WO2016139796A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016139796A1
WO2016139796A1 PCT/JP2015/056498 JP2015056498W WO2016139796A1 WO 2016139796 A1 WO2016139796 A1 WO 2016139796A1 JP 2015056498 W JP2015056498 W JP 2015056498W WO 2016139796 A1 WO2016139796 A1 WO 2016139796A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
reed valve
port
groove
discharge port
Prior art date
Application number
PCT/JP2015/056498
Other languages
French (fr)
Japanese (ja)
Inventor
祐一朗 今川
寿史 柬理
宏樹 長澤
貴也 木本
勝巳 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/056498 priority Critical patent/WO2016139796A1/en
Priority to CN201620136050.7U priority patent/CN205503461U/en
Priority to CN201610099436.XA priority patent/CN105937496A/en
Publication of WO2016139796A1 publication Critical patent/WO2016139796A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a compressor with improved compression efficiency and reliability.
  • a compressor in which the thickness of the discharge port for discharging the refrigerant is reduced to improve the compression efficiency.
  • a reinforcing portion having a thickness larger than the thickness of the valve seat portion is formed in a part of the circumferential direction outside the valve seat portion, The thin valve seat part and the part around the valve seat part are reinforced.
  • the present invention has been made against the background of the above problems, and an object thereof is to obtain a compressor with improved compression efficiency and reliability.
  • a compressor according to the present invention includes a compression chamber that compresses a fluid, a discharge port that discharges the fluid compressed in the compression chamber, a fixed portion that is fixed to the compression mechanism portion, and a discharge port.
  • a reed valve that is disposed outside the compression chamber, and the compression mechanism has a groove that accommodates at least a portion of the reed valve.
  • the thickness of the portion of the compression mechanism portion where the reinforcing portion is formed gradually increases from the port peripheral portion toward the outside, including a port peripheral portion surrounding the discharge port and a reinforcing portion surrounding the port peripheral portion. It ’s thick.
  • FIG. 5 is a diagram schematically showing a groove portion of the AA cross section of FIG. 4.
  • FIG. 5 is a diagram schematically showing a recessed portion of the BB cross section of FIG. 4.
  • FIG. 8 is a diagram schematically showing a groove portion of a CC cross section in FIG. 7.
  • FIG. 1 is a diagram schematically illustrating an example of a longitudinal section of a compressor according to Embodiment 1 of the present invention.
  • a compressor 100 illustrated in FIG. 1 compresses a fluid such as a refrigerant gas.
  • the compressor 100 compresses the low-pressure refrigerant gas sucked from the suction pipe 25 and discharges the compressed high-pressure refrigerant gas from the discharge pipe 26 to the outside of the sealed container 1.
  • the compressor 100 includes an electric motor unit 2 and a compression unit 30 that are accommodated in the sealed container 1.
  • the compressor 100 is not limited to the hermetic compressor as shown in FIG. 1, and may be an open compressor in which the electric motor unit 2 is disposed outside the hermetic container 1. .
  • the electric motor unit 2 transmits power to the compression unit 30 via the rotary shaft 4, and includes a stator 2a and a rotor 2b.
  • the compression part 30 receives power from the electric motor part 2 and compresses the refrigerant gas in the compression chamber 14, and includes the cylinder part 7, the upper bearing 12, the lower bearing 13, and the rolling piston 9.
  • the compression unit 30 according to this embodiment includes a first compression mechanism unit 3a and a second compression mechanism unit 3b stacked with the partition plate 5 interposed therebetween.
  • the compressor 100 may include any one of the first compression mechanism unit 3a and the second compression mechanism unit 3b.
  • the first compression mechanism section 3a compresses the refrigerant gas sucked into the first compression chamber 14a inside the first cylinder section 7a, and is driven by receiving power from the electric motor section 2 and is a first rolling piston. 9a is included.
  • the second compression mechanism portion 3b compresses the refrigerant gas sucked into the second compression chamber 14b inside the second cylinder portion 7b, and is driven by receiving power from the electric motor portion 2.
  • a rolling piston 9b is included.
  • the 1st compression mechanism part 3a and the 2nd compression mechanism part 3b are the same structures, in order to make an understanding of this embodiment easy in the following description, only about the 1st compression mechanism part 3a. And the description of the second compression mechanism 3b is omitted.
  • FIG. 2 is a diagram schematically illustrating an example of a cross section of the first compression mechanism section illustrated in FIG. 1, and FIG. 3 is a schematic diagram illustrating an enlarged vertical section of the discharge port portion of FIG. 1.
  • FIG. 2 the 1st compression mechanism part 3a is provided with the 1st rolling piston 9a and the vane 11 in the 1st compression chamber 14a inside the 1st cylinder part 7a.
  • the first rolling piston 9a is attached to the eccentric shaft portion 8 of the rotating shaft 4, and the power from the electric motor portion 2 is transmitted to the first rolling piston 9a.
  • the eccentric shaft portion 8 is formed of a member different from the rotation shaft 4 and is attached to the rotation shaft 4.
  • the eccentric shaft part 8 and the rotating shaft 4 may be integrally comprised by the same member.
  • a vane groove 10 and a suction port 15 are formed in the first cylinder portion 7a.
  • the vane 11 is movably held in the vane groove 10 and divides the first compression chamber 14a into a chamber communicating with the suction port 15 and a chamber communicating with the discharge port 16 shown in FIG. It is.
  • the upper bearing 12 attached to the first cylinder portion 7a is formed with a discharge port 16 for discharging the high-pressure refrigerant gas compressed in the first compression chamber 14a.
  • a groove portion 20 that accommodates at least a part of the reed valve 17 is formed on the outer surface of the first compression chamber 14 a of the upper bearing 12.
  • the reed valve 17 is a sheet-like member that operates to open and close the discharge port 16 to prevent the backflow of the refrigerant gas.
  • the reed valve 17 closes the discharge port 16 so that the pressure inside the first compression chamber 14a is sealed.
  • the reed valve 17 has a fixed portion 17 a fixed to the upper bearing 12 and a movable portion 17 b that opens and closes the discharge port 16.
  • the movable portion 17b of the reed valve 17 may include a protruding portion (not shown) that protrudes toward the discharge port 16 and contacts the peripheral portion of the discharge port 16.
  • a reed valve pressing member 18 that restricts the range in which the reed valve 17 moves is disposed.
  • the reed valve 17 and the reed valve pressing member 18 are fixed to the upper bearing 12 with a fixing member 19 such as a bolt, for example.
  • FIG. 4 is a diagram schematically showing the upper surface of the upper bearing shown in FIG. 1
  • FIG. 5 is a diagram schematically showing the groove portion of the AA cross section of FIG.
  • FIG. 5 is a diagram schematically showing a recess portion of the BB cross section of FIG.
  • a groove portion 20 and a recess portion 22 communicating with the groove portion 20 are formed on the upper surface, which is the outer surface of the first compression chamber 14 a of the upper bearing 12.
