WO2021111546A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2021111546A1
WO2021111546A1 PCT/JP2019/047423 JP2019047423W WO2021111546A1 WO 2021111546 A1 WO2021111546 A1 WO 2021111546A1 JP 2019047423 W JP2019047423 W JP 2019047423W WO 2021111546 A1 WO2021111546 A1 WO 2021111546A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
plate thickness
reed valve
discharge
discharge port
Prior art date
Application number
PCT/JP2019/047423
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 達脇
増本 浩二
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021562252A priority Critical patent/JP7241915B2/en
Priority to CN201980102516.8A priority patent/CN114729630B/en
Priority to PCT/JP2019/047423 priority patent/WO2021111546A1/en
Publication of WO2021111546A1 publication Critical patent/WO2021111546A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/16Check valves with flexible valve members with tongue-shaped laminae

Definitions

  • the present invention relates to a compressor that compresses a refrigerant.
  • the compressor that compresses the refrigerant is used as one of the devices that make up the refrigeration cycle device. Further, the refrigerating cycle device is mounted on, for example, an air conditioner and a refrigerating device.
  • the refrigerant discharged from the discharge port of the compression mechanism unit is once discharged to the discharge chamber in the closed container.
  • a compressor equipped with a discharge valve mechanism that covers the discharge port from the discharge chamber side so as to be openable and closable is known.
  • a scroll compressor is known as an example of such a compressor (see Patent Document 1).
  • the conventional scroll compressor is provided with a scroll-type compression mechanism unit in which a discharge port is formed and the internally compressed refrigerant is discharged from the discharge port.
  • the conventional scroll compressor includes a closed container in which the compression mechanism unit is housed and a discharge chamber into which the refrigerant discharged from the discharge port of the compression mechanism unit flows in is formed inside. Further, the conventional scroll compressor also includes a discharge valve mechanism in the closed container that covers the discharge port of the compression mechanism portion from the discharge chamber side so as to be openable and closable.
  • the compression mechanism unit is provided with a valve seat on the peripheral edge of the end portion of the discharge port on the discharge chamber side.
  • the discharge valve mechanism includes a reed valve whose part is fixed to the compression mechanism portion.
  • the reed valve is a plate-shaped member having a uniform thickness throughout.
  • the reed valve extends from a fixed portion with the compression mechanism portion toward the discharge port, and the tip portion is in contact with the valve seat. The pressure of the refrigerant discharged from the discharge port acts on the portion of the reed valve facing the discharge port.
  • the reed valve elastically deforms at the fixed end with the compression mechanism due to the pressure of the refrigerant, and the tip of the reed valve separates from the valve seat. ..
  • the discharge port is opened.
  • the refrigerant compressed by the compression mechanism unit is discharged from the discharge port, passes between the valve seat and the reed valve, and flows into the discharge chamber.
  • the elastic deformation of the reed valve returns, and the tip of the reed valve comes into contact with the valve seat.
  • the discharge port is closed, and the inflow of the refrigerant from the discharge port into the discharge chamber is completed.
  • the conventional reed valve is a plate-shaped member having a uniform thickness throughout. Therefore, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, the rigidity of the reed valve is increased and the reed valve is less likely to be elastically deformed.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a compressor capable of suppressing damage to a reed valve and suppressing deterioration of performance.
  • a discharge port is formed, and a compression mechanism unit that discharges the internally compressed refrigerant from the discharge port and the compression mechanism unit are housed, and the refrigerant discharged from the discharge port flows in.
  • a closed container having a discharge chamber formed inside and a discharge valve mechanism that is housed in the closed container and covers the discharge port from the discharge chamber side so as to be openable and closable.
  • a valve seat is provided on the peripheral edge of the end portion on the discharge chamber side, and the discharge valve mechanism includes a lead valve extending from a fixed portion with the compression mechanism portion to the discharge port and coming into contact with the valve seat, and the discharge port.
  • the lead valve is elastically deformed with the fixed portion as a fixed end due to the pressure of the refrigerant discharged from the compressor, and the inside of the compression mechanism portion and the discharge chamber communicate with each other.
  • a first plate thickness portion including a contact portion and a second plate thickness portion extending from the first plate thickness portion toward the fixed portion are provided, and the maximum thickness of the first plate thickness portion is the second plate. It is thicker than the thickness of the thick part.
  • the maximum thickness of the first plate thickness portion is thicker than the thickness of the second plate thickness portion. Therefore, even if the thickness of the first plate thickness portion including the portion that comes into contact with the valve seat is increased in order to suppress damage to the reed valve, the lead valve is provided by the second plate thickness portion that is thinner than the first plate thickness portion. Can be suppressed from being less likely to be elastically deformed than before. Therefore, the compressor according to the present invention suppresses deterioration of performance more than before even when the thickness of the first plate thick portion including the portion in contact with the valve seat is increased in order to suppress damage to the reed valve. Can be done.
  • the compressor according to the present invention has a configuration in which the refrigerant discharged from the discharge port of the compression mechanism unit is once discharged into the discharge chamber in the closed container, and covers the discharge port so as to be openable and closable from the discharge chamber side. It is a compressor equipped with a discharge valve mechanism.
  • various types of compressors such as scroll compressors, vane compressors, rotary compressors, and reciprocating compressors are known as compressors provided with a discharge valve mechanism that can open and close the discharge port from the discharge chamber side. ing.
  • an example of the compressor according to the present invention will be described by taking a scroll compressor as an example.
  • the present invention is not limited to the invention adopted in the scroll compressor.
  • the present invention may be adopted for a compressor other than the scroll compressor.
  • the size of the component of the compressor according to the present invention is different from the size of the component of the compressor actually manufactured by using the present invention. There is.
  • FIG. 1 is a vertical cross-sectional view of the compressor according to the first embodiment.
  • the compressor 200 is one of the constituent devices of the refrigeration cycle device. More specifically, the compressor 200 sucks in the refrigerant circulating in the refrigeration cycle device, compresses it, and discharges it in a high temperature and high pressure state.
  • Refrigerating cycle devices are used in various industrial machines such as refrigerators, freezers, vending machines, air conditioners, refrigerating devices, and water heaters.
  • the compressor 200 is a scroll compressor, and includes a scroll type compression mechanism unit 10, a closed container 1, and a discharge valve mechanism 100.
  • the compression mechanism unit 10 has a discharge port 32 formed therein, and discharges the internally compressed refrigerant from the discharge port 32.
  • the compression mechanism unit 10 is a scroll-type compression mechanism unit including a fixed scroll 11 and a swing scroll 21.
  • the compression mechanism portion 10 and the discharge valve mechanism 100 are housed in the closed container 1. Further, inside the closed container 1, a discharge chamber 9 into which the refrigerant discharged from the discharge port 32 of the compression mechanism portion 10 flows is formed.
  • the discharge valve mechanism 100 covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side.
  • the compressor 200 includes an electric motor 40 and a drive shaft 50 housed in a closed container 1.
  • the drive shaft 50 transmits the driving force of the electric motor 40 to the compression mechanism unit 10.
  • the configuration of the compressor 200 will be described in more detail.
  • the closed container 1 constitutes the outer shell of the compressor 200.
  • the closed container 1 includes a center shell 2, an upper shell 3, and a lower shell 4.
  • the center shell 2 is a tubular member having an open upper portion and a lower portion.
  • the upper shell 3 is a member that closes the upper opening of the center shell 2.
  • the lower shell 4 is a member that closes the opening at the lower part of the center shell 2.
  • An oil sump is formed at the bottom of the closed container 1. Refrigerating machine oil to be supplied to sliding parts such as the compression mechanism part 10 is stored in the oil pool.
  • the inside of the closed container 1 is divided into an inflow chamber 8 and a discharge chamber 9 described above by a fixed scroll 11 of the compression mechanism portion 10 and a frame 60 described later.
  • the frame 60 is arranged below the fixed scroll 11.
  • the suction pipe 6 communicating with the inflow chamber 8
  • a discharge pipe 7 communicating with the discharge chamber 9.
  • the suction pipe 6 is fixed to the center shell 2 of the closed container 1.
  • the discharge pipe 7 is fixed to the upper shell 3 of the closed container 1.
  • Low temperature and low pressure gaseous refrigerant flows into the inflow chamber 8 through the suction pipe 6. That is, the low-temperature low-pressure gaseous refrigerant compressed by the compression mechanism unit 10 flows into the inflow chamber 8.
  • the high-temperature and high-pressure gaseous refrigerant compressed by the compression mechanism unit 10 and discharged from the discharge port 32 flows into the discharge chamber 9. Therefore, the inflow chamber 8 is a lower pressure chamber than the discharge chamber 9. In other words, the discharge chamber 9 is a higher pressure chamber than the inflow chamber 8.
  • the high-temperature and high-pressure gaseous refrigerant that has flowed into the discharge chamber 9 flows out of the compressor 200 through the discharge pipe 7.
  • a frame 60 and a subframe 65 are further housed so as to face each other with the motor 40 in the axial direction of the drive shaft 50.
  • the frame 60 holds the compression mechanism unit 10.
  • the frame 60 is arranged above the electric motor 40 and is located between the electric motor 40 and the compression mechanism portion 10.
  • the subframe 65 is located below the motor 40.
  • the frame 60 and the subframe 65 are fixed to the inner peripheral surface of the center shell 2 of the closed container 1 by shrink fitting or the like.
  • the drive shaft 50 transmits the driving force of the motor 40 to the swing scroll 21.
  • the swing scroll 21 is eccentrically connected to the drive shaft 50 and is combined with the frame 60 via the old dam ring 70. That is, the old dam ring 70 is arranged between the swing scroll 21 and the frame 60. Specifically, the old dam ring 70 is arranged between the base plate 22 and the frame 60, which will be described later, of the swing scroll 21.
  • the oldam ring 70 includes a ring portion 71, a pair of keys 72 provided on the upper surface of the ring portion 71, and a pair of keys 73 provided on the lower surface of the ring portion 71.
  • a pair of key grooves 26 into which a pair of keys 72 are slidably inserted are formed on the lower surface 22a of the base plate 22 of the swing scroll 21.
  • the frame 60 is formed with a pair of key grooves 61 into which a pair of keys 73 are slidably inserted.
  • the compression mechanism unit 10 includes a fixed scroll 11 and a swing scroll 21 as described above.
  • the fixed scroll 11 includes a base plate 12 and spiral teeth 13.
  • the spiral teeth 13 are provided on the lower surface of the base plate 12.
  • the fixed scroll 11 is fixed to the frame 60 by a bolt or the like (not shown).
  • the swing scroll 21 includes a base plate 22 and spiral teeth 23.
  • the upper surface of the base plate 22 faces the fixed scroll 11.
  • the spiral tooth 23 has substantially the same shape as the spiral tooth 13 and is provided on the upper surface of the base plate 22. Further, the swing scroll 21 is provided with a hollow cylindrical boss portion 24 on the lower surface of the base plate 22.
  • the swing scroll 21 and the fixed scroll 11 are arranged in the closed container 1 in a state where the spiral teeth 23 and the spiral teeth 13 are combined.
  • the winding direction of the spiral tooth 23 and the winding direction of the spiral tooth 13 are opposite to each other.
  • a seal member 14 is provided at the tip of the spiral tooth 13 of the fixed scroll 11 in order to reduce refrigerant leakage from between the spiral tooth 13 and the base plate 22 of the swing scroll 21.
  • a seal member 27 is provided at the tip of the spiral tooth 23 of the swing scroll 21 in order to reduce refrigerant leakage from between the spiral tooth 23 and the base plate 12 of the fixed scroll 11.
  • a communication port 15 for communicating the inside and the outside of the compression chamber 30 is formed at a substantially central position of the base plate 12 of the fixed scroll 11. That is, the refrigerant compressed in the compression chamber 30 flows out from the inside of the compression chamber 30 to the outside of the compression chamber 30 through the communication port 15.
  • the compression mechanism portion 10 of the compressor 200 according to the first embodiment includes a discharge chamber 31.
  • the discharge chamber 31 covers the communication port 15 on the outer side of the compression chamber 30.
  • the discharge chamber 31 is fixed to the upper surface of the base plate 12 of the fixed scroll 11 with bolts or the like. Further, a discharge port 32 is formed in the discharge chamber 31.
  • the refrigerant compressed in the compression chamber 30 is discharged from the communication port 15 into the discharge chamber 31, and then flows into the discharge chamber 9 from the discharge port 32. .. That is, in the first embodiment, the discharge valve mechanism 100 that covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side is attached to the discharge chamber 31. The discharge valve mechanism 100 prevents the backflow of the refrigerant from the discharge chamber 9 to the discharge port 32. Details of the discharge valve mechanism 100 will be described later.
  • the frame 60 has a surface facing the lower surface 22a of the base plate 22 of the rocking scroll 21 from below.
  • This surface is a surface that swingably supports the rocking scroll 21, and is a surface that supports the load acting on the rocking scroll 21 in the process of compressing the refrigerant. Therefore, a thrust plate 25 is provided on this surface for the purpose of improving the slidability of the rocking scroll 21 with the lower surface 22a of the base plate 22.
  • the frame 60 is formed with a flow path (not shown) that guides the refrigerant flowing into the inflow chamber 8 into the compression mechanism portion 10.
  • the electric motor 40 that supplies the driving force to the drive shaft 50 has a stator 41 and a rotor 42.
  • the stator 41 is fixed to the inner peripheral surface of the center shell 2 of the closed container 1 by shrink fitting or the like. Further, the stator 41 is electrically connected to the power supply terminal 5, and power is supplied from the power supply terminal 5.
  • the rotor 42 is arranged on the inner peripheral side of the stator 41, and is connected to the spindle portion 51 of the drive shaft 50, which will be described later, by shrink fitting or the like.
  • the drive shaft 50 includes a spindle portion 51 and an eccentric shaft portion 52 provided at the upper end of the spindle portion 51.
  • the upper portion of the spindle portion 51 is rotatably supported by a spindle bearing 62 provided on the frame 60.
  • the lower portion of the spindle portion 51 is rotatably supported by an auxiliary bearing 66 provided on the subframe 65.
  • the subframe 65 is also provided with a positive displacement pump 53.
  • the refrigerating machine oil stored in the above-mentioned oil sump of the closed container 1 is pumped up by the pump 53 and supplied to a sliding portion such as the compression mechanism portion 10 through an oil supply hole 54 formed in the drive shaft 50. ..
  • the eccentric shaft portion 52 that is eccentric with respect to the spindle portion 51 becomes the distance between the axis of the spindle portion 51 and the axis of the eccentric shaft portion 52 with respect to the spindle portion 51. Rotate with a radius.
  • the swing scroll 21 connected to the eccentric shaft portion 52 tends to rotate with respect to the spindle portion 51 with the above-mentioned radius.
  • the swing scroll 21 attempts to rotate with respect to the fixed fixed scroll 11 with the above-mentioned radius.
  • the rotation of the swing scroll 21 is regulated by the old dam ring 70. Therefore, the swing scroll 21 swings with respect to the fixed scroll 11 with the above-mentioned radius.
  • the compressor 200 includes a first balance weight 55 and a second balance weight 56 in order to offset the imbalance of the load caused by the swinging of the swing scroll 21.
  • the first balance weight 55 is attached to the spindle portion 51 at a position between the frame 60 and the rotor 42 by shrink fitting or the like.
  • the second balance weight 56 is attached to the lower part of the rotor 42.
  • FIG. 2 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of the compressor according to the first embodiment.
  • FIG. 3 is a plan view of the reed valve of the discharge valve mechanism of the compressor according to the first embodiment. Note that FIG. 3 shows the position of the outer peripheral portion 35a of the valve seat 35 in a state where the reed valve 110 is in contact with the valve seat 35 by a two-dot chain line which is an imaginary line.
  • FIGS. 2 and 3 the configuration around the discharge valve mechanism 100 and the detailed configuration of the discharge valve mechanism 100 will be described with reference to FIGS. 2 and 3.
  • the discharge chamber 31 of the compression mechanism unit 10 is provided with, for example, a valve seat 35 having a substantially annular shape in a plan view on the peripheral edge of the end portion of the discharge port 32 on the discharge chamber 9 side.
  • the discharge valve mechanism 100 includes a reed valve 110 that covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side.
  • the reed valve 110 is fixed to the discharge chamber 31 at the fixing point.
  • the end 111 of the reed valve 110 is a fixed portion of the reed valve 110 with the discharge chamber 31.
  • the reed valve 110 is fixed to the discharge chamber 31 by using a fixture 101 which is a bolt.
  • a through hole 113 is formed at the end 111 of the reed valve 110.
  • the lead valve 110 is fixed to the discharge chamber 31 by screwing the fixture 101 inserted into the through hole 113 into the female screw portion formed in the discharge chamber.
