WO2016143094A1 - 偏波分離回路 - Google Patents

偏波分離回路 Download PDF

Info

Publication number
WO2016143094A1
WO2016143094A1 PCT/JP2015/057157 JP2015057157W WO2016143094A1 WO 2016143094 A1 WO2016143094 A1 WO 2016143094A1 JP 2015057157 W JP2015057157 W JP 2015057157W WO 2016143094 A1 WO2016143094 A1 WO 2016143094A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
tube axis
phase plate
separation circuit
polarization separation
Prior art date
Application number
PCT/JP2015/057157
Other languages
English (en)
French (fr)
Inventor
明道 廣田
秀憲 湯川
聖児 小松
田原 志浩
智宏 高橋
晋二 荒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/057157 priority Critical patent/WO2016143094A1/ja
Publication of WO2016143094A1 publication Critical patent/WO2016143094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation

Definitions

  • the present invention relates to a polarization separation circuit mainly used in the VHF band, UHF band, microwave band and millimeter wave band.
  • the polarization separating circuit shown in FIG. 10 is a septum polarizer in which a septum phase plate 2 is inserted in a square waveguide 1 so as to form two rectangular waveguide terminals 4 and 5.
  • the septum phase plate 2 is configured so as to become thinner stepwise from the rectangular waveguide terminals 4 and 5 side toward the square waveguide terminal 3 side.
  • symbol 51 shown in FIG. 10 is a waveguide cross section in the step-shaped part of the septum phase plate 2. As shown in FIG.
  • each circularly polarized signal is a linearly polarized signal. And output from different rectangular waveguide terminals 4 and 5.
  • the dashed arrow on the square waveguide terminal 3 indicates the direction of the input circularly polarized signal
  • the solid arrow on the rectangular waveguide terminals 4 and 5 indicates the output linear polarization. It represents the direction of the electric field of the wave signal.
  • Petr LECIAN Miroslav KASAL, “X Band Septum Polarizer as Feed for Parabolic Antenna”, 2010 15th Conference on Microwave Techniques (COMITE), pp. 35-38, IEEE, 2010.
  • the low-frequency side can have good polarization separation characteristics by adjusting the size and thickness of the stepped portion of the septum phase plate 2.
  • a high-order mode that does not occur on the low frequency side occurs in the stepped portion of the septum phase plate 2. Therefore, on the high frequency side, it is very difficult to realize good polarization separation characteristics as in the low frequency side.
  • the low-frequency side frequency and the frequency at which the higher-order mode is generated can be theoretically determined by the cross-sectional dimension of the square waveguide 1.
  • the present invention has been made to solve the above-described problem, and even when two bands that are separated by 1.4 times or more of the band on the low band side are used on the high band side,
  • An object of the present invention is to provide a polarization separation circuit capable of realizing good polarization separation characteristics in each.
  • a polarization separation circuit includes a square waveguide having a square cross section perpendicular to the tube axis direction, and a plate member having one end formed in a step shape, and the tube axis extends from the one end into the square waveguide.
  • a septum phase plate that is inserted in parallel along the direction and forms two rectangular waveguide terminals by dividing a part of the square waveguide, and both sides parallel or perpendicular to the septum phase plate in the square waveguide
  • a protrusion provided on the wall surface, facing the stepped portion of the septum phase plate and positioned near the center in the direction perpendicular to the tube axis direction.
  • FIG. 10 It is a figure which shows another structure of the polarization splitting circuit which concerns on Embodiment 2 of this invention, (a) It is a perspective view, (b) It is a top view, (c) It is a side view. It is a perspective view which shows the structure of the conventional polarization separation circuit.
  • FIG. 10 it is a figure which shows the case where a circularly polarized wave signal is input into the square waveguide terminal, (a) It is a figure which shows the case where the clockwise circularly polarized signal is input, (b)
  • FIG. 4 is a diagram illustrating a case where a left-handed circularly polarized signal is input.
  • FIG. 11 is a diagram illustrating a case where a linearly polarized signal is input to a square waveguide terminal in the configuration of FIG. 10, and (a) a diagram illustrating a case where a linearly polarized signal perpendicular to the septum phase plate is input. (B) It is a figure which shows the case where the linearly polarized wave signal parallel to a septum phase plate is input.
  • FIG. 1 is a diagram showing a configuration of a polarization beam splitting circuit according to Embodiment 1 of the present invention.
  • the polarization separation circuit includes a square waveguide 1 having a square cross section perpendicular to the tube axis direction.
  • a septum phase plate 2 that forms two rectangular waveguide terminals 4 and 5 by dividing a part of the square waveguide 1 is inserted into the square waveguide 1.
  • the septum phase plate 2 is a plate member having one end formed in a step shape, and is inserted in parallel (including a substantially parallel meaning) along the tube axis direction into the square waveguide 1 from the one end. .