  • the groove portion 20 includes a valve seat portion 21, a port peripheral portion 20a surrounding the valve seat portion 21, and a reinforcing portion 23 surrounding the port peripheral portion 20a.
  • the valve seat portion 21 is a portion that contacts the reed valve 17 when the reed valve 17 is closed.
  • the thickness of the portion of the upper bearing 12 where the valve seat portion 21 is formed is slightly thicker than the thickness of the portion around the valve seat portion 21 where the port peripheral portion 20a is formed.
  • the valve seat portion 21 slightly protrudes from the port peripheral portion 20a toward the reed valve 17 side.
  • the thickness of the portion of the upper bearing 12 where the reinforcing portion 23 is formed gradually increases from the port peripheral portion 20a toward the outside.
  • the port peripheral portion 20a and the reinforcing portion 23 are formed so that the reed valve 17 does not contact the wall portion of the groove portion 20 including the reinforcing portion 23 when the reed valve 17 opens and closes.
  • the reinforcing portion 23 is formed to have an inclined surface that is inclined outward from the port peripheral portion 20 a as shown in FIG. 5, the reed valve 17 contacts the wall portion of the groove portion 20.
  • the area of the port peripheral portion 20a can be reduced, the thickness of the portion of the upper bearing 12 where the port peripheral portion 20a and the valve seat portion 21 are formed can be reduced.
  • the reinforcing portion 23 has an inclined surface that is inclined outward from the port peripheral portion 20a, the refrigerant gas discharged from the discharge port 16 flows smoothly along the inclined surface of the reinforcing portion 23. Therefore, pressure loss is reduced.
  • the recessed portion 22 communicates with the groove portion 20 on the side of the groove portion 20 facing the tip portion on the movable portion 17 b side of the reed valve 17.
  • the recess portion 22 is formed deeper than the wall portions on both sides of the reed valve 17 of the groove portion 20, and the refrigerant gas discharged from the discharge port 16 is easily discharged from the front end side of the reed valve 17. Yes.
  • the hollow part 22 may be connected with the reinforcing part 23 of the groove part 20. Further, the thickness of the portion of the upper bearing 12 where the recess 22 is formed is thicker than the thickness of the portion where the port peripheral portion 20a is formed.
  • a dent reinforcing portion 24 is formed at an edge other than a portion communicating with the groove portion 20 of the dent portion 22.
  • the thickness of the portion of the upper bearing 12 where the recess reinforcing portion 24 is formed is gradually increased outward, and the recess 22 and the portion of the groove 20 formed continuously with the recess 22 are formed. Deformation is suppressed. As a result, the thickness of the portion of the upper bearing 12 where the port peripheral portion 20a and the valve seat portion 21 are formed can be reduced.
  • FIG. 7 when the hollow reinforcement part 24 is formed so that it may have an inclined surface inclined outward, the refrigerant gas discharged from the discharge port 16 is made into the hollow reinforcement part 24. Since it flows smoothly through the inclined surface, pressure loss is reduced.
  • the groove portion 20 that accommodates at least a part of the reed valve 17 is formed around the discharge port 16 of the upper bearing 12.
  • the groove portion 20 includes a port peripheral portion 20a surrounding the discharge port 16 and a reinforcing portion 23 surrounding the port peripheral portion 20a. As shown in FIG. 5, the reinforcing portion 23 of the upper bearing 12 is formed.
  • the thickness of the portion gradually increases from the port peripheral portion 20a toward the outside. Therefore, in this embodiment, the thickness of the portion of the upper bearing 12 where the discharge port 16 is formed can be reduced.
  • FIG. 7 is a diagram schematically illustrating Comparative Example 1 of FIG. 4, and FIG. 8 is a diagram schematically illustrating a groove portion of the CC cross section of FIG. As shown in FIGS. 7 and 8, in Comparative Example 1, unlike the embodiment described in FIGS. 4, 5, etc., the reinforcing portion is not formed in the groove portion 200 of the upper bearing 120.
  • Comparative Example 1 when the thickness of the portion where the valve seat portion 210 and the port peripheral portion 200a of the upper bearing 120 are simply reduced, the port peripheral portion 200a is deformed. Gas leakage may occur, and the upper bearing 120 may be damaged. Therefore, in Comparative Example 1, the thickness of the portion where the valve seat portion 210 and the port peripheral portion 200a are formed must be increased.
  • the reinforcing portion 23 is formed around the port peripheral portion 20a of the groove portion 20, and therefore the upper bearing 12 The thickness of the portion where the discharge port 16 is formed can be reduced. As a result, according to this embodiment, the compressor 100 with improved compression efficiency can be obtained.
  • the port peripheral portion 20a surrounding the discharge port 16 is formed around the discharge port 16, and the reinforcing portion 23 surrounding the port peripheral portion 20a is formed around the port peripheral portion 20a. ing. Therefore, according to this embodiment, since the refrigerant gas discharged from the discharge port 16 is discharged uniformly from the periphery of the discharge port 16, a force in the twist direction acts when the reed valve 17 is opened and closed. The risk of doing so has been reduced. Therefore, according to this embodiment, the risk of the reed valve 17 being deformed or damaged by the force in the torsional direction acting on the reed valve 17 is reduced, so that the reliability of the compressor 100 is improved. Yes.
  • a recess 22 that communicates with the groove 20 is formed.
  • the hollow portion 22 is a portion including the portion of the groove portion 20 that faces the tip of the reed valve 17 on the movable portion 17b side, and communicates with the groove portion 20, and the refrigerant gas discharged from the discharge port 16 17 easily flows out from the tip end side.
  • the tip side of the reed valve 17 bends smoothly, so that the possibility that a force in the twisting direction acts on the reed valve 17 is reduced. Yes.
  • the tip of the reed valve 17 is bent smoothly, the pressure loss is reduced, and the possibility that the reed valve 17 is deformed or broken is also reduced.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
  • the protruding ports are, for example, other compression mechanisms 3 such as the cylinder unit 7. You may form in the part. In that case, a groove portion for accommodating at least a part of the reed valve may be formed around the portion where the discharge port of the compression mechanism portion 3 is formed, and a recess portion communicating with the groove portion may be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A compressor 100 comprises: a compression mechanism part 3 that includes a compression chamber 14 that compresses a fluid and a discharge port 16 that discharges the fluid compressed by the compression chamber 14; and a reed valve 17 that includes a fixed part 17a that is fixed to the compression mechanism part 3 and a movable part 17b that opens/closes the discharge port 16, the reed valve being provided outside the compression chamber 14. A groove 20 is formed in the compression mechanism part 3, the groove 20 accommodating at least part of the reed valve 17. The groove 20 includes a port periphery section 20a that surrounds the discharge port 16 and a reinforcement section 23 that surrounds the port periphery section 20a. The thickness of a part of the compression mechanism part 3 where the reinforcement section 23 is formed gradually increases toward the outside from the port periphery section 20a.

