
French (fr)
Inventor
昌嗣 加藤
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2017505357A priority Critical patent/JP7186502B2/ja
Priority to US15/554,279 priority patent/US10519288B2/en
Publication of WO2016143796A1 publication Critical patent/WO2016143796A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0017Heat stable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/21Stereochemical aspects
    • C08G2261/212Regioregularity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a resin molding, in which a molding material containing a syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride is melt-molded.
  • a ring-opening polymer hydride of norbornene-based monomers such as dicyclopentadiene is a kind of so-called cycloolefin polymer, and is excellent in transparency, low birefringence, molding processability, etc. It is used as a material applicable to various uses.
  • the ring-opening polymer hydride of dicyclopentadiene is generally obtained as an amorphous polymer having an atactic structure.
  • an amorphous dicyclopentadiene ring-opening polymer hydride having an atactic structure may have insufficient heat resistance, mechanical strength, solvent resistance, and the like depending on its use. Therefore, as a method for improving these performances, by producing a ring-opening polymer hydride of dicyclopentadiene having stereoregularity in the main chain, a ring-opening polymer hydride of dicyclopentadiene having crystallinity is obtained. Proposed.
  • Patent Document 1 discloses ring opening of dicyclopentadiene using a polymerization catalyst mainly composed of a periodic table Group 6 transition metal compound having a specific substituent, such as a tungsten phenylimide tetrachloride diethyl ether complex.
  • a dicyclopentadiene ring-opening polymer having a cis-syndioregularity that is soluble in a hydrocarbon solvent such as cyclohexane at room temperature is obtained. Further, a carbon-carbon double bond in the ring-opening polymer is obtained.
  • Patent Document 2 uses a polymerization catalyst such as a tungsten phenylimide bisbiphenolate complex, which mainly contains a transition metal compound of Groups 4 to 6 of the periodic table having a specific aromatic dioxy group as a ligand.
  • the isotactic crystalline dicyclopentadiene ring-opened polymer hydride specifically described in Patent Document 2 has an isotacticity of 100% within the measurement accuracy range of the analyzer, and its melting point is It is around 295 ° C. and has a very high melting point.
  • a dicyclopentadiene ring-opened polymer having a cis-isotactic structure is insoluble in a hydrocarbon solvent such as cyclohexane at room temperature, so that it is difficult to produce on an industrial production scale.
  • a crystalline dicyclopentadiene ring-opening polymer hydride that is superior in heat resistance and the like is expected as a raw material resin for various resin molded products, but the crystalline dicyclopentadiene ring-opening polymer having such characteristics is expected.
  • the combined hydride is not industrially easy to handle and the actual situation is that the characteristics of the crystalline dicyclopentadiene ring-opened polymer hydride have not been fully utilized.
  • an object of the present invention is to provide a method for producing a resin molded product in which the characteristics of the crystalline dicyclopentadiene ring-opened polymer hydride are sufficiently reflected.
  • a syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride having a high melting start temperature and high stereoregularity has a high heat resistance. It was found to be excellent in properties. Furthermore, it discovered that the characteristic which this polymer has can fully be exhibited by using a melt molding method as a shaping
  • the following method for producing a resin molded body is provided.
  • a method for producing a resin molded body comprising a syndiotactic crystalline dicyclopentadiene ring-opened polymer hydride having a melting start temperature of 260 ° C. or higher and a syndiotacticity higher than 90%
  • a method for producing a resin molded product comprising melt-molding a material.
  • a method for producing a resin film comprising a syndiotactic crystalline dicyclopentadiene ring-opened polymer hydride having a melting start temperature of 260 ° C. or higher and a syndiotacticity higher than 90%
  • a method for producing a resin film which comprises extruding a resin.
  • a method for producing an injection-molded article comprising a syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride having a melting start temperature of 260 ° C. or higher and a syndiotacticity higher than 90%
  • a method for producing an injection-molded article characterized by injection-molding a material.
  • a method for producing a resin molded product that sufficiently reflects the characteristics of a crystalline dicyclopentadiene ring-opened polymer hydride.
  • the method for producing a resin molded body of the present invention comprises a molding material containing a syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride having a melting start temperature of 260 ° C. or higher and a syndiotacticity higher than 90%. It is characterized by melt molding.
  • the molding material used in the production method of the present invention has a syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride (hereinafter referred to as “dicyclohexane”) having a melting start temperature of 260 ° C. or higher and a syndiotacticity higher than 90%. Pentadiene ring-opened polymer hydride ( ⁇ ) ”).
  • the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) contains a repeating unit of hydrogenated poly (endo-dicyclopentadiene) represented by the following formula (1).
  • the melting start temperature of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is 260 ° C. or higher, and preferably 265 ° C. or higher.
  • the upper limit of the melting start temperature is not particularly limited, but is not higher than the melting point. Since the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) has a very high melting start temperature, the resin molded product obtained by the production method of the present invention is excellent in heat resistance.
  • the melting start temperature is a melting start temperature measured after the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is sufficiently melted and then crystallized sufficiently (hereinafter referred to as melting start after melting). Sometimes called temperature.) For example, this melting start temperature can be measured according to the method for measuring the melting start temperature after melting in the examples described later.
  • the melting point of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) is preferably 270 to 300 ° C., more preferably 270 to 290 ° C. Since the crystalline dicyclopentadiene ring-opened polymer hydride ( ⁇ ) has a moderately high melting point, it has excellent heat resistance and can suppress oxidative deterioration during molding. On the other hand, if the melting point of the crystalline dicyclopentadiene ring-opening polymer hydride is too high, the molding processability is inferior and molding is performed at a high temperature. Become.
  • the melting point in the present invention is a melting point measured after the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is sufficiently melted and then sufficiently crystallized. This melting point can be measured, for example, according to the method described in Examples described later.
  • the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) has stereoregularity (tacticity) because the carbon represented by (1,4) in the above formula (1) is an asymmetric carbon (indicated by *). City) exists.
  • Dicyclopentadiene ring-opening polymer hydride ( ⁇ ) has syndiotactic stereoregularity, and syndiotacticity, ie, meso diad and racemo diad in the configuration ( The ratio of racemo diads in the total of racemo diads (hereinafter sometimes simply referred to as the ratio of racemo diads) is higher than 90%.
  • the ratio of racemo diads is preferably higher than 91%, more preferably higher than 92%.
  • the ratio of racemo diads is 90% or less, the crystallinity of the syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride is greatly lowered, and characteristics such as a high melting point and workability are impaired.
  • the syndiotacticity can be determined by the formula I: [(Rasemo Duplicate) / (Meso Duplicate + Racemo Duplicate) ⁇ 100 (%)].
  • the ratio of racemo diads can be calculated by analyzing the 13 C-NMR spectrum of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ). Specifically, it can be determined by quantifying the spectrum of the carbon atom represented by (5, 9) in the formula (1) of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ). That is, about (5,9) carbon atoms of the repeating unit represented by the formula (1), 200 ° C.
  • the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) has a repeating unit derived from dicyclopentadiene represented by the following formula (2).
  • Dicyclopentadiene ring-opened polymer hydride ( ⁇ ) is a repetitive derivative derived from dicyclopentadiene from the viewpoint of particularly improving the heat resistance of the molding material containing it and increasing its crystallization rate. What contains many units is preferable.
  • the proportion of the repeating units derived from dicyclopentadiene in the total repeating units in the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is not particularly limited, but is preferably 90% by weight or more, and more preferably 95% by weight or more. More preferably, it is particularly preferably 97% by weight or more, and most preferably consists of a repeating unit derived from dicyclopentadiene.
  • Dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is a monomer mixture containing dicyclopentadiene or dicyclopentadiene and another cyclic olefin monomer in the presence of a specific ring-opening polymerization catalyst, as described later. (Hereinafter, these may be collectively referred to as “dicyclopentadiene, etc.”) ring-opening polymerization to obtain a dicyclopentadiene ring-opening polymer, and then obtained by hydrogenation of this. be able to.
  • dicyclopentadiene there are stereoisomers of endo and exo, both of which can be used as monomers, and either isomer may be used alone, or endo and It is also possible to use an isomer mixture in which an exo isomer is present in an arbitrary ratio. From the viewpoint of increasing the crystallinity of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) and making its heat resistance particularly favorable, it is preferable to increase the ratio of one stereoisomer.
  • the dicyclopentadiene used preferably has an endo or exo ratio of 90% or more, more preferably 95% or more, and particularly preferably 99% or more.
  • the stereoisomer which makes a ratio high is an end body from a viewpoint of synthetic
  • dicyclopentadiene may be used in combination with another cyclic olefin monomer.
  • the amount of the other cyclic olefin monomer used is usually less than 10% by weight, preferably less than 3% by weight, more preferably less than 1% by weight, based on the total amount of dicyclopentadiene and the other cyclic olefin monomer. Most preferably, it is 0% by weight.
  • alkyl such as 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene, etc.
  • Tetracyclododecenes having a group as a substituent 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-vinyltetracyclododecene, 8-propenyltetracyclododecene, 8-cyclohexenyltetracyclododecene, 8-cyclopentenyltetracyclododecene Tetracyclododecenes having a double bond outside the ring, such as Tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclodecene, 8-hydroxymethyltetracyclododecene, 8-carboxytetracyclododec
  • Hexacycloheptadecenes include unsubstituted or non-substituted hexacycloheptadecene, 12-methylhexacycloheptadecene, 12-ethylhexacycloheptadecene, 12-cyclohexylhexacycloheptadecene, 12-cyclopentylhexacycloheptadecene, etc.
  • Hexacycloheptadecenes having an alkyl group as a substituent 12-methylidenehexacycloheptadecene, 12-ethylidenehexacycloheptadecene, 12-vinylhexacycloheptadecene, 12-propenylhexacycloheptadecene, 12-cyclohexenylhexacycloheptadecene, 12-cyclopentenylhexacycloheptadecene Hexacycloheptadecenes having a double bond outside the ring, etc .; Hexacycloheptadecenes having an aromatic group as a substituent, such as 12-phenylhexacycloheptadecene;
  • the number average molecular weight (Mn) of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is usually 500 to 1,000,000, preferably 1000 to 600,000, more preferably 2000 to 400,000. If Mn is too low, the mechanical strength of the resin molded product may be lowered, and if Mn is too high, molding tends to be difficult.
  • the number average molecular weight of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) is substantially equal to the number average molecular weight of the dicyclopentadiene ring-opened polymer before the hydrogenation step.
  • the glass transition point (Tg) of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is preferably 80 ° C. or higher, more preferably 85 ° C. or higher. If the glass transition point is within such a range, the heat resistance is good, for example, the deflection temperature under load is high, which is preferable.
  • the upper limit of the glass transition point is not particularly limited, but is approximately 120 ° C.
  • the cyclopentadiene ring-opening polymer hydride ( ⁇ ) production intermediate dicyclopentadiene ring-opening polymer is a polymerization catalyst comprising dicyclopentadiene or the like and a tungsten compound represented by the following formula (3). Can be efficiently obtained by ring-opening polymerization using.
  • W represents a tungsten atom.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted aryl group having 6 to 12 carbon atoms, And a group selected from a cycloalkyl group having 3 to 20 carbon atoms which may have a substituent.
  • L 1 may have an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted aryl group having 6 to 12 carbon atoms, and an optionally substituted group.
  • a nitrogen atom which may have a substituent selected from a cycloalkyl group having 3 to 20 carbon atoms.
  • L 2 represents a conjugated heterocyclic group having 5 to 15 ring members having at least one nitrogen atom, and the conjugated heterocyclic group may have a substituent.
  • L 3 represents an alkoxy group represented by —O—R 3 , and R 3 represents an optionally substituted alkyl group having 1 to 12 carbon atoms and an optionally substituted carbon. Represents a group selected from aryl groups of 6 to 30.
  • L 4 represents a neutral conjugated heterocyclic ligand having at least two nitrogen atoms and having 12 to 24 ring members, and the conjugated heterocyclic ligand may have a substituent.
  • W is a tungsten atom.
  • R 1 and R 2 may each independently have a hydrogen atom; a substituent such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a t-butyl group.
  • examples of the substituent for the alkyl group having 1 to 12 carbon atoms, the cycloalkyl group having 3 to 20 carbon atoms, and the aryl group having 6 to 12 carbon atoms include alkyl groups having 1 to 12 carbon atoms such as a methyl group and an ethyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; an alkoxy group having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group or an isopropoxy group; a haloalkyl group having 1 to 12 carbon atoms such as a trifluoromethyl group; A haloalkoxy group having 1 to 12 carbon atoms such as a fluoromethoxy group; having a substituent such as a phenyl group, a 4-methylphenyl group, a 2,4-dimethylphenyl group, a 2-chlorophenyl group and a 3-methoxyphenyl group; And an aryl group having 6 to 12 carbon atoms;
  • L 1 may have an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted aryl group having 6 to 12 carbon atoms, and an optionally substituted group.
  • the alkyl group having 1 to 12 carbon atoms of the substituent (R 4 ) that the nitrogen atom of L 1 may have may be either linear or branched. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group and the like.
  • Examples of the aryl group having 6 to 12 carbon atoms of R 4 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • Examples of the cycloalkyl group having 3 to 20 carbon atoms of R 4 include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and an adamantyl group.
  • R 4 may have in the alkyl group having 1 to 12 carbon atoms, the cycloalkyl group having 3 to 20 carbon atoms, and the aryl group having 6 to 12 carbon atoms.
