WO2016143186A1 - Compressor comprising slide bearing - Google Patents

Compressor comprising slide bearing Download PDF

Info

Publication number
WO2016143186A1
WO2016143186A1 PCT/JP2015/079849 JP2015079849W WO2016143186A1 WO 2016143186 A1 WO2016143186 A1 WO 2016143186A1 JP 2015079849 W JP2015079849 W JP 2015079849W WO 2016143186 A1 WO2016143186 A1 WO 2016143186A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
bearing
sliding member
compressor
slide bearing
Prior art date
Application number
PCT/JP2015/079849
Other languages
French (fr)
Japanese (ja)
Inventor
辰也 佐々木
英人 中尾
祐司 ▲高▼村
勝紀 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017504560A priority Critical patent/JP6328322B2/en
Publication of WO2016143186A1 publication Critical patent/WO2016143186A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

A compressor comprising a slide bearing comprises: a shaft; a slide bearing that pivotally supports the shaft to rotate freely; and an oil supplying structure that has a pump that is disposed on one end of the shaft and operates by way of shaft rotation and that supplies oil to the slide bearing by passing the oil from the pump through the inside of the shaft. The slide bearing comprises a bearing into which the shaft is rotatably inserted, and a first sliding member that is inserted into a groove formed on the inner circumference of the bearing into which the shaft is inserted or a groove formed on the outer circumference of the shaft and for which the amount of protrusion above the groove increases due to a rise in temperature by having a linear expansion coefficient greater than the bearing.

Description

すべり軸受を有する圧縮機Compressor with slide bearing
 本発明は、すべり軸受を有する圧縮機に関し、特に、低速から高速まで運転するワイドレンジ駆動のスクロール圧縮機に関する。 The present invention relates to a compressor having a sliding bearing, and more particularly to a wide range drive scroll compressor that operates from a low speed to a high speed.
 回転機械には回転体に作用する荷重を支持する軸受が設けられている。軸受には転がり軸受とすべり軸受との2種類がある。すべり軸受は軸と軸受との間に油膜を形成し、くさびの効果により油膜圧力を発生させて軸受荷重を支持する構造である。一般的に油膜圧力は回転数が高い場合に発生しやすく、油膜圧力が発生すると、軸と軸受とが油膜で分離されて互いの接触を回避できるため、軸と軸受との摩耗及び焼付きは発生しない。一方、回転数が小さい場合には油膜圧力が発生しにくくなり、油膜厚さが薄くなるため、軸と軸受との接触による摩耗及び焼付きの発生が懸念される。 The rotating machine is provided with a bearing that supports a load acting on the rotating body. There are two types of bearings: rolling bearings and sliding bearings. A slide bearing has a structure in which an oil film is formed between a shaft and a bearing, and an oil film pressure is generated by the effect of a wedge to support a bearing load. In general, oil film pressure is likely to occur when the rotational speed is high. When oil film pressure is generated, the shaft and the bearing are separated by the oil film and can avoid contact with each other. Does not occur. On the other hand, when the rotational speed is small, the oil film pressure is less likely to be generated, and the oil film thickness becomes thin.
 ところで、冷媒圧縮機を搭載する空気調和機は、空調対象となる空間(部屋)の最大空調負荷に合わせて選定されることが多い。そして、実際の運転時(実運転時)には、建物の高断熱化による効果、及び、空調対象の部屋に設置されている内部機器からの発熱などにより、低負荷領域での運転が多くなる。また、低外気温時にも低能力での冷房運転が必要になってくる。 By the way, an air conditioner equipped with a refrigerant compressor is often selected according to the maximum air conditioning load of a space (room) to be air-conditioned. During actual operation (actual operation), the operation in a low load region increases due to the effect of high heat insulation of the building and the heat generated from the internal equipment installed in the air-conditioned room. . In addition, cooling operation with low capacity is required even at low outside temperatures.
 このため、空気調和機に使用される圧縮機は、低速回転域での運転頻度が増すことになる。また、従来より、圧縮機の行程容積を小さくして、低速から従来機と同等の最大負荷に相当する超高速まで運転できるワイドレンジ駆動とし、実運転時において高効率で運転できる圧縮機開発への取り組みが行われている。 For this reason, the compressor used for the air conditioner increases the frequency of operation in the low-speed rotation region. In addition, from the past, we have developed a compressor that can be operated with high efficiency during actual operation by reducing the stroke volume of the compressor and making it a wide range drive that can operate from low speed to ultra high speed equivalent to the maximum load equivalent to the conventional machine. Efforts are being made.
 更に、低負荷領域での効率をより高めるため、従来の圧縮機における最低回転数(例えば30Hz)よりも低い超低速運転を実現すると共に、低速運転時における軸受等のしゅう動部での摩擦損失の低減を図る取り組みも行われている。 Furthermore, in order to further improve the efficiency in the low load region, ultra-low speed operation lower than the minimum rotation speed (for example, 30 Hz) in the conventional compressor is realized, and friction loss at a sliding portion such as a bearing during low speed operation is achieved. Efforts to reduce this are also being made.
 しかし、すべり軸受を用いた従来の圧縮機では、低速で運転すると、軸と軸受との間の隙間内での動圧発生効果が小さくなり、これに伴い油膜厚さが小さくなって混合潤滑領域に移行しやすい。このため、軸受における摩擦係数が上昇し、摩擦損失を低減できないという課題がある。また、軸受しゅう動部材における耐焼付き性、耐摩耗性の向上を図る必要もある。 However, in a conventional compressor using a sliding bearing, when operating at a low speed, the effect of generating dynamic pressure in the gap between the shaft and the bearing is reduced, and as a result, the oil film thickness is reduced, resulting in a mixed lubrication region. Easy to transition to. For this reason, the friction coefficient in a bearing rises and there exists a subject that a friction loss cannot be reduced. It is also necessary to improve seizure resistance and wear resistance of the bearing sliding member.
 そこで、圧縮機内部のしゅう動部材における低摩擦係数化及び耐摩耗性の向上を図るものが提案されている。油膜厚さを確保し、流体潤滑で運転するために、例えば、特許文献1には、軸が挿入される軸受部材の円筒状孔内面に樹脂製の動圧溝を形成することが記載されている。また、特許文献2には、軸受部材の円筒状孔内面に、軸受部材よりも線膨張係数が高い樹脂を埋設し、軸と軸受部材とのしゅう動による摩擦熱に起因して樹脂を円筒状孔内面から突出させ、樹脂の固体潤滑効果によりしゅう動を容易にすることができるとの記載がされている。 Therefore, what has been proposed to reduce the friction coefficient and improve the wear resistance of the sliding members inside the compressor. In order to ensure the oil film thickness and to operate with fluid lubrication, for example, Patent Document 1 describes that a resin-made dynamic pressure groove is formed on the inner surface of a cylindrical hole of a bearing member into which a shaft is inserted. Yes. Further, in Patent Document 2, a resin having a higher linear expansion coefficient than that of the bearing member is embedded in the inner surface of the cylindrical hole of the bearing member, and the resin is formed into a cylindrical shape due to frictional heat caused by sliding between the shaft and the bearing member. It is described that the sliding can be facilitated by the solid lubrication effect of the resin protruding from the inner surface of the hole.
特開2013-253650号公報JP 2013-253650 A 実開昭58-193122号公報Japanese Utility Model Publication No. 58-193122
 上記特許文献1に記載の技術では、軸の回転数(運転周波数)について言及されておらず、低速運転の場合と高速運転の場合とで油膜厚さが変わる可能性について考慮されていない。すなわち、例えば30Hz未満の超低速の運転範囲で圧縮機を運転した場合に、動圧溝の作用により油膜厚さを保ち、流体潤滑で運転することが可能な設計とされていると仮定すると、高速運転時では以下の不都合が生じる。つまり、動圧溝が低速運転にあわせて設計されていると、高速運転では油膜厚さが厚くなり過ぎ、油膜の粘性抵抗(せん断抵抗)による軸受損失が増大する可能性がある。つまり、低速運転に合わせた軸受設計を行った結果、高速運転において不都合が生じる。 In the technique described in Patent Document 1, the shaft rotation speed (operation frequency) is not mentioned, and the possibility that the oil film thickness changes between low speed operation and high speed operation is not considered. That is, for example, assuming that the compressor is operated in an ultra-low speed operation range of less than 30 Hz, the oil film thickness is maintained by the action of the dynamic pressure groove, and it is designed to be able to operate with fluid lubrication. The following inconveniences occur during high-speed operation. That is, if the dynamic pressure groove is designed for low-speed operation, the oil film thickness becomes too thick in high-speed operation, and there is a possibility that bearing loss due to the viscous resistance (shear resistance) of the oil film increases. That is, as a result of bearing design adapted to low speed operation, inconvenience occurs in high speed operation.
 圧縮機では、低速から高速まで広い運転範囲で流体潤滑を確保することが求められており、逆に、高速運転に合わせて軸受設計した場合、今度は低速での油膜圧力不足による焼付きの発生が懸念される。 Compressors are required to ensure fluid lubrication in a wide operating range from low speed to high speed. Conversely, when bearings are designed for high speed operation, seizure occurs due to insufficient oil film pressure at low speed. Is concerned.
 また、上記特許文献2に記載の技術では、樹脂の固体潤滑効果によりしゅう動を容易にするとある。しかし、油を使用しない無潤滑の軸受であるために、摩擦係数は概ね0.05程度と想定される。通常、圧縮機に配置される軸受には油が使用され、摩擦係数は0.005程度である。樹脂の固体潤滑効果による摩擦係数は、油を使用する場合と比べると格段に高く、油を使用しない場合の摩擦損失の増大は免れない。また、上記特許文献2に記載の技術では油を使用しないために軸受部の冷却を期待できず、軸受部で摩擦熱が上昇し焼付きや異常摩耗の発生が懸念される。 Further, in the technique described in Patent Document 2, sliding is facilitated by the solid lubricating effect of the resin. However, since it is a non-lubricated bearing that does not use oil, the coefficient of friction is assumed to be approximately 0.05. Usually, oil is used for bearings arranged in the compressor, and the coefficient of friction is about 0.005. The coefficient of friction due to the solid lubrication effect of the resin is much higher than when oil is used, and an increase in friction loss when oil is not used is inevitable. Moreover, since the technique described in Patent Document 2 does not use oil, cooling of the bearing portion cannot be expected, and frictional heat rises at the bearing portion, which may cause seizure or abnormal wear.
 本発明は上記課題を解決するものであり、広い運転範囲において、低損失と高信頼性を確保することが可能なすべり軸受を有する圧縮機を得ることを目的とする。 This invention solves the said subject, and aims at obtaining the compressor which has a slide bearing which can ensure low loss and high reliability in a wide operating range.