Description

圧縮機Compressor
 この発明は、圧縮効率および信頼性が向上された圧縮機に関するものである。 The present invention relates to a compressor with improved compression efficiency and reliability.
 従来から、冷媒を吐出させる吐出ポートの部分の肉厚を薄くして、圧縮効率を向上させた圧縮機が知られている。例えば、以下の特許文献1に記載の従来の圧縮機では、弁座部の外方において、周方向の一部分に、弁座部の肉厚よりも、肉厚が厚い補強部を形成し、肉厚が薄い弁座部および弁座部の周囲の部分を補強している。 Conventionally, there is known a compressor in which the thickness of the discharge port for discharging the refrigerant is reduced to improve the compression efficiency. For example, in the conventional compressor described in Patent Document 1 below, a reinforcing portion having a thickness larger than the thickness of the valve seat portion is formed in a part of the circumferential direction outside the valve seat portion, The thin valve seat part and the part around the valve seat part are reinforced.
特開2000-87893号公報JP 2000-87893 A
 しかしながら、特許文献1に記載の従来の圧縮機では、周方向の一部分のみに補強部を形成した構成であるため、吐出ポートを取り囲むポート周囲部の補強が不十分である。そのため、特許文献1の圧縮機では、吐出ポートを取り囲むポート周囲部の肉厚が厚くなっており、圧縮機の圧縮効率が悪い。 However, since the conventional compressor described in Patent Document 1 has a configuration in which the reinforcing portion is formed only in a part in the circumferential direction, the reinforcement around the port surrounding the discharge port is insufficient. Therefore, in the compressor of patent document 1, the thickness of the port peripheral part surrounding a discharge port is thick, and the compression efficiency of a compressor is bad.
 さらに、特許文献1に記載の従来の圧縮機では、弁座部の周方向に沿って、補強部が形成された以外の部分に、流体が流れやすくなっているため、吐出ポートの上方に配設されたリードバルブが開閉するときに、リードバルブにねじれ方向の力が作用するおそれがある。リードバルブにねじれ方向の力が作用することによって、リードバルブが変形または破損するおそれがあるため、特許文献1に記載の圧縮機は、信頼性が悪い。 Furthermore, in the conventional compressor described in Patent Document 1, since the fluid easily flows along the circumferential direction of the valve seat portion to the portion other than the reinforcement portion, it is arranged above the discharge port. When the provided reed valve opens and closes, a torsional force may act on the reed valve. Since the force in the twisting direction acts on the reed valve, the reed valve may be deformed or damaged. Therefore, the compressor described in Patent Document 1 has poor reliability.
 この発明は、上記のような課題を背景としてなされたものであり、圧縮効率および信頼性が向上された圧縮機を得ることを目的としている。 The present invention has been made against the background of the above problems, and an object thereof is to obtain a compressor with improved compression efficiency and reliability.
 この発明に係る圧縮機は、流体を圧縮する圧縮室と、圧縮室で圧縮された流体を吐出する吐出ポートと、を有する圧縮機構部と、圧縮機構部に固定された固定部と、吐出ポートを開閉する可動部と、を有し、圧縮室の外部に配設されたリードバルブと、を備え、圧縮機構部には、リードバルブの少なくとも一部分を収容する溝部が形成されており、溝部は、吐出ポートを取り囲むポート周囲部と、ポート周囲部を取り囲む補強部と、を含み、圧縮機構部の、補強部が形成された部分の肉厚は、ポート周囲部から外方に向かって徐々に厚くなっている、ものである。 A compressor according to the present invention includes a compression chamber that compresses a fluid, a discharge port that discharges the fluid compressed in the compression chamber, a fixed portion that is fixed to the compression mechanism portion, and a discharge port. A reed valve that is disposed outside the compression chamber, and the compression mechanism has a groove that accommodates at least a portion of the reed valve. The thickness of the portion of the compression mechanism portion where the reinforcing portion is formed gradually increases from the port peripheral portion toward the outside, including a port peripheral portion surrounding the discharge port and a reinforcing portion surrounding the port peripheral portion. It ’s thick.
 この発明によれば、圧縮効率および信頼性が向上された圧縮機を得ることができる。 According to the present invention, a compressor with improved compression efficiency and reliability can be obtained.
この発明の実施の形態1に係る圧縮機の縦断面の一例を模式的に記載した図である。It is the figure which described typically an example of the longitudinal cross-section of the compressor which concerns on Embodiment 1 of this invention. 図1に記載の第1圧縮機構部の横断面の一例を模式的に記載した図である。It is the figure which described typically an example of the cross section of the 1st compression mechanism part described in FIG. 図1の吐出ポートの部分を拡大した縦断面を模式的に記載した図である。It is the figure which described typically the longitudinal cross-section which expanded the part of the discharge port of FIG. 図1に記載の上軸受の上面を模式的に記載した図である。It is the figure which described typically the upper surface of the upper bearing described in FIG. 図4のA-A断面の溝部の部分を模式的に記載した図である。FIG. 5 is a diagram schematically showing a groove portion of the AA cross section of FIG. 4. 図4のB-B断面の窪み部の部分を模式的に記載した図である。FIG. 5 is a diagram schematically showing a recessed portion of the BB cross section of FIG. 4. 図4の比較例1を模式的に記載した図である。It is the figure which described typically the comparative example 1 of FIG. 図7のC-C断面の溝部の部分を模式的に記載した図である。FIG. 8 is a diagram schematically showing a groove portion of a CC cross section in FIG. 7.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
 実施の形態1.
[圧縮機]
 図1は、この発明の実施の形態1に係る圧縮機の縦断面の一例を模式的に記載した図である。図1に記載の圧縮機100は、例えば冷媒ガス等の流体を圧縮するものである。以下の説明では、冷媒ガスを圧縮する圧縮機100についての説明を行う。圧縮機100は、吸入管25から吸入した低圧の冷媒ガスを圧縮し、圧縮した高圧の冷媒ガスを吐出管26から密閉容器1の外部へ吐出するものである。圧縮機100は、密閉容器1の内部に収容された、電動機部2と圧縮部30とを含んでいる。なお、圧縮機100は、図1に示すような密閉型の圧縮機に限定されるものではなく、電動機部2が密閉容器1の外部に配設された開放型の圧縮機であってもよい。
Embodiment 1 FIG.
[Compressor]
FIG. 1 is a diagram schematically illustrating an example of a longitudinal section of a compressor according to Embodiment 1 of the present invention. A compressor 100 illustrated in FIG. 1 compresses a fluid such as a refrigerant gas. In the following description, the compressor 100 that compresses the refrigerant gas will be described. The compressor 100 compresses the low-pressure refrigerant gas sucked from the suction pipe 25 and discharges the compressed high-pressure refrigerant gas from the discharge pipe 26 to the outside of the sealed container 1. The compressor 100 includes an electric motor unit 2 and a compression unit 30 that are accommodated in the sealed container 1. The compressor 100 is not limited to the hermetic compressor as shown in FIG. 1, and may be an open compressor in which the electric motor unit 2 is disposed outside the hermetic container 1. .
