WO2016143541A1 - 自動車用電源装置及び自動車用電源装置の制御方法 - Google Patents
自動車用電源装置及び自動車用電源装置の制御方法 Download PDFInfo
- Publication number
- WO2016143541A1 WO2016143541A1 PCT/JP2016/055639 JP2016055639W WO2016143541A1 WO 2016143541 A1 WO2016143541 A1 WO 2016143541A1 JP 2016055639 W JP2016055639 W JP 2016055639W WO 2016143541 A1 WO2016143541 A1 WO 2016143541A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- power supply
- resistance value
- supply device
- battery
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/16—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
Definitions
- the present invention relates to an automotive power supply apparatus that uses a capacitor as a battery in addition to a normal lead battery to increase the efficiency of the power supply.
- the power consumption of the main battery is reduced, so that the operation time of the alternator is shortened during normal driving.
- the engine output torque is supplemented by a motor that operates with electric power of a capacitor, so that the engine load is reduced and the fuel consumption is reduced.
- FIG. 3 shows an example of an automobile power supply device equipped with the regeneration system as described above.
- the power generated by the alternator 1 is supplied to a battery 2 that is a lead storage battery, and is also supplied to a capacitor 4 constituted by an electric double layer capacitor and a load group 5 via a relay 3.
- the capacitor 4 If the large amount of current from the battery 2 is supplied to the capacitor 4 when the amount of electricity stored in the capacitor 4 is small and the output voltage is low, the capacitor 4 is further deteriorated and the charging performance is lowered. For this reason, the FET element 6 having a high on-resistance is interposed between the relay 3 and the capacitor 4, and the FET element 6 is turned on by the control unit 7 during the charge / discharge operation of the capacitor 4, thereby reducing the current flowing into the capacitor 4. It is known to limit and suppress deterioration of the capacitor 4.
- Patent Document 1 discloses a power supply device that improves heat dissipation associated with power loss while allowing a large current to be supplied to the capacitor when the capacitor is charged.
- Patent Document 1 does not disclose a configuration for improving charging efficiency when the output voltage of the capacitor increases.
- An object of the present invention is to provide an automobile power supply device that improves charging efficiency while suppressing deterioration of a capacitor.
- an automobile power supply device includes an alternator, a battery, the alternator and a current adjustment circuit connected to the battery, and a capacitor connected to the current adjustment circuit, the alternator and A capacitor that is supplied with electric power output from at least one of the batteries via the current adjustment circuit;
- the current adjustment circuit is a resistance value adjustment circuit connected between the battery and the capacitor, and includes a resistance value adjustment circuit including a plurality of resistance elements connected in parallel and capable of switching on and off, and the capacitor And a control unit that controls on / off switching of the plurality of resistance elements.
- the control unit is configured to change the resistance value of the resistance value adjusting circuit by controlling on / off switching of each of the plurality of resistance elements according to an increase in the output voltage of the capacitor.
- the resistance value of the resistance value adjusting circuit between the battery and the capacitor decreases.
- the plurality of resistance elements have different resistance values.
- the resistance value of the resistance value adjusting circuit can be adjusted to various values by changing the resistance element connected between the battery and the capacitor by the control unit.
- the plurality of resistance elements are preferably field effect transistors.
- the resistance value of the resistance value adjusting circuit is adjusted by changing the field-effect transistor to be turned on.
- the control unit switches the plurality of resistance elements on and off so that the resistance value of the resistance value adjusting circuit is decreased stepwise as the output voltage of the capacitor increases. Is preferably controlled.
- the resistance value of the resistance value adjusting circuit decreases as the output voltage of the capacitor increases.
- a method for controlling an automotive power supply apparatus that supplies power output from at least one of an alternator and a battery to a capacitor via a resistance value adjustment circuit.
- the resistance value of the resistance value adjusting circuit is decreased stepwise as it increases.
- This method reduces the resistance value between the battery and the capacitor as the output voltage of the capacitor increases.
- the charging efficiency can be improved while suppressing the deterioration of the capacitor.
- the generated power of the alternator 1 is supplied to the battery 2, and is also supplied to the capacitor 4 and the load group 5 formed of an electric double layer capacitor via the relay 3.
- the alternator 1 operates based on the operation of the engine and outputs generated power during regenerative operation and when the charge amount of the battery 2 is low.