 本発明に係るすべり軸受を有する圧縮機は、軸と、軸を回転自在に軸支するすべり軸受と、軸の一方の端部に設置されて軸の回転によって作動するポンプを有し、ポンプから軸の内部を通り、すべり軸受に油を供給する給油構造とを備え、すべり軸受は、軸が回転自在に挿入される軸受部と、軸受部において軸が挿入される内周部に形成された凹部又は軸の外周部に形成された凹部に挿入され、軸受部よりも大きい線膨張係数を有して、温度上昇により凹部から突出する高さが増大する第1しゅう動部材とを備えたものである。 A compressor having a slide bearing according to the present invention includes a shaft, a slide bearing that rotatably supports the shaft, and a pump that is installed at one end of the shaft and operates by rotation of the shaft. An oil supply structure that passes through the shaft and supplies oil to the slide bearing, and the slide bearing is formed in a bearing portion in which the shaft is rotatably inserted and an inner peripheral portion in which the shaft is inserted in the bearing portion. A first sliding member that is inserted into a recess or a recess formed on the outer periphery of the shaft, has a linear expansion coefficient larger than that of the bearing portion, and increases in height protruding from the recess due to temperature rise. It is.
 本発明によれば、広い運転範囲において、低損失と高信頼性を確保することが可能なすべり軸受を有する圧縮機を得ることができる。 According to the present invention, it is possible to obtain a compressor having a sliding bearing capable of ensuring low loss and high reliability in a wide operating range.
本発明の実施の形態1に関わるスクロール圧縮機の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the scroll compressor in connection with Embodiment 1 of this invention. 本発明の実施の形態1に関わるすべり軸受の横断面図である。It is a cross-sectional view of the plain bearing in connection with Embodiment 1 of this invention. 本発明の実施の形態1に関わるすべり軸受からしゅう動部材を取り外した状態を示す図で、(a)は図2のA矢視図、(b)は横断面展開図である。It is a figure which shows the state which removed the sliding member from the slide bearing in connection with Embodiment 1 of this invention, (a) is A arrow directional view of FIG. 2, (b) is a cross-sectional expanded view. 本発明の実施の形態1に関わるすべり軸受を示す図で、(a)は図2のA矢視図、(b)は横断面展開図である。It is a figure which shows the slide bearing in connection with Embodiment 1 of this invention, (a) is A arrow directional view of FIG. 2, (b) is a cross-sectional expanded view. 一般のすべり軸受に軸が挿入された状態の横断面図である。It is a cross-sectional view of a state in which a shaft is inserted into a general plain bearing. 一般のすべり軸受において軸の回転数が摩擦係数に及ぼす影響を示したグラフである。It is the graph which showed the influence which the rotation speed of a shaft exerts on a friction coefficient in a general slide bearing. 本発明の実施の形態1に関わるすべり軸受の動作形態を示した模式図である。It is the schematic diagram which showed the operation | movement form of the plain bearing in connection with Embodiment 1 of this invention. 図7の左下図において一点鎖線で囲った部分の拡大斜視図である。FIG. 8 is an enlarged perspective view of a portion surrounded by an alternate long and short dash line in the lower left diagram of FIG. 7. 本発明の実施の形態1に関わるスクロール圧縮機の回転数に応じて動圧溝が摩擦係数に及ぼす影響を示すグラフと、回転数に応じた温度上昇を示すグラフとを示す図である。It is a figure which shows the graph which shows the influence which a dynamic pressure groove has on a friction coefficient according to the rotation speed of the scroll compressor in connection with Embodiment 1 of this invention, and the graph which shows the temperature rise according to rotation speed. 本発明の実施の形態1に関わるすべり軸受の変形例を示す図である。It is a figure which shows the modification of the plain bearing in connection with Embodiment 1 of this invention. 本発明の実施の形態1に関わるすべり軸受の変形例を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。It is a figure which shows the modification of the slide bearing in connection with Embodiment 1 of this invention, (a) is a longitudinal cross-sectional view of a slide bearing, (b) is a cross-sectional expanded view of a slide bearing. 図11のすべり軸受のしゅう動部材が突出した場合のすべり軸受及び軸の横断面展開図である。FIG. 12 is a cross-sectional development view of the sliding bearing and the shaft when the sliding member of the sliding bearing of FIG. 11 protrudes. 本発明の実施の形態2に関わるすべり軸受を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。It is a figure which shows the slide bearing in connection with Embodiment 2 of this invention, (a) is a longitudinal cross-sectional view of a slide bearing, (b) is a cross-sectional expanded view of a slide bearing. 本発明の実施の形態3に関わるすべり軸受を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。It is a figure which shows the slide bearing in connection with Embodiment 3 of this invention, (a) is a longitudinal cross-sectional view of a slide bearing, (b) is a cross-sectional expanded view of a slide bearing. 本発明の実施の形態4に関わるすべり軸受の縦断面図である。It is a longitudinal cross-sectional view of the plain bearing in connection with Embodiment 4 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に関わるスクロール圧縮機の構成を模式的に示す縦断面図である。
 このスクロール圧縮機100は、冷媒等の流体を吸入し、圧縮して高温及び高圧の状態として吐出させる機能を有している。スクロール圧縮機100は、圧縮機構部10と主軸6を介して圧縮機構部10を駆動する電動機20と、その他の構成部品とを有し、これらが外郭を構成する密閉容器13の内部に収納された構成を有している。そして、密閉容器13の下方は、潤滑油を貯留する油溜め14となっている。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view schematically showing a configuration of a scroll compressor according to Embodiment 1 of the present invention.
The scroll compressor 100 has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high temperature and high pressure state. The scroll compressor 100 includes a compression mechanism unit 10 and an electric motor 20 that drives the compression mechanism unit 10 via the main shaft 6 and other components, and these are housed in an airtight container 13 that forms an outer shell. It has a configuration. A lower part of the sealed container 13 is an oil sump 14 for storing lubricating oil.
 密閉容器13には更に、上部ハウジング8aと下部ハウジング8bとが配置されている。上部ハウジング8aは、圧縮機構部10の下側に配置されて圧縮機構部10と電動機20との間に位置しており、下部ハウジング8bは、電動機20の下側に位置している。上部ハウジング8a及び下部ハウジング8bは、焼き嵌め又は溶接等によって密閉容器13の内周面に固着されている。上部ハウジング8a及び下部ハウジング8bの中央部には貫通孔が設けられており、この貫通孔に設けた主軸受19及び副軸受11に主軸6が回転自在に支持されている。 In the sealed container 13, an upper housing 8a and a lower housing 8b are further arranged. The upper housing 8 a is disposed on the lower side of the compression mechanism unit 10 and is positioned between the compression mechanism unit 10 and the electric motor 20, and the lower housing 8 b is positioned on the lower side of the electric motor 20. The upper housing 8a and the lower housing 8b are fixed to the inner peripheral surface of the sealed container 13 by shrink fitting or welding. A through hole is provided at the center of the upper housing 8a and the lower housing 8b, and the main shaft 6 is rotatably supported by a main bearing 19 and a sub bearing 11 provided in the through hole.
 密閉容器13には、流体を吸入するための冷媒吸入管15と、流体を吐出するための冷媒吐出管16とが設けられている。 The closed container 13 is provided with a refrigerant suction pipe 15 for sucking fluid and a refrigerant discharge pipe 16 for discharging fluid.
 圧縮機構部10は、冷媒吸入管15から吸入した流体を圧縮し、密閉容器13内の上方に形成されている高圧空間13aに排出する機能を有している。圧縮機構部10は、固定スクロール1と揺動スクロール2とを備えている。固定スクロール1は下側に配置された上部ハウジング8aを介して密閉容器13に固定されている。揺動スクロール2は固定スクロール1と上部ハウジング8aとの間に配置され、主軸6に揺動自在に支持されている。 The compression mechanism section 10 has a function of compressing the fluid sucked from the refrigerant suction pipe 15 and discharging it to the high-pressure space 13 a formed above the sealed container 13. The compression mechanism unit 10 includes a fixed scroll 1 and a swing scroll 2. The fixed scroll 1 is fixed to the hermetic container 13 via an upper housing 8a disposed on the lower side. The swing scroll 2 is disposed between the fixed scroll 1 and the upper housing 8a, and is supported on the main shaft 6 so as to be swingable.
 固定スクロール1は、第1台板1aと、第1台板1aの一方の面に立設された第1渦巻突起1bとを備えている。揺動スクロール2は、第2台板2aと、第2台板2aの一方の面に立設された第2渦巻突起2bとを備えている。固定スクロール1及び揺動スクロール2は、第1渦巻突起1bと第2渦巻突起2bとを互いに噛み合わせた状態で密閉容器13内に装着されている。そして、第1渦巻突起1bと第2渦巻突起2bとの間には、主軸6の回転に伴い、容積が半径方向内側へ向かうにしたがって縮小する圧縮室5が形成されている。固定スクロール1において、圧縮室5の外周側には冷媒吸入管15から吸入された冷媒を圧縮室5内に供給する吸入口3が形成されている。また、固定スクロール1の中央部には、圧縮されて高圧となった流体を吐出する吐出口4が形成されている。 The fixed scroll 1 includes a first base plate 1a and a first spiral protrusion 1b erected on one surface of the first base plate 1a. The orbiting scroll 2 includes a second base plate 2a and a second spiral protrusion 2b erected on one surface of the second base plate 2a. The fixed scroll 1 and the orbiting scroll 2 are mounted in the hermetic container 13 with the first spiral protrusion 1b and the second spiral protrusion 2b meshing with each other. A compression chamber 5 is formed between the first spiral protrusion 1b and the second spiral protrusion 2b, the volume of which decreases as the main shaft 6 rotates inward in the radial direction. In the fixed scroll 1, a suction port 3 for supplying the refrigerant sucked from the refrigerant suction pipe 15 into the compression chamber 5 is formed on the outer peripheral side of the compression chamber 5. In addition, a discharge port 4 is formed at the center of the fixed scroll 1 to discharge the compressed and high pressure fluid.
 揺動スクロール2は、固定スクロール1に対して自転することなく偏心旋回運動を行うようになっている。また、揺動スクロール2の第2渦巻突起2b形成面とは反対側の面(以下、スラスト面と称する)の略中心部には、駆動力を受ける中空円筒形状の揺動軸受17が配置されている。揺動軸受17には、主軸6の上端に設けられた後述の偏心軸6aが嵌入(係合)されている。揺動スクロール2はスラスト軸受18を介して上部ハウジング8aに下方からしゅう動自在に支持されている。 The orbiting scroll 2 performs an eccentric turning motion without rotating with respect to the fixed scroll 1. A hollow cylindrical rocking bearing 17 that receives a driving force is disposed at a substantially central portion of a surface (hereinafter referred to as a thrust surface) opposite to the surface on which the second spiral protrusion 2b is formed of the rocking scroll 2. ing. An eccentric shaft 6a (described later) provided at the upper end of the main shaft 6 is fitted (engaged) with the rocking bearing 17. The orbiting scroll 2 is supported by the upper housing 8a through a thrust bearing 18 so as to be slidable from below.