  • the reed valve 110 extends from the end portion 111, which is a fixed portion, toward the discharge port 32. Then, the end portion 112 is in contact with the valve seat 35. In other words, the end 112 is seated on the valve seat 35.
  • the end portion 111 becomes a fixed end and the end portion 112 becomes a free end and elastically deforms. As a result, the inside of the compression mechanism unit 10 and the discharge chamber 9 communicate with each other.
  • the reed valve 110 elastically deforms with the end 111 as a fixed end due to the pressure of the refrigerant, and the end 112 separates from the valve seat 35. .. As a result, the discharge port 32 is opened. Then, the refrigerant compressed by the compression mechanism unit 10 is discharged from the discharge port 32, passes between the valve seat 35 and the reed valve 110, and flows into the discharge chamber 9. Further, when the pressure of the refrigerant discharged from the discharge port 32 decreases, the elastic deformation of the reed valve 110 returns, and the end portion 112 of the reed valve 110 comes into contact with the valve seat 35. As a result, the discharge port 32 is closed, and the inflow of the refrigerant from the discharge port 32 into the discharge chamber 9 is completed. Further, this prevents the backflow of the refrigerant from the discharge chamber 9 to the discharge port 32.
  • the discharge valve mechanism 100 includes a valve retainer 120.
  • the valve retainer 120 prevents the reed valve 110 from bending too much due to contact with the reed valve 110 when the reed valve 110 is elastically deformed by the pressure of the refrigerant discharged from the discharge port 32.
  • the valve retainer 120 is arranged above the lead valve 110.
  • a through hole 123 is formed in the end portion 121 of the valve retainer 120.
  • the valve retainer 120 is fixed to the discharge chamber 31 together with the reed valve 110 by screwing the fixture 101 inserted into the through hole 123 into the female screw portion formed in the discharge chamber.
  • the end portion 122 of the valve retainer 120 is arranged above the end portion 112 of the reed valve 110.
  • the gap between the reed valve 110 and the valve retainer 120 gradually widens from the end 121 to the end 122.
  • the reed valve 110 and the valve retainer 120 come into contact with each other, and the reed valve 110 can be prevented from bending too much.
  • the conventional reed valve is a plate-shaped member having a uniform thickness throughout.
  • the reed valve 110 according to the first embodiment has a different thickness depending on the location. Specifically, the portion on the end 112 side that includes the portion that comes into contact with the valve seat 35 is the first plate thick portion 114 having a thickness T1. Further, a portion extending from the first plate thick portion 114 toward the end portion 111 which is a fixed portion is a second plate thick portion 115 having a thickness T2. The thickness T1 of the first plate thick portion 114 is thicker than the thickness T2 of the second plate thick portion 115. When unevenness is formed on the first plate thickness portion 114 as described later in the second embodiment, the thickness T1 of the first plate thickness portion 114 represents the maximum thickness of the first plate thickness portion 114. To do.
  • the outer peripheral portion 114b of the first plate thickness portion 114 is formed. , It is arranged outside the outer peripheral portion 35a of the valve seat 35. In other words, when observing the first plate thickness portion 114 and the valve seat 35 in the vertical direction, the outer peripheral portion 114b of the first plate thickness portion 114 is arranged outside the outer peripheral portion 35a of the valve seat 35.
  • the compressor 200 starts compressing the refrigerant according to a known compression principle.
  • the first balance weight 55 and the second balance weight 56 cancel the imbalance of the load caused by the swing of the swing scroll 21.
  • the low-temperature low-pressure gaseous refrigerant flows into the inflow chamber 8 in the closed container 1 through the suction pipe 6.
  • a part of the low-temperature and low-pressure gaseous refrigerant that has flowed into the inflow chamber 8 is sucked into the compression chamber 30 from the outer peripheral side of the compression mechanism portion 10 through a flow path (not shown) formed in the frame 60.
  • the remaining part of the low-temperature low-pressure gaseous refrigerant that has flowed into the inflow chamber 8 cools the refrigerating machine oil, the electric motor 40, and the like stored in the oil sump of the closed container 1.
  • the volume of the compression chamber 30 shrinks as it moves to the center of the rocking scroll 21 due to the rocking motion of the rocking scroll 21.
  • the low-temperature low-pressure gaseous refrigerant sucked into the compression chamber 30 is compressed into the high-temperature and high-pressure gaseous refrigerant.
  • the refrigerant compressed in this way flows into the discharge chamber 31 through the communication port 15 of the fixed scroll 11. Then, when the pressure of the refrigerant flowing into and stored in the discharge chamber 31 rises, that is, when the pressure of the refrigerant discharged from the discharge port 32 rises, the pressure of the refrigerant causes the lead valve 110 to end.
  • the 111 is elastically deformed with the fixed end, and the end 112 is separated from the valve seat 35. As a result, the discharge port 32 is opened. Then, the refrigerant compressed by the compression mechanism unit 10 is discharged from the discharge port 32, passes between the valve seat 35 and the reed valve 110, and flows into the discharge chamber 9. The high-temperature and high-pressure gaseous refrigerant that has flowed into the discharge chamber 9 flows out of the compressor 200 through the discharge pipe 7.
  • the conventional reed valve is a plate-shaped member having a uniform thickness throughout. Therefore, in the conventional reed valve, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, the rigidity of the reed valve is increased and the reed valve is less likely to be elastically deformed. As a result, when the discharge port is opened, the gap between the valve seat and the reed valve becomes smaller, and the flow path resistance between the valve seat and the reed valve increases.
  • the thickness T1 of the first plate thickness portion 114 is thicker than the thickness T2 of the second plate thickness portion 115.
  • the thickness T2 of the second plate thickness portion 115 is thinner than the thickness T1 of the first plate thickness portion 114. Therefore, even if the thickness T1 of the first plate thickness portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110, the second plate thickness is thinner than that of the first plate thickness portion 114.
  • the portion 115 can prevent the reed valve 110 from being less likely to be elastically deformed than before.
  • the compressor 200 according to the first embodiment has a performance even when the thickness T1 of the first plate thick portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110.
  • the decrease can be suppressed more than before.
  • the thickness T2 of the second plate thickness portion 115 is thinner than the thickness T1 of the first plate thickness portion 114, so that the thickness T2 is uniform throughout.
  • the compressor 200 according to the first embodiment can further suppress damage to the reed valve 110 as compared with the conventional one.
  • the first plate thickness portion 114 and the valve seat 35 when the first plate thickness portion 114 and the valve seat 35 are observed in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the first plate thickness portion is observed.
  • the outer peripheral portion 114b of 114 is arranged outside the outer peripheral portion 35a of the valve seat 35.
  • the outer peripheral portion 114b of the first plate thickness portion 114 is most likely to be damaged.
  • the outer peripheral portion 114b of the first plate thick portion 114 is arranged outside the outer peripheral portion 35a of the valve seat 35, the outer peripheral portion 114b of the first plate thick portion 114 The collision between the valve seat 35 and the valve seat 35 can be prevented, and damage to the lead valve 110 can be further suppressed.
  • the compressor 200 according to the first embodiment may also have a configuration that does not include the discharge chamber 31.
  • the refrigerant compressed by the compression mechanism unit 10 is discharged from the communication port 15 of the fixed scroll 11 to the discharge chamber 9. That is, the communication port 15 functions as a discharge port.
  • the valve seat 35 may be provided on the peripheral edge of the end portion of the communication port 15 functioning as the discharge port on the discharge chamber 9 side. Then, the discharge valve mechanism 100 may be attached to, for example, the base plate 12 of the fixed scroll 11.
  • the surface portion 114a facing the valve retainer 120 in the first plate thickness portion 114 is formed in the second plate thickness portion 115.
  • the surface portion 115a facing the valve retainer 120 may protrude toward the valve retainer 120.
  • the valve retainer 120 may be configured as shown in FIG.
  • FIG. 4 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the first embodiment.
  • FIG. 5 is a view of the periphery of the end of the valve retainer shown in FIG. 4 as viewed from below. Note that FIG. 5 is a diagram showing the periphery of the end portion 122 of the valve retainer 120. Further, in FIG. 5, the first plate thickness portion 114 and the second plate thickness portion 115 of the reed valve 110 when it comes into contact with the valve retainer 120 are shown by an alternate long and short dash line, which is an imaginary line.
  • the reed valve 110 is provided on the surface portion 120a facing the reed valve 110 at a position facing the first plate thick portion 114 when the reed valve 110 comes into contact with the valve retainer 120.
  • a valve holding recess 124 is formed in which the first plate thick portion 114 enters when it comes into contact with the valve holding 120.
  • the recessed amount of the valve holding recess 124 is substantially the same as the protruding amount of the surface portion 114a of the first plate thick portion 114 protruding from the surface portion 115a of the second plate thick portion 115.
  • valve retainer 120 By configuring the valve retainer 120 in this way, when the reed valve 110 is elastically deformed and comes into contact with the valve retainer 120, both the first plate thickness portion 114 and the second plate thickness portion 115 come into contact with the valve retainer 120. , The entire reed valve 110 can be pressed substantially uniformly by the valve retainer 120. As a result, damage to the reed valve 110 can be further suppressed.
  • the compressor 200 includes a compression mechanism unit 10, a closed container 1, and a discharge valve mechanism 100.
  • the compression mechanism unit 10 is a scroll-type compression mechanism unit in which a discharge port 32 is formed and the internally compressed refrigerant is discharged from the discharge port 32.
  • the compression mechanism portion 10 is housed, and a discharge chamber 9 into which the refrigerant discharged from the discharge port 32 flows is formed inside.
  • the discharge valve mechanism 100 is housed in a closed container 1 and covers the discharge port 32 so as to be openable and closable from the discharge chamber 9 side.
  • the compression mechanism unit 10 is provided with a valve seat 35 on the peripheral edge of the end portion of the discharge port 32 on the discharge chamber 9 side.
  • the discharge valve mechanism 100 includes a reed valve 110 that extends from a fixed portion with the compression mechanism portion 10 to the discharge port 32 and comes into contact with the valve seat 35. Further, the discharge valve mechanism 100 has a configuration in which the lead valve 110 is elastically deformed with the fixed portion as a fixed end due to the pressure of the refrigerant discharged from the discharge port 32, and the inside of the compression mechanism portion 10 and the discharge chamber 9 communicate with each other. It has become. Further, the reed valve 110 includes a first plate thickness portion 114 including a portion in contact with the valve seat 35, and a second plate thickness portion 115 extending from the first plate thickness portion 114 toward the fixing portion. The thickness T1 of the first plate thickness portion 114 is thicker than the thickness T2 of the second plate thickness portion 115.
  • the compressor 200 according to the first embodiment has a performance even when the thickness T1 of the first plate thick portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110. The decrease can be suppressed more than before.
  • Embodiment 2 The reed valve 110 is not limited to the configuration shown in the first embodiment. In the second embodiment, some examples of the reed valve 110 will be introduced. In the second embodiment, items not particularly described will be the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
  • FIG. 6 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve.
  • FIG. 7 is a plan view showing a first plate thickness portion of the reed valve of FIG.
  • the first plate thickness portion 114 of the lead valve 110 shown in FIGS. 6 and 7 has a lead valve recess 116 recessed in the direction opposite to the first plate thickness portion 114 and the valve seat 35 at a position facing the discharge port 32. It is formed.
  • the thickness T3 of the first plate thickness portion 114 and the thickness T3 of the second plate thickness portion 115 of the portion where the reed valve recess 116 is formed are taken into consideration in consideration of ease of processing of the reed valve 110 and the like.
  • the thickness of T2 is the same as that of T2.
  • the thickness T3 of the first plate thickness portion 114 and the thickness T2 of the second plate thickness portion 115 at the location where the reed valve recess 116 is formed may be different.
  • the thickness T3 of the first plate thickness portion 114 at the portion where the reed valve recess 116 is formed may be thinner than the thickness T2 of the second plate thickness portion 115.
  • the thickness of the first plate thick portion 114 can be further reduced, and damage to the reed valve 110 can be further suppressed.
  • the thickness T2 of the second plate thick portion 115 may be thinner than the thickness T3 of the first plate thick portion 114 where the reed valve recess 116 is formed.
  • the position where the reed valve recess 116 is formed is preferably the position shown in FIG. Specifically, when observing the first plate thickness portion 114 and the discharge port 32 in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the lead valve recess 116 is larger than the peripheral edge portion 32a of the discharge port 32. It is preferably formed at an inner position.
  • the reed valve recess 116 in this way, the portion of the first plate thick portion 114 that comes into contact with the valve seat 35 becomes a thick portion having a thickness T1. Therefore, by forming the reed valve recess 116 in this way, damage to the reed valve 110 can be further suppressed.
  • the discharge port 32 has a through hole 33 for communicating the inside and the outside of the compression mechanism portion 10 and an end of the through hole 33 on the discharge chamber 9 side. It is formed by a tapered portion 34 formed on the peripheral edge of the portion. That is, the peripheral edge portion 32a of the discharge port 32 becomes the peripheral edge portion on the outer peripheral side of the tapered portion 34.
  • the discharge port 32 having such a configuration when the reed valve recess 116 is formed at a position inside the peripheral edge portion 32a of the discharge port 32, the following positions are more preferable for the formation position of the reed valve recess 116.
  • the peripheral edge portion 116a of the reed valve recess 116 is the peripheral edge portion 32a on the outer peripheral side of the tapered portion 34. It is more preferable that the position is located on the inside of the through hole 33 and on the outside of the peripheral edge portion 33a of the through hole 33.
  • FIG. 8 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve.
  • FIG. 9 is a plan view showing a first plate thickness portion of the reed valve of FIG.
  • the recess formed in the first plate thickness portion 114 of the reed valve 110 is not limited to one recess, and for example, as shown in FIGS. 8 and 9, a plurality of recesses are formed in the first plate thickness portion 114. You may. Specifically, the first plate thickness portion 114 of the lead valve 110 shown in FIGS.
  • FIG. 10 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve.
  • the bottom of the reed valve recess 116 described above had a flat shape.
  • the thickness of the portion where the reed valve recess 116 is formed is uniform.
  • the bottom portion of the lead valve recess 116 may have a curved surface shape. For example, as shown in FIG.
  • the thickness of the first plate thick portion 114 at the portion where the reed valve recess 116 is formed is continuous from the peripheral edge portion 116a of the reed valve recess 116 toward the central portion of the reed valve recess 116.
  • the configuration may be thin.
  • the shape of the bottom of the second reed valve recess 117 is not limited to a flat shape, but may be a curved shape.
  • the above-mentioned thickness T3 is the smallest of the thicknesses of the first plate thick portion 114 where the reed valve recess 116 is formed. It shall represent the thickness of.
  • the compressor 200 shown in the first and second embodiments is a scroll compressor, but the compressor 200 is not limited to the scroll compressor.
  • various types of compressors such as a vane compressor, a rotary compressor, and a reciprocating compressor are used in addition to the scroll compressor.
  • the compressor 200 may be a compressor other than the scroll compressor, such as a vane compressor, a rotary compressor, and a reciprocating compressor.
  • the valve seat 35 described above may be provided on the peripheral edge of the end of the discharge port of the compression mechanism on the discharge chamber side.
  • the above-mentioned discharge valve mechanism 100 may be provided in the discharge chamber of the closed container.
  • the compressor 200 can obtain the effects shown in the first and second embodiments even if the compressor is a compressor other than the scroll compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)

Abstract

A compressor according to the present invention is provided with: a compression mechanism part that ejects a refrigerant compressed therein from an ejection port; a sealing container in which the compression mechanism part is accommodated and an ejection chamber in which the refrigerant ejected from the ejection port flows is formed; and an ejection valve mechanism that covers the ejection port from a side of the ejection chamber to be freely openable and closable. The compression mechanism part is provided with a valve seat at a rim of an end on the side of the ejection chamber of the ejection port. The ejection valve mechanism is provided with a reed valve that extends to the ejection port from a fixation spot with the compression mechanism part and contacts the valve seat. The reed valve elastically deforms using the fixation spot as a fixation end due to pressure of the refrigerant ejected from the ejection port. The inside of the compression mechanism part communicates with the ejection chamber. The reed valve is provided with a first plate thickness part including a spot that contacts the valve seat and a second plate thickness part that extends to the fixation spot from the first plate thickness part. The maximum thickness of the first plate thickness part is larger than that of the second plate thickness part.