 電動機部2は、回転軸4を介して圧縮部30に動力を伝達するものであり、固定子2aと回転子2bとを含んでいる。圧縮部30は、電動機部2からの動力を受けて圧縮室14の冷媒ガスを圧縮するものであり、シリンダ部7と上軸受12と下軸受13とローリングピストン9とを含んでいる。この実施の形態に係る圧縮部30は、仕切板5を挟んで積層された第1圧縮機構部3aと第2圧縮機構部3bとを含んでいる。なお、この実施の形態に係る圧縮機100は、第1圧縮機構部3aおよび第2圧縮機構部3bのうちの何れか1つを含むものであってもよい。第1圧縮機構部3aは、第1シリンダ部7aの内部の第1圧縮室14aに吸入された冷媒ガスを圧縮するものであり、電動機部2からの動力を受けて駆動される第1ローリングピストン9aを含んでいる。また、第2圧縮機構部3bは、第2シリンダ部7bの内部の第2圧縮室14bに吸入された冷媒ガスを圧縮するものであり、電動機部2からの動力を受けて駆動される第2ローリングピストン9bを含んでいる。なお、第1圧縮機構部3aおよび第2圧縮機構部3bは、同様の構成であるため、以下の説明では、この実施の形態の理解を容易にするために、第1圧縮機構部3aについてのみの説明を行い、第2圧縮機構部3bについての説明は省略する。 The electric motor unit 2 transmits power to the compression unit 30 via the rotary shaft 4, and includes a stator 2a and a rotor 2b. The compression part 30 receives power from the electric motor part 2 and compresses the refrigerant gas in the compression chamber 14, and includes the cylinder part 7, the upper bearing 12, the lower bearing 13, and the rolling piston 9. The compression unit 30 according to this embodiment includes a first compression mechanism unit 3a and a second compression mechanism unit 3b stacked with the partition plate 5 interposed therebetween. The compressor 100 according to this embodiment may include any one of the first compression mechanism unit 3a and the second compression mechanism unit 3b. The first compression mechanism section 3a compresses the refrigerant gas sucked into the first compression chamber 14a inside the first cylinder section 7a, and is driven by receiving power from the electric motor section 2 and is a first rolling piston. 9a is included. The second compression mechanism portion 3b compresses the refrigerant gas sucked into the second compression chamber 14b inside the second cylinder portion 7b, and is driven by receiving power from the electric motor portion 2. A rolling piston 9b is included. In addition, since the 1st compression mechanism part 3a and the 2nd compression mechanism part 3b are the same structures, in order to make an understanding of this embodiment easy in the following description, only about the 1st compression mechanism part 3a. And the description of the second compression mechanism 3b is omitted.
 次に、図2および図3を用いて、第1圧縮機構部3aの構成について説明する。図2は、図1に記載の第1圧縮機構部の横断面の一例を模式的に記載した図であり、図3は、図1の吐出ポートの部分を拡大した縦断面を模式的に記載した図である。図2に示すように、第1圧縮機構部3aは、第1シリンダ部7aの内部の第1圧縮室14aに、第1ローリングピストン9aとベーン11とを備えている。第1ローリングピストン9aは、回転軸4の偏心軸部8に取り付けられており、第1ローリングピストン9aには、電動機部2からの動力が伝達される。偏心軸部8は、例えば、回転軸4とは別部材で構成され、回転軸4に取り付けられている。なお、偏心軸部8と回転軸4とは、同一部材で一体的に構成されていてもよい。第1シリンダ部7aには、ベーン溝10および吸入ポート15が形成されている。ベーン11は、ベーン溝10に移動自在に保持されており、第1圧縮室14aを、吸入ポート15と連通する部屋と、図3に記載の吐出ポート16と連通する部屋と、に分割するものである。 Next, the configuration of the first compression mechanism unit 3a will be described with reference to FIGS. FIG. 2 is a diagram schematically illustrating an example of a cross section of the first compression mechanism section illustrated in FIG. 1, and FIG. 3 is a schematic diagram illustrating an enlarged vertical section of the discharge port portion of FIG. 1. FIG. As shown in FIG. 2, the 1st compression mechanism part 3a is provided with the 1st rolling piston 9a and the vane 11 in the 1st compression chamber 14a inside the 1st cylinder part 7a. The first rolling piston 9a is attached to the eccentric shaft portion 8 of the rotating shaft 4, and the power from the electric motor portion 2 is transmitted to the first rolling piston 9a. For example, the eccentric shaft portion 8 is formed of a member different from the rotation shaft 4 and is attached to the rotation shaft 4. In addition, the eccentric shaft part 8 and the rotating shaft 4 may be integrally comprised by the same member. A vane groove 10 and a suction port 15 are formed in the first cylinder portion 7a. The vane 11 is movably held in the vane groove 10 and divides the first compression chamber 14a into a chamber communicating with the suction port 15 and a chamber communicating with the discharge port 16 shown in FIG. It is.
 図3に示すように、第1シリンダ部7aに取り付けられた上軸受12には、第1圧縮室14aで圧縮された高圧の冷媒ガスを吐出する吐出ポート16が形成されている。また、上軸受12の第1圧縮室14aの外部の面には、リードバルブ17の少なくとも一部分を収容する溝部20が形成されている。リードバルブ17は、シート状の部材であり、吐出ポート16を開閉するように動作して、冷媒ガスの逆流を防止するものである。リードバルブ17は、第1圧縮室14aの内部の圧力が、密閉容器1の内部の圧力よりも低いときに、吐出ポート16を閉状態にして、第1圧縮室14aの内部の圧力が、密閉容器1の内部の圧力よりも高いときに、吐出ポート16を開状態にするように動作する。リードバルブ17は、上軸受12に固定された固定部17aと、吐出ポート16を開閉する可動部17bと、を有している。なお、リードバルブ17の可動部17bは、吐出ポート16側に突出し、吐出ポート16の周囲部分と当接する突出部(図示を省略)を含んでいてもよい。リードバルブ17の上方には、リードバルブ17が動く範囲を規制するリードバルブ押さえ部材18が配設されている。リードバルブ17およびリードバルブ押さえ部材18は、例えばボルト等の固定部材19で上軸受12に固定されている。 As shown in FIG. 3, the upper bearing 12 attached to the first cylinder portion 7a is formed with a discharge port 16 for discharging the high-pressure refrigerant gas compressed in the first compression chamber 14a. Further, a groove portion 20 that accommodates at least a part of the reed valve 17 is formed on the outer surface of the first compression chamber 14 a of the upper bearing 12. The reed valve 17 is a sheet-like member that operates to open and close the discharge port 16 to prevent the backflow of the refrigerant gas. When the pressure inside the first compression chamber 14a is lower than the pressure inside the sealed container 1, the reed valve 17 closes the discharge port 16 so that the pressure inside the first compression chamber 14a is sealed. When the pressure inside the container 1 is higher, the discharge port 16 is operated to be opened. The reed valve 17 has a fixed portion 17 a fixed to the upper bearing 12 and a movable portion 17 b that opens and closes the discharge port 16. The movable portion 17b of the reed valve 17 may include a protruding portion (not shown) that protrudes toward the discharge port 16 and contacts the peripheral portion of the discharge port 16. Above the reed valve 17, a reed valve pressing member 18 that restricts the range in which the reed valve 17 moves is disposed. The reed valve 17 and the reed valve pressing member 18 are fixed to the upper bearing 12 with a fixing member 19 such as a bolt, for example.
 次に、上記のように構成された圧縮機100の動作の例について説明する。図1に記載の電動機部2を駆動すると、回転軸4に回転力が伝達される。図2に示すように、回転軸4に伝達された回転力は、回転軸4に取り付けられた偏心軸部8に伝達し、偏心軸部8に取り付けられた第1ローリングピストン9aは第1圧縮室14aの内部で回転する。吸入ポート15から第1圧縮室14aに吸入された低圧の冷媒ガスは、第1ローリングピストン9aの回転に伴い第1圧縮室14aの容積が徐々に縮小されることによって圧縮される。圧縮された高圧の冷媒ガスは、図3に示す上軸受12の吐出ポート16から密閉容器1の内部に吐出される。 Next, an example of the operation of the compressor 100 configured as described above will be described. When the electric motor unit 2 shown in FIG. 1 is driven, a rotational force is transmitted to the rotary shaft 4. As shown in FIG. 2, the rotational force transmitted to the rotating shaft 4 is transmitted to the eccentric shaft portion 8 attached to the rotating shaft 4, and the first rolling piston 9a attached to the eccentric shaft portion 8 is subjected to the first compression. It rotates inside the chamber 14a. The low-pressure refrigerant gas sucked into the first compression chamber 14a from the suction port 15 is compressed by gradually reducing the volume of the first compression chamber 14a as the first rolling piston 9a rotates. The compressed high-pressure refrigerant gas is discharged from the discharge port 16 of the upper bearing 12 shown in FIG.