  • substituents that the alkyl group having 1 to 12 carbon atoms of R 4 may have include a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom; 12 alkoxy groups; phenyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group, 2-chlorophenyl group, 3-methoxyphenyl group, 2,6-dimethylphenyl group, 3,5
  • An aryl group having 6 to 12 carbon atoms which may have a substituent such as a dimethylphenyl group or a pentafluorophenyl group; an amino group; a mono-substituted amino group such as a methylamino group;
  • R 4 a cycloalkyl group having 3 to 20 carbon atoms, examples of the substituent which may have an aryl group having 6 to 12 carbon atoms, a methyl group, an ethyl group, an alkyl group having 1 to 12 carbon atoms such as isopropyl
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; an alkoxy group having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group or an isopropoxy group; a haloalkyl group having 1 to 12 carbon atoms such as a trifluoromethyl group;
  • a haloalkoxy group having 1 to 12 carbon atoms such as a fluoromethoxy group; a phenyl group, a 2-methylphenyl group, a 4-methylphenyl group, a 2,4-dimethylphenyl group, a 2-chlorophenyl group, a 3-me
  • L 2 represents a conjugated heterocyclic group which has at least one nitrogen atom and has 5 to 15 ring members and may have a substituent.
  • the conjugated heterocyclic group of L 2 include 5-membered conjugated heterocyclic groups such as pyrrolyl, imidazolyl, pyrazolyl, oxazolyl and thiazolyl groups; pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like 6-membered ring conjugated heterocyclic group; condensed ring conjugated heterocyclic group such as quinazolinyl group, phthalazinyl group, pyrrolopyridyl group; and the like.
  • the substituent that the conjugated heterocyclic group may have is not particularly limited.
  • an alkyl group having 1 to 12 carbon atoms such as a methyl group or an ethyl group; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; an alkoxy group having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group or an isopropoxy group
  • a haloalkyl group having 1 to 12 carbon atoms such as a trifluoromethyl group; a haloalkoxy group having 1 to 12 carbon atoms such as a trifluoromethoxy group; a phenyl group, a 4-methylphenyl group, a 2,4-dimethylphenyl group, 2
  • An aryl group having 6 to 12 carbon atoms which may have a substituent such as a chlorophenyl group or a 3-methoxyphenyl group; an amino group; a mono
  • L 3 is a group represented by —O—R 3 .
  • R 3 is a group selected from an alkyl group having 1 to 12 carbon atoms which may have a substituent and an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • alkyl group having 1 to 12 carbon atoms of the alkyl group having 1 to 12 carbon atoms which may have a substituent of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, t- A butyl group, a pentyl group, etc. are mentioned.
  • the substituent that the alkyl group having 1 to 12 carbon atoms of R 3 can have is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom
  • an alkoxy group having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group or an isopropoxy group
  • a haloalkyl group having 1 to 12 carbon atoms such as a trifluoromethyl group
  • a haloalkoxy group having 1 to 12 carbon atoms such as a trifluoromethoxy group
  • having a substituent such as a phenyl group, a 4-methylphenyl group, a 2,4-dimethylphenyl group, a 2-chlorophenyl group, a 3-methoxyphenyl group
  • an aryl group having 6 to 12 carbon atoms an amino group; a mono-substituted amino group such as a methylamino group;
  • Examples of the aryl group having 6 to 30 carbon atoms which may have a substituent include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and an adamantyl group.
  • the substituent that the aryl group having 6 to 30 carbon atoms of R 3 can have is not particularly limited.
  • halogen atoms such as fluorine atom, chlorine atom and bromine atom
  • alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group, isopropyl group and t-butyl group
  • an alkoxy group having 1 to 12 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group
  • a haloalkyl group having 1 to 12 carbon atoms such as a trifluoromethyl group
  • a haloalkoxy group having 1 to 12 carbon atoms which may have a substituent such as phenyl group, 4-methylphenyl
  • L 3 examples include 1,1,1,3,3,3-hexafluoro-2-propoxy group, 2-methyl-2-propoxy group, 1,1,1-trifluoro-2-methyl.
  • R such as -2-propoxy group, 1,1,1-trifluoro-2-trifluoromethyl-2-propoxy group, 2-trifluoromethyl-2-phenyl-1,1,1-trifluoroethoxy group, etc.
  • R 3 is an optionally substituted alkyl group having 1 to 12 carbon atoms; 2,6-bis (2,4,6-trimethylphenyl) phenoxy group, 2,6-bis (2,4 , 6-triisopropylphenyl) phenoxy group, 2,4,6-trimethylphenoxy group, 2,3,5,6-tetraphenylphenoxy group, etc., and R 3 may have a substituent having 6 carbon atoms A group which is an aryl group of ⁇ 30; It is.
  • L 4 is a neutral conjugated heterocyclic ligand having at least 2 nitrogen atoms and having 12 to 24 ring members.
  • Specific examples of the ligand include 2,2′-bipyridyl, 5,5′-dimethyl-2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 4,4′- Examples include dibromo-2,2′-bipyridyl, 2,2′-biquinoline, 1,10-phenanthroline, and terpyridine.
  • conjugated heterocyclic group of L 4 may have a substituent.
  • substituents include those listed as substituents that the conjugated heterocyclic group of L 2 may have.
  • tungsten compound examples include (2-trifluoromethyl-2-phenyl-1,1,1-trifluoroethoxy) 2,6-dimethylphenylimidotungsten (VI) (2,5-dimethylpyrrolide).
  • the tungsten compound has a neutral conjugated heterocyclic ligand, but a metal salt compound may be used in combination to increase the rate of ring-opening polymerization of dicyclopentadiene.
  • a metal salt compound may be used in combination to increase the rate of ring-opening polymerization of dicyclopentadiene.
  • the neutral conjugated heterocyclic ligand can be eliminated from the tungsten compound, and a highly active catalyst species can be obtained.
  • the metal atom constituting the metal salt zinc, tin, copper, titanium, rare earth and the like are suitable.
  • Specific examples of metal salts that can be used include zinc chloride, copper chloride, tin chloride, titanium chloride, scandium chloride, yttrium chloride, and the like.
  • tungsten compounds can be produced, for example, by a method described in JP-T-2014-520103 (International Publication No. 2012/167171). Moreover, what is marketed as a tungsten compound can also be refine
  • the dicyclopentadiene ring-opening polymer can be produced by mixing dicyclopentadiene and the like with a polymerization catalyst and subjecting dicyclopentadiene and the like to ring-opening polymerization.
  • the amount of the polymerization catalyst used relative to dicyclopentadiene is not particularly limited, but the molar ratio of tungsten compound: dicyclopentadiene, etc. in the polymerization catalyst is 1:10 to 1: 2,000,000. A range is preferred, a range of 1: 200 to 1: 1,000,000 is more preferred, and a range of 1: 500 to 1: 500,000 is particularly preferred. If the amount of the polymerization catalyst used is too large, it may be difficult to remove the polymerization catalyst, and if it is too small, sufficient polymerization activity may not be obtained.
  • the polymerization reaction can be carried out in a solventless system, but it is preferably carried out in an organic solvent from the viewpoint of controlling the reaction well.
  • the organic solvent used in this case is not particularly limited as long as it can dissolve or disperse the produced ring-opening polymer and does not adversely affect the polymerization reaction.
  • organic solvents that can be used include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, Alicyclic hydrocarbons such as tricyclodecane, hexahydroindenecyclohexane and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; chlorobenzene Halogen-containing aromatic hydrocarbons such as dichlorobenzene; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzen
  • the concentration of the monomer in the reaction system is not particularly limited, but is preferably 1 to 50% by weight, and preferably 2 to 45% by weight. More preferred is 3 to 40% by weight. If the concentration of the monomer is too low, the productivity may be deteriorated. If it is too high, the viscosity of the reaction solution after the polymerization reaction becomes too high, and the subsequent hydrogenation reaction may be difficult.
  • the polymerization temperature is not particularly limited, but is usually ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to 180 ° C.
  • the polymerization time is not particularly limited, but is usually selected within the range of 1 minute to 100 hours.
  • a vinyl compound or a diene compound may be added to the polymerization reaction system for the purpose of adjusting the molecular weight of the resulting dicyclopentadiene ring-opened polymer.
  • the vinyl compound used for the purpose of adjusting the molecular weight is not particularly limited as long as it is an organic compound having a vinyl group.
  • ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene; styrenes such as styrene and vinyltoluene; ethers such as ethyl vinyl ether, i-butyl vinyl ether and allyl glycidyl ether; allyl Halogen-containing vinyl compounds such as chloride; oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol and glycidyl methacrylate; nitrogen-containing vinyl compounds such as acrylamide; silicon-containing vinyl compounds such as vinyltrimethylsilane, allyltrimethylsilane and vinyltrimethoxysilane; Can be used.
  • styrenes such as styrene and vinyltoluene
  • ethers such as ethyl vinyl ether, i-butyl vinyl ether and allyl glycidyl ether
  • allyl Halogen-containing vinyl compounds such as
  • the diene compound used for the purpose of adjusting the molecular weight is not particularly limited.
  • Conjugated dienes; conjugated dienes such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc. are used. be able to.
  • the amount of vinyl compound or diene compound to be added may be determined according to the target molecular weight, but is usually in the range of 0.1 to 10 moles per 100 moles of dicyclopentadiene or the like used as a monomer. Selected.
  • the ring-opening polymerization reaction of dicyclopentadiene is performed under the conditions as described above, thereby syndiotactic stereoregulation.
  • a dicyclopentadiene ring-opening polymer having properties can be obtained.
  • a hydride ( ⁇ ) can be obtained.
  • the dicyclopentadiene ring-opening polymer may be recovered from the reaction solution and used for the hydrogenation reaction, but the reaction solution containing the dicyclopentadiene ring-opening polymer can be used for the hydrogenation reaction as it is.
  • the number average molecular weight (Mn) measured by 1 H-NMR of the dicyclopentadiene ring-opening polymer subjected to the hydrogenation reaction is not particularly limited, but is preferably 1,000 to 1,000,000. More preferably, it is from 1,000,000 to 800,000.
  • a dicyclopentadiene ring-opened polymer having such a number average molecular weight is subjected to a hydrogenation reaction, a dicyclopentadiene ring-opened polymer hydride ( ⁇ ) having an excellent balance between molding processability and heat resistance is obtained.
  • the number average molecular weight of the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) can be adjusted by adjusting the amount of the molecular weight regulator used during polymerization.
  • the cis content measured by 1 H-NMR of the dicyclopentadiene ring-opening polymer subjected to the hydrogenation reaction is preferably higher than 50%, more preferably higher than 70%, and particularly higher than 90%. preferable.
  • the ratio of racemo diads is preferably higher than 90%, more preferably higher than 91%, and particularly preferably higher than 92%.
  • the solubility of the dicyclopentadiene ring-opening polymer in an organic solvent increases, and the reaction includes the dicyclopentadiene ring-opening polymer.
  • a production process in which the liquid is directly subjected to a hydrogenation reaction is advantageous, which is preferable.
  • the dicyclopentadiene ring-opening polymer that can be used as a production intermediate of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is dissolved in an organic solvent at room temperature.
  • the organic solvent reaction solution containing the dicyclopentadiene ring-opened polymer is directly subjected to the hydrogenation reaction, it can be dissolved in an organic solvent inert to hydrogenation. preferable.
  • Solvents for dissolving the dicyclopentadiene ring-opening polymer include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclohexane, Cycloaliphatic hydrocarbons such as cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; halogenated aromatics such as chlorobenzene and dichlorobenzene Hydrocarbons; ethers such as diethyl ether and tetrahydrofuran; aromatic ethers such as ani
  • the hydrogenation reaction of the dicyclopentadiene ring-opening polymer can be performed, for example, by adding (a) a hydrogenating agent to a system in which the dicyclopentadiene ring-opening polymer is present and then heating and reacting, or (b This can be done by adding a hydrogenation catalyst followed by hydrogen to hydrogenate the carbon-carbon double bonds present in the dicyclopentadiene ring-opening polymer.
  • a hydrogenating agent to a system in which the dicyclopentadiene ring-opening polymer is present and then heating and reacting
  • b This can be done by adding a hydrogenation catalyst followed by hydrogen to hydrogenate the carbon-carbon double bonds present in the dicyclopentadiene ring-opening polymer.
  • a carbon-carbon double bond contained in a dicyclopentadiene ring-opening polymer is hydrogenated using a hydrazine-containing compound as a hydrogenating agent for a hydrogen transfer hydrogenation reaction. Is preferable.
  • the compound used as a hydrogenating agent for the hydrogen transfer hydrogenation reaction is not particularly limited.
  • the compound used as a hydrogenating agent for the dicyclopentadiene ring-opening polymer may be used as a hydrogenation catalyst.
  • Specific examples of the hydrogenating agent include hydrazine and paratoluenesulfonyl hydrazide.
  • a conventionally known hydrogenation catalyst for a ring-opening polymer can be used as the hydrogenation catalyst used in the method (b).
  • a conventionally known hydrogenation catalyst for a ring-opening polymer can be used.
  • Specific examples thereof include RuHCl (CO) (PPh 3 ) 3 , RuHCl (CO) [P (p-Me-Ph) 3 ] 3 , RuHCl (CO) (PCy 3 ) 2 , RuHCl (CO) [P ( n-Bu) 3 ] 3 , RuHCl (CO) [P (i-Pr) 3 ] 2 , RuH 2 (CO) (PPh 3 ) 3 , RuH 2 (CO) [P (p-Me-Ph) 3 ] 3 , RuH 2 (CO) (PCy 3 ) 3 , RuH 2 (CO) [P (n-Bu) 3 ] 3 RuH (OCOCH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh)
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • inert organic solvents that can be used include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclohexane, and cyclooctane.
  • Alicyclic hydrocarbons such as benzene, toluene and xylene; Halogenous aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; Halogenous aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; Diethyl And ethers such as ether and tetrahydrofuran; aromatic ethers such as anisole and phenetole; and the like.