Description

圧縮機Compressor
 本発明は、冷媒を圧縮する圧縮機に関する。 The present invention relates to a compressor that compresses a refrigerant.
 冷媒を圧縮する圧縮機は、冷凍サイクル装置を構成する機器の1つとして用いられている。また、冷凍サイクル装置は、例えば、空気調和装置及び冷凍装置に搭載されている。 The compressor that compresses the refrigerant is used as one of the devices that make up the refrigeration cycle device. Further, the refrigerating cycle device is mounted on, for example, an air conditioner and a refrigerating device.
 このような冷凍サイクル装置の構成機器の1つとなる圧縮機の種類の1つとして、従来、圧縮機構部の吐出口から吐出された冷媒が密閉容器内の吐出室に一旦吐出される構成となっており、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた圧縮機が知られている。例えば、このような圧縮機の一例としては、スクロール圧縮機が知られている(特許文献1参照)。詳しくは、従来のスクロール圧縮機は、吐出口が形成され、内部で圧縮した冷媒を吐出口から吐出するスクロール式の圧縮機構部を備えている。また、従来のスクロール圧縮機は、圧縮機構部が収納され、圧縮機構部の吐出口から吐出された冷媒が流入する吐出室が内部に形成された密閉容器を備えている。また、従来のスクロール圧縮機は、密閉容器内に、吐出室側から圧縮機構部の吐出口を開閉自在に覆う吐出弁機構も備えている。 As one of the types of compressors that are one of the constituent devices of such a refrigeration cycle device, conventionally, the refrigerant discharged from the discharge port of the compression mechanism unit is once discharged to the discharge chamber in the closed container. A compressor equipped with a discharge valve mechanism that covers the discharge port from the discharge chamber side so as to be openable and closable is known. For example, a scroll compressor is known as an example of such a compressor (see Patent Document 1). Specifically, the conventional scroll compressor is provided with a scroll-type compression mechanism unit in which a discharge port is formed and the internally compressed refrigerant is discharged from the discharge port. Further, the conventional scroll compressor includes a closed container in which the compression mechanism unit is housed and a discharge chamber into which the refrigerant discharged from the discharge port of the compression mechanism unit flows in is formed inside. Further, the conventional scroll compressor also includes a discharge valve mechanism in the closed container that covers the discharge port of the compression mechanism portion from the discharge chamber side so as to be openable and closable.
 従来の吐出弁機構の周辺の構成を具体的に説明すると、圧縮機構部は、吐出口の吐出室側の端部の周縁に、弁座を備えている。また、吐出弁機構は、一部が圧縮機構部に固定されたリード弁を備えている。リード弁は、全体に渡って一様な厚みの板状部材である。リード弁は、圧縮機構部との固定箇所から吐出口に向かって延び、先端部が弁座に接触している。リード弁における吐出口と対向している箇所には、吐出口から吐出される冷媒の圧力が作用する。このため、吐出口から吐出される冷媒の圧力が上がってくると、当該冷媒の圧力によってリード弁が圧縮機構との固定箇所を固定端として弾性変形し、リード弁の先端部が弁座から離れる。これにより、吐出口が開かれる。そして、圧縮機構部で圧縮された冷媒は、吐出口から吐出され、弁座とリード弁との間を通り、吐出室に流入する。また、吐出口から吐出される冷媒の圧力が下がってくると、リード弁の弾性変形が戻り、リード弁の先端部が弁座に接触する。これにより、吐出口が閉じられ、吐出口から吐出室への冷媒の流入が終了する。 Specifically explaining the configuration around the conventional discharge valve mechanism, the compression mechanism unit is provided with a valve seat on the peripheral edge of the end portion of the discharge port on the discharge chamber side. Further, the discharge valve mechanism includes a reed valve whose part is fixed to the compression mechanism portion. The reed valve is a plate-shaped member having a uniform thickness throughout. The reed valve extends from a fixed portion with the compression mechanism portion toward the discharge port, and the tip portion is in contact with the valve seat. The pressure of the refrigerant discharged from the discharge port acts on the portion of the reed valve facing the discharge port. Therefore, when the pressure of the refrigerant discharged from the discharge port rises, the reed valve elastically deforms at the fixed end with the compression mechanism due to the pressure of the refrigerant, and the tip of the reed valve separates from the valve seat. .. As a result, the discharge port is opened. Then, the refrigerant compressed by the compression mechanism unit is discharged from the discharge port, passes between the valve seat and the reed valve, and flows into the discharge chamber. Further, when the pressure of the refrigerant discharged from the discharge port decreases, the elastic deformation of the reed valve returns, and the tip of the reed valve comes into contact with the valve seat. As a result, the discharge port is closed, and the inflow of the refrigerant from the discharge port into the discharge chamber is completed.
特開2001-221173号公報Japanese Unexamined Patent Publication No. 2001-221173
 リード弁の弾性変形が戻り、吐出口がリード弁で閉じられる際、リード弁における弁座との接触箇所には、弁座へ衝突した際の衝撃が加わる。この衝撃によってリード弁が損傷することを抑制するためには、リード弁における弁座との接触箇所の厚みを、ある程度厚くする必要がある。ここで、従来のリード弁は、上述のように、全体に渡って一様な厚みの板状部材となっている。このため、リード弁の損傷を抑制するためにリード弁の厚みを厚くすると、リード弁の剛性が高くなり、リード弁が弾性変形しにくくなる。この結果、吐出口が開かれた際に弁座とリード弁との間の隙間が小さくなり、弁座とリード弁との間の流路抵抗が増加する。したがって、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた従来の圧縮機は、リード弁の損傷を抑制するためにリード弁の厚みを厚くすると、圧縮機構部で圧縮された冷媒が吐出室に流入しにくくなり、圧縮機の性能が低下してしまうという課題があった。 When the elastic deformation of the reed valve returns and the discharge port is closed by the reed valve, the impact when it collides with the valve seat is applied to the contact point of the reed valve with the valve seat. In order to prevent the reed valve from being damaged by this impact, it is necessary to increase the thickness of the contact portion of the reed valve with the valve seat to some extent. Here, as described above, the conventional reed valve is a plate-shaped member having a uniform thickness throughout. Therefore, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, the rigidity of the reed valve is increased and the reed valve is less likely to be elastically deformed. As a result, when the discharge port is opened, the gap between the valve seat and the reed valve becomes smaller, and the flow path resistance between the valve seat and the reed valve increases. Therefore, in a conventional compressor equipped with a discharge valve mechanism that covers the discharge port from the discharge chamber side so as to be openable and closable, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, the refrigerant compressed by the compression mechanism portion is used. There is a problem that it becomes difficult for the compressor to flow into the discharge chamber, and the performance of the compressor deteriorates.
 本発明は、上述の課題を解決するためになされたもので、リード弁の損傷を抑制でき、性能の低下を抑制することもできる圧縮機を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a compressor capable of suppressing damage to a reed valve and suppressing deterioration of performance.
 本発明に係る圧縮機は、吐出口が形成され、内部で圧縮した冷媒を前記吐出口から吐出する圧縮機構部と、前記圧縮機構部が収納され、前記吐出口から吐出された冷媒が流入する吐出室が内部に形成された密閉容器と、前記密閉容器に収納され、前記吐出室側から前記吐出口を開閉自在に覆う吐出弁機構と、を備え、前記圧縮機構部は、前記吐出口の前記吐出室側の端部の周縁に弁座を備え、前記吐出弁機構は、前記圧縮機構部との固定箇所から前記吐出口に延び、前記弁座に接触するリード弁を備え、前記吐出口から吐出される冷媒の圧力によって前記リード弁が前記固定箇所を固定端として弾性変形し、前記圧縮機構部の内部と前記吐出室とが連通する構成であり、前記リード弁は、前記弁座と接触する箇所を含む第1板厚部と、前記第1板厚部から前記固定箇所へ向かって延びる第2板厚部と、を備え、前記第1板厚部の最大厚みが前記第2板厚部の厚みより厚くなっている。 In the compressor according to the present invention, a discharge port is formed, and a compression mechanism unit that discharges the internally compressed refrigerant from the discharge port and the compression mechanism unit are housed, and the refrigerant discharged from the discharge port flows in. A closed container having a discharge chamber formed inside and a discharge valve mechanism that is housed in the closed container and covers the discharge port from the discharge chamber side so as to be openable and closable. A valve seat is provided on the peripheral edge of the end portion on the discharge chamber side, and the discharge valve mechanism includes a lead valve extending from a fixed portion with the compression mechanism portion to the discharge port and coming into contact with the valve seat, and the discharge port. The lead valve is elastically deformed with the fixed portion as a fixed end due to the pressure of the refrigerant discharged from the compressor, and the inside of the compression mechanism portion and the discharge chamber communicate with each other. A first plate thickness portion including a contact portion and a second plate thickness portion extending from the first plate thickness portion toward the fixed portion are provided, and the maximum thickness of the first plate thickness portion is the second plate. It is thicker than the thickness of the thick part.
 本発明に係る圧縮機のリード弁は、第1板厚部の最大厚みが第2板厚部の厚みより厚くなっている。このため、リード弁の損傷を抑制するために弁座と接触する箇所を含む第1板厚部の厚みを厚くした場合でも、第1板厚部よりも薄い第2板厚部によって、リード弁が弾性変形しにくくなることを従来よりも抑制できる。したがって、本発明に係る圧縮機は、リード弁の損傷を抑制するために弁座と接触する箇所を含む第1板厚部の厚みを厚くした場合でも、性能の低下を従来よりも抑制することができる。 In the lead valve of the compressor according to the present invention, the maximum thickness of the first plate thickness portion is thicker than the thickness of the second plate thickness portion. Therefore, even if the thickness of the first plate thickness portion including the portion that comes into contact with the valve seat is increased in order to suppress damage to the reed valve, the lead valve is provided by the second plate thickness portion that is thinner than the first plate thickness portion. Can be suppressed from being less likely to be elastically deformed than before. Therefore, the compressor according to the present invention suppresses deterioration of performance more than before even when the thickness of the first plate thick portion including the portion in contact with the valve seat is increased in order to suppress damage to the reed valve. Can be done.
本実施の形態1に係る圧縮機の縦断面図である。It is a vertical cross-sectional view of the compressor which concerns on Embodiment 1. 本実施の形態1に係る圧縮機の吐出弁機構周辺を示す縦断面図である。It is a vertical cross-sectional view which shows the periphery of the discharge valve mechanism of the compressor which concerns on Embodiment 1. 本実施の形態1に係る圧縮機の吐出弁機構のリード弁の平面図である。It is a top view of the reed valve of the discharge valve mechanism of the compressor which concerns on Embodiment 1. 本実施の形態1に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図である。It is a vertical cross-sectional view which shows the periphery of the discharge valve mechanism of another example of the compressor which concerns on Embodiment 1. 図4に示す弁押さえの端部周辺を下方から見た図である。It is a figure which looked at the periphery of the end of the valve retainer shown in FIG. 4 from below. 本実施の形態2に係る圧縮機の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。It is a vertical cross-sectional view which shows the periphery of the discharge valve mechanism of the compressor which concerns on Embodiment 2, and is the figure which shows the periphery of the 1st plate thickness part of a valve seat and a lead valve. 図6のリード弁の第1板厚部を示す平面図である。It is a top view which shows the 1st plate thickness part of the reed valve of FIG. 本実施の形態2に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。It is a vertical cross-sectional view which shows the periphery of the discharge valve mechanism of another example of the compressor which concerns on Embodiment 2, and is the figure which shows the periphery of the 1st plate thickness part of a valve seat and a reed valve. 図8のリード弁の第1板厚部を示す平面図である。It is a top view which shows the 1st plate thickness part of the reed valve of FIG. 本実施の形態2に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。It is a vertical cross-sectional view which shows the periphery of the discharge valve mechanism of another example of the compressor which concerns on Embodiment 2, and is the figure which shows the periphery of the 1st plate thickness part of a valve seat and a reed valve.
 以下の各実施の形態で、本発明に係る圧縮機の一例について説明する。なお、本発明に係る圧縮機は、圧縮機構部の吐出口から吐出された冷媒が密閉容器内の吐出室に一旦吐出される構成となっており、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた圧縮機である。従来、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた圧縮機としては、スクロール圧縮機、ベーン圧縮機、ロータリ圧縮機及びレシプロ圧縮機等、種々の種類の圧縮機が知られている。以下の各実施の形態では、スクロール圧縮機を例に、本発明に係る圧縮機の一例を説明する。しかしながら、本発明は、スクロール圧縮機に採用される発明に限定されるものではない。スクロール圧縮機以外の圧縮機に本発明を採用してもよい。また、以下の各実施の形態に用いられる各図面では、本発明に係る圧縮機の構成部品の大きさが、本発明を用いて実際に製造された圧縮機の構成部品の大きさとは異なる場合がある。 An example of the compressor according to the present invention will be described in each of the following embodiments. The compressor according to the present invention has a configuration in which the refrigerant discharged from the discharge port of the compression mechanism unit is once discharged into the discharge chamber in the closed container, and covers the discharge port so as to be openable and closable from the discharge chamber side. It is a compressor equipped with a discharge valve mechanism. Conventionally, various types of compressors such as scroll compressors, vane compressors, rotary compressors, and reciprocating compressors are known as compressors provided with a discharge valve mechanism that can open and close the discharge port from the discharge chamber side. ing. In each of the following embodiments, an example of the compressor according to the present invention will be described by taking a scroll compressor as an example. However, the present invention is not limited to the invention adopted in the scroll compressor. The present invention may be adopted for a compressor other than the scroll compressor. Further, in each of the drawings used in the following embodiments, the size of the component of the compressor according to the present invention is different from the size of the component of the compressor actually manufactured by using the present invention. There is.
実施の形態1.
 図1は、本実施の形態1に係る圧縮機の縦断面図である。
 以下、図1に基づいて、本実施の形態1に係る圧縮機200の概略構成について説明する。圧縮機200は、冷凍サイクル装置の構成機器の1つとなるものである。より詳しくは、圧縮機200は、冷凍サイクル装置内を循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出する。冷凍サイクル装置は、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、及び給湯器等の各種産業機械に用いられている。
Embodiment 1.
FIG. 1 is a vertical cross-sectional view of the compressor according to the first embodiment.
Hereinafter, the schematic configuration of the compressor 200 according to the first embodiment will be described with reference to FIG. The compressor 200 is one of the constituent devices of the refrigeration cycle device. More specifically, the compressor 200 sucks in the refrigerant circulating in the refrigeration cycle device, compresses it, and discharges it in a high temperature and high pressure state. Refrigerating cycle devices are used in various industrial machines such as refrigerators, freezers, vending machines, air conditioners, refrigerating devices, and water heaters.
 圧縮機200は、スクロール圧縮機であり、スクロール式の圧縮機構部10と、密閉容器1と、吐出弁機構100とを備えている。圧縮機構部10は、吐出口32が形成され、内部で圧縮した冷媒を吐出口32から吐出するものである。圧縮機構部10は、固定スクロール11及び揺動スクロール21を備えたスクロール式の圧縮機構部となっている。密閉容器1には、圧縮機構部10及び吐出弁機構100が収納されている。また、密閉容器1の内部には、圧縮機構部10の吐出口32から吐出された冷媒が流入する吐出室9が形成されている。吐出弁機構100は、吐出室9側から圧縮機構部10の吐出口32を開閉自在に覆うものである。また、本実施の形態1に係る圧縮機200は、密閉容器1に収納された電動機40及び駆動軸50を備えている。駆動軸50は、電動機40の駆動力を圧縮機構部10に伝達するものである。以下、圧縮機200の構成について、さらに具体的に説明していく。 The compressor 200 is a scroll compressor, and includes a scroll type compression mechanism unit 10, a closed container 1, and a discharge valve mechanism 100. The compression mechanism unit 10 has a discharge port 32 formed therein, and discharges the internally compressed refrigerant from the discharge port 32. The compression mechanism unit 10 is a scroll-type compression mechanism unit including a fixed scroll 11 and a swing scroll 21. The compression mechanism portion 10 and the discharge valve mechanism 100 are housed in the closed container 1. Further, inside the closed container 1, a discharge chamber 9 into which the refrigerant discharged from the discharge port 32 of the compression mechanism portion 10 flows is formed. The discharge valve mechanism 100 covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side. Further, the compressor 200 according to the first embodiment includes an electric motor 40 and a drive shaft 50 housed in a closed container 1. The drive shaft 50 transmits the driving force of the electric motor 40 to the compression mechanism unit 10. Hereinafter, the configuration of the compressor 200 will be described in more detail.
 密閉容器1は、圧縮機200の外郭を構成するものである。本実施の形態1では、密閉容器1は、センターシェル2、アッパーシェル3及びロアシェル4を備えている。センターシェル2は、上部及び下部が開口した筒状の部材である。アッパーシェル3は、センターシェル2の上部の開口部を塞ぐ部材である。ロアシェル4は、センターシェル2の下部の開口部を塞ぐ部材である。また、密閉容器1の底部には、油溜まりが形成されている。油溜まりには、圧縮機構部10等の摺動部に供給する冷凍機油が貯留されている。 The closed container 1 constitutes the outer shell of the compressor 200. In the first embodiment, the closed container 1 includes a center shell 2, an upper shell 3, and a lower shell 4. The center shell 2 is a tubular member having an open upper portion and a lower portion. The upper shell 3 is a member that closes the upper opening of the center shell 2. The lower shell 4 is a member that closes the opening at the lower part of the center shell 2. An oil sump is formed at the bottom of the closed container 1. Refrigerating machine oil to be supplied to sliding parts such as the compression mechanism part 10 is stored in the oil pool.