 電動機20は、ロータ20aとステータ20bとを備えている。ステータ20bは、通電されることによってロータ20aを回転駆動させる機能を有している。また、ステータ20bは、略円筒形状に形成されており、外周面が焼き嵌め等により密閉容器13に固着支持されている。ロータ20aは、主軸6の外周に固定されており、内部に永久磁石を有し、ステータ20bと僅かな隙間を隔ててステータ20bの内側に回転可能に保持されている。そして、ロータ20aは、ステータ20bに通電がされることにより回転駆動し、主軸6を回転させる。つまり、ロータ20aが回転することにより、圧縮機構部10に、主軸6を介して回転動力が伝達されることとなる。 The electric motor 20 includes a rotor 20a and a stator 20b. The stator 20b has a function of rotating the rotor 20a when energized. The stator 20b is formed in a substantially cylindrical shape, and its outer peripheral surface is fixedly supported by the closed container 13 by shrink fitting or the like. The rotor 20a is fixed to the outer periphery of the main shaft 6, has a permanent magnet inside, and is rotatably held inside the stator 20b with a slight gap from the stator 20b. The rotor 20a is rotationally driven when the stator 20b is energized to rotate the main shaft 6. That is, rotation power is transmitted to the compression mechanism 10 via the main shaft 6 by the rotation of the rotor 20a.
 主軸6は、上側が上部ハウジング8aに設けた主軸受19で回転可能に支持され、下側が下部ハウジング8bに設けた副軸受11で回転可能に支持されている。また、主軸6は、上端部に偏心軸6aを有し、偏心軸6aが揺動スクロール2の揺動軸受17と嵌め合わされ、主軸6の回転により揺動スクロール2を偏心旋回運動させるようになっている。また、主軸6の上部にはバランサ6bが突設されると共に、主軸6には軸心方向に貫通して給油孔7aが形成されている。主軸6の下端部にはポンプ7bが設置されている。ポンプ7bは、上面開口が主軸6の下端部に嵌合され、下端開口が油溜め14の潤滑油中に浸漬されており、油溜め14に貯溜された油を上方に吸い上げて給油孔7aに供給する。給油孔7aとポンプ7bとにより給油機構7が構成されている。 The main shaft 6 is rotatably supported by a main bearing 19 provided on the upper housing 8a on the upper side and rotatably supported by a sub bearing 11 provided on the lower housing 8b on the lower side. Further, the main shaft 6 has an eccentric shaft 6 a at the upper end, and the eccentric shaft 6 a is fitted with the rocking bearing 17 of the rocking scroll 2, and the rocking scroll 2 is eccentrically swung by the rotation of the main shaft 6. ing. In addition, a balancer 6b protrudes from the upper portion of the main shaft 6, and an oil supply hole 7a is formed through the main shaft 6 in the axial direction. A pump 7 b is installed at the lower end of the main shaft 6. The pump 7b has an upper surface opening fitted into the lower end portion of the main shaft 6 and a lower end opening immersed in the lubricating oil in the oil sump 14. The oil stored in the oil sump 14 is sucked upward to the oil supply hole 7a. Supply. The oil supply mechanism 7 is constituted by the oil supply hole 7a and the pump 7b.
 そして、密閉容器13内には、揺動スクロール2の偏心旋回運動中における揺動スクロール2の自転を防止するためのオルダム継手12が揺動スクロール2と上部ハウジング8aとの間に配置されている。上部ハウジング8aには、オルダム継手12に供給された潤滑油を油溜め14に返油する返油パイプ9が接続されている。 In the hermetic container 13, an Oldham coupling 12 for preventing the swing scroll 2 from rotating during the eccentric orbiting motion of the swing scroll 2 is disposed between the swing scroll 2 and the upper housing 8a. . The upper housing 8a is connected to an oil return pipe 9 that returns the lubricating oil supplied to the Oldham coupling 12 to the oil sump 14.
 次に動作について説明する。電動機20のロータ20aと共に主軸6が回転すると、揺動スクロール2はオルダム継手12により自転を阻止されながら公転運動を行う。冷媒吸入管15から密閉容器13内に吸入されたガス冷媒は、固定スクロール1に設けられた吸入口3を介して固定スクロール1の第1渦巻突起1bと揺動スクロール2の第2渦巻突起2bとの間に形成された圧縮室5に取り込まれる。そして、ガス冷媒を取り込んだ圧縮室5は、揺動スクロール2の公転運動に伴い、外周部から中心側に移動しながら次第に容積を減じ、冷媒ガスを圧縮する。そして、圧縮された冷媒ガスは、吐出口4及び冷媒吐出管16を通じて機外の冷媒配管内へ圧送される。 Next, the operation will be described. When the main shaft 6 rotates together with the rotor 20 a of the electric motor 20, the orbiting scroll 2 performs a revolving motion while being prevented from rotating by the Oldham joint 12. The gas refrigerant sucked into the sealed container 13 from the refrigerant suction pipe 15 passes through the suction port 3 provided in the fixed scroll 1, and the first spiral protrusion 1 b of the fixed scroll 1 and the second spiral protrusion 2 b of the swing scroll 2. Are taken into the compression chamber 5 formed between the two. And the compression chamber 5 which took in the gas refrigerant | coolant gradually reduces a volume, moving from an outer peripheral part to a center side with the revolution motion of the rocking scroll 2, and compresses refrigerant gas. The compressed refrigerant gas is pumped into the refrigerant pipe outside the apparatus through the discharge port 4 and the refrigerant discharge pipe 16.
 このようにして密閉容器13内の冷媒が外部へ吐出されるので、密閉容器13内は負圧となり、機外の冷媒配管からの冷媒は冷媒吸入管15を通じて吸入されて、電動機20を冷却した後、吸入口3から圧縮室5に吸入される。 Since the refrigerant in the sealed container 13 is discharged to the outside in this way, the inside of the sealed container 13 becomes negative pressure, and the refrigerant from the refrigerant pipe outside the machine is sucked through the refrigerant suction pipe 15 to cool the electric motor 20. Thereafter, the air is sucked into the compression chamber 5 from the suction port 3.
 また、油溜め14の潤滑油は、給油機構7のポンプ作用により給油孔7aを通じて主軸6の上端部へ送られて副軸受11、主軸受19、揺動軸受17を潤滑する。ここで、ポンプ7bは主軸6の回転数に比例して給油流量が増加する容積型である。容積型を用いると、回転数が高いほど給油流量が多くなるため軸受の冷却効果が増加する。なお、軸受の冷却効果の観点からポンプ7bには容積型ポンプを用いることが好ましいが、ポンプ7bは容積型ポンプに限られず、非容積型ポンプでも良い。揺動軸受17を経由した潤滑油は主軸受19及びオルダム継手12に供給されて、これらしゅう動部を潤滑する。また、オルダム継手12に供給された潤滑油は返油パイプ9を経て油溜め14に戻される。 Further, the lubricating oil in the oil sump 14 is sent to the upper end portion of the main shaft 6 through the oil supply hole 7 a by the pump action of the oil supply mechanism 7 to lubricate the sub bearing 11, the main bearing 19, and the rocking bearing 17. Here, the pump 7b is a positive displacement type in which the oil supply flow rate increases in proportion to the rotational speed of the main shaft 6. When the positive displacement type is used, the higher the number of revolutions, the greater the oil supply flow rate, so the bearing cooling effect increases. Although a positive displacement pump is preferably used as the pump 7b from the viewpoint of the bearing cooling effect, the pump 7b is not limited to the positive displacement pump and may be a non-displacement pump. Lubricating oil that has passed through the rocking bearing 17 is supplied to the main bearing 19 and the Oldham coupling 12 to lubricate the sliding portions. The lubricating oil supplied to the Oldham coupling 12 is returned to the oil sump 14 through the oil return pipe 9.
 次に、揺動軸受17及び主軸受19について説明する。揺動軸受17及び主軸受19にはすべり軸受が採用されており、潤滑油がすべり軸受に供給されると、軸(主軸6、偏心軸6a)とすべり軸受との間の隙間に油膜が形成される。そして、油膜により軸とすべり軸受とが分離され、すべり軸受は非接触で軸に作用する荷重を支持する。 Next, the rocking bearing 17 and the main bearing 19 will be described. Slide bearings are used for the rocking bearing 17 and the main bearing 19, and when lubricating oil is supplied to the slide bearing, an oil film is formed in the gap between the shaft (main shaft 6, eccentric shaft 6a) and the slide bearing. Is done. The shaft and the slide bearing are separated by the oil film, and the slide bearing supports a load acting on the shaft in a non-contact manner.
 図2は、本発明の実施の形態1に関わるすべり軸受の横断面図である。図3は、本発明の実施の形態1に関わるすべり軸受からしゅう動部材を取り外した状態を示す図で、(a)は図2のA矢視図、(b)は横断面展開図である。展開図は軸受の幅方向(図3(a)の上下方向)の中心で切断した断面を0°の位置から平面に展開した様子を表している。図4は、本発明の実施の形態1に関わるすべり軸受を示す図で、(a)は図2のA矢視図、(b)は横断面展開図である。 FIG. 2 is a cross-sectional view of the plain bearing according to the first embodiment of the present invention. FIGS. 3A and 3B are views showing a state in which the sliding member is removed from the slide bearing according to the first embodiment of the present invention, where FIG. 3A is a view as viewed in the direction of arrow A in FIG. 2 and FIG. . The development view shows a state in which a cross section cut at the center in the width direction of the bearing (vertical direction in FIG. 3A) is developed from a position of 0 ° to a plane. 4A and 4B are diagrams showing the plain bearing according to the first embodiment of the present invention, in which FIG. 4A is a view taken in the direction of arrow A in FIG. 2 and FIG.
 すべり軸受30は、軸が回転自在に挿入される円筒状の内周部を有する軸受部31と、しゅう動部材32とを有する。軸受部31には、A矢視図に示すように内周面にV字状の凹部31aが周方向に複数、並設されている。凹部31aの高さをhとする。凹部31aには、凹部31aと同形状のしゅう動部材(第1しゅう動部材)32が挿入されている。 The slide bearing 30 includes a bearing portion 31 having a cylindrical inner peripheral portion into which a shaft is rotatably inserted, and a sliding member 32. The bearing 31 has a plurality of V-shaped recesses 31a arranged in parallel in the circumferential direction on the inner peripheral surface as shown in the arrow A view. The height of the recessed part 31a is set to h. A sliding member (first sliding member) 32 having the same shape as the concave portion 31a is inserted into the concave portion 31a.
