WO2016141744A1 - 一种目标跟踪方法、装置和系统 - Google Patents

一种目标跟踪方法、装置和系统 Download PDF

Info

Publication number
WO2016141744A1
WO2016141744A1 PCT/CN2015/097637 CN2015097637W WO2016141744A1 WO 2016141744 A1 WO2016141744 A1 WO 2016141744A1 CN 2015097637 W CN2015097637 W CN 2015097637W WO 2016141744 A1 WO2016141744 A1 WO 2016141744A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
dimensional cartesian
coordinate system
information
tracking device
Prior art date
Application number
PCT/CN2015/097637
Other languages
English (en)
French (fr)
Inventor
王超
全晓臣
任烨
王鹏
张文聪
蔡巍伟
浦世亮
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to US15/556,891 priority Critical patent/US10281554B2/en
Priority to EP15884422.5A priority patent/EP3270585A4/en
Publication of WO2016141744A1 publication Critical patent/WO2016141744A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/26Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the present invention relates to the field of video surveillance, and in particular to a target tracking method, apparatus and system.
  • a tracking device In the existing video surveillance field, there is a class of target tracking technology that tracks information according to the target object in the image.
  • a tracking device can implement the function.
  • the tracking device captures feature information of the target object based on image recognition technology and performs automatic recognition and tracking.
  • this type of tracking method is related to the quality of the captured image and the background environment in which the target object is located. When the image quality is poor or the background environment is complex, such as occlusion, the target object may be lost, resulting in inaccurate monitoring results. .
  • the existing target tracking technology in the field of video surveillance is the use of geometric transformation, using the position information of the target object in a certain coordinate system, and the correspondence between the coordinate system and the ball machine PTZ, thereby driving the ball machine to track
  • the main camera is not highly distinguishable from the target, the tracking effect is poor when tracking for a specific target.
  • Double-ball tracking is also limited to the tracking effect provided by the main ball, and the monitoring result is inaccurate due to the loss of the target.
  • the main object of the present invention is to provide a target tracking method, apparatus and system to solve the problem that the monitoring method of the prior art method for monitoring a tracking target is inaccurate.
  • a target tracking method includes: acquiring GPS information of a target object monitored by the tracking device; and obtaining PTZ coordinate information corresponding to GPS information of the target object according to a conversion relationship between the pre-stored GPS information and the PTZ coordinate information; Adjusting the tracking device according to the PTZ coordinate information of the target object to control the tracking device Monitor the target object.
  • a target tracking device includes: an acquisition module, configured to acquire GPS information of a target object monitored by the tracking device; and a conversion module, configured to obtain a target object according to a conversion relationship between the pre-stored GPS information and the PTZ coordinate information The PTZ coordinate information corresponding to the GPS information; the control module is configured to adjust the tracking device according to the PTZ coordinate information of the target object to control the tracking device to monitor the target object.
  • a target tracking system includes: a GPS module, configured to acquire GPS information of a target object monitored by the tracking device; and a processor configured to obtain a target object according to a conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • the PTZ coordinate information corresponding to the GPS information; the tracking device is configured to monitor the target object according to the PTZ coordinate information of the target object.
  • the PTZ coordinate information of the target object in the monitoring range of the tracking device is obtained according to the GPS information of the target object, and the technical problem that the monitoring result of the method for monitoring the tracking target in the prior art is inaccurate is solved, and the technical problem is achieved.
  • FIG. 1 is a flowchart of a target tracking method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method for acquiring a conversion relationship according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a target tracking device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a target tracking system according to a third embodiment of the present invention.
  • PTZ short for Pan/Tilt/Zoom, which represents the pan/tilt movement and tracking device lens zoom and zoom control of the tracking device.
  • P(Pan) is horizontal rotation
  • T(Tilt) is vertical rotation
  • Z(( Zoom) is the magnification.
  • Embodiment 1 of the present invention provides a target tracking method.
  • the target tracking method includes the following steps:
  • Step S102 Acquire GPS information of the target object monitored by the tracking device.
  • the tracking device can be controlled by any PTZ parameter, and the tracking device usually includes a PTZ or an interface connected to the PTZ.
  • the target object carries a GPS module, and the GPS information of the module can be acquired in real time.
  • the GPS information is information received by the GPS module, and the latitude data and the longitude data of the target object can be obtained by extracting the fixed format data received by the GPS, wherein the latitude data can be the latitude hemisphere N, that is, the northern latitude data of the northern hemisphere.
  • the longitude data may be the east longitude data of the longitude hemisphere E, that is, the east hemisphere, or the west longitude data of the longitude hemisphere W, that is, the western hemisphere.
  • the tracking target is within the monitoring range of the tracking device. Tracking equipment is optional, including domes, PTZ cameras, and more.
  • Step S104 Obtain PTZ coordinate information corresponding to the GPS information of the target object according to the conversion relationship between the GPS information stored in advance and the PTZ coordinate information.
  • the PTZ coordinate information is a tracking device that tracks the PTZ parameter of the device pan/tilt when the tracking device locks the target object to a fixed position in the lens field of view.
  • the PTZ coordinate information is a tracking device that tracks the PTZ parameters of the device pan/tilt when the tracking device locks the target object to the center of the lens field of view.
  • the conversion relationship between the pre-stored GPS information and the PTZ coordinate information is a mutual conversion relationship between the GPS information and the PTZ coordinate information at any point within the visible range of the tracking device. After the conversion relationship is determined, the target object is at a certain position.
  • the GPS information and the PTZ coordinate information of the position are both uniquely determined and correspond to each other. Therefore, by knowing the target The GPS information of any point in the motion track of the object obtains the PTZ coordinate information of the target object at the point.
  • Step S106 adjusting the tracking device according to the PTZ coordinate information of the target object to control the tracking device to monitor the target object.
  • the tracking device pan/tilt adjusts the monitoring angle of view and the monitoring magnification of the tracking device according to the PTZ coordinate information, and locks the target object.
  • the method further includes:
  • Step S103 The conversion relationship between the GPS information and the PTZ coordinate information is saved, wherein the conversion relationship includes: a first conversion relationship between the GPS information and the ground coordinate information, and a second conversion between the ground coordinate information and the tracking device coordinate information. The third conversion relationship between the relationship, the PTZ coordinate information, and the tracking device coordinate information.
  • the ground coordinate information is a coordinate value in the first two-dimensional Cartesian coordinate system, and any point on the plane based on the ground is the coordinate origin.
  • the tracking device coordinate information is a coordinate value in a second two-dimensional Cartesian coordinate system, and the second two-dimensional Cartesian coordinate system takes the pole of the tracking device as an origin.
  • Tracking device coordinate information irrespective of the specific geographic location of the tracking device, is used to characterize the coordinate information of the target object in the second two-dimensional Cartesian coordinate system established based on the tracking device.
  • the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system are two-dimensional Cartesian coordinate systems parallel to the ground plane.
  • step S104 according to the conversion relationship between the pre-stored GPS information and the PTZ coordinate information, the specific steps of obtaining the PTZ coordinate information corresponding to the GPS information of the target object include:
  • Step S202 Convert the GPS information of the currently acquired target object into ground coordinate information corresponding to the target object according to the first conversion relationship.
  • the first conversion relationship is a conversion relationship between the GPS information and the ground coordinate information
  • the GPS information is specific latitude and longitude data
  • the ground coordinate information is coordinates in the first two-dimensional Cartesian coordinate system.
  • the first conversion relationship is a two-way conversion relationship, which can convert the GPS latitude and longitude data of a certain point into coordinate values of the point in the first two-dimensional Cartesian coordinate system, and can also point a certain point in the first two-dimensional Cartesian coordinate system.
  • the coordinate value in the conversion is converted to the GPS latitude and longitude data of the point.
  • Step S204 Convert the ground coordinate information corresponding to the target object converted to the tracking device coordinate information corresponding to the target object according to the second conversion relationship.
  • the second conversion relationship is a conversion relationship between the ground coordinate information and the tracking device coordinate information;
  • the ground coordinate information is a coordinate in the first two-dimensional Cartesian coordinate system, and the tracking device coordinate information is The coordinates in the second Cartesian coordinate system, the two Cartesian coordinate systems must satisfy the conversion relationship of the linear positive transformation, that is, one of the Cartesian coordinate systems is converted into another Cartesian coordinate system by a certain translation, rotation, and scaling.
  • the second conversion relationship is a two-way conversion relationship, which can convert the coordinate value of a certain point in the first two-dimensional Cartesian coordinate system into the coordinate value of the point in the second two-dimensional Cartesian coordinate system;
  • the coordinate values in the second two-dimensional Cartesian coordinate system are converted into coordinate values of the point in the first two-dimensional Cartesian coordinate system.
  • Step S206 Convert the tracking device coordinate information corresponding to the target object converted to the PTZ coordinate information corresponding to the target object according to the third conversion relationship.
  • the third conversion relationship is a conversion relationship between the tracking device coordinate information and the PTZ coordinate information;
  • the tracking device coordinate information is a coordinate in the second rectangular coordinate system, and the PTZ coordinate information of the tracking device is Track the PTZ parameters of the PTZ when the device monitors the target object.
  • the third conversion relationship is a two-way conversion relationship, which can convert the coordinate value of a certain point in the second two-dimensional Cartesian coordinate system into the PTZ parameter of the pan-tilt when the tracking device locks the point, and can also lock the tracking device when the point is locked.
  • the PTZ parameter of the gimbal is converted to the coordinate value of the point in the second two-dimensional Cartesian coordinate system.
  • the method before saving the conversion relationship between the GPS information and the PTZ coordinate information in step S103, the method further includes:
  • Step S302 Acquire a first conversion relationship between the GPS information and the ground coordinate information.
  • Step S304 Acquire a third conversion relationship between the PTZ coordinate information and the tracking device coordinate information.
  • Step S306 acquiring a second conversion relationship between the ground coordinate information and the tracking device coordinate information.
  • the step S302 the specific step of acquiring the first conversion relationship between the GPS information and the ground coordinate information further includes:
  • Step S3022 Establish a first two-dimensional Cartesian coordinate system, wherein the horizontal and vertical axes of the first two-dimensional Cartesian coordinate system respectively point to any two directions of the east, the west, the south, and the north.
  • the horizontal and vertical axis directions of the first two-dimensional Cartesian coordinate system can be arbitrarily selected.
  • the coordinate origin of the first two-dimensional Cartesian coordinate system is an arbitrary place.
  • the horizontal and vertical axes of the first two-dimensional Cartesian coordinate system are inevitably vertical, and the direction in which the horizontal and vertical axes are respectively directed is necessarily two directions of 90° clockwise or counterclockwise in the east, the west, the south, and the north. It is impossible to have the case where the horizontal and vertical axes of the first two-dimensional Cartesian coordinate system are respectively the east and the west.
  • Step S3024 Read the GPS information of the coordinate origin of the first two-dimensional Cartesian coordinate system, and read the GPS information of the monitoring point in the monitoring device monitoring screen.
  • the GPS information includes: latitude data and longitude data.
  • the GPS module is used to acquire the GPS information of the selected monitoring point and the coordinate origin of the first two-dimensional Cartesian coordinate system.
  • the latitude data and longitude data contained in the GPS information the possible combinations are: north latitude data + east longitude data, north latitude data + west longitude data, south latitude data + east longitude data, south latitude data + west Data.
  • step S3024 the GPS information of at least two monitoring points in the tracking device monitoring screen is acquired, and one of the monitoring points is used as the coordinate origin to establish the first two-dimensional rectangular coordinate system, which is equivalent to acquiring the GPS information of the coordinate origin.
  • the position represented by a certain longitude data and latitude data is also possible as the coordinate origin of the first two-dimensional Cartesian coordinate system when establishing the first two-dimensional Cartesian coordinate system, which is equivalent to acquiring the GPS information of the coordinate origin.
  • Step S3026 Create a correspondence between the GPS information of the monitoring point and the coordinate value of the monitoring point in the first two-dimensional Cartesian coordinate system, and acquire the first conversion relationship.
  • the specific calculation relationship between the GPS information of the monitoring point and the coordinate value of the monitoring point in the first two-dimensional Cartesian coordinate system includes: according to the GPS information of the read monitoring point and the coordinate origin
  • the GPS information can obtain a longitude distance difference and a latitude distance difference between the monitoring point and the coordinate origin; the longitude distance difference and the latitude distance difference correspond to the horizontal and vertical coordinate values of the monitoring point in the first two-dimensional Cartesian coordinate system, wherein
  • the latitude distance difference corresponds to the coordinate value of the coordinate axis pointing to the south or the north; the longitude distance difference corresponds to the coordinate value of the coordinate axis pointing to the west or the east.
  • the first conversion relationship is used to represent the latitude data difference between the monitoring point and the coordinate origin, the longitude data difference, and the abscissa value of the monitoring point in the first two-dimensional Cartesian coordinate system, Correspondence of coordinate values.
  • the latitude distance difference is equal to a coordinate value of the coordinate point of the monitoring point pointing to the south or the north in the first two-dimensional Cartesian coordinate system
  • the longitude distance difference is equal to the monitoring point pointing in the first two-dimensional Cartesian coordinate system
  • the product of the latitude distance difference and the first proportional coefficient is equal to the coordinate value of the coordinate point of the monitoring point pointing to the south or the north in the first two-dimensional Cartesian coordinate system; the longitude distance difference and the first proportional coefficient The product is equal to the coordinate value of the coordinate point of the monitoring point pointing to the west or the east in the first two-dimensional Cartesian coordinate system.
  • the first proportional coefficient is a non-zero real number.
  • the first scale factor is used to appropriately reduce or amplify the longitude distance difference and the latitude distance difference.
  • step S3022 to step S3026 included in step S302 are mainly used to calculate a first conversion relationship between GPS information and ground coordinate information.
  • the step S302 is not a necessary step of the target tracking method provided by the first embodiment of the present invention.
  • the GPS information of the monitoring point and the monitoring point are calculated in the first two-dimensional Cartesian coordinate system according to the following formula Correspondence between coordinate values in:
  • N T is the coordinate value of the monitoring point in the first two-dimensional Cartesian coordinate system
  • P Tx and P Ty are the abscissa value and the ordinate value of the monitoring point in the first two-dimensional Cartesian coordinate system
  • N 0 and E 0 is the latitude data and the longitude data in the GPS information of the coordinate origin, respectively
  • N T and E T are the latitude data and the longitude data in the GPS information of the monitoring point, respectively.
  • the step S304: the specific step of calculating the third conversion relationship between the PTZ coordinate information and the tracking device coordinate information further includes:
  • Step S3042 Establish a second two-dimensional Cartesian coordinate system, wherein the direction of the horizontal and vertical axes of the second two-dimensional Cartesian coordinate system is the direction in which the tracking device is pointing when the horizontal rotation angle of the tracking device is different by 90°.