  • dicyclopentadiene ring-opening polymer hydride ( ⁇ ) When the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) is produced, it is preferable that dicyclopentadiene ring-opening polymer and a hydrogenation catalyst be further added by adding hydrogen to the system. Hydrogenate the carbon-carbon double bonds present in the cyclopentadiene ring-opening polymer.
  • the suitable conditions for the hydrogenation reaction vary depending on the hydrogenation catalyst system used, but the reaction temperature is usually -20 ° C to + 250 ° C, preferably -10 ° C to + 220 ° C, more preferably 0 ° C to 200 ° C. . If the hydrogenation temperature is too low, the reaction rate may be too slow, and if it is too high, side reactions may occur.
  • the hydrogen pressure is usually 0.01 to 20 MPa, preferably 0.05 to 15 MPa, more preferably 0.1 to 10 MPa. If the hydrogen pressure is too low, the hydrogenation rate may be too slow, and if it is too high, there will be restrictions on the apparatus in that a high pressure reactor is required.
  • the reaction time is not particularly limited as long as the desired hydrogenation rate can be obtained, but is usually 0.1 to 10 hours.
  • the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) may be recovered according to a conventional method, and in recovering the polymer, the catalyst residue can be removed by a technique such as filtration.
  • the hydrogenation rate (ratio of hydrogenated main chain double bonds) in the hydrogenation reaction of the dicyclopentadiene ring-opening polymer is not particularly limited, but is preferably 98% or more, more preferably 99% or more, and particularly preferably Is 99.5% or more.
  • the molding material used in the production method of the present invention may contain an inorganic filler.
  • an inorganic filler When the molding material used in the production method of the present invention contains an inorganic filler, a resin molded body having more excellent heat resistance can be easily obtained.
  • the resin molded body obtained by the production method of the present invention is subjected to a reflow process, a resin that is superior in reflow heat resistance (property to be deformed during reflow) by using a molding material containing an inorganic filler.
  • a molded body is easily obtained.
  • the inorganic filler include silica, alumina, zeolite, magnesia, titania, zinc oxide, calcium carbonate, magnesium carbonate, and glass.
  • a glass filler is preferable because a resin molded body having more excellent heat resistance can be easily obtained.
  • a known glass filler can be used, and the shape thereof is not limited.
  • the glass filler may be surface-treated with a silane compound, an epoxy compound, a urethane compound, or the like.
  • the glass filler include glass fiber, glass bead, glass powder, glass flake, glass balloon and the like, and glass fiber is preferable.
  • the shape and form of the glass fiber are not particularly limited. Specific examples include milled fiber, cut fiber, chopped strand, roving and the like, and chopped strand is preferred.
  • the length of the glass fiber is preferably 3 to 40 mm, and more preferably 5 to 30 mm.
  • the cross-sectional shape of the glass fiber is arbitrary such as a circle, an ellipse, a flat shape, and a rectangle. Moreover, these glass fibers can be used in arbitrary ratios.
  • the content is preferably 5 to 5 with respect to the total amount of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) and the inorganic filler. 60% by weight, more preferably 15 to 50% by weight.
  • dicyclopentadiene ring-opening polymer hydride
  • strength may not be obtained.
  • there is too little content of an inorganic filler there exists a possibility that the resin molding which is excellent in the heat resistance at the time of reflow and intensity
  • there is too much content of an inorganic filler there exists a possibility that it may become difficult to obtain the resin molding with a low dielectric loss tangent, or the moldability of a molding material may fall.
  • the molding material used in the production method of the present invention may contain components other than dicyclopentadiene ring-opening polymer hydride ( ⁇ ) and inorganic filler.
  • components include additives such as antioxidants, ultraviolet absorbers, light stabilizers, near infrared absorbers, plasticizers, antistatic agents, acid supplements, flame retardants, and flame retardant aids.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
  • phenolic antioxidants include 3,5-di-t-butyl-4-hydroxytoluene, dibutylhydroxytoluene, 2,2'-methylenebis (6-t-butyl-4-methylphenol), 4,4 ' -Butylidenebis (3-t-butyl-3-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), ⁇ -tocophenol, 2,2,4-trimethyl-6-hydroxy -7-t-butylchroman, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, [pentaerythritol tetrakis [3- (3,5-di -T-butyl-4-hydroxyphenyl) propionate]] and the like.
  • phosphorus antioxidants include distearyl pentaerythritol diphosphite, bis (2,4-ditertiarybutylphenyl) pentaerythritol diphosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tetrakis (2 , 4-ditertiary butylphenyl) 4,4′-biphenyl diphosphite, trinonylphenyl phosphite and the like.
  • sulfur-based antioxidants examples include distearyl thiodipropionate and dilauryl thiodipropionate.
  • Examples of the ultraviolet absorber include benzotriazole ultraviolet absorbers, benzoate ultraviolet absorbers, benzophenone ultraviolet absorbers, acrylate ultraviolet absorbers, and metal complex ultraviolet absorbers.
  • Examples of the light stabilizer include hindered amine light stabilizers.
  • Near-infrared absorbers are cyanine-based near-infrared absorbers; pyrylium-based infrared absorbers; squarylium-based near-infrared absorbers; croconium-based infrared absorbers; Examples include near infrared absorbers; naphthoquinone near infrared absorbers; anthraquinone near infrared absorbers; indophenol near infrared absorbers; Examples of the plasticizer include a phosphoric acid triester plasticizer, a fatty acid monobasic acid ester plasticizer, a dihydric alcohol ester plasticizer, and an oxyacid ester plasticizer. Examples of the antistatic agent include fatty acid esters of polyhydric alcohols. Examples of the acid supplement include magnesium oxide and zinc stearate.
  • Flame retardants include halogenated organic compounds, red phosphorus, condensed phosphate esters, reactive phosphate esters, polyphosphate ammonium compounds, phosphate metal salt compounds, etc .; melamine phosphate, melamine shear Melamine compounds such as nurate; and the like.
  • the flame retardant aid include inorganic hydroxides such as aluminum hydroxide and magnesium hydroxide; inorganic oxides such as aluminum oxide hydrate and antimony oxide; borate salts such as sodium borate; These flame retardants and flame retardant aids can be used singly or in combination of two or more.
  • the content of these additives can be appropriately determined according to the purpose.
  • the content thereof is usually in the range of 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the dicyclopentadiene ring-opening polymer hydride ( ⁇ ).
  • the molding material used in the production method of the present invention can be produced according to a conventional method.
  • a molding material containing other components can be obtained by mixing the components.
  • the mixing method include a method of kneading each component in a molten state. Kneading can be performed using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a feeder ruder.
  • the kneading temperature is preferably in the range of 250 to 400 ° C, more preferably 260 to 350 ° C.
  • the components may be added together and kneaded, or may be kneaded while adding in several times. After kneading, it can be pelletized by extruding into a rod shape and cutting into an appropriate length with a strand cutter according to a conventional method.
  • the method for producing a resin molded body of the present invention is characterized by melt-molding the molding material.
  • the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) contained in the molding material tends to be poor in solubility in a general organic solvent. Therefore, this molding material is not suitable as a molding material for a molding method using a solution such as a casting method.
  • the dicyclopentadiene ring-opened polymer hydride ( ⁇ ) has the property of crystallizing in a short time when cooled in a molten state. For this reason, the target resin molding can be manufactured with high productivity by molding a molding material containing the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) using a melt molding method.
  • melt molding method examples include an extrusion molding method, an injection molding method, a melt spinning molding method, a press molding method, a blow molding method, a calendar molding method, and the like, and may be appropriately selected according to the target resin molded body. it can.
  • the resin molding is a resin film
  • an extrusion molding method is suitably used as the melt molding method.
  • a known method can be used as appropriate.
  • the molding material is put into an extruder, melt-kneaded, and then a molten resin is continuously extruded into a film form from a T die connected to the extruder, and a resin film can be obtained by cooling it. it can.
  • the thickness of the resin film is not particularly limited, but is usually 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m. Since this resin film contains a dicyclopentadiene ring-opening polymer hydride ( ⁇ ), it is excellent in heat resistance.
  • the resin film obtained by the extrusion method may be subjected to stretching treatment or heat setting treatment.
  • a resin film having a high degree of crystallinity and superior strength can be obtained.
  • the treatment can be performed by a uniaxial stretching method, a biaxial stretching method, an oblique stretching method, or the like.
  • the temperature of the resin film during the stretching treatment is usually 95 to 135 ° C., preferably 95 to 120 ° C.
  • the draw ratio is preferably 10 times or more, more preferably 15 to 400 times in terms of surface magnification.
  • the heat setting process refers to a process of applying predetermined heat in a state where a resin film is stretched by applying tension in the longitudinal direction and the width direction. By performing the heat setting treatment, a resin film having a small heat shrinkage rate can be obtained.
  • the temperature of the resin film in the heat setting treatment is usually 120 to 230 ° C., preferably 160 to 220 ° C.
  • the heat setting time is usually 1 to 60 seconds.
  • a laminated film having a resin layer and a metal layer can be obtained by fusing the obtained resin film with a metal foil.
  • the metal constituting the metal foil include copper, gold, silver, stainless steel, aluminum, nickel, and chromium. Among these, copper is preferable because a laminate useful as a substrate material can be obtained.
  • the thickness of metal foil is not specifically limited, It can determine suitably according to the intended purpose of laminated
  • the thickness of the metal foil is usually 1 to 35 ⁇ m, preferably 3 to 18 ⁇ m.
  • the method for fusing the resin film and the metal foil is not particularly limited.
  • resin film and metal foil are superposed and heat pressed (hot press method), or resin film and metal foil superposed are passed between hot rolls (heat roll method), resin film And the metal foil can be fused.
  • the resin layer of this laminated film contains dicyclopentadiene ring-opening polymer hydride ( ⁇ ). Since the dicyclopentadiene ring-opening polymer hydride ( ⁇ ) crystallizes in a short time from the molten state as described above, the fusion process in producing the laminated film can be completed in a short time. Moreover, this laminated film is excellent in reflow heat resistance. Therefore, this laminated film is suitably used as a flexible printed board.
  • injection molded product By using an injection molding method as the melt molding method, various injection molded products can be manufactured.
  • a known method can be used as appropriate. For example, the molding material is put into an extruder, melted and kneaded, then the molten resin is injected into a mold connected to the extruder, and the molten resin in the mold is cooled and solidified to obtain an injection molded product.
  • the injection-molded product include a light reflector, an insulating material, a connector, a food packaging material, a bottle, a pipe, and gears. Since these injection-molded articles contain a dicyclopentadiene ring-opening polymer hydride ( ⁇ ), they are excellent in heat resistance.
  • a molding material containing an inorganic filler When producing an injection-molded article by an injection molding method, it is preferable to use a molding material containing an inorganic filler.
  • a molding material containing an inorganic filler By using a molding material containing an inorganic filler, it becomes easy to obtain an injection-molded article having better heat resistance.
  • the presence of the inorganic filler tends to promote the crystallization of the molten dicyclopentadiene ring-opening polymer hydride ( ⁇ ), and therefore, by using a molding material containing the inorganic filler.
  • the cooling time after injection into the mold is shortened, and an injection molded product can be manufactured with higher productivity.
  • a melt spinning molding method is suitably used as the melt molding method.
  • a known method can be used as appropriate. For example, the molding material is charged into an extruder, melted and kneaded, and then a molten resin is continuously discharged from a spinning nozzle connected to the extruder and cooled to obtain a fibrous molded body. it can. Since this fibrous molded body contains the dicyclopentadiene ring-opened polymer hydride ( ⁇ ), it has excellent heat resistance.
  • the fibrous molded body obtained by the melt spinning molding method may be subjected to stretching treatment.
  • a fibrous molded body having a high crystallinity and superior strength can be obtained.
  • the temperature of the fibrous molded body during the stretching treatment is usually 40 to 140 ° C., preferably 40 to 120 ° C.
  • the draw ratio is preferably 1.5 to 8.0 times normally.
  • the measurement and evaluation in each example were performed by the following methods.
  • Reflow resistance (resin film)
  • the evaluation resin film was visually observed, Reflow resistance was evaluated.
  • the resin film for evaluation that had retained its shape without being deformed and melted before and after the heat treatment was rated as “ ⁇ ”, and the film that had been deformed and melted was marked as “X”.
  • Reflow resistance (warping amount after reflow of injection molded products)
  • the test pieces obtained in Examples 3 to 5 or Comparative Examples 2 and 3 were subjected to heat treatment using an oven at 260 ° C. for 10 seconds three times, and then the amount of warpage of the test pieces was measured. Reflow resistance was evaluated.
  • the yield of the obtained dicyclopentadiene ring-opened polymer (A) was 4.3 g, the number average molecular weight was 14,000, and the cis content was 97%.
  • the hydrogenation rate of the obtained ring-opened polymer hydride (A) was 99% or more, and the ratio of racemo diads was 92%.
  • the melting point of the hydride was measured, the melting point was 284 ° C., the heat of fusion was 52 J / g, and the melting start temperature after melting was 274 ° C.
  • the yield of the obtained dicyclopentadiene ring-opened polymer (B) was 4.3 g, the number average molecular weight was 10,900, and the cis content was 81%.
  • a ring-opening polymer was prepared in the same manner as in the hydrogenation reaction in Production Example 1 except that dicyclopentadiene ring-opening polymer (B) was used instead of dicyclopentadiene ring-opening polymer (A).
  • a hydride (B) was obtained.
  • the hydrogenation rate of the ring-opening polymer hydride (B) was 99% or more, and the ratio of racemo diads was 91%.
  • the melting point of the hydride was measured, the melting point was 274 ° C., the heat of fusion was 28 J / g, and the melting start temperature after melting was 265 ° C.
  • a ring-opening polymer was prepared in the same manner as in the hydrogenation reaction in Production Example 1 except that dicyclopentadiene ring-opening polymer (C) was used instead of dicyclopentadiene ring-opening polymer (A).