  • reference numeral 52 denotes a waveguide cross section at a portion where the square waveguide terminal 3 of the square waveguide 1 and the septum phase plate 2 are connected.
  • Reference numeral 53 denotes a waveguide cross section at a portion where the rectangular waveguide terminals 4 and 5 and the septum phase plate 2 are connected.
  • protrusions 6 are respectively provided on both side wall surfaces (upper and lower wall surfaces in FIG. 1) parallel to the septum phase plate 2 in the square waveguide 1.
  • This protrusion 6 is opposed to the stepped portion of the septum phase plate 2 (between the waveguide cross sections 52 and 53 shown in FIG. 1) and closer to the center in the direction perpendicular to the tube axis direction of the square waveguide 1. positioned.
  • the protrusions 6 provided on both side wall surfaces are configured and arranged symmetrically with respect to the septum phase plate 2.
  • the output of the square waveguide terminal 3 is a rectangular waveguide as shown in FIGS. Since it is represented by a superposition of the electric field states at the terminals 4 and 5, two horizontal and vertical linearly polarized signals are output.
  • the circularly polarized signal can be represented by a superposition of horizontal and vertical linearly polarized signals. Therefore, the dimension of the septum phase plate 2 is adjusted, and the passing amplitude and passing phase of the signal passing as the horizontally polarized wave component from the rectangular waveguide terminal 5 to the square waveguide terminal 3 are square from the rectangular waveguide terminal 5.
  • An ideal circularly polarized wave signal can be generated by setting an equal amplitude and a phase difference of 90 degrees with respect to a passing amplitude and a passing phase of a signal passing as a vertically polarized wave component of the waveguide terminal 3.
  • FIG. 2 shows the result of calculating the passing amplitude difference and the passing phase difference by electromagnetic field analysis.
  • the broken line shown in FIG. 2 shows the result when the septum phase plate 2 is designed so that the low-frequency side has ideal polarization separation characteristics (pass amplitude difference is 0, pass phase difference is 90 degrees). ing.
  • the broken line shows ideal polarization separation characteristics on the low frequency side.
  • the pass amplitude difference is 0.5 dB or less and small
  • the pass phase difference has a difference of about 12 degrees from the ideal value of 90 degrees.
  • the solid line shown in FIG. 2 adjusts the size and thickness of the septum phase plate 2 so that the high-frequency side pass phase difference is reduced in order to improve the polarization separation characteristics on the high-frequency side with respect to the broken line.
  • the pass phase difference can be reduced compared to the broken line on the high frequency side, but the pass amplitude difference becomes large, and ideal polarization separation characteristics cannot be achieved.
  • the mode propagating in the cross-sectional dimension of the square waveguide terminal 3 is a frequency band including the high-order mode, so that the amount of high-order mode generated by the septum phase plate 2 increases. Because. Therefore, in the polarization separation circuit of FIG. 10, it is found that it is difficult to generate an ideal circularly polarized signal only by adjusting the dimension and thickness of the septum phase plate 2.
  • FIG. 3 shows the results of calculation of the passing amplitude difference, the passing phase difference, and the axial ratio characteristic (polarization separation characteristic) of the component that becomes a wave by electromagnetic field analysis.
  • the broken line shown in FIG. 3 has shown the result on the same conditions as the broken line shown in FIG.
  • the solid line shown in FIG. 3 shows the result in the configuration in which the protrusion 6 of the present invention is added. In the solid lines shown in FIGS.
  • the protrusion 6 is for two polarization signals propagating through the square waveguide 1, that is, for each of the horizontal polarization component parallel to the septum phase plate 2 and the vertical polarization component perpendicular to the septum phase plate 2.
  • the passing phase of each polarization component when passing through the stepped portion of the septum phase plate 2 can be changed.
  • the pass amplitude difference does not change much. Note that the pass phase difference on the low frequency side also varies depending on the protrusion 6, but the low frequency side may have a small pass amplitude difference, and the polarization separation characteristic is not substantially deteriorated.
  • the first embodiment it is provided on both side walls parallel to the septum phase plate 2 in the square waveguide 1, faces the stepped portion of the septum phase plate 2, and square guides. Since the projection 6 located near the center in the direction perpendicular to the tube axis direction of the wave tube 1 is provided, the passing phase difference can be reduced without substantially changing the passing amplitude difference on the high frequency side. Therefore, by adjusting the shape of the projection 6, even when two bands that are separated by 1.4 times or more of the band on the low band side are used on the high band side, good deviation is obtained in both bands. Wave separation characteristics can be realized.