 しゅう動部材32は、凹部31aの深さと同様の高さhを有しており、図4に示すようにすべり軸受30の内周面は段差がなく平滑である。すなわち、すべり軸受30の内周面は、凹部31aにしゅう動部材32が設置された部分も含めて面一となっている。しゅう動部材32は、軸受部31よりも線膨張係数が高い材料で構成されている。軸受部31の材質は例えば金属、しゅう動部材32は金属よりも線膨張係数が高い材質として例えば樹脂が挙げられる。固体潤滑効果を有する樹脂のしゅう動部材32を適用することで、軸としゅう動部材32とが接触した場合においても低摩擦係数を維持できるという利点もある。 The sliding member 32 has a height h similar to the depth of the recess 31a, and the inner peripheral surface of the slide bearing 30 is smooth without any step as shown in FIG. That is, the inner peripheral surface of the slide bearing 30 is flush with the concave portion 31a including the portion where the sliding member 32 is installed. The sliding member 32 is made of a material having a higher linear expansion coefficient than the bearing portion 31. The material of the bearing portion 31 is, for example, metal, and the sliding member 32 is, for example, a resin having a higher linear expansion coefficient than that of metal. By applying the resin sliding member 32 having a solid lubricating effect, there is an advantage that a low friction coefficient can be maintained even when the shaft and the sliding member 32 are in contact with each other.
 ここで、図2~図4に示した本実施の形態1のすべり軸受30の動作を説明するに先立ち、一般のすべり軸受の軸回転時のしゅう動の様子を説明する。 Here, prior to explaining the operation of the sliding bearing 30 of the first embodiment shown in FIGS. 2 to 4, the state of sliding during rotation of a general sliding bearing will be described.
 図5は、一般のすべり軸受に軸が挿入された状態の横断面図である。
 軸40が図5において左回りに回転すると仮定すると、軸40とすべり軸受41との間の隙間に満たされている潤滑油は、軸40の回転に伴い、矢印に示すようにすべり軸受41の内周面においてA°の位相の位置からB°の位相の位置に向かって引き込まれる。ここで、A°の位相の位置からB°の位相の位置に向かって引き込まれる潤滑油の流路は、流路断面積が徐々に狭まるくさび形状であり、それ故、油膜圧力が発生する。くさび形状による油膜圧力は、軸40の回転数が大きいほど大きくなる。
FIG. 5 is a cross-sectional view showing a state in which a shaft is inserted into a general plain bearing.
Assuming that the shaft 40 rotates counterclockwise in FIG. 5, the lubricating oil filled in the gap between the shaft 40 and the slide bearing 41 moves along the rotation of the shaft 40 as indicated by the arrow. On the inner peripheral surface, it is drawn from the position of the A ° phase toward the position of the B ° phase. Here, the flow path of the lubricating oil drawn from the position of the A ° phase toward the position of the B ° phase has a wedge shape in which the cross-sectional area of the flow path gradually narrows, and therefore an oil film pressure is generated. The oil film pressure due to the wedge shape increases as the rotational speed of the shaft 40 increases.
 反対に回転数が小さくなると油膜圧力が小さくなる。このため、回転数が小さい場合、すべり軸受41に作用する荷重を支持できず、B°の位相の位置での油膜厚さが薄くなり、軸40がすべり軸受41に接触する。 On the other hand, when the rotational speed is reduced, the oil film pressure is reduced. For this reason, when the rotational speed is small, the load acting on the slide bearing 41 cannot be supported, the oil film thickness at the B ° phase position becomes thin, and the shaft 40 comes into contact with the slide bearing 41.
 図6は、一般のすべり軸受において軸の回転数が摩擦係数に及ぼす影響を示したグラフである。図6において横軸は回転数、縦軸は摩擦係数である。
 一般的にすべり軸受41において軸40とすべり軸受41とが油膜で隔てられている場合、潤滑油の粘性抵抗のみが軸40の摩擦力として作用し、摩擦係数は0.001~0.009の範囲にある。しかし、回転数が小さくB°の位相の位置で軸40とすべり軸受41とが接触した場合、固体接触の摩擦係数は一般的に0.01~0.1程度となり、粘性抵抗による摩擦係数に比べて大きくなる。ここで、摩擦損失L[W]は式1で表される。
[数1]
 L=μFV          ・・・ (式1)
FIG. 6 is a graph showing the influence of the rotational speed of the shaft on the friction coefficient in a general plain bearing. In FIG. 6, the horizontal axis represents the rotational speed and the vertical axis represents the friction coefficient.
Generally, in the sliding bearing 41, when the shaft 40 and the sliding bearing 41 are separated by an oil film, only the viscous resistance of the lubricating oil acts as the frictional force of the shaft 40, and the friction coefficient is 0.001 to 0.009. Is in range. However, when the shaft 40 and the slide bearing 41 come into contact with each other at a low rotational speed and a B ° phase position, the friction coefficient of the solid contact is generally about 0.01 to 0.1, which is a friction coefficient due to viscous resistance. Compared to larger. Here, the friction loss L [W] is expressed by Equation 1.
[Equation 1]
L = μFV (Formula 1)
 ここで、μは摩擦係数、Fは荷重[N]、Vはすべり速度[m/s]である。 Here, μ is a friction coefficient, F is a load [N], and V is a sliding speed [m / s].
 このように、回転数が小さい場合には軸40がすべり軸受41に接触し、摩擦損失による発熱が生じる。このような発熱は、潤滑油、軸40、すべり軸受41の温度を上昇させ、焼付きの原因となる。 Thus, when the rotational speed is small, the shaft 40 comes into contact with the slide bearing 41 and heat is generated due to friction loss. Such heat generation raises the temperature of the lubricating oil, the shaft 40, and the slide bearing 41, and causes seizure.
 そこで、本実施の形態1では、このように回転数が小さい場合すなわち低速運転の場合の焼付きを抑制するために、上述したようにすべり軸受30の軸受部31の内周部に凹部31aを設けると共に、凹部31a内に軸受部31よりも線膨張係数が高いしゅう動部材32を配置した構成としている。なお、例えば60rps未満が低速運転、60~120rpsが高速運転に相当する。 Therefore, in the first embodiment, in order to suppress seizure when the rotational speed is small, that is, when operating at a low speed, the concave portion 31a is provided on the inner peripheral portion of the bearing portion 31 of the slide bearing 30 as described above. In addition, the sliding member 32 having a linear expansion coefficient higher than that of the bearing portion 31 is disposed in the recess 31a. For example, less than 60 rps corresponds to low speed operation, and 60 to 120 rps corresponds to high speed operation.
 しゅう動部材32は、上述したように軸受部31よりも線膨張係数が大きい材料で形成されているため、運転中に軸との接触により摩擦熱が生じると、その摩擦熱に起因した温度上昇により膨張し、凹部31aからすべり軸受30の内周面方向に突出する挙動を示す。この挙動について、以下、図7及び図8を参照して詳述する。 Since the sliding member 32 is formed of a material having a larger linear expansion coefficient than the bearing portion 31 as described above, if frictional heat is generated by contact with the shaft during operation, the temperature rises due to the frictional heat. The behavior which expand | swells by this and protrudes in the internal peripheral surface direction of the slide bearing 30 from the recessed part 31a is shown. This behavior will be described in detail below with reference to FIGS.
 図7は、本発明の実施の形態1に関わるすべり軸受の動作形態を示した模式図である。図7において軸60(主軸6、偏心軸6a)の中心の空洞部分と空洞部分から半径方向に延びる部分は給油穴を示している。また、図7において薄いドットで示した部分は潤滑油を示している。図8は、図7の左下図において一点鎖線で囲った部分の拡大斜視図である。ここで、軸60の回転方向は、凹部31aのV字が先細りとなる方向に(図8では左から右に向かう方向)に限定される。よって、V字が先細りとなる方向に油の流れが発生する。 FIG. 7 is a schematic diagram showing an operation mode of the plain bearing according to the first embodiment of the present invention. In FIG. 7, a hollow portion at the center of the shaft 60 (the main shaft 6 and the eccentric shaft 6a) and a portion extending in the radial direction from the hollow portion indicate oil supply holes. Moreover, the part shown with the thin dot in FIG. 7 has shown lubricating oil. FIG. 8 is an enlarged perspective view of a portion surrounded by an alternate long and short dash line in the lower left diagram of FIG. Here, the rotation direction of the shaft 60 is limited to a direction in which the V-shape of the recess 31a is tapered (a direction from left to right in FIG. 8). Therefore, an oil flow is generated in a direction in which the V-shape is tapered.
 運転停止時は、しゅう動部材32が変形せず、すべり軸受30の内周面は平滑を維持している。 When the operation is stopped, the sliding member 32 is not deformed, and the inner peripheral surface of the slide bearing 30 is kept smooth.
(低速運転)
 図7の(a)に示すように、低速運転の開始初期は、潤滑油の流量が少なく、また軸60の回転数が小さいため、軸60がすべり軸受30に接触し、摩擦損失による発熱が生じる。
(Low speed operation)
As shown in FIG. 7 (a), at the beginning of the low speed operation, the flow rate of the lubricating oil is small and the rotational speed of the shaft 60 is small. Arise.
 ここで、図7の(a)に示すように、B°位相の近辺で軸60がすべり軸受30に接触すると、B°位相の近辺に配置されたしゅう動部材32が図7の(b)及び図8に示すように摩擦熱により膨張して突出する。しゅう動部材32が突出することで、しゅう動部材32が突出していない部分が溝となり、この溝が動圧溝として機能する。すなわち、しゅう動部材32が突出することで、まず、しゅう動部材32の表面が軸60に接触するが、同時に、動圧溝の作用により、図8の点線矢印に示すようにすべり軸受30の幅方向の中心に向かう潤滑油の流れができる。この潤滑油の流れによって、すべり軸受30の幅方向の中心部において、油膜圧力が発生し、軸60に作用する荷重を支持できるようになる。このため、しゅう動部材32と軸60との間に油膜が形成されて互いに非接触となり、軸60は、流体潤滑でしゅう動できるようになる。 Here, as shown in FIG. 7A, when the shaft 60 comes into contact with the slide bearing 30 in the vicinity of the B ° phase, the sliding member 32 disposed in the vicinity of the B ° phase is moved to the position shown in FIG. And as shown in FIG. 8, it expands and protrudes by frictional heat. When the sliding member 32 protrudes, the portion where the sliding member 32 does not protrude becomes a groove, and this groove functions as a dynamic pressure groove. That is, when the sliding member 32 protrudes, first, the surface of the sliding member 32 comes into contact with the shaft 60. At the same time, as shown by the dotted arrow in FIG. Lubricating oil flows toward the center in the width direction. Due to the flow of the lubricating oil, an oil film pressure is generated at the center of the slide bearing 30 in the width direction, and a load acting on the shaft 60 can be supported. For this reason, an oil film is formed between the sliding member 32 and the shaft 60 so as not to contact each other, and the shaft 60 can be slid by fluid lubrication.