  • a hydride (C) was obtained.
  • the hydrogenation rate of the ring-opening polymer hydride (C) was 99% or more, and the ratio of racemo diads was 80%.
  • the melting point of the hydride was measured, the melting point was 270 ° C., the heat of fusion was 49 J / g, and the melting start temperature after melting was 258 ° C.
  • Example 1 To 100 parts of the ring-opened polymer hydride (A) obtained in Production Example 1, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) was used as an antioxidant. Propionate] 1.1 parts of methane (BASF Japan, Irganox (registered trademark) 1010) was mixed to obtain a raw material composition. This raw material composition was put into a twin-screw extruder (TEM-37B, manufactured by Toshiba Machine Co., Ltd.) having four die holes with an inner diameter of 3 mm, and a strand-like molded body was obtained by a hot melt extrusion method. After cooling, it was shredded with a strand cutter to obtain resin pellets.
  • TEM-37B twin-screw extruder
  • the obtained resin pellets were molded into a film having a thickness of 150 ⁇ m and a width of 120 mm using a hot melt extrusion film forming machine (Optical Control Systems, Measuring Extruder Type Me-20 / 2800 V3) equipped with a T die.
  • the resulting unstretched film was wound into a roll at a speed of 2 m / min.
  • Example 2 Instead of the ring-opened polymer hydride (A) obtained in Production Example 1, the ring-opened polymer hydride (B) obtained in Production Example 2 was used in the same manner as in Example 1. A resin film for evaluation was produced, and the reflow resistance was evaluated. The evaluation results are shown in Table 2.
  • Example 3 To 100 parts of the ring-opened polymer hydride (A) obtained in Production Example 1, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) was used as an antioxidant. Propionate] 1.1 parts of methane (BASF Japan, Irganox (registered trademark) 1010) was mixed to obtain a raw material composition. This raw material composition was put into a twin-screw extruder (TEM-37B, manufactured by Toshiba Machine Co., Ltd.) having four die holes with an inner diameter of 3 mm, and a strand-like molded body was obtained by a hot melt extrusion method. After cooling, it was shredded with a strand cutter to obtain resin pellets.
  • TEM-37B twin-screw extruder
  • Example 4 100 parts of the ring-opened polymer hydride (A) obtained in Production Example 1, 33 parts of glass fiber (manufactured by Nittobo Co., Ltd., trade name “CSG 3PA-830”), oxidation Example 3 except that it was obtained by mixing 0.8 parts of an inhibitor (tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane) An injection molded product was obtained, and the warpage after reflow was measured, and the measurement results are shown in Table 2.
  • an inhibitor tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate
  • Example 5 In Example 3, except that the ring-opened polymer hydride (B) obtained in Production Example 2 was used in place of the ring-opened polymer hydride (A) obtained in Production Example 1, the Example was used. In the same manner as in No. 3, an injection molded product was obtained, and the warpage after reflow was measured. The measurement results are shown in Table 2.
  • Example 3 In Example 3, except that the ring-opened polymer hydride (C) obtained in Production Example 3 was used in place of the ring-opened polymer hydride (A) obtained in Production Example 1, Example 3 In the same manner as in No. 3, an injection molded product was obtained, and the warpage after reflow was measured. The measurement results are shown in Table 2.
  • Example 4 In Example 4, except that the ring-opening polymer hydride (C) obtained in Production Example 3 was used in place of the ring-opening polymer hydride (A) obtained in Production Example 1, the Example was used. In the same manner as in No. 4, an injection molded product was obtained, and the warpage after reflow was measured. The measurement results are shown in Table 2.
  • Table 2 shows the following.
  • the resin films of Examples 1 and 2 are excellent in reflow resistance as compared with the resin film of Comparative Example 1.
  • the injection molded products of Examples 3 to 5 are superior in reflow resistance as compared with the injection molded products of Comparative Examples 2 and 3.
  • the mold cooling time at the time of injection molding is short, and the productivity is excellent.
  • an injection molded product having excellent reflow resistance can be produced with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、樹脂成形体の製造方法であって、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を溶融成形することを特徴とする樹脂成形体の製造方法である。本発明によれば、結晶性ジシクロペンタジエン開環重合体水素化物の特性が十分に反映された樹脂成形体を製造する方法が提供される。

Description

樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法
 本発明は、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を溶融成形する、樹脂成形体の製造方法に関する。
 ジシクロペンタジエン等のノルボルネン系単量体の開環重合体水素化物は、いわゆるシクロオレフィンポリマーの一種であり、透明性、低複屈折性、成形加工性等に優れることから、光学用途をはじめとして、種々の用途に適用できる材料として用いられている。
 ジシクロペンタジエンの開環重合体水素化物は、アタクチックな構造を有する非晶性の重合体として得られることが一般的である。しかしながら、アタクチックな構造を有する非晶性のジシクロペンタジエンの開環重合体水素化物は、その用途によっては、耐熱性、機械強度、耐溶剤性等が不十分となる場合がある。そこで、それらの性能を改良する手法として、主鎖に立体規則性を有するジシクロペンタジエンの開環重合体水素化物を製造することにより、結晶性を有するジシクロペンタジエンの開環重合体水素化物が提案されている。
 例えば、特許文献1には、タングステンフェニルイミドテトラクロリドジエチルエーテル錯体等の、特定の置換基を有する周期表第6族遷移金属化合物を主成分とする重合触媒を用いて、ジシクロペンタジエンを開環重合すると、シクロヘキサン等の炭化水素溶媒に室温で可溶な、シス-シンジオ規則性を有するジシクロペンタジエン開環重合体が得られ、さらに、その開環重合体中の炭素-炭素二重結合を、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウム(IV)ジクロリド及びエチルビニルエーテルの混合物等を水素化触媒として用いて水素化することによって、結晶性を有するシンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物が得られることが開示されている。また、特許文献2には、タングステンフェニルイミドビスビフェノラート錯体等の、特定の芳香族ジオキシ基を配位子として有する周期表第4~6族の遷移金属化合物を主成分とする重合触媒を用いて、ジシクロペンタジエンを開環重合すると、シクロヘキサン等の炭化水素溶媒に室温で不溶な、結晶性を有するシス-アイソ規則性を有するジシクロペンタジエン開環重合体が得られ、さらに、その開環重合体中の炭素-炭素二重結合を、RuHCl(CO)(PPh等を水素化触媒として用いて水素化することによって、結晶性を有するアイソタクチック結晶性ジシクロペンタジエン開環重合体水素化物が得られることが開示されている。
特開2005-089744号公報(US2007/0185290A1) 特開2013-139513号公報
 本発明者が、特許文献1に具体的に記載されたシンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物について改めて検討したところによると、このシンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物は高い融点を有するものであったが、その融点は270℃前後であり、重合体を加熱した場合に260℃未満から軟化(融解)が始まるため、実質的な耐熱性は260℃未満であった。
 一方で、特許文献2に具体的に記載されたアイソタクチック結晶性ジシクロペンタジエン開環重合体水素化物は、そのアイソタクティシティーは分析装置の測定精度の範囲で100%であり、その融点は295℃前後であり極めて高い融点を有するものである。しかしながら、シス-アイソタクチック構造を有するジシクロペンタジエン開環重合体はシクロヘキサン等の炭化水素溶媒に室温で不溶であるため、工業的な生産規模での製造が困難なものであった。
 このように、耐熱性等により優れる結晶性ジシクロペンタジエン開環重合体水素化物は、種々の樹脂成形体の原料樹脂として期待されるが、そのような特性を有する結晶性ジシクロペンタジエン開環重合体水素化物は工業的に扱いやすいものではなく、結晶性ジシクロペンタジエン開環重合体水素化物の特性を十分に活かしきれていないのが実情であった。
 そこで本発明は、結晶性ジシクロペンタジエン開環重合体水素化物の特性が十分に反映された樹脂成形体を製造する方法を提供することを目的とする。
 本発明者は、前記目的を達成すべく鋭意検討を行った結果、高い融解開始温度を有し、かつ、立体規則性が高いシンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物は、耐熱性に優れるものであることが分かった。さらに、成形方法として溶融成形法を使用することで、この重合体が有する特性を十分に発揮し得ることを見出した。本発明は、かかる知見に基づいて完成するに至ったものである。
 かくして、本発明によれば、以下の樹脂成形体の製造方法が提供される。
〔1〕樹脂成形体の製造方法であって、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を溶融成形することを特徴とする樹脂成形体の製造方法。
〔2〕前記成形材料が、さらに無機充填剤を含有するものである、〔1〕に記載の樹脂成形体の製造方法。
〔3〕樹脂フィルムの製造方法であって、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を押出成形することを特徴とする樹脂フィルムの製造方法。
〔4〕射出成形品の製造方法であって、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を射出成形することを特徴とする射出成形品の製造方法。
 本発明によれば、結晶性ジシクロペンタジエン開環重合体水素化物の特性が十分に反映された樹脂成形体を製造する方法が提供される。
 本発明の樹脂成形体の製造方法は、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を溶融成形することを特徴とする。
〔成形材料〕
 本発明の製造方法に用いる成形材料は、融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物(以下、「ジシクロペンタジエン開環重合体水素化物(α)」ということがある。)を含有する。
 ジシクロペンタジエン開環重合体水素化物(α)は、下記式(1)で表される、水素化ポリ(エンド-ジシクロペンタジエン)の繰り返し単位を含むものである。
Figure JPOXMLDOC01-appb-C000001
 ジシクロペンタジエン開環重合体水素化物(α)の融解開始温度は260℃以上であり、265℃以上が好ましい。融解開始温度の上限は、特に限定されないが、融点以下である。ジシクロペンタジエン開環重合体水素化物(α)は融解開始温度が非常に高いものであるため、本発明の製造方法により得られる樹脂成形体は、耐熱性に優れる。本発明において融解開始温度とは、一旦、ジシクロペンタジエン開環重合体水素化物(α)を十分に溶融させ、次いで十分に結晶化させた後に測定される融解開始温度(以下、溶融後融解開始温度という場合がある。)である。例えば、後述の実施例における、溶融後融解開始温度の測定方法に従って、この融解開始温度を測定することができる。
 ジシクロペンタジエン開環重合体水素化物(α)の融点は270~300℃が好ましく、270~290℃がより好ましい。結晶性ジシクロペンタジエン開環重合体水素化物(α)は融点が適度に高いことで、耐熱性に優れ、かつ成形時の酸化劣化を抑えることができる。一方、結晶性ジシクロペンタジエン開環重合体水素化物の融点が高すぎると、成形加工性が劣るために高温で成形することとなり、結晶性ジシクロペンタジエン開環重合体水素化物が酸化劣化しやすくなる。