  • the protrusion 6 is arranged in the center of the upper and lower wall surfaces of the square waveguide 1, and the longitudinal direction of the protrusion 6 does not extend to the side wall surface of the square waveguide 1.
  • the present invention is not limited to this.
  • the longitudinal direction of the protrusion 6 may extend to the left and right wall surfaces of the square waveguide 1.
  • the waveguide cross sections 52 and 53 are not shown in order to make the drawing easy to see.
  • FIG. 1 shows a case where one protrusion 6 is arranged on each of the upper and lower wall surfaces of the square waveguide 1.
  • the present invention is not limited to this.
  • a plurality of protrusions 6 may be provided along the tube axis direction of the square waveguide 1.
  • a part of the plurality of protrusions 6 may be disposed other than between the waveguide cross sections 52 and 53. In this way, by arranging a plurality of the protrusions 6 with respect to the tube axis direction of the square waveguide 1, it becomes possible to improve the reflection characteristics.
  • the height of the protrusions 6 may be changed stepwise.
  • the protrusion 6 on the center side in the tube axis direction of the square waveguide 1 is configured higher than the protrusion 6 on the end side in the tube axis direction.
  • the reflection characteristics can be further improved by changing the height of the protrusion 6 stepwise.
  • FIG. 1 shows a case where one protrusion 6 is arranged on each of the upper and lower wall surfaces of the square waveguide 1.
  • the present invention is not limited to this.
  • a plurality of protrusions 6 may be provided along a direction perpendicular to the tube axis direction of the square waveguide 1.
  • FIG. 1 shows a case where the shape of the protrusion 6 is a cube.
  • the shape of the protrusion 6 may be a shape in which the center is high along the tube axis direction of the square waveguide 1 and is low toward the end.
  • the protrusion 6 is arranged so that the center thereof is located at the center in the direction perpendicular to the tube axis direction of the square waveguide 1. In this way, by making the shape of the protrusion 6 as shown in FIG. 7, the reflection characteristics can be improved.
  • FIG. 8 is a diagram showing a configuration of a polarization beam splitting circuit according to Embodiment 2 of the present invention.
  • the polarization separation circuit according to Embodiment 2 shown in FIG. 8 is obtained by changing the protrusion 6 of the polarization separation circuit according to Embodiment 1 shown in FIG. 1 to a protrusion 6b.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the protrusions 6b are provided on both side wall surfaces (left and right wall surfaces in FIG. 8) perpendicular to the septum phase plate 2 in the square waveguide 1 respectively. This protrusion 6b is opposed to the stepped portion of the septum phase plate 2 (between the waveguide cross sections 52 and 53 shown in FIG. 1) and closer to the center in the direction perpendicular to the tube axis direction of the square waveguide 1. positioned. Further, the protrusions 6 provided on both side wall surfaces are configured and arranged symmetrically with respect to the septum phase plate 2.
  • the protrusion 6 b also has two polarization signals propagating through the square waveguide 1, that is, a vertical polarization component that is perpendicular to a horizontal polarization component that is parallel to the septum phase plate 2.
  • a vertical polarization component that is perpendicular to a horizontal polarization component that is parallel to the septum phase plate 2.
  • Each has a different impact.
  • the passing phase of each polarization component when passing through the stepped portion of the septum phase plate 2 can be changed.
  • the influence by the protrusion 6b is small on the passage amplitude, the passage amplitude difference does not change much.
  • the square waveguide 1 is provided on both side walls perpendicular to the septum phase plate 2, faces the stepped portion of the septum phase plate 2, and is square guided. Since the projection 6b located near the center in the direction perpendicular to the tube axis direction of the wave tube 1 is provided, the passing phase difference can be reduced without substantially changing the passing amplitude difference on the high frequency side. Therefore, by adjusting the shape of the protrusion 6b, even when two bands that are separated by 1.4 times or more of the band on the low band side are used on the high band side, a good deviation is obtained in both bands. Wave separation characteristics can be realized.
  • FIG. 8 shows a case where a plurality of protrusions 6 b are provided along a direction perpendicular to the tube axis direction of the square waveguide 1.
  • the present invention is not limited to this.
  • one protrusion 6b may be provided on each of the left and right wall surfaces, and the same effect can be obtained.
  • the second embodiment can be modified in the same manner as the modified example of the first embodiment as shown in FIGS. 4, 5, and 7, and the same effect can be obtained.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the polarization separation circuit according to the present invention has good polarization separation characteristics in each of the two bands even when the high band uses two bands separated by 1.4 times or more of the low band. It can be realized, and is suitable for use in a polarization separation circuit or the like mainly used in the VHF band, UHF band, microwave band and millimeter wave band.

