WO2016140183A1 - 多孔体および濾過装置 - Google Patents

多孔体および濾過装置 Download PDF

Info

Publication number
WO2016140183A1
WO2016140183A1 PCT/JP2016/056031 JP2016056031W WO2016140183A1 WO 2016140183 A1 WO2016140183 A1 WO 2016140183A1 JP 2016056031 W JP2016056031 W JP 2016056031W WO 2016140183 A1 WO2016140183 A1 WO 2016140183A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
hole
holes
filtration device
size
Prior art date
Application number
PCT/JP2016/056031
Other languages
English (en)
French (fr)
Inventor
萬壽 優
近藤 孝志
誠治 神波
直樹 河原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016140183A1 publication Critical patent/WO2016140183A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Definitions

  • the present invention relates to a porous body and a filtration device.
  • a porous body having a plurality of through-holes used for filtering a trapped substance in a fluid (specimen) is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-279772 discloses a filtration device in which a porous body having a plurality of through-holes whose pore diameters are designed in accordance with the size of captured objects is arranged in a flow path. Has been. A technique for filtering a trapped substance using such a porous body as a filtration membrane is known.
  • the fluid to be filtered contains contaminants (substances larger than the trapped material), the contaminants block the through-holes of the porous body, resulting in clogging and a high filtration rate. There was a problem of being late.
  • the present invention provides a porous body and a filtration device that can suppress the occurrence of clogging and improve the filtration speed when filtering the captured material from the fluid containing the captured material and the contaminants.
  • the purpose is to provide.
  • a porous body used for filtering trapped substances in a fluid A porous body comprising a plurality of first through holes through which the trapped substance cannot pass and at least one second through hole through which the trapped substance can pass.
  • a filtering device used for filtering trapped substances in a fluid A filtration device comprising a flow path for flowing the fluid and two or more porous bodies according to any one of [1] to [3] arranged in series in the flow path.
  • the ratio of the sum of the opening areas of the second through holes to the sum of the opening areas of the first through holes of the porous body arranged on the most downstream side in the flow path is as follows: The smallest filtration apparatus according to [4] or [5].
  • the porous body since the porous body has the second through-hole, when the contaminant is captured, the through-hole is not completely blocked, and clogging by the contaminant can be prevented. As a result, occurrence of clogging of the porous body can be suppressed and the filtration rate can be improved.
  • FIG. 3 is a schematic diagram for explaining a configuration of a porous body according to the first embodiment.
  • A) is a perspective view
  • (b) is a plan view.
  • each embodiment is an illustration, and it cannot be overemphasized that the partial substitution or combination of the structure shown in different embodiment is possible.
  • FIG. 1 is a schematic diagram illustrating a configuration of a filtration device 100 according to the present embodiment.
  • (a) to (c) are schematic top views showing each of the three types of porous bodies arranged in the filtration device in an enlarged manner.
  • porous bodies 1A and 1B of the present embodiment are membrane-like porous bodies used for filtering trapped substances in a fluid, and the trapped substances pass through them. It has a plurality of first through holes 11a that cannot be performed, and at least one second through hole 11b through which the captured substance can pass.
  • the conductor is a substance that conducts electricity, and includes not only metals but also semiconductors.
  • metals include nickel, gold, silver, copper, platinum, iron, stainless steel, chromium, and alloys or oxides thereof. Preferred are nickel, gold, platinum, stainless steel and chromium, and more preferred are nickel and gold.
  • porous bodies 1A and 1B of the present embodiment have a first main surface 10a and a second main surface 10b facing the first main surface 10a.
  • the first through hole 11a and the second through hole 11b penetrate from the first main surface 10a toward the second main surface 10b. That is, the through hole penetrates in the thickness direction of the porous body.
  • the second through hole 11b is omitted.
  • porous body of the present embodiment for example, a plurality of first through holes 11a are periodically arranged in at least one direction on the main surface of the porous body. Thereby, a porous body with stable filtration characteristics can be obtained.
  • the first through holes 11a are preferably arranged in a matrix shape (lattice shape) as shown in FIG. More specifically, as shown in FIG. 2B, when viewed from the first main surface 10a side, the square first through holes 11a are arranged in two directions parallel to each side of the square (vertical direction in the figure). It is preferable that they are provided at equal intervals in the direction and the horizontal direction.
  • the 1st through-hole 11a as long as the filtration characteristic does not become unstable, a part of through-hole may be periodically arrange
  • the second through holes 11b having a different size from the first through holes 11a are arranged, and therefore the arrangement of the first through holes 11a may be partially aperiodic.
  • the arrangement of the second through-holes 11b is not particularly limited, and the second through-holes 11b do not have to be periodically arranged, but the flow resistance when the first through-holes 11a are closed is reduced.
  • the second through holes 11b are arranged uniformly dispersed to some extent.
  • a porous body has a part which does not have a through-hole clamped by a fixing member in order to fix a porous body in the outer edge part at the time of filtration.
  • the size of the first through-hole 11a (for example, the size of the through-hole indicated by D in FIG. 2B) is not particularly limited as long as it is a size capable of collecting the captured matter. It is preferable that the size of the object cannot pass or is difficult to pass. Moreover, it is preferable that it is a magnitude
  • the size in which the trapped substance cannot physically pass or is difficult to pass means, for example, that the hole size of the first through-hole 11a indicated by D in FIG.
  • the length of the first through hole 11a is equal to or less than the length of the longest straight line connecting two points on the surface of the first through hole 11a.
  • the size that the trapped material cannot physically pass or is difficult to pass means that the pore size is deformable. It means the size of the first through-hole 11a that is equal to or less than the major axis of the missing portion.
  • the “size that the captured object cannot physically pass or is difficult to pass” is preferably the first penetration that the pore size is 1 ⁇ 2 or less of the major axis of the captured object. The size of the hole 11a.
  • Specific hole size D of the first through hole 11a is preferably 0.4 ⁇ m or more and 50 ⁇ m or less.
  • the hole size D of the first through hole 11a is, for example, 2 ⁇ m or more and 7 ⁇ m or less.
  • the hole size D of the first through hole 11a is preferably 0.5 ⁇ m or less.
  • the width A (see FIG. 2B) of the crosspiece of the porous body 1 is, for example, not less than 0.5 ⁇ m and not more than 100 ⁇ m.
  • the size of the second through-hole 11b is not particularly limited as long as it is a size capable of collecting the captured matter. Or it is preferable that it is a magnitude
  • the size of the second through hole is preferably such a size as to have a gap through which fluid can pass when contaminants are captured.
  • the hole size of the second through hole 11b (D shown in FIG. 2B) is preferably larger than the size of the captured object.
  • a specific hole size D of the second through hole 11b is, for example, not less than 1.0 ⁇ m and not more than 100 ⁇ m.
  • the opening area of each 2nd through-hole 11b is 1.5 to 10 times the opening area of each 1st through-hole 11a. In such a range, the size of the second through-hole 11b may be appropriately designed in consideration of the viscosity of the fluid and the number (concentration) of trapped substances.
  • the sum of the opening areas of the second through holes 11b is smaller than the sum of the opening areas of the first through holes 11a. Moreover, it is preferable that the ratio of the sum total of the opening area of the 2nd through-hole 11b with respect to the sum total of the opening area of the 1st through-hole 11a is 0.01% or more and 1.0% or less.