 密閉容器1の内部は、圧縮機構部10の固定スクロール11と後述するフレーム60とによって、流入室8と上述の吐出室9とに仕切られている。具体的には、後述のように、フレーム60は、固定スクロール11の下方に配置されている。密閉容器1内において、フレーム60の下方となる位置が流入室8となっており、固定スクロール11の上方となる位置が吐出室9となっている。そして、密閉容器1には、流入室8に連通する吸入パイプ6と、吐出室9に連通する吐出パイプ7とが設けられている。本実施の形態1では、吸入パイプ6は、密閉容器1のセンターシェル2に固定されている。吐出パイプ7は、密閉容器1のアッパーシェル3に固定されている。 The inside of the closed container 1 is divided into an inflow chamber 8 and a discharge chamber 9 described above by a fixed scroll 11 of the compression mechanism portion 10 and a frame 60 described later. Specifically, as will be described later, the frame 60 is arranged below the fixed scroll 11. In the closed container 1, the position below the frame 60 is the inflow chamber 8, and the position above the fixed scroll 11 is the discharge chamber 9. The closed container 1 is provided with a suction pipe 6 communicating with the inflow chamber 8 and a discharge pipe 7 communicating with the discharge chamber 9. In the first embodiment, the suction pipe 6 is fixed to the center shell 2 of the closed container 1. The discharge pipe 7 is fixed to the upper shell 3 of the closed container 1.
 流入室8には、吸入パイプ6を通って、低温低圧のガス状冷媒が流入する。すなわち、流入室8には、圧縮機構部10で圧縮される低温低圧のガス状冷媒が流入する。吐出室9には、圧縮機構部10で圧縮されて吐出口32から吐出された高温高圧のガス状冷媒が流入する。このため、流入室8は、吐出室9と比べ、低圧の部屋となる。換言すると、吐出室9は、流入室8と比べ、高圧の部屋となる。吐出室9に流入した高温高圧のガス状冷媒は、吐出パイプ7を通って、圧縮機200の外部へ流出する。 Low temperature and low pressure gaseous refrigerant flows into the inflow chamber 8 through the suction pipe 6. That is, the low-temperature low-pressure gaseous refrigerant compressed by the compression mechanism unit 10 flows into the inflow chamber 8. The high-temperature and high-pressure gaseous refrigerant compressed by the compression mechanism unit 10 and discharged from the discharge port 32 flows into the discharge chamber 9. Therefore, the inflow chamber 8 is a lower pressure chamber than the discharge chamber 9. In other words, the discharge chamber 9 is a higher pressure chamber than the inflow chamber 8. The high-temperature and high-pressure gaseous refrigerant that has flowed into the discharge chamber 9 flows out of the compressor 200 through the discharge pipe 7.
 密閉容器1の内部には、さらに、駆動軸50の軸方向に電動機40を挟んで対向するように、フレーム60とサブフレーム65とが収納されている。フレーム60は、圧縮機構部10を保持するものである。フレーム60は、電動機40の上側に配置されて、電動機40と圧縮機構部10との間に位置している。サブフレーム65は、電動機40の下側に位置している。フレーム60及びサブフレーム65は、密閉容器1のセンターシェル2の内周面に、焼嵌め等によって固定されている。 Inside the closed container 1, a frame 60 and a subframe 65 are further housed so as to face each other with the motor 40 in the axial direction of the drive shaft 50. The frame 60 holds the compression mechanism unit 10. The frame 60 is arranged above the electric motor 40 and is located between the electric motor 40 and the compression mechanism portion 10. The subframe 65 is located below the motor 40. The frame 60 and the subframe 65 are fixed to the inner peripheral surface of the center shell 2 of the closed container 1 by shrink fitting or the like.
 駆動軸50は、電動機40の駆動力を揺動スクロール21に伝達する。揺動スクロール21は、駆動軸50に偏心して連結され、オルダムリング70を介してフレーム60と組み合わされる。すなわち、オルダムリング70は、揺動スクロール21とフレーム60との間に配置されている。詳しくは、オルダムリング70は、揺動スクロール21の後述する台板22とフレーム60との間に配置されている。オルダムリング70は、リング部71と、リング部71の上面に設けられた一対のキー72と、リング部71の下面に設けられた一対のキー73とを備える。一方、揺動スクロール21の台板22の下面22aには、一対のキー72が摺動自在に挿入される一対のキー溝26が形成されている。また、フレーム60には、一対のキー73が摺動自在に挿入される一対のキー溝61が形成されている。電動機40の駆動力によって揺動スクロール21が回転しようとした際、オルダムリング70によって揺動スクロール21の自転が規制される。このため、電動機40の駆動力によって揺動スクロール21が回転しようとした際、揺動スクロール21は、自転することなく公転運動する。すなわち、揺動スクロール21は、揺動運動する。 The drive shaft 50 transmits the driving force of the motor 40 to the swing scroll 21. The swing scroll 21 is eccentrically connected to the drive shaft 50 and is combined with the frame 60 via the old dam ring 70. That is, the old dam ring 70 is arranged between the swing scroll 21 and the frame 60. Specifically, the old dam ring 70 is arranged between the base plate 22 and the frame 60, which will be described later, of the swing scroll 21. The oldam ring 70 includes a ring portion 71, a pair of keys 72 provided on the upper surface of the ring portion 71, and a pair of keys 73 provided on the lower surface of the ring portion 71. On the other hand, a pair of key grooves 26 into which a pair of keys 72 are slidably inserted are formed on the lower surface 22a of the base plate 22 of the swing scroll 21. Further, the frame 60 is formed with a pair of key grooves 61 into which a pair of keys 73 are slidably inserted. When the swing scroll 21 tries to rotate due to the driving force of the electric motor 40, the rotation of the swing scroll 21 is regulated by the old dam ring 70. Therefore, when the swing scroll 21 tries to rotate due to the driving force of the electric motor 40, the swing scroll 21 revolves without rotating. That is, the rocking scroll 21 swings.
 圧縮機構部10は、上述のように固定スクロール11及び揺動スクロール21を備えている。固定スクロール11は、台板12と、渦巻歯13とを備えている。渦巻歯13は、台板12の下面に設けられている。固定スクロール11は、図示せぬボルト等によってフレーム60に固定されている。 The compression mechanism unit 10 includes a fixed scroll 11 and a swing scroll 21 as described above. The fixed scroll 11 includes a base plate 12 and spiral teeth 13. The spiral teeth 13 are provided on the lower surface of the base plate 12. The fixed scroll 11 is fixed to the frame 60 by a bolt or the like (not shown).
 揺動スクロール21は、台板22と、渦巻歯23とを備えている。台板22は、上面が固定スクロール11と対向している。渦巻歯23は、渦巻歯13と実質的に同一形状をしており、台板22の上面に設けられている。また、揺動スクロール21は、台板22の下面に、中空円筒形状のボス部24が設けられている。 The swing scroll 21 includes a base plate 22 and spiral teeth 23. The upper surface of the base plate 22 faces the fixed scroll 11. The spiral tooth 23 has substantially the same shape as the spiral tooth 13 and is provided on the upper surface of the base plate 22. Further, the swing scroll 21 is provided with a hollow cylindrical boss portion 24 on the lower surface of the base plate 22.
 揺動スクロール21及び固定スクロール11は、渦巻歯23と渦巻歯13とを組み合わせた状態で密閉容器1内に配置されている。渦巻歯23と渦巻歯13とが組み合わされた状態では、渦巻歯23の巻き方向と渦巻歯13の巻き方向とが逆になる。このように、固定スクロール11の渦巻歯13と揺動スクロール21の渦巻歯23とが組み合わされることにより、渦巻歯13と渦巻歯23との間に、冷媒を圧縮する圧縮室30が形成される。圧縮室30は、揺動スクロール21の揺動運動により、容積が変化する。なお、固定スクロール11の渦巻歯13の先端には、渦巻歯13と揺動スクロール21の台板22との間からの冷媒漏れを低減するため、シール部材14が設けられている。同様に、揺動スクロール21の渦巻歯23の先端には、渦巻歯23と固定スクロール11の台板12との間からの冷媒漏れを低減するため、シール部材27が設けられている。 The swing scroll 21 and the fixed scroll 11 are arranged in the closed container 1 in a state where the spiral teeth 23 and the spiral teeth 13 are combined. In the state where the spiral tooth 23 and the spiral tooth 13 are combined, the winding direction of the spiral tooth 23 and the winding direction of the spiral tooth 13 are opposite to each other. By combining the spiral teeth 13 of the fixed scroll 11 and the spiral teeth 23 of the swing scroll 21 in this way, a compression chamber 30 for compressing the refrigerant is formed between the spiral teeth 13 and the spiral teeth 23. .. The volume of the compression chamber 30 changes due to the swinging motion of the swinging scroll 21. A seal member 14 is provided at the tip of the spiral tooth 13 of the fixed scroll 11 in order to reduce refrigerant leakage from between the spiral tooth 13 and the base plate 22 of the swing scroll 21. Similarly, a seal member 27 is provided at the tip of the spiral tooth 23 of the swing scroll 21 in order to reduce refrigerant leakage from between the spiral tooth 23 and the base plate 12 of the fixed scroll 11.
 固定スクロール11の台板12の略中央位置には、圧縮室30の内部と外部とを連通させる連通口15が形成されている。すなわち、圧縮室30で圧縮された冷媒は、連通口15を通って、圧縮室30の内部から圧縮室30の外部へ流出する。なお、本実施の形態1に係る圧縮機200の圧縮機構部10は、吐出チャンバー31を備えている。吐出チャンバー31は、圧縮室30の外部側で、連通口15を覆うものである。吐出チャンバー31は、固定スクロール11の台板12の上面にボルト等によって固定されている。また、吐出チャンバー31には、吐出口32が形成されている。このため、本実施の形態1では、圧縮室30で圧縮された冷媒は、連通口15から吐出チャンバー31の内部に吐出され、その後に吐出口32から吐出室9に流入する構成となっている。すなわち、本実施の形態1では、吐出室9側から圧縮機構部10の吐出口32を開閉自在に覆う吐出弁機構100は、吐出チャンバー31に取り付けられている。この吐出弁機構100は、吐出室9から吐出口32への冷媒の逆流を防止するものである。吐出弁機構100の詳細は、後述する。 A communication port 15 for communicating the inside and the outside of the compression chamber 30 is formed at a substantially central position of the base plate 12 of the fixed scroll 11. That is, the refrigerant compressed in the compression chamber 30 flows out from the inside of the compression chamber 30 to the outside of the compression chamber 30 through the communication port 15. The compression mechanism portion 10 of the compressor 200 according to the first embodiment includes a discharge chamber 31. The discharge chamber 31 covers the communication port 15 on the outer side of the compression chamber 30. The discharge chamber 31 is fixed to the upper surface of the base plate 12 of the fixed scroll 11 with bolts or the like. Further, a discharge port 32 is formed in the discharge chamber 31. Therefore, in the first embodiment, the refrigerant compressed in the compression chamber 30 is discharged from the communication port 15 into the discharge chamber 31, and then flows into the discharge chamber 9 from the discharge port 32. .. That is, in the first embodiment, the discharge valve mechanism 100 that covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side is attached to the discharge chamber 31. The discharge valve mechanism 100 prevents the backflow of the refrigerant from the discharge chamber 9 to the discharge port 32. Details of the discharge valve mechanism 100 will be described later.
 フレーム60は、揺動スクロール21の台板22の下面22aに下方から対向する面を有している。この面は、揺動スクロール21を揺動自在に支持する面であり、冷媒の圧縮過程で揺動スクロール21に作用する荷重を支持する面である。このため、この面には、揺動スクロール21の台板22の下面22aとの摺動性改善を目的として、スラストプレート25が設けられている。また、フレーム60には、流入室8に流入した冷媒を圧縮機構部10内に導く図示せぬ流路が形成されている。 The frame 60 has a surface facing the lower surface 22a of the base plate 22 of the rocking scroll 21 from below. This surface is a surface that swingably supports the rocking scroll 21, and is a surface that supports the load acting on the rocking scroll 21 in the process of compressing the refrigerant. Therefore, a thrust plate 25 is provided on this surface for the purpose of improving the slidability of the rocking scroll 21 with the lower surface 22a of the base plate 22. Further, the frame 60 is formed with a flow path (not shown) that guides the refrigerant flowing into the inflow chamber 8 into the compression mechanism portion 10.
 駆動軸50に駆動力を供給する電動機40は、固定子41と回転子42とを有している。固定子41は、密閉容器1のセンターシェル2の内周面に、焼嵌め等によって固定されている。また、固定子41は、電源端子5に電気的に接続されており、該電源端子5からから電力が供給される。回転子42は、固定子41の内周側に配置され、駆動軸50の後述する主軸部51に焼嵌め等によって接続されている。 The electric motor 40 that supplies the driving force to the drive shaft 50 has a stator 41 and a rotor 42. The stator 41 is fixed to the inner peripheral surface of the center shell 2 of the closed container 1 by shrink fitting or the like. Further, the stator 41 is electrically connected to the power supply terminal 5, and power is supplied from the power supply terminal 5. The rotor 42 is arranged on the inner peripheral side of the stator 41, and is connected to the spindle portion 51 of the drive shaft 50, which will be described later, by shrink fitting or the like.
 駆動軸50は、主軸部51と、主軸部51の上端に設けられた偏心軸部52とを備えている。主軸部51の上部は、フレーム60に設けられた主軸受62に回転自在に支持されている。また、主軸部51の下部は、サブフレーム65に設けられた副軸受66に回転自在に支持されている。なお、サブフレーム65には、容積型のポンプ53も設けられている。密閉容器1の上述の油溜まりに貯留された冷凍機油は、ポンプ53によってくみ上げられ、駆動軸50に形成された油供給穴54を通って、圧縮機構部10等の摺動部に供給される。 The drive shaft 50 includes a spindle portion 51 and an eccentric shaft portion 52 provided at the upper end of the spindle portion 51. The upper portion of the spindle portion 51 is rotatably supported by a spindle bearing 62 provided on the frame 60. Further, the lower portion of the spindle portion 51 is rotatably supported by an auxiliary bearing 66 provided on the subframe 65. The subframe 65 is also provided with a positive displacement pump 53. The refrigerating machine oil stored in the above-mentioned oil sump of the closed container 1 is pumped up by the pump 53 and supplied to a sliding portion such as the compression mechanism portion 10 through an oil supply hole 54 formed in the drive shaft 50. ..
 主軸部51が回転すると、主軸部51に対して偏心している偏心軸部52は、主軸部51に対して、主軸部51の軸心と偏心軸部52の軸心との間の距離となる半径で回転する。これにより、偏心軸部52と連結されている揺動スクロール21は、主軸部51に対して上述の半径で回転しようとする。換言すると、揺動スクロール21は、固定されている固定スクロール11に対して、上述の半径で回転しようとする。この際、上述のように、揺動スクロール21は、オルダムリング70によって自転が規制されている。このため、揺動スクロール21は、固定スクロール11に対して、上述の半径で揺動する。 When the spindle portion 51 rotates, the eccentric shaft portion 52 that is eccentric with respect to the spindle portion 51 becomes the distance between the axis of the spindle portion 51 and the axis of the eccentric shaft portion 52 with respect to the spindle portion 51. Rotate with a radius. As a result, the swing scroll 21 connected to the eccentric shaft portion 52 tends to rotate with respect to the spindle portion 51 with the above-mentioned radius. In other words, the swing scroll 21 attempts to rotate with respect to the fixed fixed scroll 11 with the above-mentioned radius. At this time, as described above, the rotation of the swing scroll 21 is regulated by the old dam ring 70. Therefore, the swing scroll 21 swings with respect to the fixed scroll 11 with the above-mentioned radius.
 また、本実施の形態1に係る圧縮機200は、揺動スクロール21が揺動することにより生じる荷重のアンバランスを相殺するため、第1バランスウェイト55及び第2バランスウェイト56を備えている。第1バランスウェイト55は、主軸部51におけるフレーム60と回転子42との間となる位置に、焼嵌め等によって取り付けられている。第2バランスウェイト56は、回転子42の下部に取り付けられている。 Further, the compressor 200 according to the first embodiment includes a first balance weight 55 and a second balance weight 56 in order to offset the imbalance of the load caused by the swinging of the swing scroll 21. The first balance weight 55 is attached to the spindle portion 51 at a position between the frame 60 and the rotor 42 by shrink fitting or the like. The second balance weight 56 is attached to the lower part of the rotor 42.
 図2は、本実施の形態1に係る圧縮機の吐出弁機構周辺を示す縦断面図である。図3は、本実施の形態1に係る圧縮機の吐出弁機構のリード弁の平面図である。なお、図3には、リード弁110が弁座35に接触している状態における該弁座35の外周部35aの位置を、想像線である二点鎖線で示している。以下、図2及び図3を用いて、吐出弁機構100周辺の構成と、吐出弁機構100の詳細構成について説明する。 FIG. 2 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of the compressor according to the first embodiment. FIG. 3 is a plan view of the reed valve of the discharge valve mechanism of the compressor according to the first embodiment. Note that FIG. 3 shows the position of the outer peripheral portion 35a of the valve seat 35 in a state where the reed valve 110 is in contact with the valve seat 35 by a two-dot chain line which is an imaginary line. Hereinafter, the configuration around the discharge valve mechanism 100 and the detailed configuration of the discharge valve mechanism 100 will be described with reference to FIGS. 2 and 3.
 圧縮機構部10の吐出チャンバー31は、吐出口32の吐出室9側の端部の周縁に、例えば平面視略円環状の弁座35を備えている。吐出弁機構100は、吐出室9側から圧縮機構部10の吐出口32を開閉自在に覆うリード弁110を備えている。リード弁110は、固定箇所において、吐出チャンバー31に固定されている。本実施の形態1では、リード弁110の端部111が、リード弁110の吐出チャンバー31との固定箇所となっている。また、本実施の形態1では、ボルトである固定具101を用いて、リード弁110を吐出チャンバー31に固定している。具体的には、リード弁110の端部111には、貫通穴113が形成されている。貫通穴113に挿入された固定具101が吐出チャンバーに形成された雌ネジ部にねじ込まれることにより、リード弁110が吐出チャンバー31に固定されている。 The discharge chamber 31 of the compression mechanism unit 10 is provided with, for example, a valve seat 35 having a substantially annular shape in a plan view on the peripheral edge of the end portion of the discharge port 32 on the discharge chamber 9 side. The discharge valve mechanism 100 includes a reed valve 110 that covers the discharge port 32 of the compression mechanism unit 10 so as to be openable and closable from the discharge chamber 9 side. The reed valve 110 is fixed to the discharge chamber 31 at the fixing point. In the first embodiment, the end 111 of the reed valve 110 is a fixed portion of the reed valve 110 with the discharge chamber 31. Further, in the first embodiment, the reed valve 110 is fixed to the discharge chamber 31 by using a fixture 101 which is a bolt. Specifically, a through hole 113 is formed at the end 111 of the reed valve 110. The lead valve 110 is fixed to the discharge chamber 31 by screwing the fixture 101 inserted into the through hole 113 into the female screw portion formed in the discharge chamber.
 リード弁110は、固定箇所である端部111から吐出口32に向かって延びている。そして、端部112が弁座35に接触している。換言すると、端部112が弁座35に着座している。リード弁110は、端部112に吐出口32から吐出される冷媒の圧力がかかると、端部111が固定端となり、端部112が自由端となって弾性変形する。これにより、圧縮機構部10の内部と吐出室9とが連通する。さらに詳しく説明すると、吐出口32から吐出される冷媒の圧力が上がってくると、当該冷媒の圧力によってリード弁110が端部111を固定端として弾性変形し、端部112が弁座35から離れる。これにより、吐出口32が開かれる。そして、圧縮機構部10で圧縮された冷媒は、吐出口32から吐出され、弁座35とリード弁110との間を通り、吐出室9に流入する。また、吐出口32から吐出される冷媒の圧力が下がってくると、リード弁110の弾性変形が戻り、リード弁110の端部112が弁座35に接触する。これにより、吐出口32が閉じられ、吐出口32から吐出室9への冷媒の流入が終了する。また、これにより、吐出室9から吐出口32への冷媒の逆流が防止される。 The reed valve 110 extends from the end portion 111, which is a fixed portion, toward the discharge port 32. Then, the end portion 112 is in contact with the valve seat 35. In other words, the end 112 is seated on the valve seat 35. When the pressure of the refrigerant discharged from the discharge port 32 is applied to the end portion 112 of the reed valve 110, the end portion 111 becomes a fixed end and the end portion 112 becomes a free end and elastically deforms. As a result, the inside of the compression mechanism unit 10 and the discharge chamber 9 communicate with each other. More specifically, when the pressure of the refrigerant discharged from the discharge port 32 increases, the reed valve 110 elastically deforms with the end 111 as a fixed end due to the pressure of the refrigerant, and the end 112 separates from the valve seat 35. .. As a result, the discharge port 32 is opened. Then, the refrigerant compressed by the compression mechanism unit 10 is discharged from the discharge port 32, passes between the valve seat 35 and the reed valve 110, and flows into the discharge chamber 9. Further, when the pressure of the refrigerant discharged from the discharge port 32 decreases, the elastic deformation of the reed valve 110 returns, and the end portion 112 of the reed valve 110 comes into contact with the valve seat 35. As a result, the discharge port 32 is closed, and the inflow of the refrigerant from the discharge port 32 into the discharge chamber 9 is completed. Further, this prevents the backflow of the refrigerant from the discharge chamber 9 to the discharge port 32.