  • the horizontal axis and the vertical axis of the second two-dimensional Cartesian coordinate system respectively indicate a direction in which the center of the tracking device is pointed when the horizontal rotation angle of the tracking device, that is, the P parameter is different by 90 degrees.
  • the horizontal axis of the second two-dimensional Cartesian coordinate system points to the direction in which the center of the image is pointed when the P parameter is 45°
  • the vertical axis of the second two-dimensional Cartesian coordinate system points to the direction in which the center of the image is pointed when the P parameter is 135°.
  • Step S3044 Read PTZ coordinate information of the monitoring point in the tracking device screen.
  • the PTZ coordinate information of the monitoring point is used to track the PTZ parameter of the device pan/tilt when the tracking device locks the selected monitoring point to the fixed position of the monitoring screen; preferably, the fixed position is the center of the monitoring screen. In this way, it is ensured that a particular monitoring point in the tracking device monitoring screen has unique PTZ coordinate information.
  • Step S3046 Create a correspondence between the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system, and acquire a third conversion relationship.
  • the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system are in one-to-one correspondence.
  • the specific calculation relationship between the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system includes: calculating the tracking device and monitoring according to the T parameter in the PTZ coordinate information.
  • the third conversion relationship is used to represent a coordinate component of the projection of the monitoring point and the tracking device line on the coordinate axis of the second two-dimensional Cartesian coordinate system, and the monitoring point is in the second two-dimensional Cartesian coordinate system.
  • the coordinate component of the line projection on the horizontal and vertical axes of the second two-dimensional Cartesian coordinate system is equal to the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system.
  • the product of the coordinate projection of the connected line on the horizontal and vertical axes of the second two-dimensional Cartesian coordinate system and the second proportional coefficient is equal to the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system;
  • the second proportional coefficient is a non-zero real number.
  • step S3042 to step S3046 included in step S304 are mainly used to calculate a third conversion relationship between the PTZ coordinate information and the tracking device coordinate information.
  • the step S304 is not a necessary step of the target tracking method provided by the first embodiment of the present invention.
  • the correspondence between the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system is calculated according to the following formula:
  • Q T is the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system
  • Q Tx and Q Ty are the abscissa value and the ordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system, respectively
  • ⁇ T is The P parameter of the monitoring point
  • ⁇ y is the P parameter of the vertical axis of the second two-dimensional Cartesian coordinate system.
  • the horizontal and vertical axes of the second two-dimensional Cartesian coordinate system respectively point to the direction in which the tracking device is pointing when the horizontal rotation angle of the tracking device is 90°, and the direction in which the tracking device is pointing when the horizontal rotation angle of the tracking device is 0°
  • the correspondence between the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system is calculated:
  • Q T is the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system
  • Q Tx and Q Ty are the abscissa value and the ordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system, respectively
  • ⁇ T is The P parameter of the monitoring point, To monitor the T parameters of the point.
  • the step S306: acquiring the second conversion relationship between the ground coordinate information and the tracking device coordinate information comprises:
  • Step S3062 Read ground coordinate information of at least two monitoring points in the tracking device screen in the first two-dimensional Cartesian coordinate system.
  • acquiring the second conversion relationship between the ground coordinate information and the tracking device coordinate information may be converted into acquiring a conversion parameter between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system. Since the two coordinate systems satisfy the linear positive transformation, that is, one coordinate system can obtain another coordinate system by a certain rotation, translation, and scaling, in order to obtain at least a rotation coefficient, a translation coefficient, and a scaling factor between the two coordinate systems, at least Requires the total coordinate values of two known points in two coordinate systems.
  • step S3062 at least two monitoring points are selected, GPS information of the at least two monitoring points is acquired, and ground coordinate information of the at least two monitoring points is obtained according to the first conversion relationship.
  • Step S3064 Read tracking device coordinate information of at least two monitoring points in a second two-dimensional Cartesian coordinate system.
  • step S3064 PTZ coordinate information of the at least two monitoring points is acquired, and tracking device coordinate information of the at least two monitoring points is obtained according to the third conversion relationship.
  • Step S3066 Create a correspondence relationship between the coordinate values in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system, and obtain a second conversion relationship; wherein the second conversion relationship is used to represent the same monitoring point The correspondence between the coordinate values in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system.
  • step S3066 based on the ground coordinate information of the at least two monitoring points in the first two-dimensional Cartesian coordinate system and the tracking device coordinate information in the second two-dimensional Cartesian coordinate system, two groups may be established.
  • a one-to-one correspondence between coordinate values in a two-dimensional Cartesian coordinate system and coordinate values in a second two-dimensional Cartesian coordinate system, and the two-to-one correspondence between the two sets of one-to-one correspondences can be used to obtain a scaling factor used in calculating the second conversion relationship, Rotation coefficient and translation coefficient.
  • step S3066 a correspondence between the coordinate values in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system is created, and the specific calculation step of obtaining the second conversion relationship further includes:
  • Step S30662 Establish a first column vector and a second based on the monitoring point according to coordinate values in each of the at least two monitoring points in the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system, respectively. Column vector.
  • the first column vector is established at a certain point in the coordinate value of the first two-dimensional Cartesian coordinate system, wherein the elements of the first column vector are sequentially, and may be an abscissa value and an ordinate value. , can also be the ordinate value and the abscissa value;
  • the second column vector is established by the same point in the coordinate value of the second two-dimensional Cartesian coordinate system, and the order of the elements in the second column vector is the same as the first column vector, based on There is also a one-to-one correspondence between the first column vector and the second column vector of the same point.
  • Step S30664 Creating a correspondence relationship between the first column vector and the second column vector, wherein the correspondence relationship comprises: multiplying the first column vector by the scaling transform coefficient, the left multiplication rotation transformation matrix, and adding the translation transformation vector, Equal to the second column vector, or the second column vector is multiplied by the scaling transform coefficient, the left multiplying rotation transform matrix, and the translation transform vector is equal to the first column vector.
  • step S30664 there is a transformation of the expansion, rotation, and translation between the first column vector established based on the coordinate values of the first coordinate system and the second column vector established based on the coordinate values of the second coordinate system.
  • it is embodied by a scaling transform coefficient, a rotation transform matrix, and a translation transform column vector.
  • the format of the rotation transformation matrix is or
  • the order of the two elements of the translation transformation column vector is the same as the first column vector and the second column vector, that is, when the elements of the first column vector and the second column vector are: abscissa, ordinate, then translation
  • the elements of the transformed column vector are: the abscissa translation coefficient and the ordinate translation coefficient.
  • Step S30666 calculating a scaling factor, a rotation coefficient, and a translation coefficient between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system, and obtaining a second conversion relationship, wherein the scaling factor is a scaling coefficient, and the rotation transformation matrix is The rotation angle ⁇ is a rotation coefficient, and the two elements of the translation transformation column vector are the abscissa translation coefficient and the ordinate translation coefficient.
  • step S3066 are mainly used to obtain the first two-dimensional according to the correspondence between the coordinate values in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system.
  • the calculation method and calculation parameters of the coordinate values in the Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system are not a necessary step of the target tracking method provided by the first embodiment of the present invention.
  • the formula for calculating the scaling factor, the rotation coefficient, and the translation coefficient between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system is according to the following formula:
  • is the scaling factor
  • is the rotation coefficient
  • a is the abscissa translation coefficient
  • b is the ordinate translation coefficient
  • P 1x and P 1y are respectively the first monitoring point of the at least two monitoring points in the first two-dimensional right angle
  • Q 1x and Q 1y are the abscissa value and the ordinate value of the first monitoring point in the second two-dimensional Cartesian coordinate system
  • P 2x and P 2y are respectively at least
  • Q 2x and Q 2y are respectively the second monitoring point in the second two-dimensional Cartesian coordinate system
  • the expansion and contraction coefficient, the rotation transformation matrix, and the translation transformation column vector are calculated using the coordinate values of the three or more points, the scaling factor and the rotation between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system are acquired.
  • the method of coefficient and translation coefficient further includes: obtaining a fitting value of the scaling factor, the rotation coefficient, and the translation coefficient under the mean square error by a least square method.
  • the conversion relationship is a conversion relationship between GPS information and PTZ coordinate information, and includes a first conversion relationship between GPS information and ground coordinate information, a second conversion relationship between the ground coordinate information and the tracking device coordinate information, and a third conversion relationship between the tracking device coordinate information and the PTZ coordinate information.
  • the method for obtaining the conversion relationship of the embodiment may be a preferred embodiment of the conversion relationship acquisition in the target tracking method of the above embodiment. As shown in FIG. 2, the method for obtaining the conversion relationship includes the following steps:
  • Step Sa acquiring GPS information of at least two monitoring points in the visible range of the tracking device, and acquiring latitude data and longitude data in the GPS information, wherein latitude data and longitude of the first monitoring point of the at least two monitoring points The data are N 1 and E 1 respectively, and the latitude data and longitude data of the second monitoring point of at least two monitoring points are N 2 and E 2 , respectively .
  • Step Sb Obtain PTZ coordinate information of the at least two monitoring points in the visible range of the tracking device, and obtain PTZ information of the tracking device when the selected device is locked in the image center for at least two monitoring points selected in step Sa Is the PTZ coordinate information of the selected point, wherein the P parameter ⁇ 1 and the T parameter ⁇ 1 of the first monitoring point of the at least two monitoring points, and the P parameter of the second monitoring point of the at least two monitoring points ⁇ 2 , T parameter ⁇ 2 .
  • Step Sc acquiring a first conversion relationship between the GPS information and the ground coordinate information; wherein, the step Sc further includes:
  • Step Sc1 establishing a first two-dimensional Cartesian coordinate system, wherein a coordinate origin of the first two-dimensional Cartesian coordinate system is a first monitoring point of at least two monitoring points, and a horizontal and vertical axis of the first two-dimensional Cartesian coordinate system respectively Point to the north and the west.
  • Step Sc2 calculating a latitude distance difference d 1 between the first monitoring point and the coordinate origin of the at least two monitoring points, a longitude distance difference d 2 , and a latitude distance difference between the second monitoring point of the at least two monitoring points and the coordinate
  • d 3 and longitude distance difference d 4 is:
  • R is the radius of the Earth.
  • Step Sc3 Converting the latitude distance difference and the longitude distance difference of each of the at least two monitoring points into coordinate values in the first two-dimensional Cartesian coordinate system, and the first proportional coefficient is The coordinate values P 1 and P 2 of the first monitoring point and the second monitoring point of the at least two monitoring points in the first two-dimensional Cartesian coordinate system are respectively:
  • Step Sd Acquire a third conversion relationship between the PTZ coordinate information and the tracking device coordinate information, where the step Sd further includes:
  • Step Sd1 establishing a second two-dimensional Cartesian coordinate system, wherein the second two-dimensional Cartesian coordinate system takes the tracking device as an origin; the horizontal axis of the second two-dimensional Cartesian coordinate system points to the direction in which the tracking device points when the horizontal rotation angle of the tracking device is 90°. The longitudinal axis of the second two-dimensional Cartesian coordinate system points to the direction in which the tracking device is pointing when the horizontal rotation angle of the tracking device is 0°.
  • Step Sd2 the first monitoring point is in the horizontal coordinate component d 5 of the second two-dimensional Cartesian coordinate system, the vertical axis component d 6 , and the horizontal axis component d 7 of the second monitoring point in the second two-dimensional Cartesian coordinate system,
  • the formula for calculating the vertical axis component d 8 is:
  • d 8 h / tan ( ⁇ 2 / 180 ⁇ ⁇ ) ⁇ cos ( ⁇ 2 / 180 ⁇ ⁇ ).
  • Step Sd3 Converting coordinate components of each of the at least two monitoring points into coordinate values in the second rectangular coordinate system, the second proportional coefficient is 1/h, and the first monitoring point of the at least two monitoring points and The coordinate values Q 1 and Q 2 of the second monitoring point in the second Cartesian coordinate system are:
  • h is the height of the tracking device.
  • Step Se calculating a second conversion relationship between the ground coordinate information and the tracking device coordinate information; wherein the step Se further includes:
  • Step Se1 Read ground coordinate information P 1 , P 2 of at least two monitoring points in the tracking device screen in the first two-dimensional Cartesian coordinate system.
  • Step Se2 reading tracking device coordinate information Q 1 , Q 2 of at least two monitoring points in a second two-dimensional Cartesian coordinate system.
  • Step Se3 creating a correspondence between two-dimensional Cartesian coordinate system the first coordinate values and the coordinate values of the second two-dimensional rectangular coordinate system, acquiring a second conversion relation; wherein, P 1 and Q 1 corresponds to, P 2 and Q 2 corresponds,
  • the specific calculation steps include:
  • Step Se31 According to the coordinate value P 1 of the first monitoring point in the first two-dimensional Cartesian coordinate system, the third column vector is established as: [P 1x P 1y ] T , according to the first monitoring point in the second two-dimensional The coordinate value Q 1 in the Cartesian coordinate system establishes the fourth column vector as: [Q 1x Q 1y ] T ;
  • the fifth column vector is established as: [P 2x P 2y ] T
  • the sixth column vector is established as: [Q 2x Q 2y ] T .
  • Step Se32 Create a correspondence between the first column vector and the second column vector:
  • Step Se33 Calculate a scaling factor, a rotation coefficient, and a translation coefficient between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system according to the correspondence relationship created in Step Se32, to obtain a second conversion relationship, where the expansion and transformation coefficient For the scaling factor ⁇ , the rotation angle ⁇ in the rotation transformation matrix is the rotation coefficient ⁇ , and the two elements of the translation transformation column vector are the abscissa translation coefficient a and the ordinate translation coefficient b.
  • step Se32 the correspondence relationship involved in step Se32 may be transformed into:
  • the fitting values of ⁇ cos ⁇ , ⁇ sin ⁇ , a, b under the mean square error can also be obtained by the least squares method, as shown in the following equation:
  • the conversion relationship between the GPS information and the PTZ coordinate information is obtained through the steps Sa to Se, the conversion relationship is saved, and the target tracking is further implemented according to the conversion relationship.
  • Step Si Obtain GPS information of the target object monitored by the tracking device; if the target object is located at the R point, the latitude data in the acquired R point GPS information is N R , and the longitude data is E R .
  • Step Sj Obtain PTZ coordinate information corresponding to the GPS information of the target object according to the conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • step Sj further includes:
  • Step Sj1 Convert the GPS information of the currently acquired target object into ground coordinate information according to the first conversion relationship; according to the first conversion relationship calculated in step Sc3, the latitude data of the target object is N R , and the longitude data is E R Converted to the coordinates P R in the first two-dimensional Cartesian coordinate system:
  • N 1 and E 1 are latitude data and longitude data of a coordinate origin.