  • the first through-holes 11a are only required to have the second through-holes 11b to the extent that the porous bodies 1A and 1B do not cause clogging, and the first through-holes 11a can collect as much captured matter as possible. This is because it is desirable that the number of the first through holes 11a is large (the sum of the opening areas of the plurality of first through holes 11a is large).
  • the ratio of the number of second through holes 11b to the number of first through holes 11a is preferably 0.0001% or more and 5% or less.
  • the ratio of the opening area of the through hole to the area of the main surface of the porous body including the first through hole 11a and the second through hole 11b is a fluid that passes through the porous body. From the standpoint of increasing the flow rate, it is preferably 3% or more, and more preferably 10% or more. Further, from the viewpoint of ensuring the strength of the porous body, it is preferably 80% or less, and more preferably 60% or less.
  • the aperture ratio is controlled, for example, by controlling the hole size of the through hole (mainly the first through hole 11a) indicated by D in FIG. 2B and the lattice interval (pitch) of the through hole indicated by P. Can be adjusted.
  • the thickness of the porous body is preferably thinner as long as the necessary mechanical strength can be maintained.
  • the thickness of the porous body is increased, generally the pressure loss when the fluid is passed increases. This is because when the pressure loss of the porous body becomes large, the flow rate becomes slow and it becomes difficult to flow the fluid, so that there is a problem that the processing efficiency is lowered.
  • the measurement sensitivity is improved, and a smaller amount of the measured object. Can be measured.
  • the average thickness of the porous body is preferably 0.2 ⁇ m or more and 40 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the “thickness” is a distance between the first main surface 10a and the second main surface 10b of the porous body.
  • the “average thickness” can be calculated as an average value of, for example, measuring the thickness of 10 locations per porous body with fluorescent X-rays.
  • the filtration device of the present embodiment is a filtration device used for collecting trapped substances in a fluid.
  • the porous body 1A, 1B is used for the filtration device 100 of the present embodiment.
  • a flow path for flowing a fluid is formed by the four screwed cylinders 12a, 12b, 12c, and 12d.
  • these cylinders are separably coupled by a screwing portion, when measuring or collecting the trapped matter collected in the porous body after filtration, the individual porous bodies are cylinders. It is possible to separate with the body. By fixing the porous body and the housing so as to be detachable, it becomes easier to observe each of the plurality of meshes after filtration.
  • the connecting method of the cylinders 12a, 12b, 12c, and 12d is not limited to screwing but may be fitting or the like, but is preferably screwing. If it is screwed, it becomes easy to adjust the fixing strength even when the thickness of the porous body to be used is changed.
  • each porous body is crimped
  • sealing materials 14 such as packing, a washer, and an O-ring.
  • the porous body 1A and the porous body 1B are arranged in series in this flow path.
  • the porous body 1A is disposed on the upstream side of the fluid flow (white arrow shown in FIG. 1), and the porous body 1B is disposed on the downstream side thereof.
  • the filtration device 100 of this embodiment further includes a membrane-like porous body 1C having only a plurality of first through holes 11a through which trapped substances cannot pass on the most downstream side in the flow path. Thereby, the whole quantity of the capture
  • Each of the porous bodies 1A, 1B, and 1C is fixed in a state where the outer peripheral portion of the porous body is sandwiched between the holding members 13a, 13b, and 13c.
  • the first through-hole 11a of the porous body 1A is blocked with the captured substance. Even in this case, since the fluid and the trapped material flow to the porous body 1B through the second through-hole 11b, the fluid is not blocked by the porous body 1A due to the blockage of the through-hole. Similarly, in the porous body 1B, the fluid is not blocked by the porous body 1B due to the blockage of the through holes.
  • clogging in the porous bodies 1A and 1B can be suppressed in this way.
  • the trapped material when it is necessary to recover the trapped material from the porous body, if the conventional porous body having only the first through-hole 11a is used, the trapped material enters the through-hole due to the pressure of the fluid, etc. It may be difficult to collect things. Even in such a case, by using the porous body having the second through-holes 11b of the present embodiment, the pressure on the filtrate is reduced, so that the trapped substance can be easily recovered from the porous body.
  • the distance between two adjacent porous bodies is preferably larger than the size of the second through hole 11b. In this case, impurities that have passed through the second through hole 11b of the porous body disposed upstream of the flow path are prevented from being sandwiched between the two porous bodies.
  • the size of the second through hole 11b is smaller toward the downstream side of the flow path. In this case, it is possible to classify foreign substances (captured substances) in the fluid.
  • a porous body having only a through hole having a size equal to or larger than the size of the second through hole 11b may be further provided in the uppermost stream of the flow path.
  • Such a porous body functions as a filter for removing large contaminants, and can further prevent clogging of the porous body on the downstream side.
  • the ratio of the sum of the opening areas of the second through holes 11b to the sum of the opening areas of the first through holes 11a of the porous body arranged on the most downstream side in the flow path is the smallest. That is, the porous body 1A preferably has a higher proportion of the second through holes 11b than the porous body 1B.
  • the first through-hole 11a is first blocked by the trapped substance, so that the fluid and the trapped substance are moved to the porous body 1B side only through the second through-hole 11b.
  • the flow period is relatively long. Therefore, in terms of filtration efficiency, it is desirable to reduce the channel resistance due to the porous body 1A during this period, and this can be achieved by increasing the ratio of the second through holes 11b of the porous body 1A.
  • the first through holes 11a have the same size.
  • the trapped substance when the trapped substance is filtered from a fluid in which a large amount of trapped substances of a certain size are present, the trapped substance can be similarly filtered in both the porous body 1A and the porous body 1B.
  • the porous bodies 1A and 1B and the filtration device 100 of the present embodiment can be used as a filter (sieving) for filtering the trapped substance contained in the fluid (specimen).
  • the fluid is, for example, a gas or a liquid.
  • captured substances include inorganic substances, organic substances or their composites contained in fluids, or biological substances.
  • the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus.
  • cells eukaryotes
  • examples of cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions.
  • Sex cells nerve cells, leukocytes, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi.
  • bacteria include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria.
  • the virus include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
  • the filtration device 100 of this embodiment is particularly suitable for filtering artificial pluripotent stem cells (iPS cells)), ES cells, stem cells, circulating cancer cells (CTC), and the like.
  • the trapped material is not limited to a solid, and may be a sol, a gel, or the like as long as it has a shape in a state of being present in the fluid.
  • the effect of this embodiment is effective.
  • the filtration apparatus of this embodiment can be used suitably in order to isolate
  • Examples of the inorganic substance, the organic substance, or a composite thereof in the gas include atmospheric PM (Particulate Matter) 2.5, SPM (Suspended Particulate Matter), PM10, and pollen.
  • the porous body and the filtration device of the present embodiment can be applied to trap the following trapped material.
  • exosomes endoplasmic reticulum
  • the size of the exosome is about several hundreds of nanometers.
  • the porous body and the filtration device of the above embodiment are used. Can be applied.
  • 1, 1A, 1B, 1C porous body 10a first main surface, 10b second main surface, 11a first through hole, 11b second through hole, 12a, 12b, 12c, 12d cylindrical body, 13a, 13b, 13c holding Member, 14 sealing material, 100 filtration device.