 例えば、しゅう動部材32の熱膨張係数を10×10-5[/K]とし、高さhが1[mm]の場合に、摩擦熱による温度上昇が50[K]あれば、しゅう動部材32の突出高さは5[μm]となる。しゅう動部材32の突出高さが2~10[μm]となるような設計をすれば軸60は流体潤滑でしゅう動できるようになる。また、しゅう動部材32が突出してすぐは軸60に接触するが、樹脂の持つ固体潤滑効果により摩耗は抑制される。固体潤滑効果を有する樹脂として、例えばフッ素、POM、PPS等が挙げられる。後述のしゅう動部材33、34、35も同様の素材で構成できる。また、軸受部31の材料は例えば、鉄、銅、アルミ等が挙げられる。 For example, when the thermal expansion coefficient of the sliding member 32 is 10 × 10 −5 [/ K] and the height h is 1 [mm], if the temperature rise due to frictional heat is 50 [K], the sliding member The protrusion height of 32 is 5 [μm]. If the design is such that the protruding height of the sliding member 32 is 2 to 10 [μm], the shaft 60 can be slid by fluid lubrication. Further, immediately after the sliding member 32 protrudes, it contacts the shaft 60, but wear is suppressed by the solid lubricating effect of the resin. Examples of the resin having a solid lubricating effect include fluorine, POM, PPS, and the like. The sliding members 33, 34, and 35 to be described later can be made of the same material. Examples of the material for the bearing portion 31 include iron, copper, and aluminum.
 以上のように、低速運転で軸60とすべり軸受30とが接触する条件において、しゅう動部材32が膨張して軸受部31の内周面から軸60側に向けて突出し、動圧溝を出現させることができる。そして、この動圧溝の作用によりしゅう動部材32と軸60との間に油膜が形成され、摩擦係数の上昇、摩耗及び焼付きを抑制することができる。 As described above, the sliding member 32 expands and protrudes from the inner peripheral surface of the bearing portion 31 toward the shaft 60 under the condition where the shaft 60 and the slide bearing 30 are in contact with each other at low speed operation, and a dynamic pressure groove appears. Can be made. An oil film is formed between the sliding member 32 and the shaft 60 by the action of the dynamic pressure groove, and an increase in friction coefficient, wear and seizure can be suppressed.
(高速運転)
 高速運転においては、潤滑油の流量が多く、また軸60の回転数が大きく、くさび形状の流路の効果により油膜圧力が発生する。このため、軸60とすべり軸受30との接触を回避でき、高い摩擦熱が発生しない。したがって、しゅう動部材32が摩擦熱で膨張する量はごくわずかとなり、しゅう動部材32の高さは凹部31aの高さと同一のままかもしくは若干高い程度となる。つまり、すべり軸受30の内周面は平滑面もしくは若干動圧溝が形成される程度となっており、軸60がすべり軸受内部で偏心したことによるくさび効果で、油膜圧力が発生し、軸受荷重を支持することができる。また、すべり軸受30の内周面が平滑面もしくは若干動圧溝が形成される程度となることで、従来の動圧溝で発生するような不要な粘性抵抗を軽減でき、軸受損失を低く維持できる。以上の関係をグラフで表したのが次の図9である。
(High speed operation)
In high-speed operation, the flow rate of the lubricating oil is large, the rotational speed of the shaft 60 is large, and the oil film pressure is generated due to the effect of the wedge-shaped flow path. For this reason, the contact between the shaft 60 and the plain bearing 30 can be avoided, and high frictional heat is not generated. Therefore, the amount that the sliding member 32 expands due to frictional heat is negligible, and the height of the sliding member 32 remains the same as or slightly higher than the height of the recess 31a. That is, the inner peripheral surface of the slide bearing 30 is formed to have a smooth surface or a slight dynamic pressure groove, and the oil film pressure is generated due to the wedge effect due to the eccentricity of the shaft 60 inside the slide bearing. Can be supported. Further, since the inner peripheral surface of the slide bearing 30 is smooth or slightly formed with a dynamic pressure groove, unnecessary viscous resistance as generated in the conventional dynamic pressure groove can be reduced, and the bearing loss is kept low. it can. FIG. 9 shows the above relationship in a graph.
 図9は、本発明の実施の形態1に関わるスクロール圧縮機の回転数に応じて動圧溝が摩擦係数に及ぼす影響を示すグラフと、回転数に応じた温度上昇を示すグラフとを示す図である。図9において横軸は回転数[rps]、左縦軸は摩擦係数[μ]、右縦軸は温度上昇ΔT[K]を示している。図9において(a)~(c)は軸の回転数と摩擦係数との関係を示すグラフで、(a)は本実施の形態1の場合、(b)は動圧溝ありの場合、(c)は動圧溝なしの場合、を示している。図9において(d)は、軸の回転数に応じた温度上昇ΔTを示すグラフである。 FIG. 9 is a graph showing the effect of the dynamic pressure groove on the friction coefficient according to the rotation speed of the scroll compressor according to the first embodiment of the present invention, and a graph showing the temperature increase according to the rotation speed. It is. In FIG. 9, the horizontal axis indicates the rotational speed [rps], the left vertical axis indicates the friction coefficient [μ], and the right vertical axis indicates the temperature increase ΔT [K]. 9, (a) to (c) are graphs showing the relationship between the rotational speed of the shaft and the friction coefficient, (a) is the case of the first embodiment, (b) is the case of having the dynamic pressure groove, c) shows the case without a dynamic pressure groove. In FIG. 9, (d) is a graph showing the temperature rise ΔT according to the rotational speed of the shaft.
 低速運転では動圧溝が形成されて油膜圧力が発生するため、動圧溝がない場合(図9(c))に比べて、動圧溝がある場合(図9(a)、(b))は、約15[rps]から更に低速運転まで摩擦係数を低く維持できる(図9の矢印A)。また、高速運転では動圧溝が発生しないもしくは高さが低い。このため、動圧溝がある場合(図9(a)、(b))に比べて、動圧溝がない場合(図9(c))の方が、摩擦係数が低くなる(図9の矢印B)。 In low-speed operation, a dynamic pressure groove is formed and an oil film pressure is generated. Therefore, when there is a dynamic pressure groove (FIGS. 9A and 9B), compared to the case without the dynamic pressure groove (FIG. 9C). ) Can maintain a low coefficient of friction from about 15 [rps] to a further low speed operation (arrow A in FIG. 9). In addition, the dynamic pressure groove is not generated or the height is low in high-speed operation. Therefore, the friction coefficient is lower when there is no dynamic pressure groove (FIG. 9C) than when there is a dynamic pressure groove (FIGS. 9A and 9B) (FIG. 9). Arrow B).
 なお、本実施の形態1では凹部31a及びしゅう動部材32の形状をV字状としたが、動圧効果を発現できる形状であればV字状に限定されるものではない。以下の図10、図11に凹部31a及びしゅう動部材32の他の形状例を示す。 In addition, in this Embodiment 1, although the shape of the recessed part 31a and the sliding member 32 was made into V shape, if it is a shape which can express a dynamic pressure effect, it will not be limited to V shape. FIGS. 10 and 11 below show other shape examples of the recess 31a and the sliding member 32. FIG.
 図10は、本発明の実施の形態1に関わるすべり軸受の変形例を示す図である。
 図10(a)は、凹部31aの形状を軸の回転方向に向けて突出する円弧状とした例を示している。また、図10(b)は、凹部31aを、軸受部31の軸方向の中心部を境として一対で構成し、軸受部31の軸方向の両端部から中心部に向かうに連れて軸の回転方向に傾斜する斜線状に構成した例を示している。図10(a)及び図10(b)のどちらにおいても、凹部31aにはこれと同形状のしゅう動部材32が挿入される。しゅう動部材32の形状を図10(a)及び図10(b)に示す形状としても、V字状とした場合と同様の作用効果を得ることができる。
FIG. 10 is a view showing a modification of the plain bearing according to the first embodiment of the present invention.
FIG. 10A shows an example in which the shape of the recess 31a is an arc shape protruding in the rotation direction of the shaft. FIG. 10B shows a pair of recesses 31a with the axial center portion of the bearing portion 31 as a boundary, and rotation of the shaft from the axial end portions of the bearing portion 31 toward the central portion. An example is shown in the form of a diagonal line inclined in the direction. In both FIG. 10A and FIG. 10B, the sliding member 32 having the same shape is inserted into the recess 31a. Even if the shape of the sliding member 32 is the shape shown in FIG. 10A and FIG. 10B, the same effect as the case where it is V-shaped can be obtained.
 図11は、本発明の実施の形態1に関わるすべり軸受の変形例を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。図12は、図11のすべり軸受のしゅう動部材が突出した場合のすべり軸受及び軸の横断面展開図である。 FIG. 11 is a view showing a modification of the slide bearing according to the first embodiment of the present invention, wherein (a) is a longitudinal sectional view of the slide bearing, and (b) is a developed cross-sectional view of the slide bearing. FIG. 12 is a developed cross-sectional view of the sliding bearing and the shaft when the sliding member of the sliding bearing of FIG. 11 protrudes.
 図11(b)の横断面展開図に示すように凹部31a及びしゅう動部材32において軸60の回転方向に対して手前側の高さh1は軸60の回転方向に対して奥側の高さh2よりも低い。この構成により、しゅう動部材32が膨張して軸受部31の内周面から軸60側に向けて突出したときに、図12に示すように軸60の回転方向に対して奥側の方が手前側よりも軸受の内周面からの突出高さが高くなる。この構成によりしゅう動部材32と軸60との隙間で潤滑油の流路が狭まることにより、油膜圧力を大きく発生させることができる。なお、軸60が回転していない状態(非回転時)では、図11(b)に示すように凹部31aにしゅう動部材32が設置された部分も含めて軸受部31の内周面が面一となっている。 11B, the height h1 on the near side with respect to the rotation direction of the shaft 60 in the recess 31a and the sliding member 32 is the height on the back side with respect to the rotation direction of the shaft 60. Lower than h2. With this configuration, when the sliding member 32 expands and protrudes from the inner peripheral surface of the bearing portion 31 toward the shaft 60 side, as shown in FIG. The protrusion height from the inner peripheral surface of the bearing is higher than the front side. With this configuration, the flow path of the lubricating oil is narrowed by the gap between the sliding member 32 and the shaft 60, so that a large oil film pressure can be generated. In a state where the shaft 60 is not rotating (when not rotating), the inner peripheral surface of the bearing portion 31 includes the portion where the sliding member 32 is installed in the recess 31a as shown in FIG. 11B. It is one.
 以上説明したように本実施の形態1によれば、軸受部31の内周部に設けた凹部31aに軸受部31よりも大きい線膨張係数を有するしゅう動部材32を挿入した構成とし、しゅう動部材32の温度が高くなるにつれ、しゅう動部材32の膨張により動圧溝を出現させて動圧効果が高くなるようにした。 As described above, according to the first embodiment, the sliding member 32 having a linear expansion coefficient larger than that of the bearing portion 31 is inserted into the concave portion 31 a provided in the inner peripheral portion of the bearing portion 31. As the temperature of the member 32 increases, the dynamic pressure groove appears by the expansion of the sliding member 32 so that the dynamic pressure effect is enhanced.