 本発明における融点とは、一旦、ジシクロペンタジエン開環重合体水素化物(α)を十分に溶融させ、次いで十分に結晶化させた後に測定される融点である。この融点は、例えば、後述の実施例に記載の方法に従って測定することができる。
 ジシクロペンタジエン開環重合体水素化物(α)は、上記式(1)において、(1,4)で表される炭素が不斉炭素(*にて表示)であるため、立体規則性(タクティシティー)が存在する。
 ジシクロペンタジエン開環重合体水素化物(α)は、シンジオタクチックな立体規則性を有し、シンジオタクティシティー、すなわち、立体配置における、メソ二連子(meso diad)とラセモ二連子(racemo diad)の合計中のラセモ二連子の割合(以下、単にラセモ二連子の割合という場合がある。)が90%より高い高分子である。ジシクロペンタジエン開環重合体水素化物(α)においては、ラセモ二連子の割合は、91%より高いことが好ましく、92%より高いことがより好ましい。
 ラセモ二連子の割合が90%以下になると、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物の結晶性が大きく低下し、高い融点と加工性等の特徴が損なわれる。
 前記シンジオタクティシティーは、具体的には、式I:〔(ラセモ二連子)/(メソ二連子+ラセモ二連子)×100(%)〕で求めることができる。
 ラセモ二連子の割合は、ジシクロペンタジエン開環重合体水素化物(α)の13C-NMRスペクトルを分析することにより算出することができる。具体的には、ジシクロペンタジエン開環重合体水素化物(α)の前記式(1)における(5,9)で表される炭素原子のスペクトルを定量することで求めることができる。すなわち、前記式(1)で表される繰り返し単位の(5,9)の炭素原子について、オルトジクロロベンゼン-d/トリクロロベンゼン〔混合比(重量基準)1/2〕混合溶媒中、200℃で13C-NMRスペクトル測定を行い、メソ二連子由来の43.35ppmのシグナルのピーク面積値と、ラセモ二連子由来の43.43ppmのシグナルのピーク面積値とを、前記式Iに代入し計算することで、ラセモ二連子の割合を決定することができる。
 ジシクロペンタジエン開環重合体水素化物(α)は、下記式(2)で表されるジシクロペンタジエン由来の繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000002
 ジシクロペンタジエン開環重合体水素化物(α)は、それを含有する成形材料の耐熱性を特に良好なものとし、また、その結晶化速度を速いものとする観点から、ジシクロペンタジエン由来の繰り返し単位を多く含むものが好ましい。ジシクロペンタジエン開環重合体水素化物(α)における全繰り返し単位中、ジシクロペンタジエン由来の繰り返し単位が占める割合は特に限定されないが、90重量%以上であることが好ましく、95重量%以上であることがより好ましく、97重量%以上であることが特に好ましく、ジシクロペンタジエン由来の繰り返し単位のみからなることが最も好ましい。
 ジシクロペンタジエン開環重合体水素化物(α)は、後述するように、特定の開環重合触媒の存在下に、ジシクロペンタジエン、又はジシクロペンタジエンと他の環状オレフィン単量体を含むモノマー混合物(以下、これらをまとめて「ジシクロペンタジエン等」ということがある。)を開環重合することにより、ジシクロペンタジエン開環重合体を得たのち、このものを水素化することにより効率よく得ることができる。
 ジシクロペンタジエンには、エンド体及びエキソ体の立体異性体が存在するが、そのどちらも単量体として用いることが可能であり、一方の異性体を単独で用いてもよいし、エンド体及びエキソ体が任意の割合で存在する異性体混合物を用いることもできる。ジシクロペンタジエン開環重合体水素化物(α)の結晶性を高め、その耐熱性を特に良好なものとする観点からは、一方の立体異性体の割合を高くすることが好ましい。用いるジシクロペンタジエンは、エンド体又はエキソ体の割合が90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることが特に好ましい。なお、割合を高くする立体異性体は、合成容易性の観点から、エンド体であることが好ましい。
 ジシクロペンタジエン開環重合体水素化物(α)を製造するに際しては、ジシクロペンタジエンに、他の環状オレフィン単量体を組み合わせて用いることもできる。他の環状オレフィン単量体の使用量は、ジシクロペンタジエンと他の環状オレフィン単量体の合計量に対し、通常、10重量%未満、好ましくは3重量%未満、より好ましくは1重量%未満、最も好ましくは0重量%である。
 ジシクロペンタジエンに組み合わせて用いることができる他の環状オレフィン単量体としては次のものが挙げられる。
 シクロペンテン、シクロヘキセン、シクロへプタン等のシクロアルケン類;
置換基を有するジシクロペンタジエン又はジシクロペンタジエンの5員環部分の二重結合を飽和させた単量体であるジシクロペンタジエン類;
ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の、無置換又はアルキル基を置換基として有するノルボルネン類;
5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等の、アルケニル基を置換基として有するノルボルネン類;
5-フェニルノルボルネン等の、芳香環を置換基として有するノルボルネン類;
5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネイト、ノルボルネニル-2-メチルオクタネイト、ノルボルネン-5,6-ジカルボン酸無水物、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の、酸素原子を含む極性基を有するノルボルネン類;
5-シアノノルボルネン、ノルボルネン-5,6-ジカルボン酸イミド等の、窒素原子を含む極性基を有するノルボルネン類;
 また、テトラシクロドデセン以外のテトラシクロドデセン類として、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン等の、アルキル基を置換基として有するテトラシクロドデセン類;
8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の、環外に二重結合を有するテトラシクロドデセン類;
8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の、酸素原子を含む置換基を有するテトラシクロドデセン類;
8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
8-クロロテトラシクロドデセン等の、ハロゲン原子を含む置換基を有するテトラシクロドデセン類;
8-トリメトキシシリルテトラシクロドデセン等の、ケイ素原子を含む置換基を有するテトラシクロドデセン類;
 ヘキサシクロヘプタデセン類としては、ヘキサシクロヘプタデセン、12-メチルヘキサシクロヘプタデセン、12-エチルヘキサシクロヘプタデセン、12-シクロヘキシルヘキサシクロヘプタデセン、12-シクロペンチルヘキサシクロヘプタデセン等の、無置換又はアルキル基を置換基として有するヘキサシクロヘプタデセン類;
12-メチリデンヘキサシクロヘプタデセン、12-エチリデンヘキサシクロヘプタデセン、12-ビニルヘキサシクロヘプタデセン、12-プロペニルヘキサシクロヘプタデセン、12-シクロヘキセニルヘキサシクロヘプタデセン、12-シクロペンテニルヘキサシクロヘプタデセン等の環外に二重結合を有するヘキサシクロヘプタデセン類;
12-フェニルヘキサシクロヘプタデセン等の、芳香族基を置換基として有するヘキサシクロヘプタデセン類;
12-メトキシカルボニルヘキサシクロヘプタデセン、12-メチル-12-メトキシカルボニルヘキサシクロヘプタデセン、12-ヒドロキシメチルヘキサシクロヘプタデセン、12-カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸、ヘキサシクロヘプタデセン12,13-ジカルボン酸無水物等の、酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-クロロヘキサシクロヘプタデセン等の、ハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-トリメトキシシリルヘキサシクロヘプタデセン等の、ケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類;
 テトラシクロ[6.5.12,5.01,6.08,13]トリデカ-3,8,10,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[6.6.12,5.01,6.08,13]テトラデカ-3,8,10,12-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう)等が挙げられる。
 ジシクロペンタジエン開環重合体水素化物(α)の数平均分子量(Mn)は、通常、500~1,000,000、好ましくは1000~600,000、より好ましくは2000~400,000である。Mnが低すぎると樹脂成形体の機械強度が低下する場合があり、Mnが高すぎると成形が困難となる傾向がある。なお、ジシクロペンタジエン開環重合体水素化物(α)の数平均分子量は、水素化工程前のジシクロペンタジエン開環重合体の数平均分子量とほぼ等しい。
 ジシクロペンタジエン開環重合体水素化物(α)のガラス転移点(Tg)は、80℃以上が好ましく、85℃以上がより好ましい。ガラス転移点がかかる範囲にあれば、耐熱性が良好で、例えば、荷重たわみ温度が高く、好適である。ガラス転移点の上限は、特に限定されないが、概ね120℃である。
 シクロペンタジエン開環重合体水素化物(α)の製造中間体であるジシクロペンタジエン開環重合体は、ジシクロペンタジエン等を、下記の式(3)で表されるタングステン化合物を含んでなる重合触媒を用いて開環重合することにより効率よく得ることができる。
Figure JPOXMLDOC01-appb-C000003
 前記式(3)中、Wはタングステン原子を表す。
 R及びRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数6~12のアリール基、及び置換基を有していてもよい炭素数3~20のシクロアルキル基から選択される基を表す。
 Lは、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数6~12のアリール基、及び置換基を有していてもよい炭素数3~20のシクロアルキル基から選択される置換基を有していてもよい窒素原子を表す。
 Lは、少なくとも1個の窒素原子を有してなる環員数が5~15の共役複素環基を表し、該共役複素環基は置換基を有していてもよい。
 Lは、-O-Rで示されるアルコキシ基を表し、Rは、置換基を有していてもよい炭素数1~12のアルキル基、及び置換基を有していてもよい炭素数6~30のアリール基から選択される基を表す。
 Lは、少なくとも2個の窒素原子を有する環員数が12~24の中性の共役複素環配位子を表し、該共役複素環配位子は置換基を有していてもよい。
 式(3)中、Wはタングステン原子である。
 R及びRはそれぞれ独立に、水素原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の、置換基を有していてもよい炭素数1~12のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、置換基を有していてもよい炭素数3~20のシクロアルキル基;又は置換基を有していてもよい炭素数6~12のアリール基;を表す。前記置換基を有していてもよいアリール基のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。また、炭素数1~12のアルキル基、炭素数3~20のシクロアルキル基及び炭素数6~12のアリール基の置換基としては、メチル基、エチル基等の炭素数1~12のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;トリフルオロメチル基等の炭素数1~12のハロアルキル基;トリフルオロメトキシ基等の炭素数1~12のハロアルコキシ基;フェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;等が挙げられる。
 Lは、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数6~12のアリール基、及び置換基を有していてもよい炭素数3~20のシクロアルキル基から選択される置換基を有していてもよい窒素原子を表す。すなわち、Lは、=N-R(Rは、水素原子、または置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数6~12のアリール基、及び置換基を有していてもよい炭素数3~20のシクロアルキル基から選択される基を表す。)で示される基である。
 前記Lの窒素原子が有しうる置換基(R)の、炭素数1~12のアルキル基は、直鎖状、分岐状のいずれのものであってもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 前記Rの炭素数6~12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 前記Rの炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、アダマンチル基等が挙げられる。
 前記Rの、炭素数1~12のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~12のアリール基が有しうる置換基は特に限定されるものではない。
 前記Rの、炭素数1~12のアルキル基が有しうる置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;フェニル基、2-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、ペンタフルオロフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;アミノ基;メチルアミノ基等のモノ置換アミノ基;ジメチルアミノ基等のジ置換アミノ基;イミノ基等が挙げられる。
 前記Rの、炭素数3~20のシクロアルキル基、炭素数6~12のアリール基が有しうる置換基としては、メチル基、エチル基、イソプロピル基等の炭素数1~12のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;トリフルオロメチル基等の炭素数1~12のハロアルキル基;トリフルオロメトキシ基等の炭素数1~12のハロアルコキシ基;フェニル基、2-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、ペンタフルオロフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;アミノ基;メチルアミノ基等のモノ置換アミノ基;ジメチルアミノ基等のジ置換アミノ基;イミノ基等が挙げられる。
 Lは、少なくとも1個の窒素原子を有してなる環員数が5~15の、置換基を有していてもよい共役複素環基を表す。
 Lの共役複素環基としては、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基等の5員環共役複素環基;ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基等の6員環共役複素環基;キナゾリニル基、フタラジニル基、ピロロピリジル基等の縮合環共役複素環基;等が挙げられる。
 前記共役複素環基が有しうる置換基は特に限定されるものではない。例えば、メチル基、エチル基等の炭素数1~12のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;トリフルオロメチル基等の炭素数1~12のハロアルキル基;トリフルオロメトキシ基等の炭素数1~12のハロアルコキシ基;フェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;アミノ基;メチルアミノ基等のモノ置換アミノ基;ジメチルアミノ基等のジ置換アミノ基;イミノ基等が挙げられる。
 Lは、-O-Rで示される基である。Rは、置換基を有していてもよい炭素数1~12のアルキル基、及び置換基を有していてもよい炭素数6~30のアリール基から選択される基である。
 前記Rの置換基を有していてもよい炭素数1~12のアルキル基の炭素数1~12のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基等が挙げられる。
 前記Rの炭素数1~12のアルキル基が有しうる置換基は特に限定されるものではない。例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;トリフルオロメチル基等の炭素数1~12のハロアルキル基;トリフルオロメトキシ基等の炭素数1~12のハロアルコキシ基;フェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;アミノ基;メチルアミノ基等のモノ置換アミノ基;ジメチルアミノ基等のジ置換アミノ基;イミノ基等が挙げられる。
 置換基を有していてもよい炭素数6~30のアリール基の炭素数6~30のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、アダマンチル基等が挙げられる。