Abstract

 本発明は、一定の大きさの捕捉物が多量に存在する流体中から捕捉物を濾過する場合でも、目詰まりの発生を抑制することのできる多孔体および濾過装置を提供する。本発明は、流体中の捕捉物を濾過するために用いられる多孔体であって、前記捕捉物が通過できない複数の第1貫通孔と、前記捕捉物が通過できる少なくとも1つの第2貫通孔とを含む、多孔体である。

Description

多孔体および濾過装置
 本発明は、多孔体および濾過装置に関する。
 流体(検体)中の捕捉物を濾過するために用いられる複数の貫通孔を有する多孔体が知られている。
 例えば、特許文献1(特開2000-279772号公報)には、捕捉物の大きさに合わせて孔径が設計された複数の貫通孔を有する多孔体を流路に配置してなる濾過装置が開示されている。このような多孔体をろ過膜として用いて、捕捉物を濾過する技術が知られていれる。
特開2000-279772号公報
 しかしながら、濾過の対象となる流体中に夾雑物(捕捉物よりも大きい物質など)が含まれている場合、夾雑物が多孔体の貫通孔を塞いでしまい、目詰まりが発生して濾過速度が遅くなってしまうという問題があった。
 本発明は、上記の事情に鑑み、捕捉物と夾雑物を含む流体中から捕捉物を濾過する際に、目詰まりの発生を抑制し、濾過速度を向上させることのできる多孔体および濾過装置を提供することを目的とする。
 [1] 流体中の捕捉物を濾過するために用いられる多孔体であって、
 前記捕捉物が通過できない複数の第1貫通孔と、前記捕捉物が通過できる少なくとも1つの第2貫通孔とを含む、多孔体。
 [2] 前記第2貫通孔の開口面積の総和は、前記第1貫通孔の開口面積の総和より小さい、[1]に記載の多孔体。
 [3] 前記第1貫通孔の開口面積の総和に対する前記第2貫通孔の開口面積の総和の比率が、0.01%以上1.0%以下である、[2]に記載の多孔体。
 [4] 流体中の捕捉物を濾過するために用いられる濾過装置であって、
 前記流体を流す流路と、該流路内に直列に配置された[1]~[3]のいずれかに記載の多孔体を2つ以上備える、濾過装置。
 [5] 隣り合う2つの前記多孔体の距離は、前記第2貫通孔のサイズより大きい、[4]に記載の濾過装置。
 [6] 前記多孔体のうち、前記流路内の最も下流側に配置された多孔体の、前記第1貫通孔の開口面積の総和に対する前記第2貫通孔の開口面積の総和の比率が、最も小さい、[4]または[5]に記載の濾過装置。
 [7] 前記第2貫通孔のサイズは、前記流路の下流側ほど小さくなっている、[4]~[6]のいずれかに記載の濾過装置。
 [8] 前記流路の最上流に、前記第2貫通孔のサイズ以上のサイズを有する貫通孔のみを有する多孔体をさらに備える、[4]~[7]のいずれかに記載の濾過装置。
 [9] 前記流路内の最も下流側に、前記捕捉物が通過できない前記第1貫通孔のみを有する多孔体をさらに備える、[4]~[8]のいずれかに記載の濾過装置。
 [10] 2つ以上の前記多孔体において、前記第1貫通孔のサイズが同じである、[4]~[9]のいずれかに記載の濾過装置。
 [11] 前記捕捉物が生物由来物質である、[4]~[10]のいずれかに記載の濾過装置。
 [12] 前記流体が培養液であり、前記捕捉物が細胞である、[4]~[10]のいずれかに記載の濾過装置。
 本発明においては、多孔体が第2貫通孔を有しているため、夾雑物が捕捉された場合に、貫通孔が完全に塞がれなくなり、夾雑物による目詰まりを防止できる。その結果、多孔体の目詰まりの発生を抑制し、濾過速度を向上させることができる。
実施形態1の多孔体および濾過装置の構成を示す概略図である。(a)~(c)は濾過装置に配置された3種類の多孔体の各々を拡大して示す上面模式図である。 実施形態1の多孔体の構成を説明するための概略図である。(a)は斜視図であり、(b)は平面図である。
 以下、本発明の実施形態について、図面を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 なお、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 図1を参照して、本実施形態の多孔体および濾過装置について説明する。図1は、本実施形態の濾過装置100の構成を示す概略図である。なお、(a)~(c)は濾過装置に配置された3種類の多孔体の各々を拡大して示す上面模式図である。
 図1(a)および(b)を参照して、本実施形態の多孔体1A,1Bは、流体中の捕捉物を濾過するために用いられる膜状の多孔体であって、捕捉物が通過できない複数の第1貫通孔11aと、捕捉物が通過できる少なくとも1つの第2貫通孔11bとを有している。
 多孔体は、少なくともその表面を含む一部が導体で形成されていることが好ましく、多孔体の全体が導体で形成されていることがより好ましい。ここで、導体とは、電気を通す物質のことであり、金属だけでなく半導体も含まれる。