- the relay 3 is controlled by the power supply control ECU so as to be in a conductive state mainly during the regenerative operation, and the generated power of the alternator 1 or the charging power of the battery 2 is supplied to the capacitor 4 via the resistance value adjusting circuit 11.
- the relay 3 becomes non-conductive. Then, the stored electric power of the capacitor 4 is supplied to the load group 5 via the resistance value adjusting circuit 11.
- the resistance value adjusting circuit 11 a plurality of resistance elements that can be switched on and off are connected in parallel.
- the plurality of resistance elements include four FET elements (field effect transistors) 12a to 12d.
- the gates of the FET elements 12 a to 12 d are connected to the control unit 13, and the on / off operation of the FET elements 12 a to 12 d is controlled by the control unit 13.
- the resistance value adjustment circuit 11 and the control unit 13 constitute a current adjustment circuit.
- the output voltage (charging voltage) Vc of the capacitor 4 is input to the control unit 13. As the output voltage Vc of the capacitor 4 increases, the control unit 13 sequentially turns on each of the FET elements 12b to 12d from the state in which only the FET element 12a is turned on, thereby increasing the number of FET elements in the conductive state.
- the on-resistances of the FET elements 12a to 12d are set so that the FET element 12a has the largest value and gradually decreases from the FET element 12b to the FET element 12d.
- the ratio of the resistance values of the FET elements 12a to 12d is set to 8: 4: 2: 1.
- the combined resistance value of the resistance value adjusting circuit 11 can be changed in 10 stages.
- the combined resistance value of the resistance value adjusting circuit 11 is controlled based on the output voltage Vc of the capacitor 4 and the output voltage of the battery 2 so that the charging current Ic flowing through the capacitor 4 is about 100A.
- the alternator 1 When the alternator 1 is activated during the regenerative operation, the generated power of the alternator 1 is supplied to the battery 2 and is also supplied to the capacitor 4 and the load group 5 via the relay 3.
- the charging current Ic of the capacitor 4 becomes approximately 100 A or less due to the ON resistance R1 of the FET element 12a.
- the resistance value adjusting circuit 11 turns on the FET element 12b in addition to the FET element 12a (second region X2).
- the charging current Ic of the capacitor 4 is restored to approximately 100 A by the combined resistance R2 of the ON resistances of the FET elements 12a and 12b.
- the resistance adjustment circuit 11 turns on the FET element 12c in addition to the FET elements 12a and 12b (third region). X3).
- the charging current Ic of the capacitor 4 is restored to approximately 100 A by the combined resistance R3 of the ON resistances of the FET elements 12a, 12b, and 12c.
- the resistance value adjusting circuit 11 turns on the FET element 12d in addition to the FET elements 12a, 12b, and 12c (fourth). Region X4).
- the charging current Ic of the capacitor 4 returns to approximately 100 A by the combined resistance R4 of the on-resistances of the FET elements 12a to 12d, and charging is continued.
- the output voltage Vc of the capacitor 4 increases, the combination of the FET elements to be turned on is further changed so that the combined resistance value of the resistance value adjusting circuit 11 decreases and the charging current Ic becomes approximately 100A.
- the electric power stored in the capacitor 4 is supplied to the load group 5, and the starter motor is driven by the electric power stored in the capacitor 4 when the engine is restarted after the idle stop.
- the above-described automobile power supply device has the following effects. (1) When the output voltage Vc of the capacitor 4 is low, the resistance value of the resistance adjustment circuit 11 can be increased to limit the charging current Ic flowing into the capacitor 4. Accordingly, it is possible to suppress the deterioration of the capacitor 4 due to the inflow of an excessive charging current. (2) The charging efficiency of the capacitor 4 can be improved by reducing the resistance value of the resistance value adjusting circuit 11 as the output voltage Vc of the capacitor 4 increases. (3) Since the FET elements 12a to 12d of the resistance value adjusting circuit 11 have different resistance values, various numbers and combinations of the FET elements to be turned on among the four FET elements 12a to 12d can be changed. A resistance value can be generated. In particular, since the ratio of the resistance values of the FET elements 12a to 12d is 8: 4: 2: 1, 10 stages of combined resistance values can be generated at equal intervals by the four FET elements 12a to 12d.
- the above embodiment may be modified as follows.
- the number of FET elements connected in parallel in the resistance adjustment circuit may not be four.
- a plurality of resistors having different resistance values and a switch circuit connected in series to each resistor may be used.