 このため、低速運転では、運転開始初期において油膜圧力が発生せず、軸60と軸受部31とが接触して摩擦熱が高くなり、しゅう動部材32の温度が上昇する。その結果、動圧溝の効果により流体潤滑で運転でき、軸受損失を低減して軸受の摩耗及び焼付きを抑制することができる。 For this reason, in low-speed operation, no oil film pressure is generated at the beginning of operation, the shaft 60 and the bearing 31 come into contact with each other, the frictional heat increases, and the temperature of the sliding member 32 rises. As a result, it is possible to operate with fluid lubrication due to the effect of the dynamic pressure groove, and it is possible to reduce bearing loss and to suppress bearing wear and seizure.
 また、高速運転では、ポンプ7bから供給される潤滑油が増加し、潤滑油の冷却効果により摩擦で発生する熱を抑えられるため、しゅう動部材32の変形量をごくわずかに抑えられる。また、高速運転では、すべり軸受30の内周面は平滑もしくはわずかにしゅう動部材32が突出しており、軸60がすべり軸受内部で偏芯したことによるくさび効果で油膜圧力が発生し、軸受荷重を支持することができる。 In high-speed operation, the amount of lubricating oil supplied from the pump 7b increases, and heat generated by friction can be suppressed due to the cooling effect of the lubricating oil, so that the deformation amount of the sliding member 32 can be suppressed only slightly. Further, in high-speed operation, the inner peripheral surface of the slide bearing 30 is smooth or slightly protrudes from the sliding member 32, and an oil film pressure is generated due to the wedge effect due to the shaft 60 being eccentric in the slide bearing. Can be supported.
 また、高速運転では、すべり軸受30の内周面が平滑もしくはしゅう動部材32がわずかに突出しているのみであるため、動圧溝による不要な粘性抵抗を軽減でき軸受損失を小さく維持できる。なお、図示しないが凹部31aを、軸受部31の内周部に代えて軸60の外周部に設け、軸60の外周部に設けた凹部31aにしゅう動部材32を取付けても、同様の効果が得られる。 In high-speed operation, the inner peripheral surface of the slide bearing 30 is smooth or the sliding member 32 protrudes only slightly, so that unnecessary viscous resistance caused by the dynamic pressure groove can be reduced and the bearing loss can be kept small. Although not shown, the same effect can be obtained by providing the recess 31 a on the outer periphery of the shaft 60 instead of the inner periphery of the bearing 31 and attaching the sliding member 32 to the recess 31 a provided on the outer periphery of the shaft 60. Is obtained.
 以上より、広い運転範囲において、低損失と高信頼性を確保することが可能なすべり軸受30を得ることができる。 From the above, it is possible to obtain the plain bearing 30 capable of ensuring low loss and high reliability in a wide operating range.
 また、しゅう動部材32の材料が樹脂であり、軸60がしゅう動部材32に接触した際の摩擦係数が金属よりも小さくなるため、低速運転において動圧効果が発生して流体潤滑に移行するまでの混合潤滑状態において、摩擦損失を低減することができる。 Further, the material of the sliding member 32 is resin, and the coefficient of friction when the shaft 60 contacts the sliding member 32 is smaller than that of metal, so that a dynamic pressure effect is generated in low speed operation and the process shifts to fluid lubrication. In the mixed lubrication state up to, friction loss can be reduced.
実施の形態2.
 本実施の形態2は、しゅう動部材の高さが実施の形態1と異なるものである。以下、本実施の形態2が実施の形態1と異なる点を中心に説明する。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。
Embodiment 2. FIG.
In the second embodiment, the height of the sliding member is different from that of the first embodiment. Hereinafter, the difference between the second embodiment and the first embodiment will be mainly described. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the second embodiment.
 図13は、本発明の実施の形態2に関わるすべり軸受を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。図13は、軸60が回転していない状態を示しており、この状態において実施の形態2のしゅう動部材(第1しゅう動部材)33は、すべり軸受30の内周面よりも突出する高さに形成されており、この点が実施の形態1と異なる。そして、しゅう動部材33が突出していない部分は溝となり、この溝が、動圧溝となる。よって、圧縮機の通常の運転範囲のうち高速運転に相当する例えば60~120rpsの運転においてすべり軸受30は動圧溝の効果を有するため、高速運転において軸60は流体潤滑でしゅう動することが可能である。なお、軸60が回転していない状態における、しゅう動部材33のすべり軸受30の内周面からの突出高さh3は、高速運転時に動圧溝の効果により適正な油膜厚さが形成される高さに設定され、油膜が厚くなり過ぎて軸受損失の増大が生じないようにしている。 FIGS. 13A and 13B are diagrams showing a slide bearing according to Embodiment 2 of the present invention, in which FIG. 13A is a longitudinal sectional view of the slide bearing, and FIG. 13B is a developed cross-sectional view of the slide bearing. FIG. 13 shows a state in which the shaft 60 is not rotating. In this state, the sliding member (first sliding member) 33 according to the second embodiment is higher than the inner peripheral surface of the slide bearing 30. This point is different from the first embodiment. And the part which the sliding member 33 does not protrude becomes a groove | channel, and this groove | channel becomes a dynamic pressure groove. Therefore, in the normal operation range of the compressor, for example, in the operation of 60 to 120 rps corresponding to the high speed operation, the slide bearing 30 has the effect of a dynamic pressure groove. Is possible. In addition, the protrusion height h3 of the sliding member 33 from the inner peripheral surface of the sliding bearing 30 in a state where the shaft 60 is not rotated forms an appropriate oil film thickness due to the effect of the dynamic pressure groove during high speed operation. The height is set so that the oil film does not become too thick to increase bearing loss.
 一方、低速運転(例えば、60rps未満)においては、運転開始初期において、高速運転時に比べて油膜厚さが薄くなり、軸60がすべり軸受30の内周部に設置されたしゅう動部材32に接触してしゅう動する。このしゅう動により摩擦熱が発生し、摩擦熱に起因したしゅう動部材32の膨張により、しゅう動部材32の高さが高くなる。言い換えれば、低速運転の運転開始初期以降では、高速運転時に比べて動圧溝の高さが高くなる。したがって、低速運転では、高速運転の場合よりも動圧溝の効果が大きくなり、油膜圧力が発生し、流体潤滑を維持できるようになる。この効果は、例えば30rps以下の超低速運転においても同様に得られる。 On the other hand, in low speed operation (for example, less than 60 rps), the oil film thickness becomes thinner compared to during high speed operation at the beginning of operation, and the shaft 60 contacts the sliding member 32 installed on the inner peripheral portion of the slide bearing 30. Then move. Friction heat is generated by this sliding, and the height of the sliding member 32 is increased by the expansion of the sliding member 32 caused by the frictional heat. In other words, the height of the dynamic pressure groove is higher after the initial operation start of the low speed operation than in the high speed operation. Therefore, in the low speed operation, the effect of the dynamic pressure groove is greater than in the high speed operation, and an oil film pressure is generated, so that fluid lubrication can be maintained. This effect can be obtained in the same way even in an ultra-low speed operation of 30 rps or less, for example.
 以上説明したように本実施の形態2によれば、低速運転から高速運転の広い運転範囲において、軸受損失の低減と高信頼性を確保することが可能である。 As described above, according to the second embodiment, it is possible to reduce bearing loss and ensure high reliability in a wide operating range from low speed operation to high speed operation.
実施の形態3.
 本実施の形態3は、実施の形態2と同様にしゅう動部材の高さが実施の形態1と異なるものであり、しゅう動部材34の高さが、すべり軸受30の内周面よりも低く形成されているものである。以下、本実施の形態3が実施の形態1と異なる点を中心に説明する。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態3についても同様に適用される。
Embodiment 3 FIG.
In the third embodiment, the height of the sliding member is different from that of the first embodiment as in the second embodiment, and the height of the sliding member 34 is lower than the inner peripheral surface of the slide bearing 30. Is formed. Hereinafter, the difference between the third embodiment and the first embodiment will be mainly described. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the third embodiment.
 図14は、本発明の実施の形態3に関わるすべり軸受を示す図で、(a)はすべり軸受の縦断面図、(b)はすべり軸受の横断面展開図である。図14は、軸60が回転していない状態を示しており、この状態において実施の形態3のしゅう動部材(第1しゅう動部材)34は、すべり軸受30の内周面よりも低い高さに形成されており、この点が実施の形態1と異なる。そして、しゅう動部材34が低い部分は溝となり、この溝が、動圧溝となる。よって、圧縮機の通常の運転範囲のうち高速運転に相当する例えば60~120rpsの運転においてすべり軸受30は動圧溝の効果を有するため、高速運転において軸60は流体潤滑でしゅう動することが可能である。なお、軸60が回転していない状態における、しゅう動部材33のすべり軸受30の内周面からの凹み高さh4は、高速運転時にわずかながら膨張したしゅう動部材34が軸受部31の内周面と面一となるように設定され、油膜が厚くなり過ぎて軸受損失の増大が生じないようにしている。 14A and 14B are diagrams showing a sliding bearing according to Embodiment 3 of the present invention, in which FIG. 14A is a longitudinal sectional view of the sliding bearing, and FIG. 14B is a developed sectional view of the sliding bearing. FIG. 14 shows a state where the shaft 60 is not rotating. In this state, the sliding member (first sliding member) 34 of the third embodiment has a height lower than the inner peripheral surface of the slide bearing 30. This point is different from the first embodiment. And the part where the sliding member 34 is low becomes a groove | channel, and this groove | channel becomes a dynamic pressure groove | channel. Therefore, in the normal operation range of the compressor, for example, in the operation of 60 to 120 rps corresponding to the high speed operation, the slide bearing 30 has the effect of a dynamic pressure groove. Is possible. The recess height h4 of the sliding member 33 from the inner peripheral surface of the sliding bearing 30 in a state where the shaft 60 is not rotating is such that the sliding member 34 slightly expanded during high-speed operation is the inner periphery of the bearing portion 31. It is set so as to be flush with the surface, so that the oil film becomes too thick to increase bearing loss.
 一方、低速運転(例えば、60rps未満)においては、運転開始初期において、高速運転時に比べて油膜厚さが薄くなり、軸60が軸受部31の内周面に接触してしゅう動する。このしゅう動により摩擦熱が発生し、摩擦熱に起因したしゅう動部材32の膨張により、しゅう動部材32の高さが高くなり、軸受部31の内周面から突出する。したがって、低速運転では、高速運転の場合よりも動圧溝の効果が大きくなり、油膜圧力が発生し、流体潤滑を維持できるようになる。この効果は、例えば30rps以下の超低速運転においても同様に得られる。 On the other hand, in low-speed operation (for example, less than 60 rps), the oil film thickness becomes thinner in the initial stage of operation than in high-speed operation, and the shaft 60 slides in contact with the inner peripheral surface of the bearing portion 31. This sliding generates frictional heat, and the sliding member 32 is expanded by the expansion of the sliding member 32 due to the frictional heat and protrudes from the inner peripheral surface of the bearing portion 31. Therefore, in the low speed operation, the effect of the dynamic pressure groove is greater than in the high speed operation, and an oil film pressure is generated, so that fluid lubrication can be maintained. This effect can be obtained in the same way even in an ultra-low speed operation of 30 rps or less, for example.