Abstract

 管軸方向に垂直な断面が正方形である正方形導波管(1)と、一端が階段状に構成された板部材であり、当該一端から正方形導波管(1)内に管軸方向に沿って平行に挿入されて当該正方形導波管(1)の一部を区切ることで2つの長方形導波管端子(4),(5)を形成するセプタム位相板(2)と、正方形導波管(1)内のセプタム位相板(2)に平行又は垂直な両側壁面に設けられ、当該セプタム位相板(2)の階段状部分に対向し、且つ管軸方向に垂直な方向における中央寄りに位置する突起部(6)とを備えた。

Description

偏波分離回路
 この発明は、主としてVHF帯、UHF帯、マイクロ波帯及びミリ波帯で用いられる偏波分離回路に関するものである。
 2つの円偏波信号(右旋、左旋)又は直交する2つの直線偏波信号(垂直、水平)を分離する偏波分離回路として、図10に示す構成のものが知られている(例えば非特許文献1参照)。図10に示す偏波分離回路は、正方形導波管1内に、2つの長方形導波管端子4,5を形成するようにセプタム位相板2が挿入されたセプタムポラライザである。この偏波分離回路では、セプタム位相板2が、長方形導波管端子4,5側から正方形導波管端子3側に向かって、階段状に細くなるように構成されている。なお図10に示す符号51は、セプタム位相板2の階段状部分での導波管断面である。
 この偏波分離回路において、図11に示すように、2つの円偏波信号(右旋、左旋)が正方形導波管端子3に入力された場合、それぞれの円偏波信号は直線偏波信号に変換され、異なる長方形導波管端子4,5から出力される。なお図11において、正方形導波管端子3上の破線の矢印は、入力された円偏波信号の向きを表し、長方形導波管端子4,5上の実線の矢印は、出力された直線偏波信号の電界の向きを表している。
 一方、図12に示すように、直交する2つの直線偏波信号(垂直、水平)が正方形導波管端子3に入力された場合、セプタム位相板2に垂直な直線偏波信号の場合には、長方形導波管端子4,5から同じ電界の向きの直線偏波信号が出力される(図12(a))。一方、セプタム位相板2に平行な直線偏波信号の場合には、長方形導波管端子4,5から互いに向かい合う電界の向きの直線偏波信号が出力される(図12(b))。このとき、導波管断面51の付近では、それぞれの直線偏波信号に対し、過渡的な電界分布となる。
 なお、円偏波信号又は直線偏波信号のいずれが入力された場合であっても、セプタム位相板2の階段状部分の寸法及び板厚によって、偏波分離特性が決定される。
 一方、図10に示す偏波分離回路の反射特性では、高域(非特許文献1では11.5GHz)で共振が生じる。このため、この偏波分離回路の使用帯域としては、この共振周波数以下となり、使用帯域が制限されていた。
 そこで、正方形導波管1内の、セプタム位相板2の幅が最も細くなる部分が接合された壁面の位置に対向する壁面の隅に、突起部を設けた偏波分離回路が知られている(例えば特許文献1参照)。この突起部を設けることで、非特許文献1の偏波分離回路において高域側で生じる共振を、さらに高域側にずらすことが可能となり、使用帯域の広帯域化が可能となる。
Petr LECIAN, Miroslav KASAL, "X Band Septum Polarizer as Feed for Parabolic Antenna", 2010 15th Conference on Microwave Techniques (COMITE), pp.35-38, IEEE, 2010.
特開2014-127784号公報
 ここで、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する通信システム向けの偏波分離回路を考える。この場合、非特許文献1の偏波分離回路では、セプタム位相板2の階段状部分の寸法及び板厚を調整することで、低域側を良好な偏波分離特性とすることはできる。しかしながら、低域側の帯域の1.4倍以上離れた高域側では、セプタム位相板2の階段状部分で、低域側では生じない高次モードが発生する。よって、高域側では、低域側のように良好な偏波分離特性を実現することが非常に困難である。なお、使用できる低域側の周波数と高次モードが発生する周波数は、正方形導波管1の断面寸法により理論的に決定される。
 一方、特許文献1の偏波分離回路では、低域側の帯域の1.4倍以上離れた高域側でも使用可能とするため、突起部をより大きくし、共振周波数をさらに高域側にずらす必要がある。しかしながら、突起部を大きくし過ぎると、突起部を設けた導波管断面の導波管寸法が狭くなり過ぎるため、カットオフ周波数が上がり低域側の特性が劣化する。そのため、使用帯域の広帯域化には限界がある。
 以上のように、従来の偏波分離回路では、高域側が低域側の帯域の1.4倍以上離れた2つの帯域で使用する場合に、低域側と高域側のぞれぞれで良好な偏波分離特性を実現することはできないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する場合であっても、両帯域のそれぞれで良好な偏波分離特性を実現することができる偏波分離回路を提供することを目的としている。