 前記Rの炭素数6~30のアリール基が有しうる置換基は特に限定されるものではない。例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、イソプロピル基、t-ブチル基等の炭素数1~12のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~20のシクロアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~12のアルコキシ基;トリフルオロメチル基等の炭素数1~12のハロアルキル基;トリフルオロメトキシ基等の炭素数1~12のハロアルコキシ基;フェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよい、炭素数6~12のアリール基;アミノ基;メチルアミノ基等のモノ置換アミノ基;ジメチルアミノ基等のジ置換アミノ基;イミノ基等が挙げられる。
 前記Lの具体例としては、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、2-メチル-2-プロポキシ基、1,1,1-トリフルオロ-2-メチル-2-プロポキシ基、1,1,1-トリフルオロ-2-トリフルオロメチル-2-プロポキシ基、2-トリフルオロメチル―2-フェニル-1,1,1-トリフルオロエトキシ基等の、Rが置換基を有していてもよい炭素数1~12のアルキル基である基;2,6-ビス(2,4,6-トリメチルフェニル)フェノキシ基、2,6-ビス(2,4,6-トリイソプロピルフェニル)フェノキシ基、2,4,6-トリメチルフェノキシ基、2,3,5,6-テトラフェニルフェノキシ基等の、Rが置換基を有していてもよい炭素数6~30のアリール基である基;が挙げられる。
 Lは、少なくとも2個の窒素原子を有してなる環員数が12~24の中性の共役複素環配位子である。当該配位子の具体例としては、2,2’-ビピリジル、5,5’-ジメチル-2,2’-ビピリジル、4,4’-ジメチル-2,2’-ビピリジル、4,4’-ジブロモ-2,2’-ビピリジル、2,2’-ビキノリン、1,10-フェナントロリン、ターピリジンが挙げられる。
 また、前記Lの該共役複素環基は置換基を有していてもよい。該置換基としては、前記Lの共役複素環基が有しうる置換基として列記したものと同様のものが挙げられる。
 前記タングステン化合物の具体例としては、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)2,6-ジメチルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)フェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)2,6-ジメチルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(2,2’-ビピリジン)、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)フェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(2,2’-ビピリジン)、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジイソプロピルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジイソプロピルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(2,2’-ビピリジン)等が挙げられるが、これらに限定されるものではない。
 また、前記タングステン化合物は、中性の共役複素環配位子を有するものであるが、ジシクロペンタジエンの開環重合の速度を上げるために、金属塩化合物を併用しても良い。金属塩化合物を併用することにより、中性の共役複素環配位子を、タングステン化合物から脱離させ、高活性な触媒種とすることが出来る。
 金属塩を構成する金属原子としては、亜鉛、錫、銅、チタン、希土類等が好適である。用いられうる金属塩の具体例としては、塩化亜鉛、塩化銅、塩化錫、塩化チタン、塩化スカンジウム、塩化イットリウム等が挙げられる。
 これらタングステン化合物は、例えば、特表2014-520103号公報(国際公開第2012/167171号)等に記載された方法により製造することができる。また、タングステン化合物として市販されているものを、所望により精製して使用することもできる。
 ジシクロペンタジエン開環重合体は、ジシクロペンタジエン等と重合触媒とを混合し、ジシクロペンタジエン等を開環重合することにより製造することができる。
 ジシクロペンタジエン等に対する重合触媒の使用量は、特に限定されるものではないが、重合触媒中のタングステン化合物:ジシクロペンタジエン等のモル比が、1:10~1:2,000,000である範囲が好ましく、1:200~1:1,000,000である範囲がより好ましく、1:500~1:500,000である範囲が特に好ましい。重合触媒の使用量が多すぎると重合触媒の除去が困難となるおそれがあり、少なすぎると十分な重合活性が得られないおそれがある。
 重合反応は無溶媒系で行うこともできるが、反応を良好にコントロールする観点からは、有機溶媒中で行うことが好ましい。この際用いられる有機溶媒は、生成される開環重合体を溶解または分散させることができ、重合反応に悪影響を与えないものであれば、特に限定されない。用いられうる有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;アニソール、フェネトール等の芳香族エーテルを挙げることができる。これらの中でも、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、エーテル、及び芳香族エーテルが好ましく用いられる。
 重合反応を有機溶媒中で行う場合、反応系中の単量体の濃度は、特に限定されるものではないが、1~50重量%であることが好ましく、2~45重量%であることがより好ましく、3~40重量%であることが特に好ましい。単量体の濃度が低すぎると生産性が悪くなるおそれがあり、高すぎると重合反応後の反応溶液の粘度が高くなりすぎて、その後の水素化反応が困難となるおそれがある。
 重合温度は特に限定されないが、通常-30℃~+200℃、好ましくは0℃~180℃である。また、重合時間も特に限定されないが、通常1分間から100時間の範囲で選択される。
 重合反応を行うにあたり、得られるジシクロペンタジエン開環重合体の分子量を調整する目的で、重合反応系に、ビニル化合物またはジエン化合物を添加してもよい。
 この分子量調整の目的で用いるビニル化合物は、ビニル基を有する有機化合物であれば特に限定されない。例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、i-ブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;酢酸アリル、アリルアルコール、グリシジルメタクリレート等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;ビニルトリメチルシラン、アリルトリメチルシラン、ビニルトリメトキシシラン等のケイ素含有ビニル化合物;等を用いることができる。
 また、分子量調整の目的で用いるジエン化合物も特に限定されない。例えば、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン;等を用いることができる。
 添加するビニル化合物またはジエン化合物の量は、目的とする分子量に応じて決定すればよいが、通常、単量体として用いるジシクロペンタジエン等100モルに対して、0.1~10モルの範囲で選択される。
 このように、上述した式(3)で表されるタングステン化合物を含んでなる重合触媒を用いて、上述したような条件でジシクロペンタジエンの開環重合反応を行うことにより、シンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体を得ることができる。
 そして、このシンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体を水素化反応に供することにより、シンジオタクチック立体規則性を有して且つ結晶性を有する、ジシクロペンタジエン開環重合体水素化物(α)を得ることができる。
 なお、ジシクロペンタジエン開環重合体は、反応液中から回収して水素化反応に供してもよいが、ジシクロペンタジエン開環重合体を含む反応液をそのまま水素化反応に供することもできる。
 水素化反応に供するジシクロペンタジエン開環重合体のH-NMRによって測定される数平均分子量(Mn)は、特に限定されないが、1,000~1,000,000であることが好ましく、2,000~800,000であることがより好ましい。このような数平均分子量を有するジシクロペンタジエン開環重合体を水素化反応に供することによって、特に成形加工性と耐熱性とのバランスに優れたジシクロペンタジエン開環重合体水素化物(α)を得ることができる。ジシクロペンタジエン開環重合体水素化物(α)の数平均分子量は、重合時に用いる分子量調整剤の添加量等を調節することにより、調節することができる。
 水素化反応に供するジシクロペンタジエン開環重合体のH-NMRによって測定されるシス含有率は、50%より高いことが好ましく、70%より高いことがより好ましく、90%より高いことが特に好ましい。
 ジシクロペンタジエン開環重合体においては、ラセモ二連子の割合が90%より高いことが好ましく、91%より高いことがより好ましく、92%より高いことが特に好ましい。シス含有率が50%より高く、ラセモ二連子の割合が90%より高いことによって、ジシクロペンタジエン開環重合体の有機溶剤に対する溶解性が高くなり、ジシクロペンタジエン開環重合体を含む反応液をそのまま水素化反応に供する製造プロセスが有利になるので、好ましい。
 上記のように、ジシクロペンタジエン開環重合体水素化物(α)の製造中間体として用いうるジシクロペンタジエン開環重合体は、室温において、有機溶媒に溶解する。特に、重合反応を有機溶媒中で行い、ジシクロペンタジエン開環重合体を含む有機溶媒反応液をそのまま水素化反応に供する製造プロセスの観点から、水素化に不活性な有機溶媒に溶解することが好ましい。
 ジシクロペンタジエン開環重合体を溶解する溶媒としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;アニソール、フェネトール等の芳香族エーテル;等が挙げられる。
 ジシクロペンタジエン開環重合体の水素化反応は、例えば、ジシクロペンタジエン開環重合体が存在する系に、(a)水素化剤を添加し、次いで加熱し反応させることにより、もしくは、(b)水素化触媒を添加し、次いで水素を添加して、ジシクロペンタジエン開環重合体中に存在する炭素-炭素二重結合を水素化することにより、行うことができる。これらの中でも、工業的な製造の観点からは、(b)の水素化触媒と水素ガスを用いてジシクロペンタジエン開環重合体の水素化反応を行うことが好ましい。
 前記(a)の方法においては、水素移動型水素化反応(transfer hydrogenation)に対する水素化剤としてのヒドラジン含有化合物を用いて、ジシクロペンタジエン開環重合体に含まれる炭素-炭素二重結合を水素化することが好ましい。
 水素移動型水素化反応(transfer hydrogenation)に対する水素化剤として用いられる化合物は、特に限定されない。ジシクロペンタジエン開環重合体に対する水素化剤として用いられる化合物は、水素化触媒として用いられるものであってもよい。水素化剤の具体例としては、ヒドラジン、パラトルエンスルホニルヒドラジド等が挙げられる。
 前記(b)の方法で用いられる水素化触媒は、開環重合体の水素化触媒として従来公知のものを使用することができる。その具体例としては、RuHCl(CO)(PPh、RuHCl(CO)[P(p-Me-Ph)、RuHCl(CO)(PCy、RuHCl(CO)[P(n-Bu)、RuHCl(CO)[P(i-Pr)、RuH(CO)(PPh、RuH(CO)[P(p-Me-Ph)、RuH(CO)(PCy、RuH(CO)[P(n-Bu)RuH(OCOCH)(CO)(PPh、RuH(OCOPh)(CO)(PPh、RuH(OCOPh-CH)(CO)(PPh、RuH(OCOPh-OCH)(CO)(PPh、RuH(OCOPh)(CO)(PCy、ラネーニッケル、ニッケル珪藻土、酢酸ニッケル、酢酸パラジウム、PdCl、RhCl(PPh)等が挙げられる。
 水素化反応は、通常、不活性有機溶媒中で行う。用いられうる不活性有機溶媒としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;アニソール、フェネトール等の芳香族エーテル;等が挙げられる。
 ジシクロペンタジエン開環重合体水素化物(α)を製造する際は、好ましくは、ジシクロペンタジエン開環重合体、及び水素化触媒が存在している系に、さらに水素を添加することにより、ジシクロペンタジエン開環重合体中に存在する炭素-炭素二重結合を水素化する。
 水素化反応は、使用する水素化触媒系によっても適する条件範囲が異なるが、反応温度は通常-20℃~+250℃、好ましくは-10℃~+220℃、より好ましくは0℃~200℃である。水素化温度が低すぎると反応速度が遅くなりすぎる場合があり、高すぎると副反応が起こる場合がある。触媒的水素化反応の場合、水素圧力は、通常0.01~20MPa、好ましくは0.05~15MPa、より好ましくは0.1~10MPaである。水素圧力が低すぎると水素化速度が遅くなりすぎる場合があり、高すぎると高耐圧反応装置が必要となる点において装置上の制約が生じる。反応時間は所望の水素化率とできれば特に限定されないが、通常0.1~10時間である。水素化反応後は、常法に従ってジシクロペンタジエン開環重合体水素化物(α)を回収すればよく、重合体の回収にあたっては、ろ過等の手法により、触媒残渣を除去することができる。
 ジシクロペンタジエン開環重合体の水素化反応における水素化率(水素化された主鎖二重結合の割合)は、特に限定されないが、好ましくは98%以上、より好ましくは99%以上、特に好ましくは99.5%以上である。水素化率が高くなるほど、最終的に得られるジシクロペンタジエン開環重合体水素化物(α)の耐熱性が良好なものとなる。
 本発明の製造方法に用いる成形材料は、無機充填剤を含有するものであってもよい。本発明の製造方法に用いる成形材料は、無機充填剤を含有することでより耐熱性に優れる樹脂成形体が得られ易くなる。
 特に、本発明の製造方法により得られた樹脂成形体をリフロー工程に供するような場合、無機充填剤を含有する成形材料を用いることで、リフロー耐熱性(リフロー時に変形し難い性質)により優れる樹脂成形体が得られ易くなる。
 無機充填剤としては、シリカ、アルミナ、ゼオライト、マグネシア、チタニア、酸化亜鉛、炭酸カルシウム、炭酸マグネシウム、ガラス等が挙げられる。
 これらの中でも、より耐熱性に優れる樹脂成形体が得られ易いことから、ガラスフィラーが好ましい。
 ガラスフィラーとしては公知のものを用いることができ、その形状において限定されない。また、ガラスフィラーはシラン系化合物、エポキシ系化合物、ウレタン系化合物等で表面処理されていてもよい。
 ガラスフィラーとしては、ガラス繊維、ガラスビーズ、ガラスパウダー、ガラスフレーク、ガラスバルーン等が挙げられ、ガラス繊維が好ましい。
 ガラス繊維の形状や形態は特に限定されない。具体的にはミルドファイバー、カットファイバー、チョップドストランド、ロービング等が挙げられ、チョップドストランドが好ましい。
 ガラス繊維の長さは、3~40mmであることが好ましく、5~30mmであることがより好ましい。ガラス繊維が短すぎると、樹脂成形体の機械強度が低くなり、ガラス転移が長すぎると、成形材料を調製する際の混練時の作業性が悪くなる。
 ガラス繊維の断面形状は円形、楕円形、扁平形状、矩形など任意である。また、これらのガラス繊維を任意の比率で用い得る。
 本発明の製造方法に用いる成形材料が無機充填剤を含有するとき、その含有量は、ジシクロペンタジエン開環重合体水素化物(α)と無機充填剤の合計量に対して、好ましくは5~60重量%、より好ましくは15~50重量%である。無機充填剤の含有量が少な過ぎると、リフロー時の耐熱性や強度に優れる樹脂成形体が得られないおそれがある。一方、無機充填剤の含有量が多過ぎると、誘電正接が低い樹脂成形体が得られ難くなったり、成形材料の成形性が低下したりするおそれがある。
 本発明の製造方法に用いる成形材料は、ジシクロペンタジエン開環重合体水素化物(α)や無機充填剤以外の成分を含有するものであってもよい。かかる成分としては、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、可塑剤、帯電防止剤、酸補足剤、難燃剤、難燃助剤等の添加剤が挙げられる。
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、ジブチルヒドロキシトルエン、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、4,4’-ブチリデンビス(3-t-ブチル-3-メチルフェノール)、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、α-トコフェノール、2,2,4-トリメチル-6-ヒドロキシ-7-t-ブチルクロマン、テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、〔ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]〕等が挙げられる。
 リン系酸化防止剤としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジターシャリーブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジターシャリーブチルフェニル)ホスファイト、テトラキス(2,4-ジターシャリーブチルフェニル)4,4’-ビフェニルジホスファイト、トリノニルフェニルホスファイト等が挙げられる。