- the combined resistance value is adjusted by changing the number of resistors that are in a conductive state by opening / closing control of each switch circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
- Emergency Protection Circuit Devices (AREA)
- Protection Of Static Devices (AREA)
Abstract
自動車用電源装置は、オルタネータ1及びバッテリー2の少なくともいずれかから出力される電力を、電流調整回路を介してキャパシタ4に供給する。電流調整回路は、バッテリー2とキャパシタ4との間に接続された抵抗値調整回路11であって、並列接続されたオン・オフ切替え可能な複数の抵抗素子12a~12dを備える抵抗値調整回路11と、キャパシタ4の出力電圧が入力され、かつ複数の抵抗素子のオン・オフ切替えを制御する制御部13とを備える。制御部13は、キャパシタ4の出力電圧Vcの上昇に応じて、各抵抗素子のオン・オフ切替えを制御して抵抗値調整回路11の抵抗値を変更するように構成されている。
Description
本発明は、通常の鉛バッテリーに加えて、キャパシタをバッテリーとして使用して、電源の効率を高めた自動車用電源装置に関するものである。
近年、エネルギー回生システムを備えた燃料消費量の少ない自動車が実用化されている。例示的な回生システムでは、自動車の減速時の慣性エネルギーでオルタネータを作動させて発電した電力をキャパシタ及びメインバッテリーに蓄え、アイドリングストップに続くエンジンの再始動時に、キャパシタの蓄電電力でスターターモータを駆動する。キャパシタの蓄電電力は、走行時にモータを作動させてエンジンの出力トルクを補うことにも用いられる。
このように、充電効率に優れたキャパシタを活用すると、メインバッテリーの電力消費が低減されるため、通常走行時にオルタネータの作動時間が短縮される。ハイブリッド車では、キャパシタの電力で動作するモータでエンジンの出力トルクが補われるので、エンジンの負荷が低減され、燃料消費量が低減する。
図3は、上記のような回生システムを備えた自動車用電源装置の一例を示す。オルタネータ1の発電電力は、鉛蓄電池であるバッテリー2に供給されるとともに、リレー3を介して電気二重層キャパシタで構成されるキャパシタ4と、負荷群5に供給される。
キャパシタ4の蓄電量が少なく出力電圧が低いときに、バッテリー2からの大電流がキャパシタ4に供給されると、キャパシタ4の劣化が進み、充電性能が低下する。このため、リレー3とキャパシタ4の間にオン抵抗の高いFET素子6を介在させて、キャパシタ4の充放電動作時に制御部7でFET素子6をオンすることにより、キャパシタ4への流入電流を制限して、キャパシタ4の劣化を抑制することが知られている。
特許文献1には、キャパシタの充電時に、キャパシタへの大電流の供給を可能としながら、電力損失に伴う放熱性を向上させた電源装置が開示されている。
図3に示す従来の自動車用電源装置では、キャパシタ4への充電が進んで、その出力電圧が高くなっても、FET素子6のオン抵抗によりキャパシタ4への充電電流が流れ難いため、充電効率が低下するという問題点がある。
特許文献1に開示された電源装置では、キャパシタの出力電圧が高くなった場合に、充電効率を向上させるための構成は開示されていない。
本発明の目的は、キャパシタの劣化を抑制しながら、充電効率を向上させる自動車用電源装置を提供することにある。
本発明の目的は、キャパシタの劣化を抑制しながら、充電効率を向上させる自動車用電源装置を提供することにある。
本発明の一態様によれば、自動車用電源装置は、オルタネータ、バッテリー、前記オルタネータ及び前記バッテリーに接続された電流調整回路、及び、前記電流調整回路に接続されたキャパシタであって、前記オルタネータ及び前記バッテリーの少なくともいずれかから出力される電力が前記電流調整回路を介して供給されるキャパシタを備える。前記電流調整回路は、前記バッテリーと前記キャパシタとの間に接続された抵抗値調整回路であって、並列接続されたオン・オフ切替え可能な複数の抵抗素子を備える抵抗値調整回路と、前記キャパシタの出力電圧が入力され、かつ前記複数の抵抗素子のオン・オフ切替えを制御する制御部とを備える。前記制御部は、前記キャパシタの出力電圧の上昇に応じて、前記複数の抵抗素子の各々のオン・オフ切替えを制御して前記抵抗値調整回路の抵抗値を変更するように構成されている。
この構成により、キャパシタの出力電圧の上昇にともなって、バッテリーとキャパシタとの間の抵抗値調整回路の抵抗値が減少する。
上記の自動車用電源装置において、前記複数の抵抗素子は、それぞれ異なる抵抗値を有することが好ましい。
上記の自動車用電源装置において、前記複数の抵抗素子は、それぞれ異なる抵抗値を有することが好ましい。