 金属としては、ニッケル、金、銀、銅、白金、鉄、ステンレス、クロム、またはこれらの合金または酸化物などが挙げられる。好ましくはニッケル、金、白金、ステンレスおよびクロムであり、さらに好ましくはニッケルおよび金である。
 図2を参照して、本実施形態の多孔体1A,1Bは、第1主面10aと、第1主面10aと対向する第2主面10bとを有している。第1貫通孔11aおよび第2貫通孔11bは第1主面10aから第2主面10bに向かって貫通している。すなわち、貫通孔は、多孔体の厚み方向に貫通している。なお、図2においては、第2貫通孔11bを省略して記載している。
 本実施形態の多孔体においては、例えば、複数の第1貫通孔11aが、多孔体の主面上の少なくとも一方向に周期的に配置されている。これにより、濾過特性が安定した多孔体を得ることができる。
 例えば、第1貫通孔11aは、図2に示すようなマトリックス状(格子状)に一定の間隔で配置されていることが好ましい。より詳細には、図2(b)に示されるように、第1主面10a側からみて正方形の第1貫通孔11aが、該正方形の各辺と平行な2つの配列方向(図中の縦方向と横方向)に等しい間隔で設けられていることが好ましい。
 ただし、第1貫通孔11aは、濾過特性が不安定にならない範囲で、一部の貫通孔が周期的に配置され、他の第1貫通孔11aが非周期的に配置されていてもよい。特に、本実施形態の多孔体では、第1貫通孔11aとはサイズの異なる第2貫通孔11bが配置されているため、第1貫通孔11aの配置は部分的に非周期的となる場合が多いが、それ以外の部分においては第1貫通孔11aが周期的に配置されていることが好ましい。
 一方、第2貫通孔11bの配置は特に限定されず、第2貫通孔11bが周期的に配置されている必要はないが、第1貫通孔11aが閉塞した時の流路抵抗を減少させるように、ある程度均一に分散して第2貫通孔11bが配置されることが好ましい。
 なお、多孔体は、外縁部に、濾過の際に多孔体を固定するために固定部材によって挟持される貫通孔を有さない部分を有する。
 第1貫通孔11aのサイズ(例えば、図2(b)にDで示される貫通孔の孔サイズ)は、捕捉物を捕集できる大きさであれば特に限定されないが、例えば、物理的に捕捉物が通過できないか、または通過し難い大きさであることが好ましい。また、流体が通過できる大きさであることが好ましい。
 「物理的に捕捉物が通過できないか、または通過し難い大きさ」とは、例えば、図2(b)にDで示される第1貫通孔11aの孔サイズが、捕捉物の長径(捕捉物の表面上の2点間を結ぶ直線のうち最長のものの長さ)以下となるような、第1貫通孔11aの大きさである。なお、捕捉物が部分的に変形しうるものである場合(例えば、有核細胞)、「物理的に捕捉物が通過できないか、または通過し難い大きさ」とは、孔サイズが変形能が無い部分の長径以下となるような第1貫通孔11aの大きさを意味する。捕捉物の全体が変形する場合、「物理的に捕捉物が通過できないか、または通過し難い大きさ」は、好ましくは孔サイズが捕捉物の長径の1/2以下となるような第1貫通孔11aの大きさである。
 具体的な第1貫通孔11aの孔サイズDは、0.4μm以上50μm以下であることが好ましい。なお、例えば、捕捉物のサイズが8μm以上14μm以下である場合、第1貫通孔11aの孔サイズDは、例えば、2μm以上7μm以下である。また、サブミクロンオーダーの捕捉物を多孔体で捕集したい場合、第1貫通孔11aの孔サイズDは、0.5μm以下であることが好ましい。
 また、多孔体1の桟部の幅A(図2(b)参照)は、例えば、0.5μm以上100μm以下である。
 一方、第2貫通孔11bのサイズ(図2(b)に示されるD)は、捕捉物を捕集できる大きさであれば特に限定されないが、例えば、物理的に捕捉物が通過できないか、または通過し難い大きさであることが好ましい。また、流体が通過できる大きさであることが好ましい。
 また、第2の貫通孔のサイズは、夾雑物を捕捉したときに流体が通過しうる隙間を有する程度のサイズであることが好ましい。これにより、捕捉物より大きい夾雑物が第2の貫通孔に捕捉された場合でも、目詰まりの発生が抑制されるため、濾過速度の低下が抑制され、第2貫通孔がない場合よりも濾過速度を向上させることができる。
 例えば、第2貫通孔11bの孔サイズ(図2(b)に示されるD)は、捕捉物のサイズより大きいことが好ましい。具体的な第2貫通孔11bの孔サイズDは、例えば、1.0μm以上100μm以下である。また、個々の第2貫通孔11bの開口面積は、個々の第1貫通孔11aの開口面積の1.5倍以上10倍以下であることが好ましい。なお、このような範囲において、第2貫通孔11bの大きさは、流体の粘性や捕捉物の個数(濃度)を考慮して、適宜設計すればよい。
 本実施形態の多孔体において、第2貫通孔11bの開口面積の総和は、第1貫通孔11aの開口面積の総和より小さい。また、第1貫通孔11aの開口面積の総和に対する第2貫通孔11bの開口面積の総和の比率が、0.01%以上1.0%以下であることが好ましい。多孔体1A,1Bが目詰まりを起こさない程度に第2貫通孔11bを有していればよく、第1貫通孔11aによってできる限り多くの捕捉物を捕集できるように、第1貫通孔11aの数が多い(複数の第1貫通孔11aの開口面積の総和が大きい)ことが望ましいためである。