  • Step Sj2 converting the converted ground coordinate information into tracking device coordinate information according to the second conversion relationship; and converting the relationship between the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system obtained according to step Se
  • the coordinate P R of the object in the first two-dimensional Cartesian coordinate system is converted to the coordinates of the second two-dimensional Cartesian coordinate system.
  • P Rx is N R -N 1 and P Ry is (E 1 -E R ) ⁇ cos(N 1 /180 ⁇ ), wherein ⁇ cos ⁇ , ⁇ sin ⁇ , a, b are parameters solved in step Se.
  • Step Sj3 Convert the converted tracking device coordinate information into the PTZ coordinate information of the tracking device according to the third conversion relationship.
  • the PTZ coordinate information corresponding to the point can be obtained as:
  • the P coordinate information is:
  • the T coordinate information is:
  • Embodiment 2 of the present invention further provides a target tracking device.
  • the target tracking device of the second embodiment of the present invention may be used to perform the target tracking method provided by the first embodiment of the present invention.
  • the target tracking method of the first embodiment of the present invention may also be provided by the second embodiment of the present invention.
  • the target tracking device is executed.
  • the target tracking device of the second embodiment of the present invention includes:
  • the obtaining module 10 is configured to acquire GPS information of a target object monitored by the tracking device.
  • the conversion module 20 is configured to obtain PTZ coordinate information corresponding to the GPS information of the target object according to the conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • the control module 30 is configured to adjust the tracking device according to the PTZ coordinate information of the target object to control the tracking device to monitor the target object.
  • the foregoing obtaining module 10, the converting module 20 and the control module 30 may be operated as part of the device in the monitoring terminal, and the function implemented by the module may be performed by the processor in the monitoring terminal, and the monitoring terminal may also It is a terminal device such as a camera, a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palm computer, and a mobile Internet device (MID), a PAD, and the like.
  • a terminal device such as a camera, a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palm computer, and a mobile Internet device (MID), a PAD, and the like.
  • the device before the converting module, the device further comprises:
  • the saving module 15 is configured to save a conversion relationship between the GPS information and the PTZ coordinate information, where the conversion relationship includes: a first conversion relationship between the GPS information and the ground coordinate information, and between the ground coordinate information and the tracking device coordinate information a third conversion relationship, a third conversion relationship between the PTZ coordinate information and the tracking device coordinate information;
  • the ground coordinate information is a coordinate value of the first position in the first two-dimensional Cartesian coordinate system
  • the tracking device coordinate information is a coordinate value of the first position in the second two-dimensional Cartesian coordinate system
  • the second two-dimensional Cartesian coordinate system Take the pole of the tracking device as the origin.
  • the foregoing save module 15 can be operated as a part of the device in the monitoring terminal, and the function implemented by the above module can be executed by the processor in the monitoring terminal.
  • the monitoring terminal can also be a camera or a smart phone (such as Android). Mobile phones, iOS phones, etc.), tablets, PDAs, and mobile Internet devices (MID), PAD and other terminal devices.
  • the conversion module 20 comprises:
  • the first converting unit 21 is configured to convert the GPS information of the currently acquired target object into ground coordinate information corresponding to the target object according to the first conversion relationship.
  • the second converting unit 22 is configured to convert the converted ground coordinate information corresponding to the target object to the tracking device coordinate information corresponding to the target object according to the second conversion relationship.
  • the third converting unit 23 is configured to convert, according to the third conversion relationship, the converted tracking device coordinate information corresponding to the target object into the PTZ coordinate information corresponding to the target object.
  • the first conversion unit 21, the second conversion unit 22, and the third conversion unit 23 described above can be run in the monitoring terminal as part of the device.
  • the functions implemented by the above modules can be performed by the processor in the monitoring terminal.
  • the monitoring terminal can also be a camera, a smart phone (such as an Android mobile phone, an iOS mobile phone, etc.), a tablet computer, a palm. Computers and mobile Internet devices (MID), PAD and other terminal devices.
  • MID Computers and mobile Internet devices
  • the unit for calculating the first conversion relationship between the GPS information and the ground coordinate information comprises:
  • the first establishing subunit is configured to establish a first two-dimensional Cartesian coordinate system, wherein the horizontal and vertical axes of the first two-dimensional Cartesian coordinate system respectively point to any two directions of the east, the west, the south, and the north .
  • the first reading subunit is configured to read GPS information of a coordinate origin of the first two-dimensional Cartesian coordinate system, and read GPS information of the monitoring point in the monitoring device monitoring screen, and the GPS information includes: latitude data and longitude data.
  • a first creating subunit configured to create a correspondence relationship between the GPS information of the monitoring point and the coordinate value of the monitoring point in the first two-dimensional Cartesian coordinate system, to obtain a first conversion relationship, wherein the first conversion relationship is used for characterization
  • the foregoing first establishing subunit, the first reading subunit, and the first creating subunit may be operated in a monitoring terminal as part of the apparatus, and the foregoing module implementation may be implemented by monitoring a processor in the terminal.
  • the function of the monitoring terminal can also be a camera, a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palm computer, and a mobile Internet device (MID), a PAD, and the like.
  • the unit for calculating the third conversion relationship between the PTZ coordinate information and the tracking device coordinate information comprises:
  • a second establishing subunit for establishing a second two-dimensional Cartesian coordinate system, wherein the second two-dimensional Cartesian coordinate system takes the tracking device as an origin; the direction of the horizontal and vertical axes of the second two-dimensional Cartesian coordinate system is the level of the tracking device When the angle of rotation differs by 90°, the direction in which the device is pointing is tracked.
  • the second reading subunit is configured to read PTZ coordinate information of the monitoring point in the tracking device screen.
  • the second creating sub-unit is configured to create a correspondence between the PTZ coordinate information of the monitoring point and the coordinate value of the monitoring point in the second two-dimensional Cartesian coordinate system, and acquire a third conversion relationship.
  • the foregoing second establishing subunit, the second reading subunit, and the second creating subunit may be operated in a monitoring terminal as part of the apparatus, and the foregoing module implementation may be implemented by monitoring a processor in the terminal.
  • the function of the monitoring terminal can also be a camera, a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palm computer, and a mobile Internet device (MID), a PAD, and the like.
  • the unit for calculating the second conversion relationship between the ground coordinate information and the tracking device coordinate information comprises a third reading unit, configured to read at least two monitoring points in the tracking device screen in the first two-dimensional rectangular coordinate system Ground coordinate information in .
  • a fourth reading subunit configured to read tracking device coordinate information of the at least two monitoring points in the second two-dimensional Cartesian coordinate system.
  • a third creating subunit configured to create a correspondence between the coordinate values in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system, to obtain a second conversion relationship.
  • the second conversion relationship is used to represent the correspondence between the coordinate values of the same monitoring point in the first two-dimensional Cartesian coordinate system and the coordinate values in the second two-dimensional Cartesian coordinate system.
  • the third reading unit, the fourth reading sub-unit, and the third creating sub-unit may be operated as part of the device in the monitoring terminal, and the module may be implemented by monitoring the processor in the terminal.
  • the function of the monitoring terminal can also be a camera, a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a palm computer, and a mobile Internet device (MID), a PAD, and the like.
  • Embodiment 3 of the present invention also provides a target tracking system. It should be noted that the target tracking system of the third embodiment of the present invention may be used to perform the target tracking method provided by the first embodiment of the present invention. The target tracking method of the first embodiment of the present invention may also be provided by the third embodiment of the present invention. The target tracking system is executed.
  • the target tracking system in the third embodiment of the present invention includes:
  • the GPS module 1 is configured to acquire GPS information of a target object monitored by the tracking device.
  • the processor 2 is configured to obtain PTZ coordinate information corresponding to the GPS information of the target object according to the conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • the tracking device 3 is configured to monitor the target object according to the PTZ coordinate information of the target object.
  • the processor 2 can be a stand-alone processor or a processor integrated in the tracking device 3.
  • the processor 2 performs the target tracking method provided in Embodiment 1 of the present application:
  • step A the processor 2 acquires GPS information of the target object provided by the GPS module 1, and the target object is a target object monitored by the tracking device.
  • the tracking device can control any tracking device through the PTZ parameter,
  • the tracking device usually includes a PTZ or an interface connected to the PTZ.
  • the target object carries a GPS module, and the GPS information of the module can be acquired in real time.
  • the GPS information is information received by the GPS module, and the latitude data and the longitude data of the target object can be obtained by extracting the fixed format data received by the GPS, wherein the latitude data can be obtained from the latitude hemisphere N, that is, the northern hemisphere and the latitude hemisphere S.
  • the southern hemisphere is divided into north latitude data and south latitude data.
  • the longitude data is divided into longitude E, that is, east longitude and longitude hemisphere W, that is, the west longitude is divided into east longitude data and west longitude data.
  • the tracking target is within the monitoring range of the tracking device.
  • step C the processor 2 obtains PTZ coordinate information corresponding to the GPS information of the target object according to the conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • the PTZ coordinate information is a tracking device that tracks the PTZ parameter of the device pan/tilt when the tracking device locks the target object to a fixed position in the lens field of view.
  • the PTZ coordinate information tracks the PTZ parameter of the device pan/tilt when the tracking device locks the target object to the center position of the lens field of view.
  • the conversion relationship between the pre-stored GPS information and the PTZ coordinate information is a mutual conversion relationship between the GPS information and the PTZ coordinate information at any point within the visible range of the tracking device. After the conversion relationship is determined, the target object is at a certain position.
  • the GPS information and the PTZ coordinate information of the position are both uniquely determined and correspond to each other. Therefore, the PTZ coordinate information of the target object at the point can be obtained by knowing the GPS information of any point in the motion track of the target object.
  • step E the processor 2 adjusts the tracking device according to the PTZ coordinate information of the target object to control the tracking device to monitor the target object.
  • the tracking device pan/tilt adjusts the monitoring angle of view and the monitoring magnification of the tracking device according to the PTZ coordinate information, and locks the target object.
  • the processor 2 further performs:
  • Step B Preserving a conversion relationship between the GPS information and the PTZ coordinate information, wherein the conversion relationship includes: a first conversion relationship between the GPS information and the ground coordinate information, and a second conversion between the ground coordinate information and the tracking device coordinate information The third conversion relationship between the relationship, the PTZ coordinate information, and the tracking device coordinate information.
  • the ground coordinate information is a coordinate value of the first position in the first two-dimensional Cartesian coordinate system
  • the tracking device coordinate information is a coordinate value of the first position in the second two-dimensional Cartesian coordinate system.
  • the second two-dimensional Cartesian coordinate system takes the pole of the tracking device as the origin.
  • the first position can be any position.
  • the tracking device coordinate information is independent of the specific geographical location of the tracking device, but represents the coordinate information of the target object in the second two-dimensional Cartesian coordinate system established based on the tracking device.
  • the first two-dimensional Cartesian coordinate system and the second two-dimensional Cartesian coordinate system are two-dimensional Cartesian coordinate systems parallel to the ground plane.
  • the coordinate origin of the first two-dimensional Cartesian coordinate system may be an arbitrary point, as long as the GPS information of the coordinate origin is known.
  • the various functional units provided by the embodiments of the present application may be operated in a monitoring terminal, a computer terminal, or the like, or may be stored as part of a storage medium.
  • the above monitoring terminal can be a camera.
  • the embodiment of the present invention can provide a monitoring terminal, which can be any monitoring terminal device in the monitoring terminal group.
  • the monitoring terminal may be replaced by a terminal device such as a camera.
  • the monitoring terminal may be located in at least one monitoring device of the monitoring devices of the monitoring network.
  • the monitoring terminal may execute the following program code in the target tracking method: acquiring GPS information of the target object monitored by the tracking device; and obtaining a conversion relationship between the pre-stored GPS information and the PTZ coordinate information.
  • the PTZ coordinate information corresponding to the GPS information of the target object; the tracking device is adjusted according to the PTZ coordinate information of the target object to control the tracking device to monitor the target object.
  • the monitoring terminal may include: one or more processors, a memory, and a transmission device.
  • the memory can be used to store software programs and modules, such as the target tracking method and the program instructions/modules corresponding to the device in the embodiment of the present invention.
  • the processor executes various functional applications by running software programs and modules stored in the memory. And data processing, that is, the above target tracking method is implemented.
  • the memory may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include memory remotely located relative to the processor, which can be connected to the terminal over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above transmission device is for receiving or transmitting data via a network.
  • Specific examples of the above network may include a wired network and a wireless network.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices and routers via a network cable to communicate with the Internet or a local area network.
  • the transmission device is a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the memory is configured to store a conversion relationship between the pre-stored GPS information and the PTZ coordinate information, a calculation formula, and an application.
  • the processor can call the memory stored information and the application by the transmitting device to execute the program code of the method steps of each of the alternative or preferred embodiments of the above method embodiments.
  • the monitoring terminal can also be a camera, a smart phone (such as an Android mobile phone, an iOS mobile phone, etc.), a tablet computer, a palmtop computer, and a mobile Internet device (MID), a PAD, and the like.
  • a smart phone such as an Android mobile phone, an iOS mobile phone, etc.
  • a tablet computer such as a Samsung Galaxy Tab, etc.
  • a palmtop computer such as a Samsung Galaxy Tab, etc.
  • MID mobile Internet device
  • a program to instruct terminal device related hardware can be completed by a program to instruct terminal device related hardware, and the program can be stored in a monitoring terminal readable storage medium, the storage medium. It may include: a flash disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be used to save program code executed by the target tracking method provided by the foregoing method embodiment and the device embodiment.
  • the foregoing storage medium may be located in any monitoring terminal in the monitoring terminal group in the monitoring network, or in any monitoring terminal in the monitoring terminal group.
  • the storage medium is configured to store program code for performing the following steps: acquiring GPS information of the target object monitored by the tracking device; according to pre-stored GPS information and PTZ coordinate information Converting the relationship, obtaining PTZ coordinate information corresponding to the GPS information of the target object; adjusting the tracking device according to the PTZ coordinate information of the target object, to control the tracking device to monitor the target object.
  • the storage medium may also be configured to store program code of various preferred or optional method steps provided by the target tracking method.
  • the disclosed device may be through other parties.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, mobile terminal, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Alarm Systems (AREA)