 この発明に係る偏波分離回路は、管軸方向に垂直な断面が正方形である正方形導波管と、一端が階段状に構成された板部材であり、当該一端から正方形導波管内に管軸方向に沿って平行に挿入されて当該正方形導波管の一部を区切ることで2つの長方形導波管端子を形成するセプタム位相板と、正方形導波管内のセプタム位相板に平行又は垂直な両側壁面に設けられ、当該セプタム位相板の階段状部分に対向し、且つ管軸方向に垂直な方向における中央寄りに位置する突起部とを備えたものである。
 この発明によれば、上記のように構成したので、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する場合であっても、両帯域のそれぞれで良好な偏波分離特性を実現することができる。
この発明の実施の形態1に係る偏波分離回路の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 図10の構成において、長方形導波管端子から基本モードの信号が入力された場合に、正方形導波管端子で水平偏波及び垂直偏波となる成分の通過振幅差及び通過位相差を計算した結果を示す図である。 図1の構成において、長方形導波管端子から基本モードの信号が入力された場合に、正方形導波管端子で水平偏波及び垂直偏波となる成分の通過振幅差、通過位相差及び軸比特性(偏波分離特性)を計算した結果を示す図である。 この発明の実施の形態1に係る偏波分離回路の別の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 この発明の実施の形態1に係る偏波分離回路の別の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 この発明の実施の形態1に係る偏波分離回路の別の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 この発明の実施の形態1に係る偏波分離回路の別の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 この発明の実施の形態2に係る偏波分離回路の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 この発明の実施の形態2に係る偏波分離回路の別の構成を示す図であり、(a)斜視図であり、(b)上面図であり、(c)側面図である。 従来の偏波分離回路の構成を示す斜視図である。 図10の構成において、円偏波信号が正方形導波管端子に入力された場合を示す図であり、(a)右旋の円偏波信号が入力された場合を示す図であり、(b)左旋の円偏波信号が入力された場合を示す図である。 図10の構成において、直線偏波信号が正方形導波管端子に入力された場合を示す図であり、(a)セプタム位相板に垂直な直線偏波信号が入力された場合を示す図であり、(b)セプタム位相板に平行な直線偏波信号が入力された場合を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明するが、各図において同一又は相当する部分については同一符号を付して説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る偏波分離回路の構成を示す図である。
 偏波分離回路は、図1に示すように、管軸方向に垂直な断面が正方形である正方形導波管1を有している。そして、この正方形導波管1内には、当該正方形導波管1の一部を区切ることで2つの長方形導波管端子4,5を形成するセプタム位相板2が挿入されている。このセプタム位相板2は、一端が階段状に構成された板部材であり、当該一端から正方形導波管1内に管軸方向に沿って平行(略平行の意味を含む)に挿入されている。
 なお図1において、符号52は、正方形導波管1の正方形導波管端子3とセプタム位相板2とが接続される部分の導波管断面である。また、符号53は、長方形導波管端子4,5とセプタム位相板2とが接続される部分の導波管断面である。
 そして、正方形導波管1内のセプタム位相板2に平行な両側壁面(図1では上下壁面)には、突起部6がそれぞれ設けられている。この突起部6は、セプタム位相板2の階段状部分(図1に示す導波管断面52,53間)に対向し、且つ正方形導波管1の管軸方向に垂直な方向における中央寄りに位置している。また、両側壁面に設けられた突起部6は、セプタム位相板2に対して対称に構成及び配置されている。
 次に、実施の形態1に係る偏波分離回路の動作について説明する。以下では、説明の簡単化のため、長方形導波管端子5から基本モードの信号が入力され、正方形導波管端子3から2つの直線偏波信号(垂直、水平)が出力される場合について示す。