 また、第1貫通孔11aの数に対する第2貫通孔11bの数の比率は、0.0001%以上5%以下であることが好ましい。
 なお、第1貫通孔11aおよび第2貫通孔11bを含む多孔体の主面の面積に対する貫通孔の開口面積の比率(以後、開口率と表記することがある)は、多孔体を通過する流体の流速を高める観点から3%以上であることが好ましく、10%以上であることがより好ましい。また、多孔体の強度保証の観点から、80%以下であることが好ましく、60%以下であることがより好ましい。なお、開口率は、例えば、図2(b)にDで示される貫通孔(主に第1貫通孔11a)の孔サイズとPで示される貫通孔の格子間隔(ピッチ)を制御することによって調整することができる。
 多孔体の厚みは、必要な機械的強度を維持できる範囲で、薄い方が好ましい。多孔体の厚みが厚くなると、一般に流体を通過させた際の圧力損失が大きくなる。多孔体の圧力損失が大きくなると、流速が遅くなったり、流体を流すことが困難になったりするため、処理効率が低下するといった問題があるからである。
 また、多孔体の厚みを薄くすることで、例えば、捕捉物が捕集された多孔体に電磁波を照射する捕捉物の測定方法に用いた場合、測定感度が向上し、より微量の被測定物を測定することが可能となる。
 具体的に、多孔体の平均厚みは、好ましくは0.2μm以上40μm以下であり、より好ましくは0.5μm以上5μm以下である。なお、「厚み」とは、多孔体の第1主面10aと第2主面10bとの間の距離である。「平均厚み」は、例えば、蛍光X線にて多孔体1枚につき10か所の厚みを測定して、その平均値として算出することができる。
 (濾過装置)
 本実施形態の濾過装置は、流体中の捕捉物を捕集するために用いられる濾過装置である。本実施形態の濾過装置100には、上記の多孔体1A,1Bが用いられる。
 図1に示されるように、濾過装置100では、螺合された4つの筒体12a,12b,12c,12dによって流体を流す流路が形成されている。なお、これらの筒体は、螺合部によって分離可能に結合しているため、濾過後に多孔体に捕集された捕捉物を測定したり、回収したりする際に、個々の多孔体を筒体と共に分離することが可能である。多孔体と筺体を着脱可能なように固定することで、濾過後に複数のメッシュそれぞれの観察をしやすくなる。
 筒体12a、12b、12c、12dの接続方法は、螺合に限られず嵌合等であってもよいが、好ましくは螺合である。螺合であれば、使用する多孔体の厚みを変更した場合でも固定強度の調整がしやすくなる。なお、筒体同士を結合することで、各々の多孔体は、パッキン、ワッシャー、Oリングなどの密封材14を介して筒体に圧着される。また、捕捉物の濾過量に応じてさらに筒体および多孔体を追加することも可能である。
 本実施形態の濾過装置100は、この流路内に、上記の多孔体1Aと多孔体1Bとが、直列に配置されている。なお、流体の流れ(図1に示す白矢印)の上流側に多孔体1Aが配置され、その下流側に多孔体1Bが配置されている。
 さらに、本実施形態の濾過装置100は、流路内の最も下流側に、捕捉物が通過できない複数の第1貫通孔11aのみを有する膜状の多孔体1Cをさらに備えている。これにより、流体中の捕捉物の全量を多孔体1A,1B,1Cによって捕集することができる。
 なお、多孔体1A,1B,1Cの各々は、それぞれ保持部材13a,13b,13cによって多孔体の外周部が挟持された状態で固定されている。
 そして、このような多孔体1A、多孔体1Bおよび多孔体1Cをこの順で通過するように、流体(検体)を流すことにより、多孔体1Aの第1貫通孔11aが捕捉物で閉塞された場合でも、第2貫通孔11bにより流体および捕捉物が多孔体1Bへ流れるため、流体が貫通孔の閉塞によって多孔体1Aで堰き止められてしまうことがない。多孔体1Bについても同様に、流体が貫通孔の閉塞によって多孔体1Bで堰き止められてしまうことがない。
 本実施形態の濾過装置100においては、このようにして、多孔体1A,1Bにおける目詰まりを抑制することができる。
 また、捕捉物を多孔体から回収することが必要な場合において、従来の第1貫通孔11aのみを有する多孔体を用いると、流体の圧力等によって捕捉物が貫通孔内に入り込んでしまい、捕捉物の回収が困難な状態になることがある。このような場合でも、本実施形態の第2貫通孔11bを有する多孔体を用いることで、濾過物への圧力が低減するため、多孔体からの捕捉物の回収が容易になる。
 なお、隣り合う2つの多孔体の距離は、第2貫通孔11bのサイズより大きいことが好ましい。この場合、流路の上流に配置された多孔体の第2貫通孔11bを通過した夾雑物が、2つの多孔体の間に挟まることが防止される。
 また、第2貫通孔11bのサイズは、流路の下流側ほど小さくなっていることが好ましい。この場合、流体中の夾雑物(捕捉物)の分級が可能となる。