Abstract

一种目标跟踪方法、装置和系统。其中,该目标跟踪方法包括:获取跟踪设备所监控的目标对象的GPS信息(S102);根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息(S104);根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象(S106)。解决了现有技术用于监控跟踪目标的方法监控结果不准确的问题。

Description

一种目标跟踪方法、装置和系统
本申请要求于2015年03月09日提交中国专利局、申请号为201510102092.9、发明名称为“一种目标跟踪方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及视频监控领域,具体而言,涉及一种目标跟踪方法、装置和系统。
背景技术
现有的视频监控领域的目标跟踪技术,有一类是根据目标对象在图像中的信息进行跟踪,通常一台跟踪设备即可实现该功能。跟踪设备基于图像识别技术,捕捉目标对象的特征信息并进行自动的识别和跟踪。然而,这一类跟踪方法与采集到的图像质量及目标对象所处的背景环境相关,当图像质量不佳或者背景环境复杂,如遮挡等,可能会造成目标对象丢失,进而导致监控结果不准确。
现有的视频监控领域的目标跟踪技术,另一类是借助几何变换,利用目标对象在某种坐标系下的位置信息,并且得到该坐标系与球机PTZ对应关系,从而驱动球机进行跟踪,如枪机球机跟踪系统,鱼眼球机跟踪系统,双球机跟踪系统。枪球跟踪与鱼眼球机跟踪系统中,由于主摄像机对于目标区分度不强,在针对特定目标进行跟踪时跟踪效果不佳。双球跟踪也局限于主球提供的跟踪效果,也会因存在目标丢失的情况,导致监控结果不准确。
针对现有技术用于监控跟踪目标的方法监控结果不准确的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种目标跟踪方法、装置和系统,以解决现有技术用于监控跟踪目标的方法监控结果不准确的问题。
为了实现上述目的,根据本发明实施例的一个方面,提供了一种目标跟踪方法。根据本发明的目标跟踪方法包括:获取跟踪设备所监控的目标对象的GPS信息;根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息;根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备 监控目标对象。
为了实现上述目的,根据本发明实施例的另一方面,提供了一种目标跟踪装置。根据本发明的目标跟踪装置包括:获取模块,用于获取跟踪设备所监控的目标对象的GPS信息;转换模块,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息;控制模块,用于根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
为了实现上述目的,根据本发明实施例的另一方面,提供了一种目标跟踪系统。根据本发明的目标跟踪系统包括:GPS模块,用于获取跟踪设备所监控的目标对象的GPS信息;处理器,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息;跟踪设备,用于根据目标对象的PTZ坐标信息监控目标对象。
根据发明实施例,通过根据目标对象GPS信息获取该目标对象在跟踪设备监控范围内的PTZ坐标信息,解决了现有技术用于监控跟踪目标的方法监控结果不准确的技术问题,达到了能够对特定目标进行持续准确跟踪的技术效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例一的目标跟踪方法的流程图;
图2是根据本发明实施例一的转换关系的获取方法的流程图;
图3是根据本发明实施例二的目标跟踪装置的示意图;以及
图4是根据本发明实施例三的目标跟踪系统的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面就本申请设计到的名词解释如下:
PTZ:为Pan/Tilt/Zoom的简写,代表跟踪设备的云台全方位移动及跟踪设备镜头变倍、变焦控制,其中,P(Pan)为水平转动,T(Tilt)为垂直转动,Z(Zoom)为放大倍率。
实施例一
本发明实施例一提供了一种目标跟踪方法。
图1是根据本发明实施例一的目标跟踪方法的流程图。如图1所示,该目标跟踪方法包括步骤如下:
步骤S102,获取跟踪设备所监控的目标对象的GPS信息。
具体的,在上述步骤S102中,跟踪设备能够通过PTZ参数进行控制的任何跟踪设备,该跟踪设备通常包含云台或者与云台连接的接口。目标对象上携带有GPS模块,且该模块的GPS信息能够被实时的获取。GPS信息为通过GPS模块接收到的信息,通过对GPS接收到的固定格式的数据进行提取,可获取目标对象的纬度数据和经度数据,其中,纬度数据可为纬度半球N即北半球的北纬数据,或为纬度半球S即南半球的南纬数据,经度数据可为经度半球E即东经半球的东经数据,或为经度半球W即西经半球的西经数据。跟踪目标位于跟踪设备的监控范围之内。跟踪设备可选的,包括球机、PTZ摄像机等。
步骤S104,根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息。
具体的,在上述步骤S104中,PTZ坐标信息为跟踪设备将目标对象锁定于镜头视野中某一固定位置时,跟踪设备云台的PTZ参数。优选地,PTZ坐标信息为跟踪设备将目标对象锁定于镜头视野中心位置时,跟踪设备云台的PTZ参数。预先保存的GPS信息与PTZ坐标信息之间的转换关系,是跟踪设备可视范围之内任意点的GPS信息与PTZ坐标信息的相互转换关系,在该转换关系确定之后,目标对象某一位置的GPS信息与该位置的PTZ坐标信息均是唯一确定且相互对应的。因此,可以通过知晓目标 对象运动轨迹中任意一点的GPS信息,得到该目标对象在该点的PTZ坐标信息。
步骤S106,根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
具体的,在上述步骤S106中,当得到了目标对象GPS信息对应的PTZ坐标信息之后,跟踪设备云台根据该PTZ坐标信息调整跟踪设备的监控视角及监控倍率,将目标对象锁定。
通过上述步骤S102至S106,通过根据目标对象GPS信息获取该目标对象在跟踪设备监控范围内的PTZ坐标信息,实现了对目标对象的持续跟踪,解决了现有技术中跟踪目标时可能存在的目标丢失的技术问题,达到了能够对特定目标进行持续跟踪的技术效果。
优选地,在上述步骤S104之前,方法还包括:
步骤S103:保存GPS信息与PTZ坐标信息之间的转换关系,其中,转换关系包括:GPS信息与地面坐标信息之间的第一转换关系、地面坐标信息与跟踪设备坐标信息之间的第二转换关系、PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系。
具体的,在上述步骤S103中,地面坐标信息为第一二维直角坐标系中的坐标值,第一二维直角坐标系以地面为基准的平面上的任意一点为坐标原点。跟踪设备坐标信息为第二二维直角坐标系中的坐标值,第二二维直角坐标系以跟踪设备的立杆为原点。跟踪设备坐标信息,与跟踪设备的具体地理位置无关,而用于表征目标对象在基于跟踪设备建立的第二二维直角坐标系中的坐标信息。其中,第一二维直角坐标系和第二二维直角坐标系均为平行于地平面的二维直角坐标系。
优选地,步骤S104根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息的具体步骤又包括:
步骤S202:根据第一转换关系将当前获取到的目标对象的GPS信息转换为该目标对象对应的地面坐标信息。
具体的,在上述步骤S202中,第一转换关系为GPS信息与地面坐标信息之间的转换关系,GPS信息为具体的经纬度数据,地面坐标信息为在第一二维直角坐标系中的坐标。该第一转换关系为双向转换关系,既能将某一点的GPS经纬度数据,转换为该点在第一二维直角坐标系中的坐标值,也能将某一点在第一二维直角坐标系中的坐标值转换为该点的GPS经纬度数据。
步骤S204:根据第二转换关系将转换得到的该目标对象对应的地面坐标信息转换为该目标对象对应的跟踪设备坐标信息。
具体的,在上述步骤S204中,第二转换关系为地面坐标信息与跟踪设备坐标信息之间的转换关系;地面坐标信息为在第一二维直角坐标系中的坐标,跟踪设备坐标信息为在第二直角坐标系中的坐标,两个直角坐标系之间一定满足线型正变换的转换关系,即其中一个直角坐标系通过一定的平移、旋转、缩放,转换为另一直角坐标系。该第二转换关系为双向转换关系,既能将某一点在第一二维直角坐标系中的坐标值,转换为该点在第二二维直角坐标系中的坐标值;也能将某一点在第二二维直角坐标系中的坐标值转换为该点在第一二维直角坐标系中的坐标值。
步骤S206:根据第三转换关系将转换得到的该目标对象对应的跟踪设备坐标信息转换为该目标对象对应的PTZ坐标信息。
具体的,在上述步骤S206中,第三转换关系为跟踪设备坐标信息和PTZ坐标信息之间的转换关系;跟踪设备坐标信息为在第二直角坐标系中的坐标,跟踪设备的PTZ坐标信息为跟踪设备监控到目标对象时云台的PTZ参数。该第三转换关系为双向转换关系,既能将某一点在第二二维直角坐标系中的坐标值转换为跟踪设备锁定该点时云台的PTZ参数,也能将跟踪设备锁定该点时云台的PTZ参数转换为该点在第二二维直角坐标系中的坐标值。
优选地,在步骤S103保存GPS信息与PTZ坐标信息之间的转换关系之前,还包括:
步骤S302:获取GPS信息与地面坐标信息之间的第一转换关系。
步骤S304:获取PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系。
步骤S306,获取地面坐标信息与跟踪设备坐标信息之间的第二转换关系。
优选地,步骤S302:获取GPS信息与地面坐标信息之间的第一转换关系的具体步骤又包括:
步骤S3022:建立第一二维直角坐标系,其中,第一二维直角坐标系的横纵轴分别指向正东、正西、正南、正北之中任意的两个方向。
具体的,在上述步骤S3022中,第一二维直角坐标系的横纵轴指向可以任意的选定。第一二维直角坐标系的坐标原点为任意地点。且第一二维直角坐标系的横纵轴必然垂直,横纵轴分别指向的方向必然为正东、正西、正南、正北之中顺时针或者逆时针相差90°的两个方向,不可能出现如第一二维直角坐标系的横纵轴分别为正东和正西这样的情况。
步骤S3024:读取第一二维直角坐标系的坐标原点的GPS信息,读取跟踪设备监控画面中监控点的GPS信息,GPS信息包括:纬度数据和经度数据。
具体的,在上述步骤S3024中,利用GPS模块获取选定的监控点和第一二维直角坐标系坐标原点的GPS信息。随着在地球地理位置的不同,GPS信息中包含的纬度数据和经度数据,可能的组合为:北纬数据+东经数据,北纬数据+西经数据,南纬数据+东经数据,南纬数据+西经数据。
优选地,在上述步骤S3024中,获取跟踪设备监控画面中至少两个监控点的GPS信息,将其中一个监控点作为坐标原点建立第一二维直角坐标系,则等同于获取坐标原点的GPS信息。也可以在建立第一二维直角坐标系时,指定某一确定的经度数据和纬度数据所表征的位置为第一二维直角坐标系的坐标原点,这也等同于获取了坐标原点的GPS信息。
步骤S3026:创建监控点的GPS信息与监控点在第一二维直角坐标系中的坐标值之间的对应关系,获取第一转换关系。
具体的,在上述步骤S3026中,监控点的GPS信息与监控点在第一二维直角坐标系中的坐标值之间具体的计算关系包括:根据读取的监控点的GPS信息与坐标原点的GPS信息,可以获得该监控点与坐标原点的经度距离差和纬度距离差;该经度距离差和纬度距离差对应于该监控点在第一二维直角坐标系中的横纵坐标值,其中,纬度距离差对应于指向正南或正北的坐标轴的坐标值;经度距离差对应于指向正西或正东的坐标轴的坐标值。
具体的,在上述步骤S3026中,第一转换关系用于表征监控点与坐标原点的纬度数据差值、经度数据差值,与监控点在第一二维直角坐标系中的横坐标值、纵坐标值的对应关系。
可选的,纬度距离差等于该监控点在第一二维直角坐标系中指向正南或正北的坐标轴的坐标值,经度距离差等于该监控点在第一二维直角坐标系中指向正西或正东的坐标轴的坐标值。
可选的,纬度距离差与第一比例系数的乘积,等于该监控点在第一二维直角坐标系中指向正南或正北的坐标轴的坐标值;经度距离差与第一比例系数的乘积,等于该监控点在第一二维直角坐标系中指向正西或正东的坐标轴的坐标值。其中,第一比例系数为非零实数。第一比例系数用于对经度距离差和纬度距离差进行适当的缩小或放大。
综上,步骤S302中包含的步骤S3022至步骤S3026,主要用于计算GPS信息与地面坐标信息之间的第一转换关系。当存在GPS信息与PTZ坐标之间的转换关系、或者该第一转换关系时,该步骤S302并非本发明实施例一提供的目标跟踪方法的必要步骤。
优选地,根据如下公式,计算监控点的GPS信息与监控点在第一二维直角坐标系 中的坐标值之间的对应关系:
PT=(PTx,PTy)=((NT-N0),(E0-ET)×cos(N0/180×π)),
其中,PT为监控点在第一二维直角坐标系中的坐标值,PTx、PTy分别为监控点在第一二维直角坐标系中的横坐标值、纵坐标值,N0和E0分别为坐标原点的GPS信息中的纬度数据和经度数据,NT和ET分别为监控点的GPS信息中的纬度数据和经度数据。
优选地,步骤S304:计算得到PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系的具体步骤又包括:
步骤S3042:建立第二二维直角坐标系,其中,第二二维直角坐标系的横纵轴的方向分别为跟踪设备水平转动角度相差90°时,跟踪设备指向的方向。