 また、本実施の形態1に係る吐出弁機構100は、弁押さえ120を備えている。弁押さえ120は、吐出口32から吐出される冷媒の圧力によってリード弁110が弾性変形した際に該リード弁110と接触し、リード弁110が曲がりすぎることを防止するものである。具体的には、弁押さえ120は、リード弁110の上方に配置されている。弁押さえ120の端部121には、貫通穴123が形成されている。貫通穴123に挿入された固定具101が吐出チャンバーに形成された雌ネジ部にねじ込まれることにより、弁押さえ120はリード弁110と共に吐出チャンバー31に固定されている。また、弁押さえ120の端部122は、リード弁110の端部112の上方に配置されている。そして、リード弁110が弾性変形していない状態においては、端部121から端部122に向かうにしたがって、リード弁110と弁押さえ120との間の隙間が徐々に広くなっている。これにより、吐出口32から吐出される冷媒の圧力によってリード弁110が弾性変形した際、リード弁110と弁押さえ120とが接触し、リード弁110が曲がりすぎることを防止できる。 Further, the discharge valve mechanism 100 according to the first embodiment includes a valve retainer 120. The valve retainer 120 prevents the reed valve 110 from bending too much due to contact with the reed valve 110 when the reed valve 110 is elastically deformed by the pressure of the refrigerant discharged from the discharge port 32. Specifically, the valve retainer 120 is arranged above the lead valve 110. A through hole 123 is formed in the end portion 121 of the valve retainer 120. The valve retainer 120 is fixed to the discharge chamber 31 together with the reed valve 110 by screwing the fixture 101 inserted into the through hole 123 into the female screw portion formed in the discharge chamber. Further, the end portion 122 of the valve retainer 120 is arranged above the end portion 112 of the reed valve 110. When the reed valve 110 is not elastically deformed, the gap between the reed valve 110 and the valve retainer 120 gradually widens from the end 121 to the end 122. As a result, when the reed valve 110 is elastically deformed by the pressure of the refrigerant discharged from the discharge port 32, the reed valve 110 and the valve retainer 120 come into contact with each other, and the reed valve 110 can be prevented from bending too much.
 ここで、従来のリード弁は、全体に渡って一様な厚みの板状部材となっていた。一方、本実施の形態1に係るリード弁110は、場所によって厚みが異なっている。具体的には、端部112側における弁座35と接触する箇所を含む箇所は、厚みT1の第1板厚部114となっている。また、第1板厚部114から固定箇所である端部111へ向かって延びる箇所は、厚みT2の第2板厚部115となっている。そして、第1板厚部114の厚みT1は、第2板厚部115の厚みT2よりも厚くなっている。なお、実施の形態2で後述するように第1板厚部114に凹凸が形成されている場合、第1板厚部114の厚みT1は、第1板厚部114の最大厚みを表すものとする。 Here, the conventional reed valve is a plate-shaped member having a uniform thickness throughout. On the other hand, the reed valve 110 according to the first embodiment has a different thickness depending on the location. Specifically, the portion on the end 112 side that includes the portion that comes into contact with the valve seat 35 is the first plate thick portion 114 having a thickness T1. Further, a portion extending from the first plate thick portion 114 toward the end portion 111 which is a fixed portion is a second plate thick portion 115 having a thickness T2. The thickness T1 of the first plate thick portion 114 is thicker than the thickness T2 of the second plate thick portion 115. When unevenness is formed on the first plate thickness portion 114 as described later in the second embodiment, the thickness T1 of the first plate thickness portion 114 represents the maximum thickness of the first plate thickness portion 114. To do.
 また、本実施の形態1では、第1板厚部114と弁座35との対向方向に第1板厚部114及び弁座35を観察した際、第1板厚部114の外周部114bは、弁座35の外周部35aよりも外側に配置されている。換言すると、上下方向に第1板厚部114及び弁座35を観察した際、第1板厚部114の外周部114bは、弁座35の外周部35aよりも外側に配置されている。 Further, in the first embodiment, when the first plate thickness portion 114 and the valve seat 35 are observed in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the outer peripheral portion 114b of the first plate thickness portion 114 is formed. , It is arranged outside the outer peripheral portion 35a of the valve seat 35. In other words, when observing the first plate thickness portion 114 and the valve seat 35 in the vertical direction, the outer peripheral portion 114b of the first plate thickness portion 114 is arranged outside the outer peripheral portion 35a of the valve seat 35.
 次に、圧縮機200の動作について説明する。
 電源端子5に通電されると、固定子41の電線部に電流が流れ、磁界が発生する。この磁界は、回転子42を回転させるように働く。つまり、回転子42にトルクが発生し、回転子42が回転する。回転子42が回転すると、それに伴って、回転子42接続されている駆動軸50も回転する。駆動軸50が回転すると、オルダムリング70によって自転が規制された揺動スクロール21は、揺動運動する。これにより、圧縮機200は、公知の圧縮原理によって冷媒の圧縮を開始する。なお、回転子42が回転するとき、第1バランスウェイト55及び第2バランスウェイト56により、揺動スクロール21が揺動することにより生じる荷重のアンバランスを相殺している。
Next, the operation of the compressor 200 will be described.
When the power supply terminal 5 is energized, a current flows through the electric wire portion of the stator 41 to generate a magnetic field. This magnetic field acts to rotate the rotor 42. That is, torque is generated in the rotor 42, and the rotor 42 rotates. When the rotor 42 rotates, the drive shaft 50 connected to the rotor 42 also rotates accordingly. When the drive shaft 50 rotates, the swing scroll 21 whose rotation is regulated by the old dam ring 70 swings. As a result, the compressor 200 starts compressing the refrigerant according to a known compression principle. When the rotor 42 rotates, the first balance weight 55 and the second balance weight 56 cancel the imbalance of the load caused by the swing of the swing scroll 21.
 冷媒の圧縮が開始されると、吸入パイプ6を通って、低温低圧のガス状冷媒が密閉容器1内の流入室8に流入する。流入室8に流入した低温低圧のガス状冷媒の一部は、フレーム60に形成された図示せぬ流路を通って、圧縮機構部10の外周側から圧縮室30に吸入される。また、流入室8に流入した低温低圧のガス状冷媒の残りの一部は、密閉容器1の油溜まりに貯留されている冷凍機油及び電動機40等を冷却する。 When the compression of the refrigerant is started, the low-temperature low-pressure gaseous refrigerant flows into the inflow chamber 8 in the closed container 1 through the suction pipe 6. A part of the low-temperature and low-pressure gaseous refrigerant that has flowed into the inflow chamber 8 is sucked into the compression chamber 30 from the outer peripheral side of the compression mechanism portion 10 through a flow path (not shown) formed in the frame 60. Further, the remaining part of the low-temperature low-pressure gaseous refrigerant that has flowed into the inflow chamber 8 cools the refrigerating machine oil, the electric motor 40, and the like stored in the oil sump of the closed container 1.
 圧縮室30は、揺動スクロール21の揺動運動によって揺動スクロール21の中心へ移動して行く際、体積が縮小していく。この工程により、圧縮室30に吸入された低温低圧のガス状冷媒は高温高圧のガス状冷媒へと圧縮されていく。このように圧縮された冷媒は、固定スクロール11の連通口15を通って吐出チャンバー31へ流入する。そして、吐出チャンバー31に流入して貯留されている冷媒の圧力が上がってくると、すなわち吐出口32から吐出される冷媒の圧力が上がってくると、当該冷媒の圧力によってリード弁110が端部111を固定端として弾性変形し、端部112が弁座35から離れる。これにより、吐出口32が開かれる。そして、圧縮機構部10で圧縮された冷媒は、吐出口32から吐出され、弁座35とリード弁110との間を通り、吐出室9に流入する。吐出室9に流入した高温高圧のガス状冷媒は、吐出パイプ7を通って、圧縮機200の外部へ流出する。 The volume of the compression chamber 30 shrinks as it moves to the center of the rocking scroll 21 due to the rocking motion of the rocking scroll 21. By this step, the low-temperature low-pressure gaseous refrigerant sucked into the compression chamber 30 is compressed into the high-temperature and high-pressure gaseous refrigerant. The refrigerant compressed in this way flows into the discharge chamber 31 through the communication port 15 of the fixed scroll 11. Then, when the pressure of the refrigerant flowing into and stored in the discharge chamber 31 rises, that is, when the pressure of the refrigerant discharged from the discharge port 32 rises, the pressure of the refrigerant causes the lead valve 110 to end. The 111 is elastically deformed with the fixed end, and the end 112 is separated from the valve seat 35. As a result, the discharge port 32 is opened. Then, the refrigerant compressed by the compression mechanism unit 10 is discharged from the discharge port 32, passes between the valve seat 35 and the reed valve 110, and flows into the discharge chamber 9. The high-temperature and high-pressure gaseous refrigerant that has flowed into the discharge chamber 9 flows out of the compressor 200 through the discharge pipe 7.
 また、吐出口32から吐出される冷媒の圧力が下がってくると、リード弁110の弾性変形が戻り、リード弁110の端部112が弁座35に接触する。これにより、吐出口32が閉じられ、吐出口32から吐出室9への冷媒の流入が終了する。また、これにより、吐出室9から吐出口32への冷媒の逆流が防止される。 Further, when the pressure of the refrigerant discharged from the discharge port 32 decreases, the elastic deformation of the reed valve 110 returns, and the end 112 of the reed valve 110 comes into contact with the valve seat 35. As a result, the discharge port 32 is closed, and the inflow of the refrigerant from the discharge port 32 into the discharge chamber 9 is completed. Further, this prevents the backflow of the refrigerant from the discharge chamber 9 to the discharge port 32.
 ところで、リード弁110の弾性変形が戻り、吐出口32がリード弁110で閉じられる際、リード弁110における弁座35との接触箇所には、弁座35へ衝突した際の衝撃が加わる。この衝撃によってリード弁110が損傷することを抑制するためには、リード弁110における弁座35との接触箇所の厚みを、ある程度厚くする必要がある。このため、本実施の形態1に係るリード弁110においても、弁座35との接触箇所を含む第1板厚部114の厚みT1を、弁座35へ衝突した際に第1板厚部114の損傷を抑制できる厚みにしている。 By the way, when the elastic deformation of the reed valve 110 returns and the discharge port 32 is closed by the reed valve 110, an impact when the reed valve 110 collides with the valve seat 35 is applied to the contact point with the valve seat 35. In order to prevent the reed valve 110 from being damaged by this impact, it is necessary to increase the thickness of the contact portion of the reed valve 110 with the valve seat 35 to some extent. Therefore, also in the reed valve 110 according to the first embodiment, when the thickness T1 of the first plate thickness portion 114 including the contact portion with the valve seat 35 collides with the valve seat 35, the first plate thickness portion 114 The thickness is set so that damage can be suppressed.
 ここで、従来のリード弁は、上述のように、全体に渡って一様な厚みの板状部材となっている。このため、従来のリード弁においては、リード弁の損傷を抑制するためにリード弁の厚みを厚くすると、リード弁の剛性が高くなり、リード弁が弾性変形しにくくなる。この結果、吐出口が開かれた際に弁座とリード弁との間の隙間が小さくなり、弁座とリード弁との間の流路抵抗が増加する。したがって、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた従来の圧縮機においては、リード弁の損傷を抑制するためにリード弁の厚みを厚くすると、圧縮機構部で圧縮された冷媒が吐出室に流入しにくくなり、該圧縮機の性能が低下してしまう。 Here, as described above, the conventional reed valve is a plate-shaped member having a uniform thickness throughout. Therefore, in the conventional reed valve, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, the rigidity of the reed valve is increased and the reed valve is less likely to be elastically deformed. As a result, when the discharge port is opened, the gap between the valve seat and the reed valve becomes smaller, and the flow path resistance between the valve seat and the reed valve increases. Therefore, in a conventional compressor provided with a discharge valve mechanism that covers the discharge port from the discharge chamber side so as to be openable and closable, if the thickness of the reed valve is increased in order to suppress damage to the reed valve, compression is performed by the compression mechanism portion. It becomes difficult for the refrigerant to flow into the discharge chamber, and the performance of the compressor deteriorates.
 一方、本実施の形態1に係る圧縮機200のリード弁110においては、第1板厚部114の厚みT1が、第2板厚部115の厚みT2より厚くなっている。換言すると、第2板厚部115の厚みT2は、第1板厚部114の厚みT1よりも薄くなっている。このため、リード弁110の損傷を抑制するために弁座35と接触する箇所を含む第1板厚部114の厚みT1を厚くした場合でも、第1板厚部114よりも薄い第2板厚部115によって、リード弁110が弾性変形しにくくなることを従来よりも抑制できる。したがって、本実施の形態1に係る圧縮機200は、リード弁110の損傷を抑制するために弁座35と接触する箇所を含む第1板厚部114の厚みT1を厚くした場合でも、性能の低下を従来よりも抑制することができる。 On the other hand, in the reed valve 110 of the compressor 200 according to the first embodiment, the thickness T1 of the first plate thickness portion 114 is thicker than the thickness T2 of the second plate thickness portion 115. In other words, the thickness T2 of the second plate thickness portion 115 is thinner than the thickness T1 of the first plate thickness portion 114. Therefore, even if the thickness T1 of the first plate thickness portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110, the second plate thickness is thinner than that of the first plate thickness portion 114. The portion 115 can prevent the reed valve 110 from being less likely to be elastically deformed than before. Therefore, the compressor 200 according to the first embodiment has a performance even when the thickness T1 of the first plate thick portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110. The decrease can be suppressed more than before.
 また、本実施の形態1に係るリード弁110においては、第2板厚部115の厚みT2が第1板厚部114の厚みT1よりも薄くなっていることにより、全体に渡って一様な厚みの板状部材となっている従来のリード弁と比べ、第1板厚部114が弁座35へ衝突した際の衝撃を抑制できる。このため、本実施の形態1に係る圧縮機200は、従来と比べ、リード弁110の損傷をより抑制することができる。 Further, in the reed valve 110 according to the first embodiment, the thickness T2 of the second plate thickness portion 115 is thinner than the thickness T1 of the first plate thickness portion 114, so that the thickness T2 is uniform throughout. Compared with the conventional reed valve which is a thick plate-shaped member, the impact when the first plate thick portion 114 collides with the valve seat 35 can be suppressed. Therefore, the compressor 200 according to the first embodiment can further suppress damage to the reed valve 110 as compared with the conventional one.
 また、本実施の形態1に係るリード弁110においては、第1板厚部114と弁座35との対向方向に第1板厚部114及び弁座35を観察した際、第1板厚部114の外周部114bは弁座35の外周部35aよりも外側に配置されている。第1板厚部114が弁座35へ衝突する際、第1板厚部114の外周部114bが最も損傷しやすい。本実施の形態1に係る圧縮機200は、第1板厚部114の外周部114bを弁座35の外周部35aよりも外側に配置しているので、第1板厚部114の外周部114bと弁座35との衝突を防止でき、リード弁110の損傷をさらに抑制することができる。 Further, in the reed valve 110 according to the first embodiment, when the first plate thickness portion 114 and the valve seat 35 are observed in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the first plate thickness portion is observed. The outer peripheral portion 114b of 114 is arranged outside the outer peripheral portion 35a of the valve seat 35. When the first plate thickness portion 114 collides with the valve seat 35, the outer peripheral portion 114b of the first plate thickness portion 114 is most likely to be damaged. In the compressor 200 according to the first embodiment, since the outer peripheral portion 114b of the first plate thick portion 114 is arranged outside the outer peripheral portion 35a of the valve seat 35, the outer peripheral portion 114b of the first plate thick portion 114 The collision between the valve seat 35 and the valve seat 35 can be prevented, and damage to the lead valve 110 can be further suppressed.
 なお、従来のスクロール圧縮機には、吐出チャンバー31を備えていないものも存在する。本実施の形態1に係る圧縮機200も、吐出チャンバー31を備えていない構成としてもよい。この場合、固定スクロール11の連通口15から吐出室9へ、圧縮機構部10で圧縮された冷媒が吐出されたこととなる。すなわち、連通口15が吐出口として機能する。圧縮機200がこのように吐出チャンバー31を備えていない構成となっている場合、吐出口として機能する連通口15の吐出室9側の端部の周縁に、弁座35を設ければよい。そして、吐出弁機構100を固定スクロール11の例えば台板12に取り付ければよい。 Note that some conventional scroll compressors do not have a discharge chamber 31. The compressor 200 according to the first embodiment may also have a configuration that does not include the discharge chamber 31. In this case, the refrigerant compressed by the compression mechanism unit 10 is discharged from the communication port 15 of the fixed scroll 11 to the discharge chamber 9. That is, the communication port 15 functions as a discharge port. When the compressor 200 is not provided with the discharge chamber 31 as described above, the valve seat 35 may be provided on the peripheral edge of the end portion of the communication port 15 functioning as the discharge port on the discharge chamber 9 side. Then, the discharge valve mechanism 100 may be attached to, for example, the base plate 12 of the fixed scroll 11.
 また、本実施の形態1のようにリード弁110を構成する場合、図2に示すように、第1板厚部114における弁押さえ120と対向する表面部114aが、第2板厚部115における弁押さえ120と対向する表面部115aよりも弁押さえ120側に突出する場合がある。このような場合、図4のように弁押さえ120を構成してもよい。 Further, when the reed valve 110 is configured as in the first embodiment, as shown in FIG. 2, the surface portion 114a facing the valve retainer 120 in the first plate thickness portion 114 is formed in the second plate thickness portion 115. The surface portion 115a facing the valve retainer 120 may protrude toward the valve retainer 120. In such a case, the valve retainer 120 may be configured as shown in FIG.
 図4は、本実施の形態1に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図である。図5は、図4に示す弁押さえの端部周辺を下方から見た図である。なお、図5は、弁押さえ120の端部122周辺を示す図となっている。また、図5には、弁押さえ120に接触した際のリード弁110の第1板厚部114及び第2板厚部115を、想像線である二点鎖線で示している。 FIG. 4 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the first embodiment. FIG. 5 is a view of the periphery of the end of the valve retainer shown in FIG. 4 as viewed from below. Note that FIG. 5 is a diagram showing the periphery of the end portion 122 of the valve retainer 120. Further, in FIG. 5, the first plate thickness portion 114 and the second plate thickness portion 115 of the reed valve 110 when it comes into contact with the valve retainer 120 are shown by an alternate long and short dash line, which is an imaginary line.
 図4に示す弁押さえ120においては、リード弁110と対向する表面部120aには、リード弁110が弁押さえ120に接触した際に第1板厚部114と対向する箇所に、リード弁110が弁押さえ120に接触した際に第1板厚部114が入る弁押さえ凹部124が形成されている。弁押さえ凹部124の凹み量は、第2板厚部115の表面部115aから突出する第1板厚部114の表面部114aの突出量と略同じとなっている。このように弁押さえ120を構成することにより、リード弁110が弾性変形して弁押さえ120に接触する際、第1板厚部114及び第2板厚部115の双方が弁押さえ120に接触し、リード弁110全体を略均一に弁押さえ120で押さえることができる。これにより、リード弁110の損傷をさらに抑制することができる。 In the valve retainer 120 shown in FIG. 4, the reed valve 110 is provided on the surface portion 120a facing the reed valve 110 at a position facing the first plate thick portion 114 when the reed valve 110 comes into contact with the valve retainer 120. A valve holding recess 124 is formed in which the first plate thick portion 114 enters when it comes into contact with the valve holding 120. The recessed amount of the valve holding recess 124 is substantially the same as the protruding amount of the surface portion 114a of the first plate thick portion 114 protruding from the surface portion 115a of the second plate thick portion 115. By configuring the valve retainer 120 in this way, when the reed valve 110 is elastically deformed and comes into contact with the valve retainer 120, both the first plate thickness portion 114 and the second plate thickness portion 115 come into contact with the valve retainer 120. , The entire reed valve 110 can be pressed substantially uniformly by the valve retainer 120. As a result, damage to the reed valve 110 can be further suppressed.