 以上説明したように本実施の形態3によれば、低速運転から高速運転の広い運転範囲において、軸受損失の低減と高信頼性を確保することが可能である。 As described above, according to the third embodiment, it is possible to reduce bearing loss and ensure high reliability in a wide operation range from low speed operation to high speed operation.
実施の形態4.
 本実施の形態4は、実施の形態1のすべり軸受30に更にしゅう動部材を備えた構成を有するものである。以下、本実施の形態4が実施の形態1と異なる点を中心に説明する。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態4についても同様に適用される。
Embodiment 4 FIG.
In the fourth embodiment, the sliding bearing 30 of the first embodiment is further provided with a sliding member. Hereinafter, the difference between the fourth embodiment and the first embodiment will be mainly described. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the fourth embodiment.
 図15は、本発明の実施の形態4に関わるすべり軸受の縦断面図である。
 本実施の形態4のすべり軸受30は、実施の形態1のすべり軸受30の軸方向の両端に、しゅう動部材32と同一素材で形成されたリング状のしゅう動部材(第2しゅう動部材)35が挿入された構成を有するものである。
FIG. 15 is a longitudinal sectional view of a plain bearing according to Embodiment 4 of the present invention.
The sliding bearing 30 according to the fourth embodiment is a ring-shaped sliding member (second sliding member) formed of the same material as the sliding member 32 at both ends in the axial direction of the sliding bearing 30 according to the first embodiment. 35 is inserted.
 このように構成された実施の形態4のすべり軸受30において、圧縮機の通常運転範囲のうち高速運転に相当する例えば60~120rpsの条件では、実施の形態1と同様にくさびの効果により油膜圧力が発生し、かつ、ポンプ7bから供給される潤滑油が増加し、潤滑油の冷却効果により摩擦で発生する熱を抑えられる。このため、軸60とすべり軸受30との接触による摩擦熱が小さく抑えられる。したがって、しゅう動部材32の高さは凹部31aの高さと同一もしくは若干高い程度である。よって、動圧溝で発生するような不要な軸受損失が発生せず、損失を低く維持できる。 In the slide bearing 30 according to the fourth embodiment configured as described above, under the condition of, for example, 60 to 120 rps corresponding to high speed operation within the normal operation range of the compressor, the oil film pressure is caused by the effect of the wedge as in the first embodiment. And the lubricating oil supplied from the pump 7b increases, and the heat generated by friction can be suppressed by the cooling effect of the lubricating oil. For this reason, the frictional heat due to the contact between the shaft 60 and the slide bearing 30 can be kept small. Therefore, the height of the sliding member 32 is the same as or slightly higher than the height of the recess 31a. Therefore, unnecessary bearing loss that occurs in the dynamic pressure groove does not occur, and the loss can be kept low.
 また、低速運転(例えば、60rps未満)の運転開始初期においては、油膜圧力が小さく、油膜圧力が発生しにくくなるため、すべり軸受30に作用する荷重を支持できず、油膜厚さが薄くなり、軸がすべり軸受30に接触する。接触する際の摩擦熱に起因したすべり軸受30の温度上昇により、V字状のしゅう動部材32及びリング状のしゅう動部材35の両方がすべり軸受30の内側に向けて次第に突出する。 Further, in the initial stage of operation at low speed operation (for example, less than 60 rps), the oil film pressure is small and the oil film pressure is less likely to be generated, so the load acting on the slide bearing 30 cannot be supported, and the oil film thickness becomes thin. The shaft contacts the slide bearing 30. Both the V-shaped sliding member 32 and the ring-shaped sliding member 35 gradually protrude toward the inside of the sliding bearing 30 due to the temperature rise of the sliding bearing 30 caused by frictional heat at the time of contact.
 しゅう動部材32が突出することによって、各しゅう動部材32同士の間に動圧溝が形成される。また、しゅう動部材35が突出することによって、動圧溝の両端が、しゅう動部材35によって閉塞された状態となる。したがって、すべり軸受30の軸方向両端からすべり軸受外部への潤滑油の流出量が小さくなる。その結果、動圧効果を大きく確保できるため低速運転において流体潤滑を確保できるようになる。 As the sliding member 32 protrudes, a dynamic pressure groove is formed between the sliding members 32. Further, when the sliding member 35 protrudes, both ends of the dynamic pressure groove are closed by the sliding member 35. Accordingly, the amount of lubricating oil flowing out from both ends in the axial direction of the slide bearing 30 to the outside of the slide bearing is reduced. As a result, since the dynamic pressure effect can be largely ensured, fluid lubrication can be ensured in low speed operation.
 以上説明したように、本実施の形態4によれば、実施の形態1と同様の効果が得られると共に、すべり軸受30の軸方向の両端にリング状のしゅう動部材35を設けたことで、更に以下の効果が得られる。すなわち、低速運転において、動圧溝の両端が、しゅう動部材35によって閉塞された状態となり、すべり軸受30の軸方向両端からすべり軸受外部への潤滑油の流出量が小さくなる。その結果、動圧効果を大きく確保できるため低速運転において流体潤滑を確保できるようになる。 As described above, according to the fourth embodiment, the same effect as in the first embodiment can be obtained, and the ring-shaped sliding members 35 are provided at both ends in the axial direction of the slide bearing 30. Further, the following effects can be obtained. That is, in low speed operation, both ends of the dynamic pressure groove are closed by the sliding member 35, and the amount of lubricating oil flowing out from the both ends in the axial direction of the slide bearing 30 to the outside of the slide bearing is reduced. As a result, since the dynamic pressure effect can be largely ensured, fluid lubrication can be ensured in low speed operation.
 なお、しゅう動部材35の素材はしゅう動部材32と同一素材としたが、同一素材に限られたものではなく、異なる素材でもよい。 The material of the sliding member 35 is the same as that of the sliding member 32, but is not limited to the same material and may be a different material.
 なお、実施の形態4では、実施の形態1のすべり軸受30に対してしゅう動部材35を設けた構成について説明したが、実施の形態2及び実施の形態3のすべり軸受30に対してしゅう動部材35を設けた構成としてもよい。 In the fourth embodiment, the configuration in which the sliding member 35 is provided to the sliding bearing 30 of the first embodiment has been described. However, the sliding movement of the sliding bearing 30 of the second and third embodiments is described. The member 35 may be provided.
 実施の形態2のすべり軸受30に対してしゅう動部材35を設けた場合の具体的な構成としては、軸60が回転していない状態において、しゅう動部材35のすべり軸受30の内周面からの突出高さh3(図13(b)参照)を、同状態におけるしゅう動部材35の突出高さと同じとする。これにより、実施の形態2と同様の効果が得られると共に、しゅう動部材35を設けたことで、低速運転及び高速運転の両方において、動圧溝の両端が、しゅう動部材35によって閉塞された状態となり、すべり軸受30の軸方向両端からすべり軸受外部への潤滑油の流出量が小さくなる。その結果、動圧効果を大きく確保できるため低速運転及び高速運転の両方において、しゅう動部材35を設けない場合に比べて更に流体潤滑を確保できるようになる。 As a specific configuration when the sliding member 35 is provided for the sliding bearing 30 according to the second embodiment, the sliding member 35 has an inner peripheral surface of the sliding bearing 30 in a state where the shaft 60 is not rotating. The projection height h3 (see FIG. 13B) is the same as the projection height of the sliding member 35 in the same state. As a result, the same effect as in the second embodiment can be obtained, and by providing the sliding member 35, both ends of the dynamic pressure groove are blocked by the sliding member 35 in both the low speed operation and the high speed operation. As a result, the outflow amount of the lubricating oil from both ends in the axial direction of the slide bearing 30 to the outside of the slide bearing becomes small. As a result, a large dynamic pressure effect can be ensured, so that fluid lubrication can be further ensured in both low speed operation and high speed operation compared to the case where the sliding member 35 is not provided.
 また、実施の形態3のすべり軸受30に対してしゅう動部材35を設けた場合の具体的な構成としては、軸60が回転していない状態において、しゅう動部材35のすべり軸受30の内周面からの凹み高さh4(図14(b)参照)を、同状態におけるしゅう動部材33の凹み高さと同じとする。これにより、実施の形態3と同様の効果が得られると共に、しゅう動部材35を設けたことで、低速運転において、動圧溝の両端が、しゅう動部材35によって閉塞された状態となる。これにより、すべり軸受30の軸方向両端からすべり軸受外部への潤滑油の流出量が小さくなる。その結果、動圧効果を大きく確保できるため、低速運転において、しゅう動部材35を設けない場合に比べて更に流体潤滑を確保できるようになる。 Further, as a specific configuration when the sliding member 35 is provided for the sliding bearing 30 of the third embodiment, the inner periphery of the sliding bearing 30 of the sliding member 35 in a state where the shaft 60 is not rotating. The recess height h4 from the surface (see FIG. 14B) is the same as the recess height of the sliding member 33 in the same state. As a result, the same effects as in the third embodiment are obtained, and the sliding member 35 is provided, so that both ends of the dynamic pressure groove are closed by the sliding member 35 in the low speed operation. Thereby, the outflow amount of lubricating oil from both ends in the axial direction of the slide bearing 30 to the outside of the slide bearing is reduced. As a result, a large dynamic pressure effect can be ensured, so that fluid lubrication can be further ensured in the low speed operation as compared with the case where the sliding member 35 is not provided.
 なお、上記の実施の形態1~4では、圧縮機の通常の運転範囲のうち60~120rpsを高速運転、60rps未満を低速運転、30rps未満を超低速運転として説明したが、これは一例を示したに過ぎず、この数値に限定されるものではない。 In the first to fourth embodiments described above, 60 to 120 rps of the normal operating range of the compressor has been described as high-speed operation, less than 60 rps as low-speed operation, and less than 30 rps as ultra-low speed operation, but this is an example. However, it is not limited to this value.
 また、上記の実施の形態1~4では、圧縮機がスクロール圧縮機である構成を説明したが、本発明のすべり軸受は、ロータリー圧縮機等、他の形式の圧縮機にも適用可能である。 In the first to fourth embodiments, the configuration in which the compressor is a scroll compressor has been described. However, the slide bearing of the present invention can be applied to other types of compressors such as a rotary compressor. .
 また、上記の実施の形態1~4においてそれぞれ別の実施の形態として説明したが、各実施の形態の特徴的な構成及び変形例を適宜組み合わせてすべり軸受を構成してもよい。例えば、実施の形態1の図10に示した変形例と実施の形態4とを組み合わせ、図15のしゅう動部材32を図10(a)の円弧状又は図10(b)の斜線状としてもよい。 Further, although the embodiments 1 to 4 have been described as different embodiments, the sliding bearings may be configured by appropriately combining the characteristic configurations and modifications of the embodiments. For example, the modified example shown in FIG. 10 of the first embodiment and the fourth embodiment may be combined so that the sliding member 32 in FIG. 15 has an arc shape in FIG. 10 (a) or a hatched shape in FIG. 10 (b). Good.