具体的,在上述步骤S3044中,第二二维直角坐标系的横轴和纵轴分别指向的方向,为跟踪设备水平转动角度即P参数相差90°时,跟踪设备的图像中心指向的方向。例如,当第二二维直角坐标系的横轴指向P参数为45°时图像中心指向的方向,则第二二维直角坐标系的纵轴指向P参数为135°时图像中心指向的方向。
步骤S3044:读取跟踪设备画面中监控点的PTZ坐标信息。
可选的,监控点的PTZ坐标信息,为跟踪设备将选定的监控点锁定于监控画面固定位置时,跟踪设备云台的PTZ参数;优选地,该固定位置为监控画面中心。如此,确保了跟踪设备监控画面中某一特定监控点具有唯一的PTZ坐标信息。
步骤S3046:创建监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值之间的对应关系,获取第三转换关系。
具体的,在上述步骤S3046中,监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值一一对应。
具体的,在上述步骤S3046中,监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值的具体计算关系包括:根据PTZ坐标信息中的T参数,计算跟踪设备与监控点连线在第二二维直角坐标系平面上投影的长度;根据PTZ坐标信息中的P参数,计算该连线在第二二维直角坐标系平面上的投影在第二二维直角坐标系的横纵轴上的坐标分量,由此获得监控点在第二二维直角坐标系中的坐标。
可选的,第三转换关系用于表征监控点和跟踪设备连线的投影在第二二维直角坐标系的坐标轴上的坐标分量,与该监控点在第二二维直角坐标系中的坐标值之间的对应关系。
可选的,连线的投影在第二二维直角坐标系的横纵轴上的坐标分量等于该监控点在第二二维直角坐标系中的坐标值。
可选的,连线的投影在第二二维直角坐标系的横纵轴上的坐标分量与第二比例系数的乘积,等于该监控点在第二二维直角坐标系中的坐标值;其中,第二比例系数为非零实数。
综上,步骤S304中包含的步骤S3042至步骤S3046,主要用于计算PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系。当存在GPS信息与PTZ坐标之间的转换关系、或者该第三转换关系时,该步骤S304并非本发明实施例一提供的目标跟踪方法的必要步骤。
优选地,根据如下公式,计算监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值之间的对应关系:
Figure PCTCN2015097637-appb-000001
其中,QT为监控点在第二二维直角坐标系中的坐标值,QTx、QTy分别为监控点在第二二维直角坐标系中的横坐标值、纵坐标值,θT为监控点的P参数,θy为第二二维直角坐标系纵轴的P参数,
Figure PCTCN2015097637-appb-000002
为监控点的T参数。
优选地,在第二二维直角坐标系的横纵轴分别指向跟踪设备水平转动角度为90°时跟踪设备指向的方向,和跟踪设备水平转动角度为0°时跟踪设备指向的方向的情况下,根据如下公式,计算监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值之间的对应关系:
Figure PCTCN2015097637-appb-000003
其中,QT为监控点在第二二维直角坐标系中的坐标值,QTx、QTy分别为监控点在第二二维直角坐标系中的横坐标值、纵坐标值,θT为监控点的P参数,
Figure PCTCN2015097637-appb-000004
为监控点的T参数。
优选地,步骤S306:获取地面坐标信息与跟踪设备坐标信息之间的第二转换关系的步骤包括:
步骤S3062:读取跟踪设备画面中至少两个监控点在第一二维直角坐标系中的地面坐标信息。
具体的,获取地面坐标信息与跟踪设备坐标信息之间的第二转换关系,可以转化为获取第一二维直角坐标系与第二二维直角坐标系之间的转换参数。由于两个坐标系满足线型正变换,即一个坐标系通过一定的旋转、平移、缩放可得到另一个坐标系,那么为了获取两个坐标系之间的旋转系数、平移系数、缩放系数,至少需要两个已知点在两个坐标系总的坐标值。
具体的,在上述步骤S3062中,选定至少两个监控点,获取该至少两个监控点的GPS信息,并根据第一转换关系,得到了该至少两个监控点的地面坐标信息。
步骤S3064:读取至少两个监控点在第二二维直角坐标系中的跟踪设备坐标信息。
具体的,在上述步骤S3064中,获取该至少两个监控点的PTZ坐标信息,并根据第三转换关系,得到该至少两个监控点的跟踪设备坐标信息。
步骤S3066:创建第一二维直角坐标系中坐标值与第二二维直角坐标系中的坐标值之间的对应关系,获取第二转换关系;其中,第二转换关系用于表征同一监控点在第一二维直角坐标系中的坐标值与在第二二维直角坐标系中的坐标值的对应关系。
具体的,在上述步骤S3066中,基于至少两个监控点在第一二维直角坐标系中的地面坐标信息,和在第二二维直角坐标系中的跟踪设备坐标信息,可建立两组第一二维直角坐标系中坐标值与第二二维直角坐标系中坐标值的一一对应关系,并可通过这两组一一对应关系,获取计算第二转换关系时用到的缩放系数、旋转系数和平移系数。
优选地,步骤S3066中,创建第一二维直角坐标系中坐标值与第二二维直角坐标系中的坐标值之间的对应关系,获取第二转换关系的具体计算步骤又包括:
步骤S30662:根据至少两个监控点中的每个监控点在第一二维直角坐标系和第二二维直角坐标系中的坐标值,分别建立基于该监控点的第一列向量和第二列向量。
具体的,在上述步骤S30662中,以某个点在第一二维直角坐标系的坐标值建立第一列向量,其中,第一列向量的元素按顺序,可以为横坐标值和纵坐标值,也可以为纵坐标值和横坐标值;以同样的点在第二二维直角坐标系的坐标值建立第二列向量,第二列向量中元素的顺序与第一列向量相同,则基于同样的点的第一列向量和第二列向量之间也存在一一对应的关系。
步骤S30664:创建第一列向量与第二列向量之间的对应关系,其中,该对应关系包括:第一列向量乘以伸缩变换系数、左乘旋转变换矩阵、并加上平移变换向量后,等于第二列向量,或者,第二列向量乘以伸缩变换系数、左乘旋转变换矩阵、并加上平移变换向量后,等于第一列向量。
具体的,在上述步骤S30664中,基于第一坐标系的坐标值建立的第一列向量与基于第二坐标系的坐标值建立的第二列向量之间,存在着伸缩、旋转、平移的变换,具 体的,由伸缩变换系数、旋转变换矩阵和平移变换列向量体现。旋转变换矩阵的格式为
Figure PCTCN2015097637-appb-000005
或者
Figure PCTCN2015097637-appb-000006
平移变换列向量的两个元素的顺序与第一列向量和第二列向量相同,也就是说,当第一列向量和第二列向量的元素分别为:横坐标、纵坐标时,则平移变换列向量的元素分别为:横坐标平移系数,纵坐标平移系数。
步骤S30666:计算第一二维直角坐标系与第二二维直角坐标系之间的缩放系数、旋转系数和平移系数,获得第二转换关系,其中,伸缩变换系数为缩放系数,旋转变换矩阵中的旋转角度θ为旋转系数,平移变换列向量的两个元素相应的为横坐标平移系数和纵坐标平移系数。
综上,步骤S3066中包含的步骤,主要用于根据创建的第一二维直角坐标系中坐标值与第二二维直角坐标系中的坐标值之间的对应关系,得到了第一二维直角坐标系中坐标值与第二二维直角坐标系中坐标值的计算方法和计算参数。当存在GPS信息与PTZ坐标之间的转换关系、或者该第二转换关系时,该步骤S306并非本发明实施例一提供的目标跟踪方法的必要步骤。
优选地,根据如下公式,计算第一二维直角坐标系与第二二维直角坐标系之间的缩放系数、旋转系数和平移系数的公式为:
Figure PCTCN2015097637-appb-000007
Figure PCTCN2015097637-appb-000008
其中,α为缩放系数,θ为旋转系数,a为横坐标平移系数,b为纵坐标平移系数,P1x、P1y分别为至少两个监控点中第一个监控点在第一二维直角坐标系中的横坐标值、纵坐标值,Q1x、Q1y分别为第一个监控点在第二二维直角坐标系中的横坐标值、纵坐标值,P2x、P2y分别为至少两个监控点中第二个监控点在第一二维直角坐标系中的横坐标值、纵坐标值,Q2x、Q2y分别为第二个监控点在第二二维直角坐标系中的横坐标值、纵坐标值。
优选地,当使用三个以上点的坐标值计算伸缩变化系数、旋转变换矩阵和平移变换列向量时,获取第一二维直角坐标系和第二二维直角坐标系之间的缩放系数、旋转系数和平移系数的方法还包括:通过最小二乘法得到缩放系数、旋转系数、平移系数在均方误差下的拟合值。
下面结合具体实例,对本申请实施例一所提供的方案做进一步说明:
图2是根据本发明实施例一的转换关系的获取方法的流程图,该转换关系为GPS信息与PTZ坐标信息之间的转换关系,包含GPS信息与地面坐标信息之间的第一转换关系、地面坐标信息与跟踪设备坐标信息之间的第二转换关系、跟踪设备坐标信息与PTZ坐标信息之间的第三转换关系。
该实施例的转换关系的获取方法可以是上述实施例的目标跟踪方法中转换关系获取的一种优选实施方式。如图2所示,该转换关系的获取方法包括步骤如下:
步骤Sa:获取跟踪设备可视范围内至少两个监控点的GPS信息,并获取该GPS信息中的纬度数据和经度数据,其中,至少两个监控点中第一个监控点的纬度数据和经度数据分别为N1和E1,至少两个监控点中第二个监控点的纬度数据和经度数据分别为N2和E2
步骤Sb:获取跟踪设备可视范围内该至少两个监控点的PTZ坐标信息,针对步骤Sa中选定的至少两个监控点,获取跟踪设备在锁定该选定点于图像中心时的PTZ信息,即为该选定点的PTZ坐标信息,其中,至少两个监控点中第一个监控点的P参数θ1、T参数φ1,至少两个监控点中第二个监控点的P参数θ2、T参数φ2
步骤Sc:获取GPS信息与地面坐标信息之间的第一转换关系;其中,步骤Sc又包括:
步骤Sc1:建立第一二维直角坐标系,其中,第一二维直角坐标系的坐标原点为至少两个监控点中的第一个监控点,第一二维直角坐标系的横纵轴分别指向正北和正西。
步骤Sc2:计算至少两个监控点中第一个监控点与坐标原点的纬度距离差d1、经度距离差d2,至少两个监控点中第二个监控点与坐标原定的纬度距离差d3、经度距离差d4的公式为:
d1=0,
d2=0,
Figure PCTCN2015097637-appb-000009
Figure PCTCN2015097637-appb-000010
其中,R为地球半径。
步骤Sc3:将至少两个监控点中每个监控点的纬度距离差和经度距离差转换为第一二维直角坐标系中的坐标值,第一比例系数为
Figure PCTCN2015097637-appb-000011
时,至少两个监控点中第一个监控点和第二个监控点在第一二维直角坐标系中的坐标值P1和P2分别为:
P1=(0,0),
P2=((N2-N1),(E1-E2)×cos(N1/180×π)。
步骤Sd:获取PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系,其中,步骤Sd又包括:
步骤Sd1:建立第二二维直角坐标系,第二二维直角坐标系以跟踪设备为原点;第二二维直角坐标系的横轴指向跟踪设备水平转动角度为90°时跟踪设备指向的方向,第二二维直角坐标系的纵轴指向跟踪设备水平转动角度为0°时跟踪设备指向的方向。
步骤Sd2:第一个监控点在第二二维直角坐标系的横轴分量d5、纵轴分量d6,以及第二个监控点在第二二维直角坐标系的横轴分量d7、纵轴分量d8的计算公式分别为:
d5=h/tan(φ1/180×π)×sin(θ1/180×π),
d6=h/tan(φ1/180×π)×cos(θ1/180×π),
d7=h/tan(φ2/180×π)×sin(θ2/180×π),
d8=h/tan(φ2/180×π)×cos(θ2/180×π)。
步骤Sd3:将至少两个监控点中每个监控点的坐标分量转换为第二直角坐标系中的坐标值,第二比例系数为1/h,至少两个监控点中第一个监控点和第二个监控点在第二直角坐标系中的坐标值Q1和Q2分别为:
Q1=(1/tan(φ1/180×π)×sin(θ1/180×π),
1/tan(φ1/180×π)×cos(θ1/180×π)),
Q2=(1/tan(φ2/180×π)×sin(θ2/180×π),
1/tan(φ2/180×π)×cos(θ2/180×π)),
其中,h为跟踪设备的高度。
步骤Se:计算地面坐标信息与跟踪设备坐标信息之间的第二转换关系;其中,步骤Se又包括:
步骤Se1:读取跟踪设备画面中至少两个监控点在第一二维直角坐标系中的地面坐标信息P1、P2
步骤Se2:读取至少两个监控点在第二二维直角坐标系中的跟踪设备坐标信息Q1、Q2
步骤Se3:创建第一二维直角坐标系中坐标值与第二二维直角坐标系中的坐标值之间的对应关系,获取第二转换关系;其中,P1与Q1对应,P2与Q2对应,
具体的计算步骤包括:
步骤Se31:根据第一个监控点在第一二维直角坐标系中的坐标值P1,建立第三列向量为:[P1x P1y]T,根据第一个监控点在第二二维直角坐标系中的坐标值Q1,建立第四列向量为:[Q1x Q1y]T
根据第二个监控点在第一二维直角坐标系中的坐标值P2,建立第五列向量为:[P2x P2y]T,根据第二个监控点在第二二维直角坐标系中的坐标值Q2,建立第六列向量为:[Q2x Q2y]T
步骤Se32:创建第一列向量与第二列向量之间的对应关系:
Figure PCTCN2015097637-appb-000012
Figure PCTCN2015097637-appb-000013
其中,α为伸缩变换系数,
Figure PCTCN2015097637-appb-000014
为旋转变换矩阵,
Figure PCTCN2015097637-appb-000015
为平移变换列向量。
步骤Se33:根据步骤Se32创建的对应关系,计算第一二维直角坐标系与第二二维直角坐标系之间的缩放系数、旋转系数和平移系数,获得第二转换关系,其中,伸缩变换系数为缩放系数α,旋转变换矩阵中的旋转角度θ为旋转系数θ,平移变换列向量的两个元素相应的为横坐标平移系数a和纵坐标平移系数b。