 以上、本実施の形態1に係る圧縮機200は、圧縮機構部10と、密閉容器1と、吐出弁機構100とを備えている。圧縮機構部10は、吐出口32が形成され、内部で圧縮した冷媒を吐出口32から吐出するスクロール式の圧縮機構部である。密閉容器1は、圧縮機構部10が収納され、吐出口32から吐出された冷媒が流入する吐出室9が内部に形成されている。吐出弁機構100は、密閉容器1に収納され、吐出室9側から吐出口32を開閉自在に覆うものである。また、圧縮機構部10は、吐出口32の吐出室9側の端部の周縁に、弁座35を備えている。また、吐出弁機構100は、圧縮機構部10との固定箇所から吐出口32に延び、弁座35に接触するリード弁110を備えている。また、吐出弁機構100は、吐出口32から吐出される冷媒の圧力によってリード弁110が前記固定箇所を固定端として弾性変形し、圧縮機構部10の内部と吐出室9とが連通する構成となっている。また、リード弁110は、弁座35と接触する箇所を含む第1板厚部114と、第1板厚部114から前記固定箇所へ向かって延びる第2板厚部115とを備えている。そして、第1板厚部114の厚みT1が第2板厚部115の厚みT2より厚くなっている。 As described above, the compressor 200 according to the first embodiment includes a compression mechanism unit 10, a closed container 1, and a discharge valve mechanism 100. The compression mechanism unit 10 is a scroll-type compression mechanism unit in which a discharge port 32 is formed and the internally compressed refrigerant is discharged from the discharge port 32. In the closed container 1, the compression mechanism portion 10 is housed, and a discharge chamber 9 into which the refrigerant discharged from the discharge port 32 flows is formed inside. The discharge valve mechanism 100 is housed in a closed container 1 and covers the discharge port 32 so as to be openable and closable from the discharge chamber 9 side. Further, the compression mechanism unit 10 is provided with a valve seat 35 on the peripheral edge of the end portion of the discharge port 32 on the discharge chamber 9 side. Further, the discharge valve mechanism 100 includes a reed valve 110 that extends from a fixed portion with the compression mechanism portion 10 to the discharge port 32 and comes into contact with the valve seat 35. Further, the discharge valve mechanism 100 has a configuration in which the lead valve 110 is elastically deformed with the fixed portion as a fixed end due to the pressure of the refrigerant discharged from the discharge port 32, and the inside of the compression mechanism portion 10 and the discharge chamber 9 communicate with each other. It has become. Further, the reed valve 110 includes a first plate thickness portion 114 including a portion in contact with the valve seat 35, and a second plate thickness portion 115 extending from the first plate thickness portion 114 toward the fixing portion. The thickness T1 of the first plate thickness portion 114 is thicker than the thickness T2 of the second plate thickness portion 115.
 このように構成された本実施の形態1においては、リード弁110の損傷を抑制するために弁座35と接触する箇所を含む第1板厚部114の厚みT1を厚くした場合でも、第1板厚部114よりも薄い第2板厚部115によって、リード弁110が弾性変形しにくくなることを従来よりも抑制できる。したがって、本実施の形態1に係る圧縮機200は、リード弁110の損傷を抑制するために弁座35と接触する箇所を含む第1板厚部114の厚みT1を厚くした場合でも、性能の低下を従来よりも抑制することができる。 In the first embodiment configured as described above, even when the thickness T1 of the first plate thickness portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110, the first The second plate thickness portion 115, which is thinner than the plate thickness portion 114, can prevent the reed valve 110 from becoming less likely to be elastically deformed than before. Therefore, the compressor 200 according to the first embodiment has a performance even when the thickness T1 of the first plate thick portion 114 including the portion in contact with the valve seat 35 is increased in order to suppress damage to the reed valve 110. The decrease can be suppressed more than before.
実施の形態2.
 リード弁110は、実施の形態1で示した構成に限定されない。本実施の形態2では、リード弁110の一例を幾つか紹介する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
The reed valve 110 is not limited to the configuration shown in the first embodiment. In the second embodiment, some examples of the reed valve 110 will be introduced. In the second embodiment, items not particularly described will be the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
 図6は、本実施の形態2に係る圧縮機の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。図7は、図6のリード弁の第1板厚部を示す平面図である。
 図6及び図7に示すリード弁110の第1板厚部114には、吐出口32と対向する箇所に、第1板厚部114と弁座35との対向方向に凹むリード弁凹部116が形成されている。第1板厚部114にリード弁凹部116を形成することにより、第1板厚部114を軽量化することができる。そして、第1板厚部114を軽量化することにより、第1板厚部114が弁座35へ衝突した際の衝撃を軽減することができる。このため、第1板厚部114にリード弁凹部116を形成することにより、リード弁110の損傷をより抑制することができる。
FIG. 6 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve. FIG. 7 is a plan view showing a first plate thickness portion of the reed valve of FIG.
The first plate thickness portion 114 of the lead valve 110 shown in FIGS. 6 and 7 has a lead valve recess 116 recessed in the direction opposite to the first plate thickness portion 114 and the valve seat 35 at a position facing the discharge port 32. It is formed. By forming the reed valve recess 116 in the first plate thickness portion 114, the weight of the first plate thickness portion 114 can be reduced. Then, by reducing the weight of the first plate thick portion 114, the impact when the first plate thick portion 114 collides with the valve seat 35 can be reduced. Therefore, by forming the reed valve recess 116 in the first plate thick portion 114, damage to the reed valve 110 can be further suppressed.
 なお、本実施の形態2では、リード弁110の加工のしやすさ等を考慮し、リード弁凹部116が形成されている箇所の第1板厚部114の厚みT3と第2板厚部115の厚みT2とが同じになっている。しかしながら、リード弁凹部116が形成されている箇所の第1板厚部114の厚みT3と、第2板厚部115の厚みT2とは、異なっていてもよい。例えば、リード弁凹部116が形成されている箇所の第1板厚部114の厚みT3が、第2板厚部115の厚みT2よりも薄くなっていてもよい。このようにリード弁110を構成することにより、第1板厚部114をさらに軽量化することができ、リード弁110の損傷をより抑制することができる。また例えば、第2板厚部115の厚みT2が、リード弁凹部116が形成されている箇所の第1板厚部114の厚みT3よりも薄くなっていてもよい。このようにリード弁110を構成することにより、第2板厚部115の剛性が小さくなるので、第1板厚部114が弁座35へ衝突した際の衝撃を抑制でき、リード弁110の損傷をより抑制することができる。 In the second embodiment, the thickness T3 of the first plate thickness portion 114 and the thickness T3 of the second plate thickness portion 115 of the portion where the reed valve recess 116 is formed are taken into consideration in consideration of ease of processing of the reed valve 110 and the like. The thickness of T2 is the same as that of T2. However, the thickness T3 of the first plate thickness portion 114 and the thickness T2 of the second plate thickness portion 115 at the location where the reed valve recess 116 is formed may be different. For example, the thickness T3 of the first plate thickness portion 114 at the portion where the reed valve recess 116 is formed may be thinner than the thickness T2 of the second plate thickness portion 115. By configuring the reed valve 110 in this way, the thickness of the first plate thick portion 114 can be further reduced, and damage to the reed valve 110 can be further suppressed. Further, for example, the thickness T2 of the second plate thick portion 115 may be thinner than the thickness T3 of the first plate thick portion 114 where the reed valve recess 116 is formed. By configuring the reed valve 110 in this way, the rigidity of the second plate thickness portion 115 is reduced, so that the impact when the first plate thickness portion 114 collides with the valve seat 35 can be suppressed, and the reed valve 110 is damaged. Can be further suppressed.
 また、第1板厚部114にリード弁凹部116を形成する場合、リード弁凹部116の形成位置は、図6に示す位置が好ましい。具体的には、第1板厚部114と弁座35との対向方向に第1板厚部114及び吐出口32を観察した際、リード弁凹部116は、吐出口32の周縁部32aよりも内側となる位置に形成されているのが好ましい。このようにリード弁凹部116を形成することにより、第1板厚部114において弁座35と接触する箇所は、厚みT1となっている厚みの厚い箇所となる。このため、このようにリード弁凹部116を形成することにより、リード弁110の損傷をより抑制することができる。 Further, when the reed valve recess 116 is formed in the first plate thick portion 114, the position where the reed valve recess 116 is formed is preferably the position shown in FIG. Specifically, when observing the first plate thickness portion 114 and the discharge port 32 in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the lead valve recess 116 is larger than the peripheral edge portion 32a of the discharge port 32. It is preferably formed at an inner position. By forming the reed valve recess 116 in this way, the portion of the first plate thick portion 114 that comes into contact with the valve seat 35 becomes a thick portion having a thickness T1. Therefore, by forming the reed valve recess 116 in this way, damage to the reed valve 110 can be further suppressed.
 ここで、図6に示すように、本実施の形態2に係る吐出口32は、圧縮機構部10の内部と外部とを連通させる貫通穴33と、該貫通穴33の吐出室9側の端部の周縁に形成されたテーパ部34とで形成されている。すなわち、吐出口32の周縁部32aは、テーパ部34の外周側の周縁部となる。このような構成の吐出口32において、吐出口32の周縁部32aよりも内側となる位置にリード弁凹部116を形成する場合、リード弁凹部116の形成位置は、次に示す位置がより好ましい。第1板厚部114と弁座35との対向方向に第1板厚部114及び吐出口32を観察した際、リード弁凹部116の周縁部116aは、テーパ部34の外周側の周縁部32aの内側となり、貫通穴33の周縁部33aよりも外側となる位置に配置されているのがより好ましい。このようにリード弁凹部116を形成することにより、第1板厚部114において弁座35と接触する箇所が厚みT1の箇所となり、リード弁凹部116も大きく形成することができる。このため、このようにリード弁凹部116を形成することにより、リード弁110の損傷をさらに抑制することができる。 Here, as shown in FIG. 6, the discharge port 32 according to the second embodiment has a through hole 33 for communicating the inside and the outside of the compression mechanism portion 10 and an end of the through hole 33 on the discharge chamber 9 side. It is formed by a tapered portion 34 formed on the peripheral edge of the portion. That is, the peripheral edge portion 32a of the discharge port 32 becomes the peripheral edge portion on the outer peripheral side of the tapered portion 34. In the discharge port 32 having such a configuration, when the reed valve recess 116 is formed at a position inside the peripheral edge portion 32a of the discharge port 32, the following positions are more preferable for the formation position of the reed valve recess 116. When observing the first plate thickness portion 114 and the discharge port 32 in the direction opposite to the first plate thickness portion 114 and the valve seat 35, the peripheral edge portion 116a of the reed valve recess 116 is the peripheral edge portion 32a on the outer peripheral side of the tapered portion 34. It is more preferable that the position is located on the inside of the through hole 33 and on the outside of the peripheral edge portion 33a of the through hole 33. By forming the reed valve recess 116 in this way, the portion of the first plate thick portion 114 that comes into contact with the valve seat 35 becomes a portion having a thickness T1, and the reed valve recess 116 can also be formed to be large. Therefore, by forming the reed valve recess 116 in this way, damage to the reed valve 110 can be further suppressed.
 図8は、本実施の形態2に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。図9は、図8のリード弁の第1板厚部を示す平面図である。
 リード弁110の第1板厚部114に形成される凹部は1つの凹部に限定されるものではなく、例えば図8及び図9で示すように、第1板厚部114に複数の凹部を形成してもよい。詳しくは、図8及び図9に示すリード弁110の第1板厚部114には、リード弁凹部116の内側に、第1板厚部114と弁座35との対向方向に凹む第2リード弁凹部117が形成されている。このようにリード弁110を構成することにより、第1板厚部114をさらに軽量化することができ、リード弁110の損傷をより抑制することができる。
FIG. 8 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve. FIG. 9 is a plan view showing a first plate thickness portion of the reed valve of FIG.
The recess formed in the first plate thickness portion 114 of the reed valve 110 is not limited to one recess, and for example, as shown in FIGS. 8 and 9, a plurality of recesses are formed in the first plate thickness portion 114. You may. Specifically, the first plate thickness portion 114 of the lead valve 110 shown in FIGS. 8 and 9 has a second lead recessed inside the lead valve recess 116 in the direction in which the first plate thickness portion 114 and the valve seat 35 face each other. A valve recess 117 is formed. By configuring the reed valve 110 in this way, the thickness of the first plate thick portion 114 can be further reduced, and damage to the reed valve 110 can be further suppressed.
 図10は、本実施の形態2に係る圧縮機の別の一例の吐出弁機構周辺を示す縦断面図であり、弁座及びリード弁の第1板厚部周辺を示す図である。
 上述のリード弁凹部116の底部は、平坦形状となっていた。換言すると、上述のリード弁凹部116が形成された第1板厚部114は、リード弁凹部116が形成されている箇所の厚みが一様となっていた。これに限らず、リード弁凹部116の底部は、曲面形状となっていてもよい。例えば、図10に示すように、リード弁凹部116が形成されている箇所の第1板厚部114の厚みは、リード弁凹部116の周縁部116aからリード弁凹部116の中心部へ向かって連続的に薄くなっている構成でもよい。第2リード弁凹部117の底部の形状も、平坦形状に限らず、曲面形状となっていてもよい。なお、リード弁凹部116の底部が曲面形状となっている場合、上述の厚みT3は、リード弁凹部116が形成されている箇所の第1板厚部114の厚みのうちで最小厚みとなる箇所の厚みを表すものとする。
FIG. 10 is a vertical cross-sectional view showing the periphery of the discharge valve mechanism of another example of the compressor according to the second embodiment, and is a diagram showing the periphery of the first plate thick portion of the valve seat and the reed valve.
The bottom of the reed valve recess 116 described above had a flat shape. In other words, in the first plate thick portion 114 in which the above-mentioned reed valve recess 116 is formed, the thickness of the portion where the reed valve recess 116 is formed is uniform. Not limited to this, the bottom portion of the lead valve recess 116 may have a curved surface shape. For example, as shown in FIG. 10, the thickness of the first plate thick portion 114 at the portion where the reed valve recess 116 is formed is continuous from the peripheral edge portion 116a of the reed valve recess 116 toward the central portion of the reed valve recess 116. The configuration may be thin. The shape of the bottom of the second reed valve recess 117 is not limited to a flat shape, but may be a curved shape. When the bottom of the reed valve recess 116 has a curved surface shape, the above-mentioned thickness T3 is the smallest of the thicknesses of the first plate thick portion 114 where the reed valve recess 116 is formed. It shall represent the thickness of.
 以上、実施の形態1及び実施の形態2で示した圧縮機200はスクロール圧縮機であったが、圧縮機200はスクロール圧縮機に限定されない。従来、吐出室側から吐出口を開閉自在に覆う吐出弁機構を備えた圧縮機としては、スクロール圧縮機以外にも、ベーン圧縮機、ロータリ圧縮機及びレシプロ圧縮機等、種々の種類の圧縮機が知られている。圧縮機200は、ベーン圧縮機、ロータリ圧縮機及びレシプロ圧縮機等、スクロール圧縮機以外の圧縮機であってもよい。この際、圧縮機構部の吐出口の吐出室側の端部の周縁に、上述の弁座35を設ければよい。そして、密閉容器の吐出室に、上述の吐出弁機構100を設ければよい。これにより、圧縮機200は、スクロール圧縮機以外の圧縮機であっても、実施の形態1及び実施の形態2で示した効果を得ることができる。 As described above, the compressor 200 shown in the first and second embodiments is a scroll compressor, but the compressor 200 is not limited to the scroll compressor. Conventionally, as a compressor equipped with a discharge valve mechanism that can open and close the discharge port from the discharge chamber side, various types of compressors such as a vane compressor, a rotary compressor, and a reciprocating compressor are used in addition to the scroll compressor. It has been known. The compressor 200 may be a compressor other than the scroll compressor, such as a vane compressor, a rotary compressor, and a reciprocating compressor. At this time, the valve seat 35 described above may be provided on the peripheral edge of the end of the discharge port of the compression mechanism on the discharge chamber side. Then, the above-mentioned discharge valve mechanism 100 may be provided in the discharge chamber of the closed container. As a result, the compressor 200 can obtain the effects shown in the first and second embodiments even if the compressor is a compressor other than the scroll compressor.
 1 密閉容器、2 センターシェル、3 アッパーシェル、4 ロアシェル、5 電源端子、6 吸入パイプ、7 吐出パイプ、8 流入室、9 吐出室、10 圧縮機構部、11 固定スクロール、12 台板、13 渦巻歯、14 シール部材、15 連通口、21 揺動スクロール、22 台板、22a 下面、23 渦巻歯、24 ボス部、25 スラストプレート、26 キー溝、27 シール部材、30 圧縮室、31 吐出チャンバー、32 吐出口、32a 周縁部、33 貫通穴、33a 周縁部、34 テーパ部、35 弁座、35a 外周部、40 電動機、41 固定子、42 回転子、50 駆動軸、51 主軸部、52 偏心軸部、53 ポンプ、54 油供給穴、55 第1バランスウェイト、56 第2バランスウェイト、60 フレーム、61 キー溝、62 主軸受、65 サブフレーム、66 副軸受、70 オルダムリング、71 リング部、72 キー、73 キー、100 吐出弁機構、101 固定具、110 リード弁、111 端部、112 端部、113 貫通穴、114 第1板厚部、114a 表面部、114b 外周部、115 第2板厚部、115a 表面部、116 リード弁凹部、116a 周縁部、117 第2リード弁凹部、120 弁押さえ、120a 表面部、121 端部、122 端部、123 貫通穴、124 弁押さえ凹部、200 圧縮機、T1 厚み、T2 厚み、T3 厚み。 1 closed container, 2 center shell, 3 upper shell, 4 lower shell, 5 power supply terminal, 6 suction pipe, 7 discharge pipe, 8 inflow chamber, 9 discharge chamber, 10 compression mechanism, 11 fixed scroll, 12 base plate, 13 swirl Teeth, 14 seal members, 15 communication ports, 21 rocking scrolls, 22 base plates, 22a lower surface, 23 spiral teeth, 24 bosses, 25 thrust plates, 26 keyways, 27 seal members, 30 compression chambers, 31 discharge chambers, 32 discharge port, 32a peripheral part, 33 through hole, 33a peripheral part, 34 tapered part, 35 valve seat, 35a outer peripheral part, 40 motor, 41 stator, 42 rotor, 50 drive shaft, 51 spindle part, 52 eccentric shaft Part, 53 pump, 54 oil supply hole, 55 1st balance weight, 56 2nd balance weight, 60 frame, 61 keyway, 62 main bearing, 65 subframe, 66 auxiliary bearing, 70 oldam ring, 71 ring part, 72 Key, 73 key, 100 discharge valve mechanism, 101 fixture, 110 lead valve, 111 end, 112 end, 113 through hole, 114 first plate thickness, 114a surface, 114b outer circumference, 115 second plate thickness Part, 115a surface part, 116 lead valve recess, 116a peripheral part, 117 second lead valve recess, 120 valve retainer, 120a surface portion, 121 end, 122 end, 123 through hole, 124 valve retainer recess, 200 compressor , T1 thickness, T2 thickness, T3 thickness.