 また、図1には示されていないが、流路の最上流に、第2貫通孔11bのサイズ以上のサイズを有する貫通孔のみを有する多孔体をさらに備えていてもよい。このような多孔体は、大きい夾雑物の除去フィルターとして機能し、その下流側の多孔体の目詰まりをさらに抑制することができる。
 また、図1に示されるように、多孔体1A,1B,1Cの流入側付近と流出側付近において流路(筒体12a、12b、12c、12dの内径)を狭めておくことで、当該箇所で渦流が生じ、流体中の捕捉物が均一に分散される。これにより、捕捉物や夾雑物の凝集物による目詰まりを抑制でき、さらに多孔体の目詰まりを抑制することができる。
 流路内の最も下流側に配置された多孔体の、第1貫通孔11aの開口面積の総和に対する第2貫通孔11bの開口面積の総和の比率が、最も小さいことが好ましい。すなわち、多孔体1Bよりも多孔体1Aの方が第2貫通孔11bの割合が多いことが好ましい。
 通常は、最も上流側に配置される多孔体1Aにおいて、最初に捕捉物による第1貫通孔11aの閉塞が生じるため、第2貫通孔11bのみを介して流体および捕捉物が多孔体1B側に流れる期間が比較的長い。したがって、濾過効率上、この期間における多孔体1Aによる流路抵抗を低下させることが望ましく、多孔体1Aの第2貫通孔11bの割合を高めることでそれが可能となる。
 多孔体1A、多孔体1Bおよび多孔体1Cにおいて、第1貫通孔11aのサイズは同じであることが好ましい。これにより、一定の大きさの捕捉物が多量に存在する流体中から捕捉物を濾過する場合に、多孔体1Aおよび多孔体1Bの両方において、同様に該捕捉物を濾過することができる。
 本実施形態の多孔体1A,1Bおよび濾過装置100は、流体(検体)中に含まれる捕捉物を濾過するためのフィルタ(篩い)として用いることができる。
 流体は、例えば、気体または液体である。捕捉物としては、例えば、流体中に含まれる無機物、有機物もしくはそれらの複合物、または、生体由来物質が挙げられる。「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、卵、精子、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類が挙げられる。細菌(真性細菌)としては、例えば、グラム陽性菌、グラム陰性菌、大腸菌、結核菌を含む。ウィルスとしては、例えば、DNAウィルス、RNAウィルス、ロタウィルス、(鳥)インフルエンザウィルス、黄熱病ウィルス、デング熱病ウィルス、脳炎ウィルス、出血熱ウィルス、免疫不全ウィルスが挙げられる。本実施形態の濾過装置100は、特に、人工多能性幹細胞(iPS細胞))、ES細胞、幹細胞、血中循環がん細胞(CTC)などを濾過するのに適している。なお、捕捉物は、流体中に存在する状態で形状を有しているものであればよく、固体に限らず、ゾル、ゲル等であってもよい。
 例えば、流体が培養液であり、捕捉物が細胞である場合など、一定の大きさの捕捉物(濾過物)が多量に存在する流体中から、その捕捉物を濾過する必要がある場合において、特に、本実施形態の効果は有効である。
 より具体的には、細胞を培養する場合、細胞は培養液中の栄養分を吸収して成長するため、古くなった培養液を時々交換する必要がある。その際に、細胞と培養液を分離するために本実施形態の濾過装置を好適に用いることができる。本実施形態の濾過装置では、複数の多孔体で同じサイズの細胞を捕集できるため、一度に回収できる細胞の数を従来よりも増やすことが出来るからである。
 気体中の無機物、有機物もしくはそれらの複合物としては、例えば、大気中のPM(Particulate Matter)2.5や、SPM(Suspended Particulate Matter)、PM10、花粉などが挙げられる。
 上述の捕捉物以外にも、例えば以下のような捕捉物の捕集に、本実施形態の多孔体および濾過装置を適用することができる。
 癌の新しい検査方法として、血中の癌細胞由来のエクソソーム(小胞体)を定量する研究が進められている。エクソソームのサイズは数百nm程度であり、白血球、赤血球および他の血液細胞を除去した血液サンプルから、エクソソームのみを捕集(濾過および濃縮)するために、上記実施形態の多孔体および濾過装置を適用することができる。
 また、ノロウィルスは培養できないため、発病後、かなりの時間が経過して、ウィルス数が増えないと検査できないという問題があるが、微量なウィルスを多孔体1で捕集(濾過および濃縮)できれば、培養不要で迅速な検査が可能になる。このため、上記実施形態の多孔体および濾過装置は、このようなウィルスの選択的な捕集に適用することもできる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B,1C 多孔体、10a 第1主面、10b 第2主面、11a 第1貫通孔、11b 第2貫通孔、12a,12b,12c,12d 筒体、13a,13b,13c 保持部材、14 密封材、100 濾過装置。