 イオウ系酸化防止剤としては、ジステアリルチオジプロピオネート、ジラウリルチオジプロピオネート等が挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、アクリレート系紫外線吸収剤、金属錯体系紫外線吸収剤等が挙げられる。
 光安定剤としては、ヒンダードアミン系光安定剤が挙げられる。
 近赤外線吸収剤は、シアニン系近赤外線吸収剤;ピリリウム系赤外線吸収剤;スクワリリウム系近赤外線吸収剤;クロコニウム系赤外線吸収剤;アズレニウム系近赤外線吸収剤;フタロシアニン系近赤外線吸収剤;ジチオール金属錯体系近赤外線吸収剤;ナフトキノン系近赤外線吸収剤;アントラキノン系近赤外線吸収剤;インドフェノール系近赤外線吸収剤;アジ系近赤外線吸収剤;等が挙げられる。
 可塑剤としては、燐酸トリエステル系可塑剤、脂肪酸一塩基酸エステル系可塑剤、二価アルコールエステル系可塑剤、オキシ酸エステル系可塑剤等が挙げられる。
 帯電防止剤としては、多価アルコールの脂肪酸エステル等が挙げられる。
 酸補足剤としては、酸化マグネシウム、ステアリン酸亜鉛等が挙げられる。
 難燃剤としては、ハロゲン化有機化合物、赤リン、縮合型リン酸エステル、反応型リン酸エステル、ポリリン酸アンモン系化合物、リン酸金属塩系化合物等の有機リン系化合物;メラミンホスフェイト、メラミンシアヌレイト等のメラミン系化合物;等が挙げられる。
 難燃助剤としては、水酸化アルミニウム、水酸化マグネシウム等の無機水酸化物;酸化アルミニウム水和物、酸化アンチモン等の無機酸化物;ホウ酸ナトリウム等のホウ酸塩;等が挙げられる。
 これらの難燃剤や難燃助剤は、一種単独であるいは二種以上を組み合わせて用いることができる。
 これらの添加剤の含有量は、目的に合わせて適宜決定することができる。その含有量は、ジシクロペンタジエン開環重合体水素化物(α)100重量部に対して、通常0.001~5重量部、好ましくは0.01~1重量部の範囲である。
 本発明の製造方法に用いる成形材料は、常法に従って製造することができる。
 例えば、ジシクロペンタジエン開環重合体水素化物(α)に加えて、その他の成分を含有する成形材料は、各成分を混合することにより得ることができる。混合方法としては、各成分を溶融状態で混錬する方法が挙げられる。
 混練は、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、フィーダールーダー等の溶融混練機を用いて行うことができる。混練温度は、好ましくは250~400℃、より好ましくは260~350℃の範囲である。混練に際し、各成分を一括添加して混練してもよいし、数回に分けて添加しながら混練してもよい。
 混錬後は、常法に従って、棒状に押出し、ストランドカッターで適当な長さに切ることで、ペレット化することができる。
〔樹脂成形体の製造方法〕
 本発明の樹脂成形体の製造方法は、前記成形材料を溶融成形することを特徴とする。
 前記成形材料に含まれるジシクロペンタジエン開環重合体水素化物(α)は一般的な有機溶媒に対する溶解性に劣る傾向がある。したがって、この成形材料は、キャスト法等の溶液を利用する成形方法の成形材料としては適していない。
 その一方で、ジシクロペンタジエン開環重合体水素化物(α)は溶融状態のものを冷却すると短時間で結晶化するという特性がある。このため、溶融成形法を使用して、ジシクロペンタジエン開環重合体水素化物(α)を含有する成形材料を成形することにより、目的の樹脂成形体を生産性良く製造することができる。
 溶融成形法としては、押出成形法、射出成形法、溶融紡糸成形法、プレス成形法、ブロー成形法、カレンダー成形法等の方法が挙げられ、目的の樹脂成形体に応じて適宜選択することができる。
(樹脂フィルム)
 樹脂成形体が樹脂フィルムの場合、溶融成形法としては押出成形法が好適に用いられる。
 押出成形法により樹脂フィルムを製造する場合、公知の方法を適宜使用することができる。例えば、前記成形材料を押出機に投入して、溶融混練し、次いで、押出機に接続したTダイから溶融樹脂を連続的にフィルム状に押出し、これを冷却することで樹脂フィルムを得ることができる。
 樹脂フィルムの厚みは特に限定されないが、通常、1~300μm、好ましくは2~200μmである。
 この樹脂フィルムは、ジシクロペンタジエン開環重合体水素化物(α)を含有するため、耐熱性に優れる。
 押出成形法により得られた樹脂フィルムには、延伸処理や、熱固定処理を施してもよい。
 延伸処理を行うことで、結晶化度が高く、より強度に優れる樹脂フィルムが得られる。延伸処理を行う場合、その処理は一軸延伸法、二軸延伸法、斜め延伸法等により行うことができる。
 延伸処理を行う際の樹脂フィルムの温度は、通常、95~135℃、好ましくは95~120℃である。
 延伸倍率は、面倍率で好ましくは10倍以上、より好ましくは15~400倍である。
 熱固定処理は、長手方向、幅方向に張力をかけて樹脂フィルムを張った状態で所定の熱を加える処理をいう。熱固定処理をすることで、熱収縮率が小さい樹脂フィルムが得られる。
 熱固定処理における樹脂フィルムの温度は、通常、120~230℃、好ましくは160~220℃である。
 熱固定処理の時間は、通常、1~60秒である。
 得られた樹脂フィルムを金属箔と融着させることで、樹脂層と金属層とを有する積層フィルムを得ることができる。
 金属箔を構成する金属としては、銅、金、銀、ステンレス、アルミニウム、ニッケル、クロム等が挙げられる。これらの中でも、基板材料として有用な積層体が得られることから、銅が好ましい。
 金属箔の厚みは特に限定されず、積層フィルムの使用目的に合わせて適宜決定することができる。金属箔の厚みは、通常、1~35μm、好ましくは3~18μmである。
 樹脂フィルムと金属箔との融着方法は特に限定されない。例えば、樹脂フィルムと金属箔を重ね合せ、熱プレスする方法(熱プレス法)や、樹脂フィルムと金属箔を重ね合せたものを熱ロールの間を通過させる方法(熱ロール法)により、樹脂フィルムと金属箔とを融着させることができる。
 この積層フィルムの樹脂層は、ジシクロペンタジエン開環重合体水素化物(α)を含有する。上記のようにジシクロペンタジエン開環重合体水素化物(α)は溶融状態から短時間で結晶化するため、積層フィルムを製造する際の融着工程を短時間で終えることができる。
 また、この積層フィルムは、リフロー耐熱性に優れるものである。したがって、この積層フィルムはフレキシブルプリント基板として好適に用いられる。
(射出成形品)
 溶融成形法として、射出成形法を用いることで、種々の射出成形品を製造することができる。
 射出成形法により射出成形品を製造する場合、公知の方法を適宜使用することができる。例えば、前記成形材料を押出機に投入して、溶融混練し、次いで、押出機に接続した型に溶融樹脂を射出し、型内の溶融樹脂を冷却して固化させることで射出成形品を得ることができる。
 射出成形品としては、光反射体、絶縁材料、コネクター、食品包装材、ボトル、パイプ、ギヤー類等が挙げられる。
 これらの射出成形品は、ジシクロペンタジエン開環重合体水素化物(α)を含有するため、耐熱性に優れる。
 射出成形法により射出成形品を製造する場合、無機充填剤を含有する成形材料を用いることが好ましい。無機充填剤を含有する成形材料を用いることで、より耐熱性に優れる射出成形品が得られ易くなる。また、無機充填剤が存在することで、溶融状態のジシクロペンタジエン開環重合体水素化物(α)の結晶化が促進される傾向があるため、無機充填剤を含有する成形材料を用いることで、型に射出した後の冷却時間が短縮され、射出成形品をより生産性よく製造することができる。
(繊維状成形体)
 樹脂成形体が繊維状成形体である場合、溶融成形法としては溶融紡糸成形法が好適に用いられる。
 溶融紡糸成形法により繊維状成形体を製造する場合、公知の方法を適宜使用することができる。例えば、前記成形材料を押出機に投入して、溶融混練し、次いで、押出機に接続した紡糸ノズルから溶融樹脂を連続的に吐出し、これを冷却することで繊維状成形体を得ることができる。
 この繊維状成形体は、ジシクロペンタジエン開環重合体水素化物(α)を含有するため、耐熱性に優れる。
 溶融紡糸成形法により得られた繊維状成形体には、延伸処理を施してもよい。
 延伸処理を行うことで、結晶化度が高く、より強度に優れる繊維状成形体が得られる。 延伸処理を行う際の繊維状成形体の温度は、通常、40~140℃、好ましくは40~120℃である。
 延伸倍率は、好ましくは通常、1.5~8.0倍である。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例における測定や評価は、以下の方法により行った。
(1)ジシクロペンタジエン開環重合体の数平均分子量
 H-NMR測定に基づき、重合体鎖末端に存在する水素原子の数と末端以外の重合体鎖中に存在する水素原子の数の比を求め、その比に基づいてジシクロペンタジエン開環重合体の数平均分子量を算出した。
(2)ジシクロペンタジエン開環重合体のシス/トランス含有率
 H-NMR測定を行い、ジシクロペンタジエン開環重合体のシス/トランス含有率を求めた。
(3)ジシクロペンタジエン開環重合体の水素化反応における水素化率
 H-NMR測定を行い、ジシクロペンタジエン開環重合体の水素化反応における水素化率を求めた。
(4)シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物の融点及び溶融後融解開始温度
 ジシクロペンタジエン開環重合体水素化物を320℃で10分間加熱して溶融させ、次いで10℃/分で降温して室温まで冷却させて結晶化させた後、示差走査熱量計を用いて、10℃/分で昇温して測定した。昇温測定時に観測される吸熱ピークにおいて、吸熱(結晶融解)熱量が最も大きくなる温度を融点とし、吸熱ピークの開始温度を溶融後融解開始温度として、求めた。
(5)シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物のラセモ二連子の割合
 オルトジクロロベンゼン-d/トリクロロベンゼン(混合比(重量基準)1/2)を溶媒として、200℃で13C-NMR測定を行い、メソ二連子由来の43.35ppmのシグナルのピーク面積値と、ラセモ二連子由来の43.43ppmのシグナルのピーク面積値と、に基づいて決定した。
(6)耐リフロー性(樹脂フィルム)
 実施例1、2又は比較例1で得られた評価用樹脂フィルムに対して、オーブンを用いて260℃で10秒間加熱する熱処理を3回行った後、評価用樹脂フィルムを目視観察して、耐リフロー性を評価した。
 ここで、評価用樹脂フィルムが熱処理の前後で変形、溶融することなく形状を保持していたものを○、変形、溶融が見られたものを×とした。
(7)耐リフロー性(射出成形品のリフロー後の反り量)
 実施例3~5又は比較例2、3で得られた試験片に対して、オーブンを用いて260℃で10秒間加熱する熱処理を3回行った後、試験片の反り量を測定することにより耐リフロー性を評価した。ここで、反り量が0.8mm以上であった場合は耐リフロー性が不足しているといえる。
(8)結晶化速度
 実施例3~5又は比較例2、3における射出成形時に、成形品が変形せずに離型できるまでに必要な金型の冷却時間を測定することで、成形材料の結晶化速度を評価した。ここで、冷却時間が40秒を超える場合に結晶化速度が不足しているといえる。
〔合成例1〕
 ビスピロリド前駆体である、W(CHCMePh)(NArdiMe)(MePyr)(ここで、Meはメチル基を表し、Phはフェニル基を表し、ArdiMeは、2,6-ジメチルフェニル基を表し、MePyrは、2,5-ジメチルピロールを表す。)312mg(0.5ミリモル)をベンゼン5mlに溶解させ、そこへ、α、α-ビストリフルオロメチルベンジルアルコール〔Ph(CFCOH〕84μl(0.5ミリモル)を加え、全容(反応混合物)を室温(20℃)で30分間撹拌した。次いで、1,10-フェナントロリン90mg(0.5ミリモル)を加え、全容を室温(20℃)で1時間撹拌した後、反応混合物をフリーザー中に移した。反応混合物にペンタン10mlを加えて、反応生成物を定量的に沈殿させた。反応生成物をオレンジ色の固体として濾取した。このものをペンタンで洗浄し、乾燥させた。収量は480mgであった(定量的)。
 得られた化合物のH-NMR、13C-NMR、19F-NMRスペクトルにより、このものは、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジメチルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)(下記式(A)で示される化合物)と同定された。
Figure JPOXMLDOC01-appb-C000004
〔合成例2〕
 ビスピロリド前駆体である、W(CHCMePh)(NArdiiPr)(MePyr)(ここで、Meはメチル基を表し、Phはフェニル基を表し、ArdiiPrは、2,6-ジイソプロピルフェニル基を表し、MePyrは、2,5-ジメチルピロールを表す。)337mg(0.5ミリモル)をベンゼン5mlに溶解させ、そこへ、α,α-ビストリフルオロメチルベンジルアルコール〔Ph(CFCOH〕84μl(0.5ミリモル)を加え、全容(反応混合物)を室温(20℃)で2時間撹拌した。次いで、1,10-フェナントロリン90mg(0.5ミリモル)を加え、全容を室温(20℃)で1時間撹拌した後、反応混合物をフリーザー中に移した。反応混合物にペンタン10mlを加えて、反応生成物を定量的に沈殿させた。反応生成物をオレンジ色の固体として濾取した。このものをペンタンで洗浄し、乾燥させた。収量は490mgであった(定量的)。
 得られた固体のH-NMR、13C-NMR、19F-NMRスペクトルにより、このものは、(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジイソプロピルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)(下記式(B)で示される化合物)と同定された。
Figure JPOXMLDOC01-appb-C000005
〔合成例3〕
 攪拌機付きガラス製反応器に、タングステン(2,6-ジメチルフェニルイミド)テトラクロリド1.35部と、ジエチルエーテル21部を添加し、これを-78℃に冷却した。さらにジエチルエーテル21部に溶解した3,3’,5,5’-テトラメチル-2,2’-ビフェノール0.74部を添加した。この混合物を0℃まで徐々に加温し、0℃を維持して24時間反応を行った。反応後、ジエチルエーテルを留去することにより暗赤紫色の固形物を得た。
 得られた固形物に、ヘキサン13部とジエチルエーテル4.2部を添加し、これを-78℃に冷却し1時間静置して、微結晶状の不溶物を析出させた。可溶部分をろ別し、残った不溶物をさらにヘキサン6.6部にて洗浄後、溶媒を留去して化合物1.84部を得た。
 この化合物について、C溶媒中でH-NMRスペクトルを測定した結果、この化合物は下記式(C)で表される化合物であることが分かった。
Figure JPOXMLDOC01-appb-C000006
〔製造例1〕
 攪拌機付きガラス反応器に、合成例1で得た(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジメチルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)0.072g(1/500 モル/モル)、及びトルエン1gを入れ、次いで、ジシクロペンタジエン5.0g、シクロヘキサン20.0g及び1-ヘキセン0.21gを添加し、さらに無水塩化亜鉛0.0105gを1,4-ジオキサン5gに溶解したものを添加して、50℃において重合反応を行った。重合反応開始後、速やかに1,10-フェナントロリン亜鉛の白色の濁りが生成した。3時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、凝集物を濾別洗浄後、40℃で24時間減圧乾燥した。得られたジシクロペンタジエン開環重合体(A)の収量は4.3gであり、数平均分子量は14,000で、シス含率は97%であった。
 次に、攪拌機付きオートクレーブに、ジシクロペンタジエン開環重合体(A)1.75g及びシクロヘキサン47gを加えた。そして、シクロヘキサン10mlにRuHCl(CO)(PPh0.00157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。この水素化反応液を多量のアセトンに注いで生成した開環重合体水素化物を完全に析出させ、濾別洗浄後、40℃で24時間減圧乾燥した。
 得られた開環重合体水素化物(A)の水素化率は99%以上であり、ラセモ二連子の割合は92%であった。当該水素化物の融点を測定したところ、融点は284℃であり、融解熱量は52J/gであり、溶融後融解開始温度は274℃であった。
〔製造例2〕
 攪拌機付きガラス反応器に、合成例2で得た(2-トリフルオロメチル-2-フェニル-1,1,1-トリフルオロエトキシ)-2,6-ジイソプロピルフェニルイミドタングステン(VI)(2,5-ジメチルピロリド)(ネオフィリデン)(1,10-フェナントロリン)0.076g(1/500 モル/モル)、及びトルエン1gを入れ、次いで、ジシクロペンタジエン5.0g、シクロヘキサン20.0g及び1-ヘキセン0.21gを添加し、さらに無水塩化亜鉛0.0105gを1,4-ジオキサン5gに溶解したものを添加して、50℃において重合反応を行った。重合反応開始後、速やかに1,10-フェナントロリン亜鉛の白色の濁りが生成した。3時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、凝集物を濾別洗浄後、40℃で24時間減圧乾燥した。得られたジシクロペンタジエン開環重合体(B)の収量は4.3gであり、数平均分子量は10,900で、シス含率は81%であった。
 次に、ジシクロペンタジエン開環重合体(A)に代えて、ジシクロペンタジエン開環重合体(B)を使用したこと以外は、製造例1における水素化反応と同様にして、開環重合体水素化物(B)を得た。
 開環重合体水素化物(B)の水素化率は99%以上であり、ラセモ二連子の割合は91%であった。当該水素化物の融点を測定したところ、融点は274℃であり、融解熱量は28J/gであり、溶融後融解開始温度は265℃であった。
〔製造例3〕