Claims (12)

  1.  吐出口が形成され、内部で圧縮した冷媒を前記吐出口から吐出する圧縮機構部と、
     前記圧縮機構部が収納され、前記吐出口から吐出された冷媒が流入する吐出室が内部に形成された密閉容器と、
     前記密閉容器に収納され、前記吐出室側から前記吐出口を開閉自在に覆う吐出弁機構と、
     を備え、
     前記圧縮機構部は、前記吐出口の前記吐出室側の端部の周縁に弁座を備え、
     前記吐出弁機構は、前記圧縮機構部との固定箇所から前記吐出口に延び、前記弁座に接触するリード弁を備え、
     前記吐出口から吐出される冷媒の圧力によって前記リード弁が前記固定箇所を固定端として弾性変形し、前記圧縮機構部の内部と前記吐出室とが連通する構成であり、
     前記リード弁は、
     前記弁座と接触する箇所を含む第1板厚部と、
     前記第1板厚部から前記固定箇所へ向かって延びる第2板厚部と、
     を備え、
     前記第1板厚部の最大厚みが前記第2板厚部の厚みより厚い
     圧縮機。
    A compression mechanism unit in which a discharge port is formed and internally compressed refrigerant is discharged from the discharge port.
    A closed container in which the compression mechanism unit is housed and a discharge chamber into which the refrigerant discharged from the discharge port flows is formed.
    A discharge valve mechanism that is housed in the closed container and covers the discharge port from the discharge chamber side so as to be openable and closable.
    With
    The compression mechanism portion includes a valve seat on the peripheral edge of the end portion of the discharge port on the discharge chamber side.
    The discharge valve mechanism includes a reed valve that extends from a fixed portion with the compression mechanism portion to the discharge port and contacts the valve seat.
    The reed valve is elastically deformed by the pressure of the refrigerant discharged from the discharge port with the fixed portion as a fixed end, and the inside of the compression mechanism portion and the discharge chamber communicate with each other.
    The reed valve is
    The first plate thick part including the part that comes into contact with the valve seat,
    A second plate thickness portion extending from the first plate thickness portion toward the fixing portion, and a second plate thickness portion.
    With
    A compressor in which the maximum thickness of the first plate thickness portion is thicker than the thickness of the second plate thickness portion.
  2.  前記吐出弁機構は、前記吐出口から吐出される冷媒の圧力によって前記リード弁が弾性変形した際に該リード弁と接触する弁押さえを備え、
     前記第1板厚部における前記弁押さえと対向する表面部は、前記第2板厚部における前記弁押さえと対向する表面部よりも前記弁押さえ側に突出しており、
     前記弁押さえにおける前記リード弁と対向する表面部には、前記リード弁が該弁押さえに接触した際に前記第1板厚部と対向する箇所に、前記リード弁が該弁押さえに接触した際に前記第1板厚部が入る弁押さえ凹部が形成されている
     請求項1に記載の圧縮機。
    The discharge valve mechanism includes a valve retainer that comes into contact with the reed valve when the reed valve is elastically deformed by the pressure of the refrigerant discharged from the discharge port.
    The surface portion of the first plate thickness portion facing the valve retainer protrudes toward the valve retainer side from the surface portion of the second plate thickness portion facing the valve retainer.
    When the reed valve comes into contact with the valve retainer on the surface portion of the valve retainer facing the reed valve at a portion facing the first plate thickness portion when the reed valve comes into contact with the valve retainer. The compressor according to claim 1, wherein a valve holding recess in which the thick portion of the first plate is inserted is formed.
  3.  前記第1板厚部と前記弁座との対向方向に前記第1板厚部及び前記弁座を観察した際、
     前記第1板厚部の外周部は、前記弁座の外周部よりも外側に配置されている
     請求項1又は請求項2に記載の圧縮機。
    When the first plate thickness portion and the valve seat are observed in the direction opposite to the first plate thickness portion and the valve seat, when the first plate thickness portion and the valve seat are observed.
    The compressor according to claim 1 or 2, wherein the outer peripheral portion of the first plate thick portion is arranged outside the outer peripheral portion of the valve seat.
  4.  前記第1板厚部には、前記吐出口と対向する箇所に、前記第1板厚部と前記弁座との対向方向に凹むリード弁凹部が形成されている
     請求項1~請求項3のいずれか一項に記載の圧縮機。
    The first plate thick portion has a lead valve recess formed in a portion facing the discharge port so as to be recessed in the direction facing the first plate thick portion and the valve seat. The compressor according to any one item.
  5.  前記リード弁凹部が形成されている箇所の前記第1板厚部の厚みは、前記第2板厚部の厚みよりも薄い
     請求項4に記載の圧縮機。
    The compressor according to claim 4, wherein the thickness of the first plate thickness portion at the portion where the reed valve recess is formed is thinner than the thickness of the second plate thickness portion.
  6.  前記第2板厚部の厚みは、前記リード弁凹部が形成されている箇所の前記第1板厚部の厚みよりも薄い
     請求項4に記載の圧縮機。
    The compressor according to claim 4, wherein the thickness of the second plate thickness portion is thinner than the thickness of the first plate thickness portion at the portion where the reed valve recess is formed.
  7.  前記第1板厚部と前記弁座との対向方向に前記リード弁凹部及び前記吐出口を観察した際、前記リード弁凹部は、前記吐出口の周縁部よりも内側となる位置に形成されている
     請求項4~請求項6のいずれか一項に記載の圧縮機。
    When the reed valve recess and the discharge port are observed in the direction opposite to the first plate thick portion and the valve seat, the reed valve recess is formed at a position inside the peripheral edge portion of the discharge port. The compressor according to any one of claims 4 to 6.
  8.  前記吐出口は、前記圧縮機構部の内部と外部とを連通させる貫通穴と、該貫通穴の前記吐出室側の端部の周縁に形成されたテーパ部とで形成されており、
     前記第1板厚部と前記弁座との対向方向に前記リード弁凹部及び前記吐出口を観察した際、
     前記リード弁凹部の周縁部は、前記テーパ部の外周側の周縁部の内側となり、前記貫通穴の周縁部よりも外側となる位置に配置されている
     請求項7に記載の圧縮機。
    The discharge port is formed of a through hole that communicates the inside and the outside of the compression mechanism portion and a tapered portion formed on the peripheral edge of the end portion of the through hole on the discharge chamber side.
    When observing the reed valve recess and the discharge port in the direction opposite to the first plate thick portion and the valve seat,
    The compressor according to claim 7, wherein the peripheral edge portion of the reed valve recess is located inside the peripheral edge portion on the outer peripheral side of the tapered portion and outside the peripheral edge portion of the through hole.
  9.  前記第1板厚部には、前記リード弁凹部の内側に、前記第1板厚部と前記弁座との対向方向に凹む第2リード弁凹部が形成されている
     請求項4~請求項8のいずれか一項に記載の圧縮機。
    Claims 4 to 8 are formed in the first plate thick portion so that a second lead valve recess recessed in the direction opposite to the first plate thickness portion and the valve seat is formed inside the lead valve recess. The compressor according to any one of the above.
  10.  前記リード弁凹部が形成されている箇所の前記第1板厚部の厚みは、前記リード弁凹部の周縁部から前記リード弁凹部の中心部へ向かって連続的に薄くなっている
     請求項4~請求項9のいずれか一項に記載の圧縮機。
    The thickness of the first plate thick portion of the portion where the reed valve recess is formed is continuously reduced from the peripheral edge of the reed valve recess toward the center of the reed valve recess. The compressor according to any one of claims 9.
  11.  前記圧縮機構部はスクロール式の圧縮機構部であり、
     該圧縮機構部は、
     圧縮室の内部と外部とを連通させる連通口が形成された固定スクロールと、
     前記圧縮室の外部側で前記連通口を覆い、前記吐出口が形成された吐出チャンバーと、
     を備え、
     前記吐出弁機構は前記吐出チャンバーに取り付けられている
     請求項1~請求項10のいずれか一項に記載の圧縮機。
    The compression mechanism unit is a scroll type compression mechanism unit.
    The compression mechanism unit
    A fixed scroll with a communication port that communicates the inside and outside of the compression chamber,
    A discharge chamber in which the communication port is covered on the outer side of the compression chamber and the discharge port is formed,
    With
    The compressor according to any one of claims 1 to 10, wherein the discharge valve mechanism is attached to the discharge chamber.
  12.  前記圧縮機構部はスクロール式の圧縮機構部であり、
     該圧縮機構部は、前記吐出口が形成された固定スクロールを備え、
     前記吐出弁機構は前記固定スクロールに取り付けられている
     請求項1~請求項10のいずれか一項に記載の圧縮機。
    The compression mechanism unit is a scroll type compression mechanism unit.
    The compression mechanism unit includes a fixed scroll on which the discharge port is formed.
    The compressor according to any one of claims 1 to 10, wherein the discharge valve mechanism is attached to the fixed scroll.
PCT/JP2019/047423 2019-12-04 2019-12-04 Compressor WO2021111546A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562252A JP7241915B2 (en) 2019-12-04 2019-12-04 compressor
CN201980102516.8A CN114729630B (en) 2019-12-04 2019-12-04 Compressor with a compressor body having a rotor with a rotor shaft
PCT/JP2019/047423 WO2021111546A1 (en) 2019-12-04 2019-12-04 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047423 WO2021111546A1 (en) 2019-12-04 2019-12-04 Compressor