 図4は、図1に記載の上軸受の上面を模式的に記載した図であり、図5は、図4のA-A断面の溝部の部分を模式的に記載した図であり、図6は、図4のB-B断面の窪み部の部分を模式的に記載した図である。図4に示すように、上軸受12の第1圧縮室14aの外部の面である上面には、溝部20と溝部20に連通する窪み部22とが形成されている。 4 is a diagram schematically showing the upper surface of the upper bearing shown in FIG. 1, and FIG. 5 is a diagram schematically showing the groove portion of the AA cross section of FIG. FIG. 5 is a diagram schematically showing a recess portion of the BB cross section of FIG. As shown in FIG. 4, a groove portion 20 and a recess portion 22 communicating with the groove portion 20 are formed on the upper surface, which is the outer surface of the first compression chamber 14 a of the upper bearing 12.
 図4および図5に示すように、溝部20は、弁座部21と、弁座部21を取り囲むポート周囲部20aと、ポート周囲部20aを取り囲む補強部23とを含んでいる。弁座部21は、リードバルブ17が閉状態となったときに、リードバルブ17と当接する部分である。上軸受12の、弁座部21が形成された部分の肉厚は、弁座部21の周囲のポート周囲部20aが形成された部分の肉厚と比較して僅かに肉厚に形成されており、弁座部21は、ポート周囲部20aからリードバルブ17側に僅かに突出している。上軸受12の、補強部23が形成された部分の肉厚は、ポート周囲部20aから外方に向かって、徐々に厚くなっている。ポート周囲部20aおよび補強部23は、リードバルブ17が開閉動作するときに、リードバルブ17が、補強部23を含む溝部20の壁部に接触しないように形成されている。なお、補強部23が、図5に示すように、ポート周囲部20aから外方に向かって傾斜した傾斜面を有するように形成された場合には、リードバルブ17が溝部20の壁部に接触しないようにしつつ、ポート周囲部20aの面積を小さくすることができるため、上軸受12の、ポート周囲部20aおよび弁座部21が形成された部分の肉厚を薄くすることができる。また、補強部23が、ポート周囲部20aから外方に向かって傾斜した傾斜面を有する場合には、吐出ポート16から吐出された冷媒ガスが、補強部23の傾斜面を伝ってスムーズに流れるため、圧力損失が低減される。 As shown in FIGS. 4 and 5, the groove portion 20 includes a valve seat portion 21, a port peripheral portion 20a surrounding the valve seat portion 21, and a reinforcing portion 23 surrounding the port peripheral portion 20a. The valve seat portion 21 is a portion that contacts the reed valve 17 when the reed valve 17 is closed. The thickness of the portion of the upper bearing 12 where the valve seat portion 21 is formed is slightly thicker than the thickness of the portion around the valve seat portion 21 where the port peripheral portion 20a is formed. The valve seat portion 21 slightly protrudes from the port peripheral portion 20a toward the reed valve 17 side. The thickness of the portion of the upper bearing 12 where the reinforcing portion 23 is formed gradually increases from the port peripheral portion 20a toward the outside. The port peripheral portion 20a and the reinforcing portion 23 are formed so that the reed valve 17 does not contact the wall portion of the groove portion 20 including the reinforcing portion 23 when the reed valve 17 opens and closes. When the reinforcing portion 23 is formed to have an inclined surface that is inclined outward from the port peripheral portion 20 a as shown in FIG. 5, the reed valve 17 contacts the wall portion of the groove portion 20. However, since the area of the port peripheral portion 20a can be reduced, the thickness of the portion of the upper bearing 12 where the port peripheral portion 20a and the valve seat portion 21 are formed can be reduced. Further, when the reinforcing portion 23 has an inclined surface that is inclined outward from the port peripheral portion 20a, the refrigerant gas discharged from the discharge port 16 flows smoothly along the inclined surface of the reinforcing portion 23. Therefore, pressure loss is reduced.
 図3、図4および図6に示すように、窪み部22は、溝部20の、リードバルブ17の可動部17b側の先端部と対向する側で、溝部20と連通している。窪み部22は、溝部20のリードバルブ17の両側の壁部と比較して、深く形成されており、吐出ポート16から吐出される冷媒ガスは、リードバルブ17の先端側から吐出されやすくなっている。なお、窪み部22は、溝部20の補強部23と繋がっていてもよい。また、上軸受12の、窪み部22が形成された部分の肉厚は、ポート周囲部20aが形成された部分の肉厚と比較して、厚く形成されているため、上軸受12の、窪み部22が形成された部分および窪み部22と連続する溝部20が形成された部分が変形するおそれが低減されている。その結果、上軸受12の、ポート周囲部20aおよび弁座部21が形成された部分の肉厚を薄くすることができる。 As shown in FIGS. 3, 4, and 6, the recessed portion 22 communicates with the groove portion 20 on the side of the groove portion 20 facing the tip portion on the movable portion 17 b side of the reed valve 17. The recess portion 22 is formed deeper than the wall portions on both sides of the reed valve 17 of the groove portion 20, and the refrigerant gas discharged from the discharge port 16 is easily discharged from the front end side of the reed valve 17. Yes. In addition, the hollow part 22 may be connected with the reinforcing part 23 of the groove part 20. Further, the thickness of the portion of the upper bearing 12 where the recess 22 is formed is thicker than the thickness of the portion where the port peripheral portion 20a is formed. The possibility that the portion in which the portion 22 is formed and the portion in which the groove portion 20 continuous with the recessed portion 22 is formed is deformed is reduced. As a result, the thickness of the portion of the upper bearing 12 where the port peripheral portion 20a and the valve seat portion 21 are formed can be reduced.
 また、図4および図6に示すように、窪み部22の溝部20と連通した部分以外の縁には、窪み補強部24が形成されている。上軸受12の、窪み補強部24が形成された部分の肉厚は、外方に向かって徐々に厚くなっており、窪み部22および窪み部22と連続して形成された溝部20の部分の変形が抑制されている。その結果、上軸受12の、ポート周囲部20aおよび弁座部21が形成された部分の肉厚を薄くすることができる。なお、窪み補強部24が、図7に示すように、外方に向かって傾斜した傾斜面を有するように形成された場合には、吐出ポート16から吐出された冷媒ガスが、窪み補強部24の傾斜面を伝ってスムーズに流れるため、圧力損失が低減される。 Further, as shown in FIGS. 4 and 6, a dent reinforcing portion 24 is formed at an edge other than a portion communicating with the groove portion 20 of the dent portion 22. The thickness of the portion of the upper bearing 12 where the recess reinforcing portion 24 is formed is gradually increased outward, and the recess 22 and the portion of the groove 20 formed continuously with the recess 22 are formed. Deformation is suppressed. As a result, the thickness of the portion of the upper bearing 12 where the port peripheral portion 20a and the valve seat portion 21 are formed can be reduced. In addition, as shown in FIG. 7, when the hollow reinforcement part 24 is formed so that it may have an inclined surface inclined outward, the refrigerant gas discharged from the discharge port 16 is made into the hollow reinforcement part 24. Since it flows smoothly through the inclined surface, pressure loss is reduced.
 上記のように、この実施の形態では、図4に示すように、上軸受12の吐出ポート16の周囲に、リードバルブ17の少なくとも一部分を収容する溝部20が形成されている。溝部20は、吐出ポート16を取り囲むポート周囲部20aと、ポート周囲部20aを取り囲む補強部23と、を含んでおり、図5に示すように、上軸受12の、補強部23が形成された部分の肉厚は、ポート周囲部20aから外方に向かって徐々に厚くなっている。したがって、この実施の形態では、上軸受12の、吐出ポート16が形成された部分の肉厚を薄くすることができる。その結果、この実施の形態によれば、第1圧縮室14aで圧縮された冷媒が吐出ポート16から吐出するときに、吐出ポート16に残存する高圧の冷媒ガスの量を低減することができるため、圧縮機100の圧縮効率を向上させることができる。
 例えば、図7は、図4の比較例1を模式的に記載した図であり、図8は、図7のC-C断面の溝部の部分を模式的に記載した図である。図7および図8に示すように、比較例1では、図4および図5等に記載のこの実施の形態とは異なり、上軸受120の溝部200に補強部が形成されていない。そのため、比較例1において、上軸受120の、弁座部210およびポート周囲部200aが形成された部分の肉厚を単純に薄くした場合には、ポート周囲部200aが変形してしまうため、冷媒ガスの漏れが発生し、さらには、上軸受120が破損するおそれもある。そのため、比較例1では、弁座部210およびポート周囲部200aが形成された部分の肉厚を厚くしなければならない。
 比較例1と比較して、この実施の形態の例では、図4および図5等に示すように、溝部20のポート周囲部20aの周囲に補強部23が形成されているため、上軸受12の、吐出ポート16が形成された部分の肉厚を薄くすることができる。その結果、この実施の形態によれば、圧縮効率が改善された圧縮機100を得ることができる。