 図10に示す従来の偏波分離回路では、長方形導波管端子5から基本モードの信号が入力された場合、図11,12に示すように、正方形導波管端子3出力は長方形導波管端子4,5における電界の状態の重ね合わせで表されるため、水平及び垂直の2つの直線偏波信号が出力される。また、円偏波信号は、水平及び垂直の直線偏波信号の重ね合わせで表すことができる。
 したがって、セプタム位相板2の寸法を調整し、長方形導波管端子5から正方形導波管端子3の水平偏波成分として通過する信号の通過振幅と通過位相が、長方形導波管端子5から正方形導波管端子3の垂直偏波成分として通過する信号の通過振幅と通過位相に対し、等振幅且つ90度位相差とすることで、理想的な円偏波信号を発生することができる。
 ここで、正方形導波管端子3の断面寸法で伝搬するモードが、図12に示すような水平及び垂直の直線偏波信号の2つのモードのみとなる帯域では、セプタム位相板2により生じる高次モードの発生量も小さくその影響も小さい。よって、この帯域では、理想的な円偏波信号を発生することが比較的容易である。
 しかしながら、正方形導波管端子3の断面寸法で伝搬するモードが、図12に示すような水平及び垂直の直線偏波の2つのモード以外の、高次モードも含む帯域では、セプタム位相板2により生じる高次モードの発生量が大きくなる。よって、この帯域では、セプタム位相板2の寸法を調整するだけでは、理想的な円偏波信号を発生することが困難である。
 ここで、図10に示す従来の偏波分離回路において、長方形導波管端子5から基本モードの信号が入力された場合に、正方形導波管端子3で水平偏波及び垂直偏波となる成分の通過振幅差及び通過位相差を電磁界解析により計算した結果を、図2に示す。
 ここで、図2に示す破線は、低域側が理想的な偏波分離特性(通過振幅差が0、通過位相差が90度)となるようにセプタム位相板2を設計した場合の結果を示している。この破線では、低域側において理想的な偏波分離特性となっている。しかしながら、高域側では、通過振幅差は0.5dB以下であり小さいものの、通過位相差が理想値である90度に対し12度程度差が生じている。
 一方、図2に示す実線は、破線に対して高域側での偏波分離特性を改善するため、高域側の通過位相差が小さくなるようにセプタム位相板2の寸法及び板厚を調整した場合の結果を示している。この実線では、高域側において、破線に対して通過位相差を小さくすることができているが、通過振幅差は大きくなってしまい、理想的な偏波分離特性とすることができていない。これは、高域側では、正方形導波管端子3の断面寸法で伝搬するモードが高次モードも含む周波数帯となっているため、セプタム位相板2により生じる高次モードの発生量が大きくなるためである。
 よって、図10の偏波分離回路では、セプタム位相板2の寸法及び板厚を調整するだけでは、理想的な円偏波信号を発生することが困難であることがわかる。
 次に、図1に示す実施の形態1に係る偏波分離回路において、長方形導波管端子5から基本モードの信号が入力された場合に、正方形導波管端子3で水平偏波及び垂直偏波となる成分の通過振幅差、通過位相差及び軸比特性(偏波分離特性)を電磁界解析により計算した結果を、図3に示す。
 ここで、図3に示す破線は、図2に示す破線と同一条件での結果を示している。一方、図3に示す実線は、本発明の突起部6を追加した構成での結果を示している。この図3(a),(b)に示す実線では、高域側において、破線に対して通過振幅差をほぼ変化させずに通過位相差を小さくできていることがわかる。
 また、このときの軸比特性を図3(c)に示す。この図3(c)に示すように、本発明の突起部6を追加した構成では、高域側の軸比特性が大きく改善していることがわかる。
 ここで、突起部6は、正方形導波管1を伝搬する2つの偏波信号、すなわちセプタム位相板2に対して平行となる水平偏波成分と垂直となる垂直偏波成分のそれぞれに対して、異なる影響を与える。その結果、セプタム位相板2の階段状部分を通過する際の各偏波成分の通過位相を変化させることができる。一方、通過振幅に対して、突起部6による影響は小さいため、通過振幅差はあまり変化しない。
 なお、低域側における通過位相差も突起部6によって変化するが、低域側では通過振幅差が小さいこともあり、偏波分離特性はほぼ劣化しない。
 以上のように、この実施の形態1によれば、正方形導波管1内のセプタム位相板2に平行な両側壁面に設けられ、当該セプタム位相板2の階段状部分に対向し、且つ正方形導波管1の管軸方向に垂直な方向における中央寄りに位置する突起部6を設けたので、高域側における通過振幅差をほぼ変化させずに通過位相差を小さくすることができる。よって、この突起部6の形状を調整することで、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する場合であっても、両帯域のそれぞれで良好な偏波分離特性を実現することができる。