优选地,步骤Se32涉及的对应关系可变形为:
Figure PCTCN2015097637-appb-000016
Figure PCTCN2015097637-appb-000017
将上述两个监控点的对应关系合并,可得:
Figure PCTCN2015097637-appb-000018
根据上式,在获取到Q1、Q2、P1、P2的情况下,可根据上述等式,求解出αcosθ、αsinθ、a、b共4个参数。
如果选择三个以上的点,则还可以通过最小二乘法得到αcosθ,αsinθ,a,b在均方误差下的拟合值,如下式所示:
Figure PCTCN2015097637-appb-000019
在通过步骤Sa~步骤Se,获得了GPS信息与PTZ坐标信息之间的转换关系之后,保存该转换关系,并根据该转换关系,进一步实现目标跟踪。
基于根据上述实施例一的具体实例的目标跟踪的具体方法如下:
步骤Si;获取跟踪设备所监控的目标对象的GPS信息;设目标对象位于R点,则获取到的该R点GPS信息中的纬度数据为NR,经度数据为ER
步骤Sj:根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息。
其中,步骤Sj又包括:
步骤Sj1:根据第一转换关系将当前获取到的目标对象的GPS信息转换为地面坐标信息;根据步骤Sc3中计算的第一转换关系,将目标对象的纬度数据为NR,经度数据为ER转换为第一二维直角坐标系中的坐标PR为:
PR=((NR-N1),(E1-ER)×cos(N1/180×π),
其中,N1和E1为坐标原点的纬度数据和经度数据。
步骤Sj2:根据第二转换关系将转换得到的地面坐标信息转换为跟踪设备坐标信息;根据步骤Se得到的第一二维直角坐标系与第二二维直角坐标系之间的转换关系,将目标对象在第一二维直角坐标系中的坐标PR,转换为其在第二二维直角坐标系的坐标,
QR=(PRx×αcosθ-PRy×αsinθ+a,PRx×αsinθ+PRy×αcosθ+b),
其中,PRx为NR-N1,PRy为(E1-ER)×cos(N1/180×π),其中,αcosθ、αsinθ、a、b为步骤Se中求解出的参数。
步骤Sj3:根据第三转换关系将转换得到的跟踪设备坐标信息转换为跟踪设备的PTZ坐标信息。
根据步骤Sd中计算的PTZ坐标信息与跟踪设备坐标信息之间的转换关系,当求出QR时,可得出该点对应的PTZ坐标信息为:
P坐标信息为:
P=tan-1(QRx,QRy)/π×180,
T坐标信息为:
Figure PCTCN2015097637-appb-000020
实施例二
本发明实施例二还提供了一种目标跟踪装置。需要说明的是,本发明实施例二的目标跟踪装置可以用于执行本发明实施例一所提供的目标跟踪方法,本发明实施例一的目标跟踪方法也可以通过本发明实施例二所提供的目标跟踪装置来执行。
图3是根据本发明实施例二的目标跟踪装置的示意图。如图3所示,本发明实施例二的目标跟踪装置包括:
获取模块10,用于获取跟踪设备所监控的目标对象的GPS信息。
转换模块20,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息。
控制模块30,用于根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
此处需要说明的是,上述获取模块10、转换模块20和控制模块30可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,在转换模块之前,装置还包括:
保存模块15,用于保存GPS信息与PTZ坐标信息之间的转换关系,其中,转换关系包括:GPS信息与地面坐标信息之间的第一转换关系、地面坐标信息与跟踪设备坐标信息之间的第二转换关系、PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系;
其中,地面坐标信息为第一位置在第一二维直角坐标系中的坐标值,跟踪设备坐标信息为第一位置在第二二维直角坐标系中的坐标值,第二二维直角坐标系以跟踪设备的立杆为原点。
此处需要说明的是,上述保存模块15可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,转换模块20包括:
第一转换单元21,用于根据第一转换关系将当前获取到的目标对象的GPS信息转换为该目标对象对应的地面坐标信息。
第二转换单元22,用于根据第二转换关系将转换得到的该目标对象对应的地面坐标信息转换为该目标对象对应的跟踪设备坐标信息。
第三转换单元23,用于根据第三转换关系将转换得到的该目标对象对应的跟踪设备坐标信息转换为该目标对象对应的PTZ坐标信息。
此处需要说明的是,上述第一转换单元21、第二转换单元22和第三转换单元23 可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,计算得到GPS信息与地面坐标信息之间的第一转换关系的单元包括:
第一建立子单元,用于建立第一二维直角坐标系,其中,第一二维直角坐标系的横纵轴分别指向正东、正西、正南、正北之中任意的两个方向。
第一读取子单元,用于读取第一二维直角坐标系的坐标原点的GPS信息,以及读取跟踪设备监控画面中监控点的GPS信息,GPS信息包括:纬度数据和经度数据。
第一创建子单元,用于创建监控点的GPS信息与监控点在第一二维直角坐标系中的坐标值之间的对应关系,获取第一转换关系,其中,第一转换关系用于表征监控点与坐标原点的纬度数据差值、经度数据差值,与监控点在第一二维直角坐标系中的横坐标值、纵坐标值的对应关系。
此处需要说明的是,上述第一建立子单元、第一读取子单元和第一创建子单元可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,计算得到PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系的单元包括:
第二建立子单元,用于建立第二二维直角坐标系,其中,第二二维直角坐标系以跟踪设备为原点;第二二维直角坐标系的横纵轴的方向分别为跟踪设备水平转动角度相差90°时,跟踪设备指向的方向。
第二读取子单元,用于读取跟踪设备画面中监控点的PTZ坐标信息。
第二创建子单元,用于创建监控点的PTZ坐标信息与监控点在第二二维直角坐标系中的坐标值之间的对应关系,获取第三转换关系。
此处需要说明的是,上述第二建立子单元、第二读取子单元和第二创建子单元可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,计算得到地面坐标信息与跟踪设备坐标信息之间的第二转换关系的单元包括第三读取单元,用于读取跟踪设备画面中至少两个监控点在第一二维直角坐标系中的地面坐标信息。
第四读取子单元,用于读取至少两个监控点在第二二维直角坐标系中的跟踪设备坐标信息。
第三创建子单元,用于创建第一二维直角坐标系中坐标值与第二二维直角坐标系中的坐标值之间的对应关系,获取第二转换关系。
其中,第二转换关系用于表征同一监控点在第一二维直角坐标系中的坐标值与在第二二维直角坐标系中的坐标值的对应关系。
此处需要说明的是,上述第三读取单元、第四读取子单元、第三创建子单元可以作为装置的一部分运行在监控终端中,可以通过监控终端中的处理器来执行上述模块实现的功能,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
实施例三
本发明实施例三还提供了一种目标跟踪系统。需要说明的是,本发明实施例三的目标跟踪系统可以用于执行本发明实施例一所提供的目标跟踪方法,本发明实施例一的目标跟踪方法也可以通过本发明实施例三所提供的目标跟踪系统来执行。
图4是根据本发明实施例三的目标跟踪系统的示意图。如图4所示,本发明实施例三的目标跟踪系统包括:
GPS模块1,用于获取跟踪设备所监控的目标对象的GPS信息。
处理器2,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息。
跟踪设备3,用于根据目标对象的PTZ坐标信息监控目标对象。
可选的,处理器2可为独立的处理器,也可为集成于跟踪设备3中处理器。
优选地,处理器2执行本申请实施例一提供的目标跟踪方法:
步骤A,处理器2获取GPS模块1提供的目标对象的GPS信息,该目标对象为跟踪设备所监控的目标对象。
具体的,在上述步骤A中,跟踪设备能够通过PTZ参数进行控制的任何跟踪设备, 该跟踪设备通常包含云台或者与云台连接的接口。目标对象上携带有GPS模块,且该模块的GPS信息能够被实时的获取。GPS信息为通过GPS模块接收到的信息,通过对GPS接收到的固定格式的数据进行提取,可获取目标对象的纬度数据和经度数据,其中,纬度数据可由纬度半球N即北半球和纬度半球S即南半球分为北纬数据和南纬数据,经度数据分由经度半球E即东经和经度半球W即西经分为东经数据和西经数据。跟踪目标位于跟踪设备的监控范围之内。
步骤C,处理器2根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息。
具体的,在上述步骤C中,PTZ坐标信息为跟踪设备将目标对象锁定于镜头视野中某一固定位置时,跟踪设备云台的PTZ参数。优选地,PTZ坐标信息为跟踪设备将目标对象锁定于镜头视野的中心位置时,跟踪设备云台的PTZ参数。预先保存的GPS信息与PTZ坐标信息之间的转换关系,是跟踪设备可视范围之内任意点的GPS信息与PTZ坐标信息的相互转换关系,在该转换关系确定之后,目标对象某一位置的GPS信息与该位置的PTZ坐标信息均是唯一确定且相互对应的。因此,可以通过知晓目标对象运动轨迹中任意一点的GPS信息,得到该目标对象在该点的PTZ坐标信息。
步骤E,处理器2根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
具体的,在上述步骤E中,当得到了目标对象GPS信息对应的PTZ坐标信息之后,跟踪设备云台根据该PTZ坐标信息调整跟踪设备的监控视角及监控倍率,将目标对象锁定。
优选地,在上述步骤C之前,处理器2还执行:
步骤B:保存GPS信息与PTZ坐标信息之间的转换关系,其中,转换关系包括:GPS信息与地面坐标信息之间的第一转换关系、地面坐标信息与跟踪设备坐标信息之间的第二转换关系、PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系。
具体的,在上述步骤B中,地面坐标信息为第一位置在第一二维直角坐标系中的坐标值,跟踪设备坐标信息为第一位置在第二二维直角坐标系中的坐标值,第二二维直角坐标系以跟踪设备的立杆为原点。其中,第一位置可为任意位置。跟踪设备坐标信息,与跟踪设备的具体地理位置无关,而是表征目标对象在基于跟踪设备建立的第二二维直角坐标系中的坐标信息。其中,第一二维直角坐标系和第二二维直角坐标系均为平行于地平面的二维直角坐标系。第一二维直角坐标系的坐标原点可为任意点,只要获知该坐标原点的GPS信息即可。
本申请实施例所提供的各个功能单元可以在监控终端、计算机终端或者类似的运算装置中运行,也可以作为存储介质的一部分进行存储。上述监控终端可以是摄像机。
由此,本发明的实施例可以提供一种监控终端,该监控终端可以是监控终端群中的任意一个监控终端设备。可选地,在本实施例中,上述监控终端也可以替换为摄像机等终端设备。
可选地,在本实施例中,上述监控终端可以位于监控网络的多个监控设备中的至少一个监控设备。
在本实施例中,上述监控终端可以执行目标跟踪方法中以下步骤的程序代码:获取跟踪设备所监控的目标对象的GPS信息;根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息;根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
可选地,该监控终端可以包括:一个或多个处理器、存储器、以及传输装置。
其中,存储器可用于存储软件程序以及模块,如本发明实施例中的目标跟踪方法及装置对应的程序指令/模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的目标跟踪方法。存储器可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述的传输装置用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
其中,具体地,存储器用于存储预先保存的GPS信息与PTZ坐标信息之间的转换关系、计算公式以及应用程序。
处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行上述方法实施例中的各个可选或优选实施例的方法步骤的程序代码。
本领域普通技术人员可以理解,监控终端也可以是摄像机、智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一监控终端可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以用于保存上述方法实施例和装置实施例所提供的目标跟踪方法所执行的程序代码。
可选地,在本实施例中,上述存储介质可以位于监控网络中监控终端群中的任意一个监控终端中,或者位于监控终端群中的任意一个监控终端中。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:获取跟踪设备所监控的目标对象的GPS信息;根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到目标对象的GPS信息所对应的PTZ坐标信息;根据目标对象的PTZ坐标信息调整跟踪设备,以控制跟踪设备监控目标对象。