As described above, in this embodiment, as shown in FIG. 4, the groove portion 20 that accommodates at least a part of the reed valve 17 is formed around the discharge port 16 of the upper bearing 12. The groove portion 20 includes a port peripheral portion 20a surrounding the discharge port 16 and a reinforcing portion 23 surrounding the port peripheral portion 20a. As shown in FIG. 5, the reinforcing portion 23 of the upper bearing 12 is formed. The thickness of the portion gradually increases from the port peripheral portion 20a toward the outside. Therefore, in this embodiment, the thickness of the portion of the upper bearing 12 where the discharge port 16 is formed can be reduced. As a result, according to this embodiment, when the refrigerant compressed in the first compression chamber 14a is discharged from the discharge port 16, the amount of high-pressure refrigerant gas remaining in the discharge port 16 can be reduced. The compression efficiency of the compressor 100 can be improved.
For example, FIG. 7 is a diagram schematically illustrating Comparative Example 1 of FIG. 4, and FIG. 8 is a diagram schematically illustrating a groove portion of the CC cross section of FIG. As shown in FIGS. 7 and 8, in Comparative Example 1, unlike the embodiment described in FIGS. 4, 5, etc., the reinforcing portion is not formed in the groove portion 200 of the upper bearing 120. Therefore, in Comparative Example 1, when the thickness of the portion where the valve seat portion 210 and the port peripheral portion 200a of the upper bearing 120 are simply reduced, the port peripheral portion 200a is deformed. Gas leakage may occur, and the upper bearing 120 may be damaged. Therefore, in Comparative Example 1, the thickness of the portion where the valve seat portion 210 and the port peripheral portion 200a are formed must be increased.
Compared with the comparative example 1, in the example of this embodiment, as shown in FIGS. 4 and 5 and the like, the reinforcing portion 23 is formed around the port peripheral portion 20a of the groove portion 20, and therefore the upper bearing 12 The thickness of the portion where the discharge port 16 is formed can be reduced. As a result, according to this embodiment, the compressor 100 with improved compression efficiency can be obtained.
 さらに、この実施の形態によれば、吐出ポート16の周囲に吐出ポート16を取り囲むポート周囲部20aが形成されており、ポート周囲部20aの周囲にポート周囲部20aを取り囲む補強部23が形成されている。そのため、この実施の形態によれば、吐出ポート16から吐出される冷媒ガスが、吐出ポート16の周囲から均等に吐出されるため、リードバルブ17が開閉動作するときに、ねじれ方向の力が作用するおそれが低減されている。したがって、この実施の形態によれば、リードバルブ17にねじれ方向の力が作用することによって、リードバルブ17が変形または破損するおそれが低減されているため、圧縮機100の信頼性が向上されている。 Further, according to this embodiment, the port peripheral portion 20a surrounding the discharge port 16 is formed around the discharge port 16, and the reinforcing portion 23 surrounding the port peripheral portion 20a is formed around the port peripheral portion 20a. ing. Therefore, according to this embodiment, since the refrigerant gas discharged from the discharge port 16 is discharged uniformly from the periphery of the discharge port 16, a force in the twist direction acts when the reed valve 17 is opened and closed. The risk of doing so has been reduced. Therefore, according to this embodiment, the risk of the reed valve 17 being deformed or damaged by the force in the torsional direction acting on the reed valve 17 is reduced, so that the reliability of the compressor 100 is improved. Yes.
 また、この実施の形態では、図3、図4および図6に示すように、溝部20と連通する窪み部22が形成されている。窪み部22は、溝部20の、リードバルブ17の可動部17b側の先端と対向する部分を含んだ部分で、溝部20と連通しており、吐出ポート16から吐出される冷媒ガスは、リードバルブ17の先端側から流出しやすくなっている。その結果、この実施の形態によれば、リードバルブ17が開状態となるときに、リードバルブ17の先端側がスムーズに撓むため、リードバルブ17にねじれ方向の力が作用するおそれが低減されている。さらに、この実施の形態によれば、リードバルブ17の先端がスムーズに撓むため、圧力損失が低減され、且つリードバルブ17が変形または破損するおそれも低減されている。 Further, in this embodiment, as shown in FIGS. 3, 4, and 6, a recess 22 that communicates with the groove 20 is formed. The hollow portion 22 is a portion including the portion of the groove portion 20 that faces the tip of the reed valve 17 on the movable portion 17b side, and communicates with the groove portion 20, and the refrigerant gas discharged from the discharge port 16 17 easily flows out from the tip end side. As a result, according to this embodiment, when the reed valve 17 is in the open state, the tip side of the reed valve 17 bends smoothly, so that the possibility that a force in the twisting direction acts on the reed valve 17 is reduced. Yes. Furthermore, according to this embodiment, since the tip of the reed valve 17 is bent smoothly, the pressure loss is reduced, and the possibility that the reed valve 17 is deformed or broken is also reduced.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
 例えば、上記の実施の形態では、突出ポートが、上軸受12および下軸受13に形成された例についての説明を行ったが、突出ポートは、例えばシリンダ部7等の圧縮機構部3の他の部分に形成されていてもよい。その場合には、圧縮機構部3の吐出ポートが形成された部分の周囲に、リードバルブの少なくとも一部分を収容する溝部を形成し、さらに、溝部に連通する窪み部を形成すればよい。 For example, in the above-described embodiment, an example in which the protruding ports are formed in the upper bearing 12 and the lower bearing 13 has been described. However, the protruding ports are, for example, other compression mechanisms 3 such as the cylinder unit 7. You may form in the part. In that case, a groove portion for accommodating at least a part of the reed valve may be formed around the portion where the discharge port of the compression mechanism portion 3 is formed, and a recess portion communicating with the groove portion may be formed.
 1 密閉容器、2 電動機部、2a 固定子、2b 回転子、3 圧縮機構部、3a 第1圧縮機構部、3b 第2圧縮機構部、4 回転軸、5 仕切板、7 シリンダ部、7a 第1シリンダ部、7b 第2シリンダ部、8 偏心軸部、9 ローリングピストン、9a 第1ローリングピストン、9b 第2ローリングピストン、10 ベーン溝、11 ベーン、12 上軸受、13 下軸受、14 圧縮室、14a 第1圧縮室、14b 第2圧縮室、15 吸入ポート、16 吐出ポート、17 リードバルブ、17a 固定部、17b 可動部、18 リードバルブ押さえ部材、19 固定部材、20 溝部、20a ポート周囲部、21 弁座部、22 窪み部、23 補強部、24 窪み補強部、25 吸入管、26 吐出管、30 圧縮部、100 圧縮機、120 上軸受、200 溝部、200a ポート周囲部、210 弁座部。 1 sealed container, 2 motor section, 2a stator, 2b rotor, 3 compression mechanism section, 3a first compression mechanism section, 3b second compression mechanism section, 4 rotation shaft, 5 partition plate, 7 cylinder section, 7a 1st Cylinder part, 7b second cylinder part, 8 eccentric shaft part, 9 rolling piston, 9a first rolling piston, 9b second rolling piston, 10 vane groove, 11 vane, 12 upper bearing, 13 lower bearing, 14 compression chamber, 14a 1st compression chamber, 14b 2nd compression chamber, 15 intake port, 16 discharge port, 17 reed valve, 17a fixed part, 17b movable part, 18 reed valve pressing member, 19 fixed member, 20 groove part, 20a port peripheral part, 21 Valve seat part, 22 depression part, 23 reinforcement part, 24 depression reinforcement part, 25 suction pipe, 26 discharge pipe 30 compression unit, 100 compressor, 120 upper bearing, 200 groove, 200a port perimeter, 210 valve seat.