 なお図1では、突起部6を正方形導波管1の上下壁面の中央に配置し、突起部6の長手方向が正方形導波管1の側壁面にまでは延びていない場合を示した。しかしながら、これに限るものではなく、例えば図4に示すように、突起部6の長手方向を正方形導波管1の左右壁面まで延ばしてもよい。なお図4及び以降の図5~7では、図を見やすくするため、導波管断面52,53の図示を省略している。
 また図1では、突起部6を正方形導波管1の上下壁面にそれぞれ1つずつ配置した場合を示した。しかしながら、これに限るものではなく、例えば図5に示すように、突起部6を正方形導波管1の管軸方向に沿って複数設けてもよい。この場合、複数の突起部6のうちの一部は、導波管断面52,53間以外に配置してもよい。このように、突起部6を正方形導波管1の管軸方向に対して複数配置することで、反射特性を改善することが可能となる。
 また、複数の突起部6を配置する場合、例えば図5に示すように、突起部6の高さを段階的に変えてもよい。この際、正方形導波管1の管軸方向における中央側の突起部6を、当該管軸方向における端部側の突起部6に対して高く構成する。このように、突起部6の高さを段階的に変えることで、反射特性をさらに改善することが可能となる。
 また図1では、突起部6を正方形導波管1の上下壁面にそれぞれ1つずつ配置した場合を示した。しかしながら、これに限るものではなく、例えば図6に示すように、突起部6を正方形導波管1の管軸方向に垂直な方向に沿って複数設けてもよい。
 また図1では、突起部6の形状を立方体とした場合を示した。しかしながら、これに限るものではなく、例えば図7に示すように、突起部6の形状を、正方形導波管1の管軸方向に沿って中央が高く端部に向かい低くなる形状としてもよい。また、この際、突起部6は、その中心が正方形導波管1の管軸方向に垂直な方向における中央に位置するように配置される。このように、突起部6の形状を図7のような形状とすることで、反射特性を改善することが可能となる。
実施の形態2.
 実施の形態1では、正方形導波管1内のセプタム位相板2に平行な両側壁面に突起部6を設けた場合について示した。それに対し、実施の形態2では、正方形導波管1内のセプタム位相板2に垂直な両側壁面に突起部6bを設けた場合について示す。
 図8はこの発明の実施の形態2に係る偏波分離回路の構成を示す図である。この図8に示す実施の形態2に係る偏波分離回路は、図1に示す実施の形態1に係る偏波分離回路の突起部6を突起部6bに変更したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 突起部6bは、正方形導波管1内のセプタム位相板2に垂直な両側壁面(図8では左右壁面)にそれぞれ設けられたものである。この突起部6bは、セプタム位相板2の階段状部分(図1に示す導波管断面52,53間)に対向し、且つ正方形導波管1の管軸方向に垂直な方向における中央寄りに位置している。また、両側壁面に設けられた突起部6は、セプタム位相板2に対して対称に構成及び配置されている。
 この突起部6bについても突起部6と同様に、正方形導波管1を伝搬する2つの偏波信号、すなわちセプタム位相板2に対して平行となる水平偏波成分と垂直となる垂直偏波成分のそれぞれに対して、異なる影響を与える。その結果、セプタム位相板2の階段状部分を通過する際の各偏波成分の通過位相を変化させることができる。一方、通過振幅に対しては、突起部6bによる影響は小さいため、通過振幅差はあまり変化しない。
 以上のように、この実施の形態2によれば、正方形導波管1内のセプタム位相板2に垂直な両側壁面に設けられ、当該セプタム位相板2の階段状部分に対向し、且つ正方形導波管1の管軸方向に垂直な方向における中央寄りに位置する突起部6bを設けたので、高域側における通過振幅差をほぼ変化させずに通過位相差を小さくすることができる。よって、この突起部6bの形状を調整することで、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する場合であっても、両帯域のそれぞれで良好な偏波分離特性を実現することができる。
 なお図8では、突起部6bを正方形導波管1の管軸方向に垂直な方向に沿って複数設けた場合を示した。しかしながら、これに限るものではなく、例えば図9に示すように、突起部6bを左右壁面にそれぞれ1つずつ設けてもよく、同様の効果を得ることができる。
 また実施の形態2についても、図4,5,7に示すような実施の形態1の変形例と同様の変形が可能であり、同様の効果を得ることができる。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る偏波分離回路は、高域側が低域側の帯域の1.4倍以上離れた2つの帯域を使用する場合であっても、両帯域のそれぞれで良好な偏波分離特性を実現することができ、主としてVHF帯、UHF帯、マイクロ波帯及びミリ波帯で用いられる偏波分離回路等に用いるのに適している。
 1 正方形導波管、2 セプタム位相板、3 正方形導波管端子、4,5 長方形導波管端子、6,6b 突起部、51~53 導波管断面。