 1 固定スクロール、1a 第1台板、1b 第1渦巻突起、2 揺動スクロール、2a 第2台板、2b 第2渦巻突起、3 吸入口、4 吐出口、5 圧縮室、6 主軸、6a 偏心軸、6b バランサ、7 給油機構、7a 給油孔、7b ポンプ、8a 上部ハウジング、8b 下部ハウジング、9 返油パイプ、10 圧縮機構部、11 副軸受、12 オルダム継手、13 密閉容器、13a 高圧空間、14 油溜め、15 冷媒吸入管、16 冷媒吐出管、17 揺動軸受、18 スラスト軸受、19 主軸受、20 電動機、20a ロータ、20b ステータ、30 すべり軸受、31 軸受部、31a 凹部、32 しゅう動部材、33 しゅう動部材、34 しゅう動部材、35 しゅう動部材、40 軸、41 軸受、60 軸、100 スクロール圧縮機。 1 fixed scroll, 1a first base plate, 1b first spiral protrusion, 2 swing scroll, 2a second base plate, 2b second spiral protrusion, 3 inlet, 4 outlet, 5 compression chamber, 6 main shaft, 6a eccentric Shaft, 6b balancer, 7 oil supply mechanism, 7a oil supply hole, 7b pump, 8a upper housing, 8b lower housing, 9 oil return pipe, 10 compression mechanism, 11 sub bearing, 12 Oldham joint, 13 sealed container, 13a high pressure space, 14 Oil sump, 15 Refrigerant suction pipe, 16 Refrigerant discharge pipe, 17 Rocking bearing, 18 Thrust bearing, 19 Main bearing, 20 Motor, 20a rotor, 20b Stator, 30 Sliding bearing, 31 Bearing part, 31a Recess, 32 Sliding Member, 33 sliding member, 34 sliding member, 35 sliding member, 40 shaft, 41 Bearing 60 axes, 100 scroll compressor.

Claims (12)

  1.  軸と、
     前記軸を回転自在に軸支するすべり軸受と、
     前記軸の一方の端部に設置されて前記軸の回転によって作動するポンプを有し、前記ポンプから前記軸の内部を通り、前記すべり軸受に油を供給する給油構造とを備え、
     前記すべり軸受は、前記軸が回転自在に挿入される軸受部と、前記軸受部において前記軸が挿入される内周部に形成された凹部又は前記軸の外周部に形成された凹部に挿入され、前記軸受部よりも大きい線膨張係数を有して、温度上昇により前記凹部から突出する高さが増大する第1しゅう動部材とを備えた
     すべり軸受を有する圧縮機。
    The axis,
    A plain bearing that rotatably supports the shaft;
    It has a pump installed at one end of the shaft and operated by rotation of the shaft, and an oil supply structure that supplies oil to the slide bearing through the shaft from the pump,
    The slide bearing is inserted into a bearing portion into which the shaft is rotatably inserted, a recess formed in an inner peripheral portion of the bearing portion into which the shaft is inserted, or a recess formed in an outer peripheral portion of the shaft. A compressor having a slide bearing including a first sliding member having a linear expansion coefficient larger than that of the bearing portion and increasing in height protruding from the recess due to a temperature rise.
  2.  前記凹部の高さと前記第1しゅう動部材の高さとは同じに構成され、前記軸の非回転時において前記軸受部の内周面が面一となっている
     請求項1記載のすべり軸受を有する圧縮機。
    The slide bearing according to claim 1, wherein the height of the recess and the height of the first sliding member are the same, and the inner peripheral surface of the bearing portion is flush with the shaft when the shaft is not rotating. Compressor.
  3.  前記凹部の高さと前記第1しゅう動部材の高さとのそれぞれは、前記軸の回転方向手前側の方が前記軸の回転方向奥側よりも低く構成され、前記軸の非回転時において前記軸受部の内周面が面一となっている
     請求項1記載のすべり軸受を有する圧縮機。
    Each of the height of the recess and the height of the first sliding member is configured such that the front side in the rotation direction of the shaft is lower than the back side in the rotation direction of the shaft, and the bearing is not rotated when the shaft is not rotating. The compressor having a slide bearing according to claim 1, wherein an inner peripheral surface of the portion is flush.
  4.  前記第1しゅう動部材の高さは前記凹部の高さよりも高く構成され、前記軸の非回転時において前記軸受部の内周面から前記第1しゅう動部材が突出している
     請求項1記載のすべり軸受を有する圧縮機。
    The height of the said 1st sliding member is comprised higher than the height of the said recessed part, and the said 1st sliding member protrudes from the internal peripheral surface of the said bearing part at the time of the non-rotation of the said axis | shaft. Compressor with plain bearing.
  5.  前記第1しゅう動部材の高さは前記凹部の高さよりも低く構成され、前記軸の非回転時において前記軸受部の内周面から前記第1しゅう動部材が低くなっている
     請求項1記載のすべり軸受を有する圧縮機。
    The height of the said 1st sliding member is comprised lower than the height of the said recessed part, and the said 1st sliding member is low from the internal peripheral surface of the said bearing part at the time of the said shaft not rotating. Compressor with plain bearing.
  6.  前記軸受部の材料が金属であり、前記第1しゅう動部材の材料が樹脂である
     請求項1~請求項5の何れか一項に記載のすべり軸受を有する圧縮機。
    The compressor having a slide bearing according to any one of claims 1 to 5, wherein a material of the bearing portion is a metal, and a material of the first sliding member is a resin.
  7.  前記第1しゅう動部材の形状が、前記軸の回転方向に向けて先細りとなるV字形状である請求項1~請求項6の何れか一項に記載のすべり軸受を有する圧縮機。 The compressor having a slide bearing according to any one of claims 1 to 6, wherein a shape of the first sliding member is a V-shape that tapers in a rotation direction of the shaft.
  8.  前記第1しゅう動部材の形状が、前記軸の回転方向に向けて突出する円弧状である請求項1~請求項6の何れか一項に記載のすべり軸受を有する圧縮機。 The compressor having a slide bearing according to any one of claims 1 to 6, wherein a shape of the first sliding member is an arc shape protruding in a rotation direction of the shaft.
  9.  前記第1しゅう動部材は、前記軸受部の軸方向の中心部を境として一対で構成され、前記軸受部の軸方向の端部から前記中心部に向かうに連れて前記軸の回転方向に傾斜するように構成されている
     請求項1~請求項6の何れか一項に記載のすべり軸受を有する圧縮機。
    The first sliding member is configured as a pair with the axial center portion of the bearing portion as a boundary, and is inclined in the rotational direction of the shaft from the axial end portion of the bearing portion toward the central portion. A compressor having a slide bearing according to any one of claims 1 to 6.
  10.  前記軸受部の軸方向の両端にリング状の第2しゅう動部材が挿入されている
     請求項1~請求項9の何れか一項に記載のすべり軸受を有する圧縮機。
    The compressor having a slide bearing according to any one of claims 1 to 9, wherein a ring-shaped second sliding member is inserted into both axial ends of the bearing portion.
  11.  前記第2しゅう動部材の材料が樹脂である
     請求項10記載のすべり軸受を有する圧縮機。
    The compressor having a slide bearing according to claim 10, wherein a material of the second sliding member is resin.
  12.  前記ポンプは容積型ポンプである
     請求項1~請求項11の何れか一項に記載のすべり軸受を有する圧縮機。
    The compressor having a slide bearing according to any one of claims 1 to 11, wherein the pump is a positive displacement pump.
PCT/JP2015/079849 2015-03-12 2015-10-22 Compressor comprising slide bearing WO2016143186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504560A JP6328322B2 (en) 2015-03-12 2015-10-22 Compressor with slide bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049842 2015-03-12
JP2015-049842 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143186A1 true WO2016143186A1 (en) 2016-09-15

Family

ID=56880284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079849 WO2016143186A1 (en) 2015-03-12 2015-10-22 Compressor comprising slide bearing

Country Status (2)

Country Link
JP (1) JP6328322B2 (en)
WO (1) WO2016143186A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032028A (en) * 2017-08-08 2019-02-28 株式会社Subaru Slide bearing
WO2021124557A1 (en) * 2019-12-20 2021-06-24 三菱電機株式会社 Compressor system, compressor, and refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932849A (en) * 1995-07-21 1997-02-04 Ntn Corp Dynamic pressure type bearing and manufacture thereof
JP2013092222A (en) * 2011-10-26 2013-05-16 Oiles Corp Solid lubricant embedded bearing
JP2015183796A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 slide bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141375A (en) * 1996-11-11 1998-05-26 Jatco Corp Resin impregnated bearing member and manufacture thereof
JP2001263338A (en) * 2000-03-22 2001-09-26 Daido Metal Co Ltd Slide bearing
JP5370425B2 (en) * 2011-07-19 2013-12-18 ダイキン工業株式会社 Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932849A (en) * 1995-07-21 1997-02-04 Ntn Corp Dynamic pressure type bearing and manufacture thereof
JP2013092222A (en) * 2011-10-26 2013-05-16 Oiles Corp Solid lubricant embedded bearing
JP2015183796A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 slide bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032028A (en) * 2017-08-08 2019-02-28 株式会社Subaru Slide bearing
WO2021124557A1 (en) * 2019-12-20 2021-06-24 三菱電機株式会社 Compressor system, compressor, and refrigeration cycle device
JPWO2021124557A1 (en) * 2019-12-20 2021-06-24
CN114787577A (en) * 2019-12-20 2022-07-22 三菱电机株式会社 Compressor system, compressor, and refrigeration cycle device
JP7204949B2 (en) 2019-12-20 2023-01-16 三菱電機株式会社 Compressor system, compressor and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP6328322B2 (en) 2018-05-23
JPWO2016143186A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5260608B2 (en) Scroll compressor
JP6521048B2 (en) Scroll compressor
JP6328322B2 (en) Compressor with slide bearing
WO2015025416A1 (en) Rotary machine and refrigeration cycle device
US8419286B2 (en) Hermetic compressor
JP6184648B1 (en) Bearing unit and compressor
JP2011111976A (en) Hermetic compressor and refrigeration cycle device
JP4288741B2 (en) Rotary compressor
JP5091019B2 (en) Scroll expander
WO2017208455A1 (en) Scroll compressor
JP6351749B2 (en) Scroll compressor
JP6618663B1 (en) Slide bearing structure and scroll compressor
JP5864883B2 (en) Scroll compressor
JP6611648B2 (en) Scroll compressor
JP6598881B2 (en) Scroll compressor
JP6679399B2 (en) Scroll compressor
JP4407253B2 (en) Scroll compressor
JP4940630B2 (en) Scroll expander
JP2020094557A (en) Fluid machine
WO2017149820A1 (en) Bearing unit and compressor
WO2004029461A1 (en) Scroll compressor
JP5063638B2 (en) Scroll compressor
JP3858580B2 (en) Hermetic electric compressor
JP2005054744A (en) Scroll compressor
JP2014101835A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884670

Country of ref document: EP

Kind code of ref document: A1