Claims (12)

  1.  流体中の捕捉物を濾過するために用いられる多孔体であって、
     前記捕捉物が通過できない複数の第1貫通孔と、前記捕捉物が通過できる少なくとも1つの第2貫通孔とを含む、多孔体。
  2.  前記第2貫通孔の開口面積の総和は、前記第1貫通孔の開口面積の総和より小さい、請求項1に記載の多孔体。
  3.  前記第1貫通孔の開口面積の総和に対する前記第2貫通孔の開口面積の総和の比率が、0.01%以上1.0%以下である、請求項2に記載の多孔体。
  4.  流体中の捕捉物を濾過するために用いられる濾過装置であって、
     前記流体を流す流路と、該流路内に直列に配置された請求項1~3のいずれか1項に記載の多孔体を2つ以上備える、濾過装置。
  5.  隣り合う2つの前記多孔体の距離は、前記第2貫通孔のサイズより大きい、請求項4に記載の濾過装置。
  6.  前記多孔体のうち、前記流路内の最も下流側に配置された多孔体の、前記第1貫通孔の開口面積の総和に対する前記第2貫通孔の開口面積の総和の比率が、最も小さい、請求項4または5に記載の濾過装置。
  7.  前記第2貫通孔のサイズは、前記流路の下流側ほど小さくなっている、請求項4~6のいずれか1項に記載の濾過装置。
  8.  前記流路の最上流に、前記第2貫通孔のサイズ以上のサイズを有する貫通孔のみを有する多孔体をさらに備える、請求項4~7のいずれか1項に記載の濾過装置。
  9.  前記流路内の最も下流側に、前記捕捉物が通過できない前記第1貫通孔のみを有する多孔体をさらに備える、請求項4~8のいずれか1項に記載の濾過装置。
  10.  2つ以上の前記多孔体において、前記第1貫通孔のサイズが同じである、請求項4~9のいずれか1項に記載の濾過装置。
  11.  前記捕捉物が生物由来物質である、請求項4~10のいずれか1項に記載の濾過装置。
  12.  前記流体が培養液であり、前記捕捉物が細胞である、請求項4~10のいずれか1項に記載の濾過装置。
PCT/JP2016/056031 2015-03-05 2016-02-29 多孔体および濾過装置 WO2016140183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015043567 2015-03-05
JP2015-043567 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016140183A1 true WO2016140183A1 (ja) 2016-09-09

Family

ID=56848538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056031 WO2016140183A1 (ja) 2015-03-05 2016-02-29 多孔体および濾過装置

Country Status (1)