Claims (6)

  1.  管軸方向に垂直な断面が正方形である正方形導波管と、
     一端が階段状に構成された板部材であり、当該一端から前記正方形導波管内に前記管軸方向に沿って平行に挿入されて当該正方形導波管の一部を区切ることで2つの長方形導波管端子を形成するセプタム位相板と、
     前記正方形導波管内の前記セプタム位相板に平行又は垂直な両側壁面に設けられ、当該セプタム位相板の階段状部分に対向し、且つ前記管軸方向に垂直な方向における中央寄りに位置する突起部と
     を備えた偏波分離回路。
  2.  前記突起部は、前記セプタム位相板に対して対称に構成及び配置された
     ことを特徴とする請求項1記載の偏波分離回路。
  3.  前記突起部は、中心が前記管軸方向に垂直な方向における中央に位置し、当該管軸方向に沿って中央が高く端部に向かい低くなる形状に構成された
     ことを特徴とする請求項1記載の偏波分離回路。
  4.  前記突起部は、長手方向が前記管軸方向に垂直な方向に沿って配置され、前記管軸方向に沿って複数設けられた
     ことを特徴とする請求項1記載の偏波分離回路。
  5.  前記管軸方向における中央側の前記突起部は、当該管軸方向における端部側の前記突起部に対して高く構成された
     ことを特徴とする請求項4記載の偏波分離回路。
  6.  前記突起部は、前記管軸方向に垂直な方向に沿って複数設けられた
     ことを特徴とする請求項1記載の偏波分離回路。
PCT/JP2015/057157 2015-03-11 2015-03-11 偏波分離回路 WO2016143094A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057157 WO2016143094A1 (ja) 2015-03-11 2015-03-11 偏波分離回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057157 WO2016143094A1 (ja) 2015-03-11 2015-03-11 偏波分離回路

Publications (1)

Publication Number Publication Date
WO2016143094A1 true WO2016143094A1 (ja) 2016-09-15

Family

ID=56878814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057157 WO2016143094A1 (ja) 2015-03-11 2015-03-11 偏波分離回路

Country Status (1)

Country Link
WO (1) WO2016143094A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3618172A4 (en) * 2017-05-22 2020-05-06 Mitsubishi Electric Corporation ANTENNA DEVICE AND AERIAL GROUP DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119605U (ja) * 1983-02-02 1984-08-13 三菱電機株式会社 隔壁偏波器
JPH0197001A (ja) * 1987-10-09 1989-04-14 Mitsubishi Electric Corp 導波管形移相器
US20110043422A1 (en) * 2009-08-19 2011-02-24 Microelectronics Technology Inc. Polarizer and Waveguide Antenna Apparatus Using the Same
JP2014127784A (ja) * 2012-12-26 2014-07-07 Mitsubishi Electric Corp 偏波分離回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119605U (ja) * 1983-02-02 1984-08-13 三菱電機株式会社 隔壁偏波器
JPH0197001A (ja) * 1987-10-09 1989-04-14 Mitsubishi Electric Corp 導波管形移相器
US20110043422A1 (en) * 2009-08-19 2011-02-24 Microelectronics Technology Inc. Polarizer and Waveguide Antenna Apparatus Using the Same
JP2014127784A (ja) * 2012-12-26 2014-07-07 Mitsubishi Electric Corp 偏波分離回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3618172A4 (en) * 2017-05-22 2020-05-06 Mitsubishi Electric Corporation ANTENNA DEVICE AND AERIAL GROUP DEVICE

Similar Documents

Publication Publication Date Title
US8493161B2 (en) Compact excitation assembly for generating a circular polarization in an antenna and method of fashioning such a compact excitation assembly
JP6470930B2 (ja) 分配器及び平面アンテナ
US10957965B2 (en) Directional coupler and a method of manufacturing thereof
JP6301025B1 (ja) アンテナ装置及びアレーアンテナ装置
JP6031999B2 (ja) 偏波分離回路
KR20170114410A (ko) 이중편파 혼 안테나
WO1999067848A1 (en) Broad band quad ridged polarizer
JP2013066003A (ja) 誘電体導波管スロットアンテナおよびそれを用いたアレイアンテナ
WO2016143094A1 (ja) 偏波分離回路
US6664866B2 (en) Generator of circularly polarized wave
KR20170009588A (ko) 혼 안테나 장치
US11101530B2 (en) Polarization separation circuit
JP6671564B2 (ja) 導波管方向性結合器及び偏波分離回路
WO2020075521A1 (ja) 周波数選択板
JP7305079B2 (ja) 偏分波器
JP2014022864A (ja) 導波管フィルタ及びデュプレクサ
US20180366826A1 (en) Phase shift circuit and power supply circuit
Morini et al. On the design of dual-polarization directional couplers
JP5674904B1 (ja) 分配回路及びアレイアンテナ
JP2012029018A (ja) 帯域通過フィルタ
JP2006246314A (ja) 偏分波器
JP2009267932A (ja) 溝形円偏波発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15884585

Country of ref document: EP

Kind code of ref document: A1