この構成により、バッテリーとキャパシタとの間に接続される抵抗素子を制御部で変更することにより、抵抗値調整回路の抵抗値を様々な値に調整することができる。
上記の自動車用電源装置において、前記複数の抵抗素子は電界効果トランジスタであることが好ましい。
上記の自動車用電源装置において、前記複数の抵抗素子は電界効果トランジスタであることが好ましい。
この構成により、オンにする電界効果トランジスタを変更することにより、抵抗値調整回路の抵抗値が調整される。
上記の自動車用電源装置において、前記制御部は、前記キャパシタの出力電圧が上昇するにつれて、前記抵抗値調整回路の抵抗値を段階的に減少させるように、前記複数の抵抗素子のオン・オフ切替えを制御することが好ましい。
上記の自動車用電源装置において、前記制御部は、前記キャパシタの出力電圧が上昇するにつれて、前記抵抗値調整回路の抵抗値を段階的に減少させるように、前記複数の抵抗素子のオン・オフ切替えを制御することが好ましい。
この構成により、キャパシタの出力電圧が上昇するにつれて、抵抗値調整回路の抵抗値が減少する。
本発明の別の態様によれば、オルタネータ及びバッテリーの少なくともいずれかから出力される電力を、抵抗値調整回路を介してキャパシタに供給する自動車用電源装置の制御方法は、前記キャパシタの出力電圧が上昇するにつれて、前記抵抗値調整回路の抵抗値を段階的に減少させることを特徴とする。
本発明の別の態様によれば、オルタネータ及びバッテリーの少なくともいずれかから出力される電力を、抵抗値調整回路を介してキャパシタに供給する自動車用電源装置の制御方法は、前記キャパシタの出力電圧が上昇するにつれて、前記抵抗値調整回路の抵抗値を段階的に減少させることを特徴とする。
この方法により、キャパシタの出力電圧の上昇にともなって、バッテリーとキャパシタとの間の抵抗値が減少する。
本発明の自動車用電源装置によれば、キャパシタの劣化を抑制しながら、充電効率を向上させることができる。
以下、自動車用電源装置の一実施形態を図面に従って説明する。上記従来例と同一の構成部分には同一符号を付している。
図1に示す自動車用電源装置は、オルタネータ1の発電電力がバッテリー2に供給されるとともに、リレー3を介して電気二重層キャパシタで構成されるキャパシタ4及び負荷群5に供給される。
図1に示す自動車用電源装置は、オルタネータ1の発電電力がバッテリー2に供給されるとともに、リレー3を介して電気二重層キャパシタで構成されるキャパシタ4及び負荷群5に供給される。
オルタネータ1は、回生動作時及びバッテリー2の充電量が少ないとき、エンジンの動作に基づいて作動し、発電電力を出力する。リレー3は、電源制御ECUにより、主に回生動作時に導通状態となるように制御され、オルタネータ1の発電電力あるいはバッテリー2の充電電力が抵抗値調整回路11を介してキャパシタ4に供給される。
回生動作時以外には、キャパシタ4の出力電圧が一定レベル以上であれば、リレー3が不導通状態となる。そして、キャパシタ4の蓄電電力が抵抗値調整回路11を介して負荷群5に供給される。
抵抗値調整回路11では、オン・オフ切替え可能な複数の抵抗素子が並列接続されている。本実施形態では、複数の抵抗素子は4個のFET素子(電界効果トランジスタ)12a~12dからなる。各FET素子12a~12dのゲートが制御部13に接続されて、各FET素子12a~12dのオン・オフ動作が制御部13により制御される。抵抗値調整回路11と制御部13とが電流調整回路を構成する。
制御部13には、キャパシタ4の出力電圧(充電電圧)Vcが入力される。制御部13は、キャパシタ4の出力電圧Vcが上昇するにつれて、FET素子12aのみがオンされた状態から、各FET素子12b~12dを順次オンさせて、導通状態のFET素子の数を増大させる。
各FET素子12a~12dのオン抵抗は、FET素子12aが最も大きく、FET素子12bからFET素子12dに向かって順次小さくなるように設定されている。具体的には、各FET素子12a~12dの抵抗値の比は、8:4:2:1に設定されている。
従って、各FET素子12a~12dのうちオンさせるFET素子の個数及び組み合わせを変更することにより、抵抗値調整回路11の合成抵抗値を10段階に変更可能である。
抵抗値調整回路11の合成抵抗値は、キャパシタ4の出力電圧Vcとバッテリー2の出力電圧に基づいて、キャパシタ4に流れる充電電流Icが100A程度となるように制御される。
次に、上記実施形態の自動車用電源装置の作用を図2に従って説明する。
回生動作時にオルタネータ1が作動すると、オルタネータ1の発電電力がバッテリー2に供給されるとともに、リレー3を介してキャパシタ4及び負荷群5に供給される。
回生動作時にオルタネータ1が作動すると、オルタネータ1の発電電力がバッテリー2に供給されるとともに、リレー3を介してキャパシタ4及び負荷群5に供給される。
このとき、キャパシタ4がほぼ放電状態であって、その出力電圧Vcがあらかじめ設定されているしきい値電圧以下であると、抵抗値調整回路11ではFET素子12aのみがオンされる(第一の領域X1)。