Claims (6)

  1.  流体を圧縮する圧縮室と、前記圧縮室で圧縮された流体を吐出する吐出ポートと、を有する圧縮機構部と、
     前記圧縮機構部に固定された固定部と、前記吐出ポートを開閉する可動部と、を有し、前記圧縮室の外部に配設されたリードバルブと、を備え、
     前記圧縮機構部には、前記リードバルブの少なくとも一部分を収容する溝部が形成されており、
     前記溝部は、前記吐出ポートを取り囲むポート周囲部と、前記ポート周囲部を取り囲む補強部と、を含み、
     前記圧縮機構部の、前記補強部が形成された部分の肉厚は、前記ポート周囲部から外方に向かって徐々に厚くなっている、
     圧縮機。
    A compression mechanism having a compression chamber for compressing fluid, and a discharge port for discharging the fluid compressed in the compression chamber;
    A reed valve having a fixed part fixed to the compression mechanism part and a movable part for opening and closing the discharge port, and disposed outside the compression chamber;
    The compression mechanism portion is formed with a groove portion that accommodates at least a part of the reed valve,
    The groove portion includes a port peripheral portion surrounding the discharge port, and a reinforcing portion surrounding the port peripheral portion,
    The thickness of the compression mechanism portion where the reinforcing portion is formed gradually increases from the port peripheral portion toward the outside.
    Compressor.
  2.  前記補強部は、前記ポート周囲部から外方に向かって傾斜した傾斜面を有する、
     請求項1に記載の圧縮機。
    The reinforcing portion has an inclined surface inclined outward from the port peripheral portion,
    The compressor according to claim 1.
  3.  前記圧縮機構部には、前記圧縮室の外部で、前記溝部と連通する窪み部がさらに形成されており、
     前記窪み部は、前記溝部の、前記リードバルブの前記可動部側の先端と対向する部分、と連通している、
     請求項1または請求項2に記載の圧縮機。
    The compression mechanism part is further formed with a hollow part communicating with the groove part outside the compression chamber,
    The indented portion communicates with a portion of the groove portion facing the tip of the reed valve on the movable portion side,
    The compressor according to claim 1 or 2.
  4.  前記圧縮機構部の、前記窪み部が形成された部分の肉厚は、前記ポート周囲部が形成された部分の肉厚と比較して厚く形成されている、
     請求項3に記載の圧縮機。
    The thickness of the compression mechanism portion where the recess portion is formed is thicker than the thickness of the portion where the port peripheral portion is formed,
    The compressor according to claim 3.
  5.  前記窪み部の、前記溝部と連通した部分とは異なる部分の縁に、窪み補強部が形成されており、
     前記圧縮機構部の、前記窪み補強部が形成された部分の肉厚は、外方に向かって徐々に厚くなっている、
     請求項3または請求項4に記載の圧縮機。
    A dent reinforcing portion is formed on an edge of a portion different from the portion communicating with the groove portion of the dent portion,
    The thickness of the portion of the compression mechanism portion where the dent reinforcing portion is formed is gradually increased outward.
    The compressor according to claim 3 or 4.
  6.  前記窪み補強部は、外方に向かって傾斜した傾斜面を有する、
     請求項5に記載の圧縮機。
    The hollow reinforcing portion has an inclined surface inclined outward.
    The compressor according to claim 5.
PCT/JP2015/056498 2015-03-05 2015-03-05 Compressor WO2016139796A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/056498 WO2016139796A1 (en) 2015-03-05 2015-03-05 Compressor
CN201620136050.7U CN205503461U (en) 2015-03-05 2016-02-23 Compressor
CN201610099436.XA CN105937496A (en) 2015-03-05 2016-02-23 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056498 WO2016139796A1 (en) 2015-03-05 2015-03-05 Compressor