 攪拌機付きガラス製反応器に、合成例3で得た式(C)で表される化合物0.082g、及びトルエン3.5gを入れ、これを-78℃に冷却した。このものに、ジエチルアルミニウムクロリド0.027gをトルエン0.87gに溶解して得られた溶液を添加し、これを0℃に加温し、0℃で1時間反応を行い、触媒を含有する混合液を得た。
 得られた混合液に、ジシクロペンタジエン7.5g、トルエン23g、1-オクテン0.65gを添加し、0℃で24時間重合反応を行った。得られた重合反応液に大量のメタノールを注いで沈殿物を凝集させ、濾別洗浄後、40℃で24時間減圧乾燥して、ジシクロペンタジエン開環重合体(C)を7.4g得た。このものの数平均分子量は42,000、シス含有率は93%であった。
 次に、ジシクロペンタジエン開環重合体(A)に代えて、ジシクロペンタジエン開環重合体(C)を使用したこと以外は、製造例1における水素化反応と同様にして、開環重合体水素化物(C)を得た。
 開環重合体水素化物(C)の水素化率は99%以上であり、ラセモ二連子の割合は80%であった。当該水素化物の融点を測定したところ、融点は270℃であり、融解熱量は49J/gであり、溶融後融解開始温度は258℃であった。
Figure JPOXMLDOC01-appb-T000007
〔実施例1〕
 製造例1で得られた開環重合体水素化物(A)100部に、酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製、イルガノックス(登録商標)1010)1.1部を混合し、原料組成物を得た。この原料組成物を、内径3mmのダイ穴を4つ備えた二軸押出し機(東芝機械社製、TEM-37B)に投入し、熱溶融押出成形法により、ストランド状の成形体を得、これを冷却した後、ストランドカッターにて細断し、樹脂ペレットを得た。
 二軸押出し機の運転条件を以下に示す。
・バレル設定温度:270~280℃
・ダイ設定温度:270℃
・スクリュー回転数:145rpm
・フィーダ回転数:50rpm
 得られた樹脂ペレットを、Tダイを備える熱溶融押出しフィルム成形機(Optical Control Systems社製、Measuring Extruder Type Me-20/2800 V3)にて、厚み150μm、幅120mmのフィルム状に成形し、得られた未延伸フィルムを2m/分の速度でロール状に巻き取った。
 フィルム成形機の運転条件を以下に示す。
・バレル温度設定:280~290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
 未延伸フィルムを任意の部位で90mm×90mmの正方形に切り出した後、これを、小型延伸機(東洋精機製作所社製、EX10-Bタイプ)に設置し、延伸温度:100℃、延伸倍率:2.0倍×2.0倍、延伸速度:10,000mm/分の条件で延伸処理した。
 次いで、得られた延伸フィルムを鉄板に固定し、このものを、オーブンを用いて200℃で20分間、加熱処理を行うことにより評価用樹脂フィルムを得た。
 得られた評価用樹脂フィルムについて、耐リフロー性を評価した。評価結果を第2表に示す。
〔実施例2〕
 製造例1で得られた開環重合体水素化物(A)に代えて、製造例2で得られた開環重合体水素化物(B)を使用したこと以外は、実施例1と同様にして評価用樹脂フィルムを製造し、耐リフロー性を評価した。評価結果を第2表に示す。
〔比較例1〕
 製造例1で得られた開環重合体水素化物(A)に代えて、製造例3で得られた開環重合体水素化物(C)を使用したこと以外は、実施例1と同様にして評価用樹脂フィルムを製造し、耐リフロー性を評価した。評価結果を第2表に示す。
〔実施例3〕
 製造例1で得られた開環重合体水素化物(A)100部に、酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製、イルガノックス(登録商標)1010)1.1部を混合し、原料組成物を得た。この原料組成物を、内径3mmのダイ穴を4つ備えた二軸押出し機(東芝機械社製、TEM-37B)に投入し、熱溶融押出成形法により、ストランド状の成形体を得、これを冷却した後、ストランドカッターにて細断し、樹脂ペレットを得た。
 二軸押出し機の運転条件を以下に示す。
・バレル設定温度:270~280℃
・ダイ設定温度:270℃
・スクリュー回転数:145rpm
・フィーダ回転数:50rpm
 得られた樹脂ペレットを用いて、射出成形機(ROBOSHOT S2000i-50A FUNUC社製)で成形温度290℃、射出圧力0.8MPa、金型温度150℃の条件で、縦80mm、横50mm、厚さ1mmの射出成形品(試験片)を得た。得られた試験片について、リフロー後の反りを測定した。測定結果を第2表に示す。
〔実施例4〕
 実施例3において、原料組成物を、製造例1で得られた開環重合体水素化物(A)100部、ガラス繊維(日東紡社製、商品名「CSG 3PA-830」)33部、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン0.8部を混合して得たことを除き、実施例3と同様にして射出成形品を得、リフロー後の反りを測定した。測定結果を第2表に示す。
〔実施例5〕
 実施例3において、製造例1で得られた開環重合体水素化物(A)に代えて、製造例2で得られた開環重合体水素化物(B)を使用したこと以外は、実施例3と同様にして射出成形品を得、リフロー後の反りを測定した。測定結果を第2表に示す。
〔比較例2〕
 実施例3において、製造例1で得られた開環重合体水素化物(A)に代えて、製造例3で得られた開環重合体水素化物(C)を使用したこと以外は、実施例3と同様にして射出成形品を得、リフロー後の反りを測定した。測定結果を第2表に示す。
〔比較例3〕
 実施例4において、製造例1で得られた開環重合体水素化物(A)に代えて、製造例3で得られた開環重合体水素化物(C)を使用したこと以外は、実施例4と同様にして射出成形品を得、リフロー後の反りを測定した。測定結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000008
 第2表から以下のことが分かる。
 実施例1、2の樹脂フィルムは、比較例1の樹脂フィルムに比べて耐リフロー性に優れている。
 同様に、実施例3~5の射出成形品は、比較例2、3の射出成形品に比べて、耐リフロー性に優れている。
 さらに、実施例3~5においては、射出成形時の金型の冷却時間が短く、生産性に優れている。
 特に実施例3~5のなかでも、ガラス繊維を含有する成形材料を用いることで、耐リフロー性により優れる射出成形品を生産性良く製造することができる。

Claims (4)

  1.  樹脂成形体の製造方法であって、
     融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を溶融成形することを特徴とする樹脂成形体の製造方法。
  2.  前記成形材料が、さらに無機充填剤を含有するものである、請求項1に記載の樹脂成形体の製造方法。
  3.  樹脂フィルムの製造方法であって、
     融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を押出成形することを特徴とする樹脂フィルムの製造方法。
  4.  射出成形品の製造方法であって、
     融解開始温度が260℃以上で、シンジオタクティシティーが90%より高い、シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物を含有する成形材料を射出成形することを特徴とする射出成形品の製造方法。
PCT/JP2016/057208 2015-03-09 2016-03-08 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法 WO2016143796A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017505357A JP7186502B2 (ja) 2015-03-09 2016-03-08 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法
US15/554,279 US10519288B2 (en) 2015-03-09 2016-03-08 Resin molded body manufacturing method, resin film manufacturing method, and injection molded article manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-046498 2015-03-09
JP2015046498 2015-03-09
JP2016-019608 2016-02-04
JP2016019608 2016-02-04

Publications (1)

Publication Number Publication Date
WO2016143796A1 true WO2016143796A1 (ja) 2016-09-15

Family

ID=56880166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057208 WO2016143796A1 (ja) 2015-03-09 2016-03-08 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法

Country Status (4)

Country Link
US (1) US10519288B2 (ja)
JP (1) JP7186502B2 (ja)
TW (1) TWI684610B (ja)
WO (1) WO2016143796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604377A4 (en) * 2017-03-21 2020-12-30 Zeon Corporation MOLDING COMPOUNDS, RESIN MOLDED BODIES, COSMETIC CONTAINERS, SEMICONDUCTOR CONTAINERS AND MANUFACTURING METHODS FOR SEMICONDUCTOR CONTAINERS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143148A1 (ja) * 2015-03-09 2016-09-15 日本ゼオン株式会社 シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302710A1 (en) * 2011-05-27 2012-11-29 Massachusetts Institute Of Technology Complexes for use in metathesis reactions
JP2014162811A (ja) * 2013-02-21 2014-09-08 Nippon Zeon Co Ltd 環状オレフィン開環重合体水素添加物の製造方法
WO2014139679A2 (en) * 2013-03-14 2014-09-18 Ximo Ag Metathesis catalysts and reactions using the catalysts
JP2014530754A (ja) * 2011-10-21 2014-11-20 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムの水素化のためのそれらの使用
JP5896194B1 (ja) * 2015-03-09 2016-03-30 日本ゼオン株式会社 シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026189B1 (en) * 1997-10-23 2004-01-02 Nippon Zeon Co., Ltd. Thermoplastic dicyclopentadiene-base open-ring polymers, hydrogenated derivatives thereof, and processes for the preparation of both
JP4466273B2 (ja) 2003-08-13 2010-05-26 日本ゼオン株式会社 開環重合体、開環重合体水素化物およびそれらの製造方法、並びに重合触媒組成物
EP1655320B1 (en) 2003-08-13 2012-07-25 Zeon Corporation Dicyclopentadien ring-opening polymer hydrogenation product and process for producing the same
US20090176950A1 (en) * 2005-05-25 2009-07-09 Jsr Corporation Metal hydride complex, method of hydrogenating ring-opening polymerization polymer of cycloolefin, and process for producing product of hydrogenation of ring-opening polymerization polymer of cycloolefin
EP2721027B1 (en) 2011-06-03 2017-05-31 Massachusetts Institute of Technology Z-selective ring-closing metathesis reactions
JP5862299B2 (ja) 2011-12-29 2016-02-16 日本ゼオン株式会社 結晶性ノルボルネン系開環重合体水素化物の製造方法
EP3107655B1 (en) * 2014-02-21 2024-05-08 Massachusetts Institute of Technology Catalysts and methods for ring opening metathesis polymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120302710A1 (en) * 2011-05-27 2012-11-29 Massachusetts Institute Of Technology Complexes for use in metathesis reactions
JP2014530754A (ja) * 2011-10-21 2014-11-20 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムの水素化のためのそれらの使用
JP2014162811A (ja) * 2013-02-21 2014-09-08 Nippon Zeon Co Ltd 環状オレフィン開環重合体水素添加物の製造方法
WO2014139679A2 (en) * 2013-03-14 2014-09-18 Ximo Ag Metathesis catalysts and reactions using the catalysts
JP5896194B1 (ja) * 2015-03-09 2016-03-30 日本ゼオン株式会社 シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604377A4 (en) * 2017-03-21 2020-12-30 Zeon Corporation MOLDING COMPOUNDS, RESIN MOLDED BODIES, COSMETIC CONTAINERS, SEMICONDUCTOR CONTAINERS AND MANUFACTURING METHODS FOR SEMICONDUCTOR CONTAINERS

Also Published As

Publication number Publication date
TW201634518A (zh) 2016-10-01
JP7186502B2 (ja) 2022-12-09
US20180079876A1 (en) 2018-03-22
US10519288B2 (en) 2019-12-31
JPWO2016143796A1 (ja) 2017-12-21
TWI684610B (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
JP7186501B2 (ja) 樹脂成形体、樹脂フィルム、及び射出成形品
JP5810679B2 (ja) フィルムの製造方法
JP6674156B2 (ja) テトラシクロドデセン系開環重合体水素化物及びその製造方法
US10590233B2 (en) Hydrogenated syndiotactic crystalline dicyclopentadiene ring-opening polymer, syndiotactic dicyclopentadiene ring-opening polymer, and production method for these
JP7186502B2 (ja) 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法
CN110325590B (zh) 树脂组合物和树脂成型体
JP2002249645A (ja) 重合体組成物
JP5896194B1 (ja) シンジオタクチック結晶性ジシクロペンタジエン開環重合体水素化物
JP7218753B2 (ja) ジシクロペンタジエン系開環重合体水素化物及びその製造方法、樹脂成形体、樹脂フィルム、並びに、延伸フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15554279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761764

Country of ref document: EP

Kind code of ref document: A1