すると、FET素子12aのオン抵抗R1によりキャパシタ4の充電電流Icがほぼ100A以下となる。
キャパシタ4の充電が進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12aに加えてFET素子12bがオンされる(第二の領域X2)。
キャパシタ4の充電が進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12aに加えてFET素子12bがオンされる(第二の領域X2)。
すると、FET素子12a,12bのオン抵抗の合成抵抗R2によりキャパシタ4の充電電流Icがほぼ100Aに復帰する。
キャパシタ4の充電がさらに進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12a,12bに加えてFET素子12cがオンされる(第三の領域X3)。
キャパシタ4の充電がさらに進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12a,12bに加えてFET素子12cがオンされる(第三の領域X3)。
すると、FET素子12a,12b,12cのオン抵抗の合成抵抗R3によりキャパシタ4の充電電流Icがほぼ100Aに復帰する。
キャパシタ4の充電がさらに進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12a,12b,12cに加えてFET素子12dがオンされる(第四の領域X4)。
キャパシタ4の充電がさらに進んで、その出力電圧Vcが上昇して充電電流Icが減少すると、抵抗値調整回路11ではFET素子12a,12b,12cに加えてFET素子12dがオンされる(第四の領域X4)。
すると、FET素子12a~12dのオン抵抗の合成抵抗R4によりキャパシタ4の充電電流Icがほぼ100Aに復帰し、充電が継続される。
キャパシタ4の出力電圧Vcの上昇にともなって、抵抗値調整回路11の合成抵抗値が減少して充電電流Icがほぼ100Aとなるように、オンさせるFET素子の組み合わせがさらに変更される。
キャパシタ4の出力電圧Vcの上昇にともなって、抵抗値調整回路11の合成抵抗値が減少して充電電流Icがほぼ100Aとなるように、オンさせるFET素子の組み合わせがさらに変更される。
回生動作が終了すると、キャパシタ4に蓄電された電力が負荷群5に供給されるとともに、アイドルストップ後のエンジン再始動時にはキャパシタ4の蓄電電力でスターターモータが駆動される。
上記の自動車用電源装置は、下記の効果を奏する。
(1)キャパシタ4の出力電圧Vcが低い場合には、抵抗値調整回路11の抵抗値を大きくして、キャパシタ4に流入する充電電流Icを制限することができる。従って、過大な充電電流の流入によるキャパシタ4の劣化を抑制することができる。
(2)キャパシタ4の出力電圧Vcが上昇するにつれて、抵抗値調整回路11の抵抗値を減少させることにより、キャパシタ4の充電効率を向上させることができる。
(3)抵抗値調整回路11のFET素子12a~12dが、それぞれ異なる抵抗値を有するので、4個のFET素子12a~12dのうちオンさせるFET素子の数及び組み合わせを変更することにより、様々な抵抗値を生成することができる。特に、FET素子12a~12dの抵抗値の比が8:4:2:1であるので、4個のFET素子12a~12dにより、等間隔で10段階の合成抵抗値を生成することができる。
(1)キャパシタ4の出力電圧Vcが低い場合には、抵抗値調整回路11の抵抗値を大きくして、キャパシタ4に流入する充電電流Icを制限することができる。従って、過大な充電電流の流入によるキャパシタ4の劣化を抑制することができる。
(2)キャパシタ4の出力電圧Vcが上昇するにつれて、抵抗値調整回路11の抵抗値を減少させることにより、キャパシタ4の充電効率を向上させることができる。
(3)抵抗値調整回路11のFET素子12a~12dが、それぞれ異なる抵抗値を有するので、4個のFET素子12a~12dのうちオンさせるFET素子の数及び組み合わせを変更することにより、様々な抵抗値を生成することができる。特に、FET素子12a~12dの抵抗値の比が8:4:2:1であるので、4個のFET素子12a~12dにより、等間隔で10段階の合成抵抗値を生成することができる。
上記実施形態は以下のように変更してもよい。
・抵抗値調整回路において並列接続される複数のFET素子は、4個でなくてもよい。
・FET素子に代えて、抵抗値の異なる複数の抵抗と、各抵抗に対し直列に接続されたスイッチ回路を用いてもよい。この場合、各スイッチ回路の開閉制御により、導通状態となる抵抗の数を変更することによって合成抵抗値を調整する。
・抵抗値調整回路において並列接続される複数のFET素子は、4個でなくてもよい。
・FET素子に代えて、抵抗値の異なる複数の抵抗と、各抵抗に対し直列に接続されたスイッチ回路を用いてもよい。この場合、各スイッチ回路の開閉制御により、導通状態となる抵抗の数を変更することによって合成抵抗値を調整する。