可选地,在本实施例中,存储介质还可以被设置为存储目标跟踪方法提供的各种优选地或可选的方法步骤的程序代码。
如上参照附图以示例的方式描述了根据本发明的目标跟踪方法、装置和系统。但是,本领域技术人员应当理解,对于上述本发明所提出的目标跟踪方法、装置和系统,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方 式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、移动终端、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种目标跟踪方法,其特征在于,包括:
    获取跟踪设备所监控的目标对象的GPS信息;
    根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到所述目标对象的GPS信息所对应的PTZ坐标信息;
    根据所述目标对象的PTZ坐标信息调整所述跟踪设备,以控制所述跟踪设备监控所述目标对象。
  2. 根据权利要求1所述的方法,其特征在于,在根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到所述目标对象的GPS信息所对应的PTZ坐标信息之前,所述方法还包括:
    保存GPS信息与PTZ坐标信息之间的转换关系,其中,所述转换关系包括:所述GPS信息与地面坐标信息之间的第一转换关系、所述地面坐标信息与跟踪设备坐标信息之间的第二转换关系、所述PTZ坐标信息与所述跟踪设备坐标信息之间的第三转换关系;
    其中,所述地面坐标信息为第一二维直角坐标系中的坐标值,所述第一二维直角坐标系以地面为基准的平面上的任意一点为原点,所述跟踪设备坐标信息为第二二维直角坐标系中的坐标值,所述第二二维直角坐标系以所述跟踪设备的立杆为原点。
  3. 根据权利要求2所述的方法,其特征在于,根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到所述目标对象的GPS信息所对应的PTZ坐标信息的步骤包括:
    根据所述第一转换关系将当前获取到的所述目标对象的GPS信息转换为所述目标对象对应的地面坐标信息;
    根据所述第二转换关系将转换得到的所述目标对象对应的地面坐标信息转换为所述目标对象对应的跟踪设备坐标信息;
    根据所述第三转换关系将转换得到的所述目标对象对应的跟踪设备坐标信息转换为所述目标对象对应的PTZ坐标信息。
  4. 根据权利要求2所述的方法,其特征在于,在保存GPS信息与PTZ坐标信息之间的转换关系之前,获取所述GPS信息与地面坐标信息之间的第一转换关系的步骤包括:
    建立所述第一二维直角坐标系,其中,所述第一二维直角坐标系的横纵轴分别指向正东、正西、正南、正北之中任意的两个方向;
    读取所述第一二维直角坐标系的坐标原点的GPS信息,读取所述跟踪设备监控画面中监控点的GPS信息,所述GPS信息包括:纬度数据和经度数据;
    创建所述监控点的GPS信息与所述监控点在所述第一二维直角坐标系中的坐标值之间的对应关系,获取所述第一转换关系,
    其中,所述第一转换关系用于表征所述监控点与所述坐标原点的纬度数据差值、经度数据差值,与所述监控点在所述第一二维直角坐标系中的横坐标值、纵坐标值的对应关系。
  5. 根据权利要求4所述的方法,其特征在于,根据如下公式,计算所述监控点的GPS信息与所述监控点在所述第一二维直角坐标系中的坐标值之间的对应关系:
    PT=(PTx,PTy)=((NT-N0),(E0-ET)×cos(N0/180×π)),
    其中,PT为所述监控点在所述第一二维直角坐标系中的坐标值,PTx、PTy分别为所述监控点在所述第一二维直角坐标系中的横坐标值、纵坐标值,N0和E0分别为所述坐标原点的GPS信息中的纬度数据和经度数据,NT和ET分别为所述监控点的GPS信息中的纬度数据和经度数据。
  6. 根据权利要求2所述的方法,其特征在于,在保存所述GPS信息与PTZ坐标信息之间的转换关系之前,获取所述PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系的步骤包括:
    建立第二二维直角坐标系,其中,所述第二二维直角坐标系的横纵轴的方向分别为所述跟踪设备水平转动角度相差90°时,所述跟踪设备指向的方向;
    读取所述跟踪设备画面中监控点的PTZ坐标信息;
    创建所述监控点的PTZ坐标信息与所述监控点在所述第二二维直角坐标系中的坐标值之间的对应关系,获取所述第三转换关系。
  7. 根据权利要求6所述的方法,其特征在于,根据如下公式,计算所述监控点的PTZ坐标信息与所述监控点在所述第二二维直角坐标系中的坐标值之间的对应关系:
    Figure PCTCN2015097637-appb-100001
    其中,QT为所述监控点在所述第二二维直角坐标系中的坐标值,QTx、QTy分 别为所述监控点在所述第二二维直角坐标系中的横坐标值、纵坐标值,θT为所述监控点的P参数,θy为指向所述第二二维直角坐标系纵轴时所述跟踪设备的水平转动角度,
    Figure PCTCN2015097637-appb-100002
    为所述监控点的T参数。
  8. 根据权利要求2所述的方法,其特征在于,在保存所述GPS信息与PTZ坐标信息之间的转换关系之前,获取所述地面坐标信息与跟踪设备坐标信息之间的第二转换关系的步骤包括:
    读取所述跟踪设备画面中至少两个监控点在所述第一二维直角坐标系中的地面坐标信息;
    读取所述至少两个监控点在所述第二二维直角坐标系中的跟踪设备坐标信息;
    创建所述第一二维直角坐标系中坐标值与所述第二二维直角坐标系中的坐标值之间的对应关系,获取所述第二转换关系;
    其中,所述第二转换关系用于表征同一监控点在所述第一二维直角坐标系中的坐标值与在所述第二二维直角坐标系中的坐标值的对应关系。
  9. 根据权利要求8所述的方法,其特征在于,创建所述第一二维直角坐标系中坐标值与所述第二二维直角坐标系中的坐标值之间的对应关系,获取所述第二转换关系的步骤包括:
    根据所述至少两个监控点中的每个监控点在所述第一二维直角坐标系和所述第二二维直角坐标系中的坐标值,分别建立基于该监控点的第一列向量和第二列向量;
    创建所述第一列向量与所述第二列向量之间的对应关系,其中,该对应关系包括:所述第一列向量乘以伸缩变换系数、左乘旋转变换矩阵、并加上平移变换向量后,等于第二列向量,或者,所述第二列向量乘以所述伸缩变换系数、左乘所述旋转变换矩阵、并加上所述平移变换向量后,等于第一列向量;
    计算所述第一二维直角坐标系与所述第二二维直角坐标系之间的缩放系数、旋转系数和平移系数,获得第二转换关系,其中,所述伸缩变换系数为所述缩放系数,所述旋转变换矩阵中的旋转角度为所述旋转系数,所述平移变换列向量的两个元素相应的为横坐标平移系数和纵坐标平移系数。
  10. 根据权利要求9所述的方法,其特征在于,根据如下公式,计算所述第一二维直角坐标系与所述第二二维直角坐标系之间的缩放系数、旋转系数和平移系数的公式为:
    Figure PCTCN2015097637-appb-100003
    Figure PCTCN2015097637-appb-100004
    其中,α为所述缩放系数,θ为所述旋转系数,a为所述横坐标平移系数,b为所述纵坐标平移系数,P1x、P1y分别为所述至少两个监控点中第一个监控点在所述第一二维直角坐标系中的横坐标值、纵坐标值,Q1x、Q1y分别为所述第一个监控点在所述第二二维直角坐标系中的横坐标值、纵坐标值,P2x、P2y分别为所述至少两个监控点中第二个监控点在所述第一二维直角坐标系中的横坐标值、纵坐标值,Q2x、Q2y分别为所述第二个监控点在所述第二二维直角坐标系中的横坐标值、纵坐标值。
  11. 根据权利要求9或10所述的方法,其特征在于,当使用三个以上监控点的坐标值时,获取所述第一二维直角坐标系和所述第二二维直角坐标系之间的缩放系数、旋转系数和平移系数的方法还包括:通过最小二乘法得到所述缩放系数、所述旋转系数、所述平移系数在均方误差下的拟合值。
  12. 一种目标跟踪装置,其特征在于,包括:
    获取模块,用于获取跟踪设备所监控的目标对象的GPS信息;
    转换模块,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到所述目标对象的GPS信息所对应的PTZ坐标信息;
    控制模块,用于根据所述目标对象的PTZ坐标信息调整所述跟踪设备,以控制所述跟踪设备监控所述目标对象。
  13. 根据权利要求12所述的装置,其特征在于,在所述转换模块之前,所述装置还包括:
    保存模块,用于保存GPS信息与PTZ坐标信息之间的转换关系,其中,所述转换关系包括:所述GPS信息与地面坐标信息之间的第一转换关系、所述地面坐标信息与跟踪设备坐标信息之间的第二转换关系、所述PTZ坐标信息与所述跟踪设备坐标信息之间的第三转换关系;
    其中,所述地面坐标信息为第一位置在第一二维直角坐标系中的坐标值,所述跟踪设备坐标信息为所述第一位置在第二二维直角坐标系中的坐标值,所述第二二维直角坐标系以所述跟踪设备的立杆为原点。
  14. 根据权利要求13所述的装置,其特征在于,所述转换模块包括:
    第一转换单元,用于根据所述第一转换关系将当前获取到的所述目标对象的GPS信息转换为所述目标对象对应的地面坐标信息;
    第二转换单元,用于根据所述第二转换关系将转换得到的所述目标对象对应的地面坐标信息转换为所述目标对象对应的跟踪设备坐标信息;
    第三转换单元,用于根据所述第三转换关系将转换得到的所述目标对象对应的跟踪设备坐标信息转换为所述目标对象对应的PTZ坐标信息。
  15. 根据权利要求13所述的装置,其特征在于,在所述保存模块之前,获取所述GPS信息与地面坐标信息之间的第一转换关系的单元包括:
    第一建立子单元,用于建立所述第一二维直角坐标系,其中,所述第一二维直角坐标系的横纵轴分别指向正东、正西、正南、正北之中任意的两个方向;
    第一读取子单元,用于读取所述第一二维直角坐标系的坐标原点的GPS信息,以及读取所述跟踪设备监控画面中监控点的GPS信息,所述GPS信息包括:纬度数据和经度数据;
    第一创建子单元,用于创建所述监控点的GPS信息与所述监控点在所述第一二维直角坐标系中的坐标值之间的对应关系,获取所述第一转换关系,其中,所述第一转换关系用于表征所述监控点与所述坐标原点的纬度数据差值、经度数据差值,与所述监控点在所述第一二维直角坐标系中的横坐标值、纵坐标值的对应关系。
  16. 根据权利要求13所述的装置,其特征在于,在所述保存模块之前,获取所述PTZ坐标信息与跟踪设备坐标信息之间的第三转换关系的单元包括:
    第二建立子单元,用于建立第二二维直角坐标系,其中,所述第二二维直角坐标系以所述跟踪设备为原点;所述第二二维直角坐标系的横纵轴的方向分别为所述跟踪设备水平转动角度相差90°时,所述跟踪设备指向的方向;
    第二读取子单元,用于读取所述跟踪设备画面中监控点的PTZ坐标信息;
    第二创建子单元,用于创建所述监控点的PTZ坐标信息与所述监控点在所述第二二维直角坐标系中的坐标值之间的对应关系,获取所述第三转换关系。
  17. 根据权利要求13所述的装置,其特征在于,在所述保存模块之前,获取所述地面坐标信息与跟踪设备坐标信息之间的第二转换关系的单元包括:
    第三读取单元,用于读取所述跟踪设备画面中至少两个监控点在所述第一二维直角坐标系中的地面坐标信息;
    第四读取子单元,用于读取所述至少两个监控点在所述第二二维直角坐标系中的跟踪设备坐标信息;
    第三创建子单元,用于创建所述第一二维直角坐标系中坐标值与所述第二二维直角坐标系中的坐标值之间的对应关系,获取所述第二转换关系,其中,所述第二转换关系用于表征同一监控点在所述第一二维直角坐标系中的坐标值与在所述第二二维直角坐标系中的坐标值的对应关系。
  18. 一种目标跟踪系统,其特征在于,包括:
    GPS模块,用于获取跟踪设备所监控的目标对象的GPS信息;
    处理器,用于根据预先保存的GPS信息与PTZ坐标信息之间的转换关系,得到所述目标对象的GPS信息所对应的PTZ坐标信息;
    跟踪设备,用于根据所述目标对象的PTZ坐标信息监控所述目标对象。
  19. 一种监控终端,用于执行所述权利要求1至11中任意一项所述的目标跟踪方法提供的步骤的程序代码。
  20. 一种存储介质,用于保存所述权利要求1至11中任意一项所述的目标跟踪方法所执行的程序代码。
PCT/CN2015/097637 2015-03-09 2015-12-16 一种目标跟踪方法、装置和系统 WO2016141744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/556,891 US10281554B2 (en) 2015-03-09 2015-12-16 Method, device and system for target tracking
EP15884422.5A EP3270585A4 (en) 2015-03-09 2015-12-16 Target tracking method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510102092.9 2015-03-09
CN201510102092.9A CN106033612B (zh) 2015-03-09 2015-03-09 一种目标跟踪方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2016141744A1 true WO2016141744A1 (zh) 2016-09-15