Publications (1)

Publication Number Publication Date
WO2016139796A1 true WO2016139796A1 (en) 2016-09-09

Family

ID=56724751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056498 WO2016139796A1 (en) 2015-03-05 2015-03-05 Compressor

Country Status (2)

Country Link
CN (2) CN105937496A (en)
WO (1) WO2016139796A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139796A1 (en) * 2015-03-05 2016-09-09 三菱電機株式会社 Compressor
JP7032864B2 (en) * 2017-03-22 2022-03-09 三菱重工サーマルシステムズ株式会社 Compressor
WO2021111546A1 (en) * 2019-12-04 2021-06-10 三菱電機株式会社 Compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291485A (en) * 1989-03-09 1990-12-03 Empresa Brasileira De Compressores Sa Embraco Outlet valve for tumbling piston rotary compressor
JPH03217686A (en) * 1990-01-23 1991-09-25 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2000087893A (en) * 1998-09-10 2000-03-28 Toshiba Corp Compressor for refrigerating cycle
JP2006105040A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Compressor
JP2010151026A (en) * 2008-12-25 2010-07-08 Daikin Ind Ltd Compressor
JP2012255370A (en) * 2011-06-08 2012-12-27 Toshiba Carrier Corp Rotary compressor, and refrigeration cycle apparatus
JP2014070595A (en) * 2012-09-28 2014-04-21 Fujitsu General Ltd Rotary compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139796A1 (en) * 2015-03-05 2016-09-09 三菱電機株式会社 Compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291485A (en) * 1989-03-09 1990-12-03 Empresa Brasileira De Compressores Sa Embraco Outlet valve for tumbling piston rotary compressor
JPH03217686A (en) * 1990-01-23 1991-09-25 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2000087893A (en) * 1998-09-10 2000-03-28 Toshiba Corp Compressor for refrigerating cycle
JP2006105040A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Compressor
JP2010151026A (en) * 2008-12-25 2010-07-08 Daikin Ind Ltd Compressor
JP2012255370A (en) * 2011-06-08 2012-12-27 Toshiba Carrier Corp Rotary compressor, and refrigeration cycle apparatus
JP2014070595A (en) * 2012-09-28 2014-04-21 Fujitsu General Ltd Rotary compressor

Also Published As

Publication number Publication date
CN105937496A (en) 2016-09-14
CN205503461U (en) 2016-08-24

Similar Documents

Publication Publication Date Title
EP1361363B1 (en) Vacuum preventing device of scroll compressor
EP2993352B1 (en) Scroll compressor
EP1967737B1 (en) Rotary compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
WO2016139796A1 (en) Compressor
KR20140144032A (en) Scroll compressor
EP3334936B1 (en) Compressor
US11333150B2 (en) Compressor
KR101861005B1 (en) Vane compressor
JP6418329B2 (en) Compressor
CN103362802A (en) Scroll compressor having a plurality of scroll members
US20220025884A1 (en) High pressure scroll compressor
US10309399B2 (en) Rotary compressor
JP5527396B1 (en) Screw compressor
JP2005188420A (en) Compressor
US20190264688A1 (en) Scroll compressor
CN111033048B (en) Rotary compressor
CN107559204B (en) Compression mechanism of rotary compressor and rotary compressor
KR20120133034A (en) valve unit of compressor
WO2020008793A1 (en) Scroll compressor
JP5201045B2 (en) 2-stage compression rotary compressor
JP2005180317A (en) Rotary compressor
JP2014129796A (en) Compressor
JP2019132254A (en) Rotary compressor and refrigeration cycle device
CN220667825U (en) Compression mechanism portion, compressor, air conditioning system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15883963

Country of ref document: EP

Kind code of ref document: A1