上記の実施形態は例示を意図したものであり、本発明は上記実施形態に限定されるものではない。開示された例示的な実施形態に対し、本発明の主旨及び範囲から逸脱することなく、様々な代替、変更及び変形が可能である。たとえば、本発明の主題は開示された特定の実施形態の全ての特徴よりも少ない特徴に存在する可能性がある。そのため、請求の範囲は詳細な説明に組み込まれ、各請求項はそれ自体で、別個の実施形態を主張する。本発明の範囲は、このような代替形態、変更形態および変形形態のすべてを、それらのすべての均等物とともに、特許請求の範囲内に包含するように意図されている。
1…オルタネータ、2…バッテリー、4…キャパシタ、11…抵抗値調整回路、12a~12d…抵抗素子(電界効果トランジスタ)、13…制御部、Ic…充電電流、Vc…出力電圧。
Claims (5)
- 自動車用電源装置において、前記自動車用電源装置は、
オルタネータ、
バッテリー、
前記オルタネータ及び前記バッテリーに接続された電流調整回路、及び
前記電流調整回路に接続されたキャパシタであって、前記オルタネータ及び前記バッテリーの少なくともいずれかから出力される電力が前記電流調整回路を介して供給されるキャパシタを備え、
前記電流調整回路は、
前記バッテリーと前記キャパシタとの間に接続された抵抗値調整回路であって、並列接続されたオン・オフ切替え可能な複数の抵抗素子を備える抵抗値調整回路と、
前記キャパシタの出力電圧が入力され、かつ前記複数の抵抗素子のオン・オフ切替えを制御する制御部とを備え、
前記制御部は、前記キャパシタの出力電圧の上昇に応じて、前記複数の抵抗素子の各々のオン・オフ切替えを制御して前記抵抗値調整回路の抵抗値を変更するように構成されていることを特徴とする自動車用電源装置。 - 請求項1に記載の自動車用電源装置において、
前記複数の抵抗素子は、それぞれ異なる抵抗値を有することを特徴とする自動車用電源装置。 - 請求項1又は2に記載の自動車用電源装置において、
前記複数の抵抗素子は電界効果トランジスタであることを特徴とする自動車用電源装置。 - 請求項1乃至3のいずれか1項に記載の自動車用電源装置において、
前記制御部は、前記キャパシタの出力電圧が上昇するにつれて、前記抵抗値調整回路の抵抗値を段階的に減少させるように、前記複数の抵抗素子のオン・オフ切替えを制御することを特徴とする自動車用電源装置。 - オルタネータ及びバッテリーの少なくともいずれかから出力される電力を、抵抗値調整回路を介してキャパシタに供給する自動車用電源装置の制御方法において、
前記キャパシタの出力電圧の上昇に応じて、前記抵抗値調整回路の抵抗値を段階的に順次減少させることを特徴とする自動車用電源装置の制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049647A JP2016171663A (ja) | 2015-03-12 | 2015-03-12 | 自動車用電源装置及び自動車用電源装置の制御方法 |
JP2015-049647 | 2015-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143541A1 true WO2016143541A1 (ja) | 2016-09-15 |
Family
ID=56880503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055639 WO2016143541A1 (ja) | 2015-03-12 | 2016-02-25 | 自動車用電源装置及び自動車用電源装置の制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016171663A (ja) |
WO (1) | WO2016143541A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4106169A1 (en) * | 2021-06-14 | 2022-12-21 | Japan Aviation Electronics Industry, Limited | Connection method, feeding system, connector unit and feeding unit |
WO2024169543A1 (zh) * | 2023-02-15 | 2024-08-22 | 深圳市道通科技股份有限公司 | 电池放电电路、电路控制方法及电池放电装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019216346A (ja) * | 2018-06-12 | 2019-12-19 | 住友電気工業株式会社 | トランスインピーダンス増幅回路、及び利得可変増幅器 |