Country Link
WO (1) WO2016140183A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042943A1 (ja) * 2016-08-30 2018-03-08 株式会社村田製作所 サンプリングフィルター、サンプリング装置およびそれを用いたサンプリング方法
WO2018092513A1 (ja) * 2016-11-18 2018-05-24 株式会社村田製作所 細胞培養液回収フィルタユニット、細胞培養液回収方法、及び細胞培養液回収キット
WO2018116883A1 (ja) * 2016-12-20 2018-06-28 株式会社村田製作所 細胞濾過フィルタ
EP3611271A4 (en) * 2017-05-09 2020-04-29 Yamaha Hatsudoki Kabushiki Kaisha PRETREATMENT METHOD FOR CELL MIGRATION AND CELL MIGRATION DEVICE
JP2020162588A (ja) * 2019-03-15 2020-10-08 ヤン, クエン・デルYANG, Kuen−Der 対象物質を単離するためのデバイス及び方法
WO2021186825A1 (ja) * 2020-03-17 2021-09-23 株式会社村田製作所 フィルタ及びフィルタデバイス
WO2023153150A1 (ja) * 2022-02-08 2023-08-17 愛三工業株式会社 フィルタ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955158A (en) * 1933-01-12 1934-04-17 Harold Goldman J Filter pad
JPS57111320U (ja) * 1980-12-27 1982-07-09
JPH11319436A (ja) * 1998-05-13 1999-11-24 Nissan Motor Co Ltd オイルストレーナ
JP2010022972A (ja) * 2008-07-23 2010-02-04 Entegris Inc 異物除去装置
JP2010207720A (ja) * 2009-03-10 2010-09-24 Jatco Ltd フィルタ装置
JP2011510656A (ja) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー 細胞分離を行う精密濾過の方法及び装置
JP2013537469A (ja) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. 高分子マイクロフィルタおよびその製造方法
JP2014501499A (ja) * 2010-10-25 2014-01-23 サイトゲン カンパニー リミテッド 細胞採集装置
WO2014192917A1 (ja) * 2013-05-31 2014-12-04 株式会社村田製作所 フィルタ装置および測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955158A (en) * 1933-01-12 1934-04-17 Harold Goldman J Filter pad
JPS57111320U (ja) * 1980-12-27 1982-07-09
JPH11319436A (ja) * 1998-05-13 1999-11-24 Nissan Motor Co Ltd オイルストレーナ
JP2011510656A (ja) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー 細胞分離を行う精密濾過の方法及び装置
JP2010022972A (ja) * 2008-07-23 2010-02-04 Entegris Inc 異物除去装置
JP2010207720A (ja) * 2009-03-10 2010-09-24 Jatco Ltd フィルタ装置
JP2013537469A (ja) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. 高分子マイクロフィルタおよびその製造方法
JP2014501499A (ja) * 2010-10-25 2014-01-23 サイトゲン カンパニー リミテッド 細胞採集装置
WO2014192917A1 (ja) * 2013-05-31 2014-12-04 株式会社村田製作所 フィルタ装置および測定装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439902B2 (ja) * 2016-08-30 2018-12-19 株式会社村田製作所 サンプリングフィルター、サンプリング装置およびそれを用いたサンプリング方法
JPWO2018042943A1 (ja) * 2016-08-30 2018-12-27 株式会社村田製作所 サンプリングフィルター、サンプリング装置およびそれを用いたサンプリング方法
WO2018042943A1 (ja) * 2016-08-30 2018-03-08 株式会社村田製作所 サンプリングフィルター、サンプリング装置およびそれを用いたサンプリング方法
EP3505612A4 (en) * 2016-11-18 2020-05-27 Murata Manufacturing Co., Ltd. LIQUID CELL CULTURE MEDIA RECOVERY UNIT, LIQUID CELL CULTURE MEDIA RECOVERY METHOD AND LIQUID CELL CULTURE MEDIA RECOVERY KIT
WO2018092513A1 (ja) * 2016-11-18 2018-05-24 株式会社村田製作所 細胞培養液回収フィルタユニット、細胞培養液回収方法、及び細胞培養液回収キット
US11555173B2 (en) 2016-11-18 2023-01-17 Murata Manufacturing Co., Ltd. Filter unit for filtering and method for collecting cells in a liquid cell culture medium
JPWO2018092513A1 (ja) * 2016-11-18 2019-04-25 株式会社村田製作所 細胞培養液回収フィルタユニット、細胞培養液回収方法、及び細胞培養液回収キット
US11091730B2 (en) 2016-11-18 2021-08-17 Murata Manufacturing Co., Ltd. Filter unit for filtering and method for collecting cells in a liquid cell culture medium
JP2019201657A (ja) * 2016-11-18 2019-11-28 株式会社村田製作所 細胞培養液回収フィルタユニット、細胞培養液回収方法、及び細胞培養液回収キット
CN109563460A (zh) * 2016-12-20 2019-04-02 株式会社村田制作所 细胞过滤滤除器
US10704019B2 (en) 2016-12-20 2020-07-07 Murata Manufacturing Co., Ltd. Cell filtration filter
JPWO2018116883A1 (ja) * 2016-12-20 2019-10-24 株式会社村田製作所 細胞濾過フィルタ
CN109563460B (zh) * 2016-12-20 2022-02-22 株式会社村田制作所 细胞过滤滤除器
WO2018116883A1 (ja) * 2016-12-20 2018-06-28 株式会社村田製作所 細胞濾過フィルタ
EP3611271A4 (en) * 2017-05-09 2020-04-29 Yamaha Hatsudoki Kabushiki Kaisha PRETREATMENT METHOD FOR CELL MIGRATION AND CELL MIGRATION DEVICE
JP2020162588A (ja) * 2019-03-15 2020-10-08 ヤン, クエン・デルYANG, Kuen−Der 対象物質を単離するためのデバイス及び方法
JP7012768B2 (ja) 2019-03-15 2022-01-28 クエン・デル ヤン, 対象物質を単離するためのデバイス及び方法
WO2021186825A1 (ja) * 2020-03-17 2021-09-23 株式会社村田製作所 フィルタ及びフィルタデバイス
CN115297941A (zh) * 2020-03-17 2022-11-04 株式会社村田制作所 过滤器以及过滤设备
JP7347652B2 (ja) 2020-03-17 2023-09-20 株式会社村田製作所 フィルタ及びフィルタデバイス
WO2023153150A1 (ja) * 2022-02-08 2023-08-17 愛三工業株式会社 フィルタ装置

Similar Documents

Publication Publication Date Title
WO2016140183A1 (ja) 多孔体および濾過装置
JP6521038B2 (ja) 金属製多孔膜、それを用いた分級方法、および分級装置
JP6624274B2 (ja) 濾過フィルター、濾過装置およびそれを用いた濾過方法
US20160041075A1 (en) Filter device and measuring apparatus
JP6394804B2 (ja) 濾過フィルター
JP6665880B2 (ja) 有核細胞の濾過用フィルターおよびそれを用いた濾過方法
Warkiani et al. A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens
RU2012152091A (ru) Диагностическая система и компоненты
US20170246628A1 (en) A method and device for concentrating particles in a fluid sample
WO2016140005A1 (ja) 多孔体およびフィルタデバイス
EP2696956A1 (de) Anordnung und verfahren zur optischen analyse und spezifischen isolierung von biologischen proben
WO2013043122A1 (en) A reinforced filter with a metallic filtering layer
WO2012075998A1 (de) Vorrichtung zum identifizieren biotischer partikel
JP6323632B2 (ja) 濾過フィルタデバイス
Pires et al. A cascade-like silicon filter for improved recovery of oocysts from environmental waters
WO2016139987A1 (ja) 構造体および捕集装置
CN111526932B (zh) 分离回收系统以及分离回收方法
JP6439902B2 (ja) サンプリングフィルター、サンプリング装置およびそれを用いたサンプリング方法
Spurny et al. Aerosol fractionization by graded nuclepore filters. A review
JP2024031809A (ja) フィルタデバイス
US20240066440A1 (en) Filter device
JP7347652B2 (ja) フィルタ及びフィルタデバイス
CN114269451B (zh) 过滤滤除器
DE102010064463B4 (de) Vorrichtung zum Identifizieren biotischer Partikel
Scott et al. Assessing the Vascular Deformability of Erythrocytes and Leukocytes: From Micropipettes to Microfluidics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16758876

Country of ref document: EP

Kind code of ref document: A1