Family

ID=56879882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097637 WO2016141744A1 (zh) 2015-03-09 2015-12-16 一种目标跟踪方法、装置和系统

Country Status (4)

Country Link
US (1) US10281554B2 (zh)
EP (1) EP3270585A4 (zh)
CN (1) CN106033612B (zh)
WO (1) WO2016141744A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107609183A (zh) * 2017-09-29 2018-01-19 浙江科澜信息技术有限公司 将原始坐标数据转换为球面坐标数据的方法、装置及设备
CN110955797A (zh) * 2019-11-27 2020-04-03 北京京东尚科信息技术有限公司 用户位置确定方法、装置、电子设备及存储介质
CN113484840A (zh) * 2021-07-23 2021-10-08 青岛海尔空调电子有限公司 基于雷达的家电工作空间的目标定位方法及家电系统
CN116193262A (zh) * 2023-04-25 2023-05-30 上海安维尔信息科技股份有限公司 一种堆场中集装箱ptz相机选择瞄准方法及系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248148B (zh) * 2018-09-25 2022-04-15 浙江大华技术股份有限公司 一种确定定位参数的方法及装置
CN110799985A (zh) * 2018-09-29 2020-02-14 深圳市大疆创新科技有限公司 基于地图识别目标对象的方法与控制终端
US11113837B2 (en) * 2019-10-25 2021-09-07 7-Eleven, Inc. Sensor mapping to a global coordinate system
CN109509233B (zh) * 2018-11-16 2020-11-10 厦门博聪信息技术有限公司 一种基于rfid标签位置信息的ptz摄像机目标跟踪方法、系统及装置
CN109523471B (zh) * 2018-11-16 2023-11-10 厦门博聪信息技术有限公司 一种地面坐标和广角摄像机画面坐标的转换方法、系统以及装置
CN109584309A (zh) * 2018-11-16 2019-04-05 厦门博聪信息技术有限公司 一种枪球联动的双镜头应急布控球
CN109377529B (zh) * 2018-11-16 2021-05-14 厦门博聪信息技术有限公司 一种地面坐标与ptz摄像机的画面坐标转换方法、系统以及装置
CN109345599B (zh) * 2018-11-16 2020-09-15 厦门博聪信息技术有限公司 一种地面坐标与ptz摄像机的坐标转换方法及系统
CN111275609B (zh) * 2018-12-05 2023-03-24 杭州海康威视数字技术股份有限公司 一种pt坐标与gps坐标的转换方法、装置及球机
CN111291585B (zh) * 2018-12-06 2023-12-08 杭州海康威视数字技术股份有限公司 一种基于gps的目标跟踪系统、方法、装置及球机
CN111290001A (zh) 2018-12-06 2020-06-16 杭州海康威视数字技术股份有限公司 一种基于gps坐标的目标统筹方法、装置及设备
CN111599018B (zh) * 2019-02-21 2024-05-28 浙江宇视科技有限公司 一种目标追踪方法、系统及电子设备和存储介质
CN111862197B (zh) * 2019-04-30 2023-09-05 杭州海康威视数字技术股份有限公司 视频监控中的目标跟踪方法、系统及球机
CN111372050A (zh) * 2020-03-17 2020-07-03 广东电网有限责任公司电力科学研究院 一种目标识别方法、装置和枪球联动监控方法、系统
US11711616B2 (en) * 2020-05-12 2023-07-25 Electroapp, Llc Portable system including motorized base controller and transmitter for tracking a moving target
CN112637550B (zh) * 2020-11-18 2022-12-16 合肥市卓迩无人机科技服务有限责任公司 多路4k准实时拼接视频的ptz动目标跟踪方法
CN112797975A (zh) * 2020-12-30 2021-05-14 青岛海信网络科技股份有限公司 一种智能网联环境下的设备定位方法及装置
JP2022136866A (ja) * 2021-03-08 2022-09-21 キヤノン株式会社 撮像装置およびその制御方法
CN113064156B (zh) * 2021-06-01 2021-11-19 北京高普乐光电科技股份公司 雷达和光电联动的跟踪方法及装置
CN114119651B (zh) * 2021-11-30 2022-10-25 重庆紫光华山智安科技有限公司 目标跟踪方法、系统、设备及存储介质
CN114384568A (zh) * 2021-12-29 2022-04-22 达闼机器人有限公司 基于移动摄像头的位置测量方法、装置、处理设备及介质
CN114500839B (zh) * 2022-01-25 2024-06-07 青岛根尖智能科技有限公司 一种基于注意力跟踪机制的视觉云台控制方法及系统
US20240073530A1 (en) * 2022-08-30 2024-02-29 Revlogical, Llc System and method for controlling a camera based on three-dimensional location data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149330A1 (en) * 2008-12-12 2010-06-17 Honeywell International Inc. Security system with operator-side privacy zones
CN101924927A (zh) * 2010-08-10 2010-12-22 中兴通讯股份有限公司 联合视频监控方法及系统
CN102045549A (zh) * 2010-12-28 2011-05-04 天津市亚安科技电子有限公司 一种控制监控设备联动跟踪运动目标的方法及装置
US20120086825A1 (en) * 2010-10-07 2012-04-12 Jason Yost Automatic adjustment of capture parameters based on reference data
CN104106260A (zh) * 2011-11-22 2014-10-15 派尔高公司 基于地理图的控制

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660131A1 (en) * 1993-12-23 1995-06-28 Karl Osen Camera guidance system
US20120300079A1 (en) * 2011-03-09 2012-11-29 Richard Thomas Hale Object-oriented cable camera system
US9749594B2 (en) * 2011-12-22 2017-08-29 Pelco, Inc. Transformation between image and map coordinates
US8704904B2 (en) * 2011-12-23 2014-04-22 H4 Engineering, Inc. Portable system for high quality video recording
WO2013131036A1 (en) * 2012-03-01 2013-09-06 H4 Engineering, Inc. Apparatus and method for automatic video recording
WO2014008504A1 (en) * 2012-07-06 2014-01-09 H4 Engineering, Inc. A remotely controlled automatic camera tracking system
WO2014085987A1 (zh) 2012-12-04 2014-06-12 浙江天地人科技有限公司 远程监控系统的控制方法和控制装置
US9495759B2 (en) * 2014-02-26 2016-11-15 Apeiros, Llc Mobile, wearable, automated target tracking system
US20150331083A1 (en) * 2014-05-15 2015-11-19 Panhandle Bugeaters, LLC Camera tracking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149330A1 (en) * 2008-12-12 2010-06-17 Honeywell International Inc. Security system with operator-side privacy zones
CN101924927A (zh) * 2010-08-10 2010-12-22 中兴通讯股份有限公司 联合视频监控方法及系统
US20120086825A1 (en) * 2010-10-07 2012-04-12 Jason Yost Automatic adjustment of capture parameters based on reference data
CN102045549A (zh) * 2010-12-28 2011-05-04 天津市亚安科技电子有限公司 一种控制监控设备联动跟踪运动目标的方法及装置
CN104106260A (zh) * 2011-11-22 2014-10-15 派尔高公司 基于地理图的控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270585A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107609183A (zh) * 2017-09-29 2018-01-19 浙江科澜信息技术有限公司 将原始坐标数据转换为球面坐标数据的方法、装置及设备
CN110955797A (zh) * 2019-11-27 2020-04-03 北京京东尚科信息技术有限公司 用户位置确定方法、装置、电子设备及存储介质
CN110955797B (zh) * 2019-11-27 2023-05-02 北京京东尚科信息技术有限公司 用户位置确定方法、装置、电子设备及存储介质
CN113484840A (zh) * 2021-07-23 2021-10-08 青岛海尔空调电子有限公司 基于雷达的家电工作空间的目标定位方法及家电系统
CN116193262A (zh) * 2023-04-25 2023-05-30 上海安维尔信息科技股份有限公司 一种堆场中集装箱ptz相机选择瞄准方法及系统
CN116193262B (zh) * 2023-04-25 2023-09-01 上海安维尔信息科技股份有限公司 一种堆场中集装箱ptz相机选择瞄准方法及系统

Also Published As

Publication number Publication date
CN106033612B (zh) 2019-06-04
US20180059207A1 (en) 2018-03-01
US10281554B2 (en) 2019-05-07
EP3270585A4 (en) 2018-11-07
CN106033612A (zh) 2016-10-19
EP3270585A1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
WO2016141744A1 (zh) 一种目标跟踪方法、装置和系统
CN107782322B (zh) 室内定位方法与系统及其室内地图建立装置
EP3134870B1 (en) Electronic device localization based on imagery
US9749809B2 (en) Method and system for determining the location and position of a smartphone based on image matching
JP6676082B2 (ja) 屋内測位方法及びシステム、ならびにその屋内マップを作成するデバイス
US8644859B2 (en) Apparatus to provide augmented reality service using location-based information and computer-readable medium and method of the same
US9794518B2 (en) Method and system for converting privacy zone planar images to their corresponding pan/tilt coordinates
US20160127695A1 (en) Method and apparatus for controlling a camera's field of view
US20130176453A1 (en) Methods, apparatuses and computer program products for facilitating image registration based in part on using sensor data
CN103200358B (zh) 摄像机与目标场景之间的坐标转换方法及装置
CN111815672B (zh) 动态跟踪控制方法、装置及控制设备
CA3161560A1 (en) 3-d reconstruction using augmented reality frameworks
CN104661300B (zh) 定位方法、装置、系统及移动终端
WO2017133147A1 (zh) 一种实景地图的生成方法、推送方法及其装置
KR20110004940A (ko) 가상화 처리서버 및 dcd 컨텐츠를 이용한 증강현실 제공 시스템
US20100092034A1 (en) Method and system for position determination using image deformation
CN102982516A (zh) 一种基于半球环形全景镜头实现全景图像的方法
WO2021035756A1 (zh) 基于飞行器的巡检方法、设备及存储介质
CN110726971B (zh) 可见光定位方法、装置、终端及存储介质
JP7185162B2 (ja) 画像処理方法、画像処理装置およびプログラム
US20170019585A1 (en) Camera clustering and tracking system
CN111429529B (zh) 一种坐标转换的标定方法、电子设备以及计算机存储介质
CN111240617B (zh) 基于三维地图的视频投放方法、系统和环境监控方法、系统
CN116228888B (zh) 地理坐标与ptz相机坐标的转换方法及系统
CA3142001C (en) Spherical image based registration and self-localization for onsite and offsite viewing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556891

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015884422

Country of ref document: EP