JP7353170B2 (ja) * | 2019-12-26 | 2023-09-29 | 日立Astemo株式会社 | 負荷回路装置および負荷回路装置の制御方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001298861A (ja) * | 2000-04-11 | 2001-10-26 | Asahi Optical Co Ltd | 電源回路及び電子スチルカメラ |
JP2009214839A (ja) * | 2008-03-12 | 2009-09-24 | Fuji Heavy Ind Ltd | 車両用電源装置 |
-
2015
- 2015-03-12 JP JP2015049647A patent/JP2016171663A/ja active Pending
-
2016
- 2016-02-25 WO PCT/JP2016/055639 patent/WO2016143541A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001298861A (ja) * | 2000-04-11 | 2001-10-26 | Asahi Optical Co Ltd | 電源回路及び電子スチルカメラ |
JP2009214839A (ja) * | 2008-03-12 | 2009-09-24 | Fuji Heavy Ind Ltd | 車両用電源装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4106169A1 (en) * | 2021-06-14 | 2022-12-21 | Japan Aviation Electronics Industry, Limited | Connection method, feeding system, connector unit and feeding unit |
WO2024169543A1 (zh) * | 2023-02-15 | 2024-08-22 | 深圳市道通科技股份有限公司 | 电池放电电路、电路控制方法及电池放电装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016171663A (ja) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101273820B1 (ko) | 전원 장치 | |
JP5440400B2 (ja) | 電源装置 | |
JP4162645B2 (ja) | 車両用の電源装置 | |
CN107342619B (zh) | 车辆用电源装置 | |
JP5911928B2 (ja) | 電源システム、および車両 | |
WO2016143541A1 (ja) | 自動車用電源装置及び自動車用電源装置の制御方法 | |
JP5387651B2 (ja) | 電源システム | |
WO2015136826A1 (ja) | エンジン始動装置 | |
CN103201928A (zh) | 用于在汽车中稳定电源电压的装置 | |
JP6384601B2 (ja) | 電源システム | |
CN110192320B (zh) | 电源装置和电源系统 | |
US10144373B2 (en) | Power supply system control device and power supply system control method | |
JP4508159B2 (ja) | エンジン始動装置 | |
JP6543069B2 (ja) | 車両用電源装置 | |
GB2552506A (en) | A battery system | |
KR101499990B1 (ko) | 자동차 고전압 배터리의 초기충전회로 | |
WO2018008567A1 (ja) | 電源制御装置、及び電源システム | |
WO2022202090A1 (ja) | 車両用電子制御ユニット | |
JP2009124914A (ja) | 電源制御装置及び電動パワーステアリング装置の電源制御装置 | |
JP6665719B2 (ja) | 電源制御装置、及び電源システム | |
JP6626741B2 (ja) | バッテリシステム制御装置 | |
JP2019216543A (ja) | 制御装置 | |
WO2017104455A1 (ja) | 車両用電源回路及び電源システム | |
CN114728591A (zh) | 用于使驱动系统的能量存储装置放电的电路 | |
JP5773639B2 (ja) | グロープラグ駆動制御方法及びグロープラグ駆動制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761512 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16761512 Country of ref document: EP Kind code of ref document: A1 |