Publications (1)

Publication Number Publication Date
WO2021111546A1 true WO2021111546A1 (en) 2021-06-10

Family

ID=76221156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047423 WO2021111546A1 (en) 2019-12-04 2019-12-04 Compressor

Country Status (3)

Country Link
JP (1) JP7241915B2 (en)
CN (1) CN114729630B (en)
WO (1) WO2021111546A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126495A (en) * 1982-01-22 1983-07-27 Toshiba Corp Rotary compressor
JPS603370U (en) * 1983-06-22 1985-01-11 三菱重工業株式会社 plate valve
JPS6282380U (en) * 1985-11-12 1987-05-26
JPH0579477A (en) * 1991-09-19 1993-03-30 Sanyo Electric Co Ltd Scroll compressor
JP2003201965A (en) * 2001-12-27 2003-07-18 Seiko Instruments Inc Gas compressor
JP2011074834A (en) * 2009-09-30 2011-04-14 Sanden Corp Scroll type fluid machine
JP2011089473A (en) * 2009-10-22 2011-05-06 Toyota Motor Corp Fuel pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137778A (en) * 1995-11-14 1997-05-27 Sanyo Electric Co Ltd Refrigerant compressor
JP2002242837A (en) * 2001-02-14 2002-08-28 Sanyo Electric Co Ltd Refrigerant compressor
JP3742862B2 (en) * 2003-03-05 2006-02-08 ダイキン工業株式会社 Compressor
JP2005009531A (en) * 2003-06-17 2005-01-13 Seiko Epson Corp Check valve
JP3876923B2 (en) * 2005-05-17 2007-02-07 ダイキン工業株式会社 Rotary compressor
JP2009275650A (en) * 2008-05-16 2009-11-26 Panasonic Corp Hermetic compressor
JP5538324B2 (en) * 2011-08-03 2014-07-02 三菱電機株式会社 Scroll compressor
JP6144156B2 (en) * 2013-08-23 2017-06-07 東芝キヤリア株式会社 Compressor and refrigeration cycle apparatus
JP6300829B2 (en) * 2014-01-08 2018-03-28 三菱電機株式会社 Rotary compressor
WO2016103321A1 (en) * 2014-12-22 2016-06-30 三菱電機株式会社 Compressor and refrigeration cycle device with same
WO2016139796A1 (en) * 2015-03-05 2016-09-09 三菱電機株式会社 Compressor
JP6710545B2 (en) * 2016-03-04 2020-06-17 三菱重工サーマルシステムズ株式会社 Compressor
CN110073105B (en) * 2016-12-12 2021-12-03 法雷奥日本株式会社 Valve structure of compressor
WO2019043905A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Scroll compressor and refrigeration cycle device
JP2019065769A (en) * 2017-09-29 2019-04-25 株式会社豊田自動織機 Vane compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126495A (en) * 1982-01-22 1983-07-27 Toshiba Corp Rotary compressor
JPS603370U (en) * 1983-06-22 1985-01-11 三菱重工業株式会社 plate valve
JPS6282380U (en) * 1985-11-12 1987-05-26
JPH0579477A (en) * 1991-09-19 1993-03-30 Sanyo Electric Co Ltd Scroll compressor
JP2003201965A (en) * 2001-12-27 2003-07-18 Seiko Instruments Inc Gas compressor
JP2011074834A (en) * 2009-09-30 2011-04-14 Sanden Corp Scroll type fluid machine
JP2011089473A (en) * 2009-10-22 2011-05-06 Toyota Motor Corp Fuel pump

Also Published As

Publication number Publication date
JP7241915B2 (en) 2023-03-17
CN114729630A (en) 2022-07-08
JPWO2021111546A1 (en) 2021-06-10
CN114729630B (en) 2024-04-19

Similar Documents

Publication Publication Date Title
JP3870642B2 (en) Electric compressor
US9157438B2 (en) Scroll compressor with bypass hole
WO2014178188A1 (en) Scroll compressor
US20120148434A1 (en) Scroll Fluid Machine
KR102492941B1 (en) Compressor having enhanced wrap structure
US9512842B2 (en) Rotary compressor
KR20180083646A (en) Scroll compressor
WO2021111546A1 (en) Compressor
JP6745913B2 (en) Compressor
WO2015177851A1 (en) Scroll compressor
JP6607970B2 (en) Scroll compressor
KR102031849B1 (en) Motor operated compressor
JP6320575B2 (en) Electric compressor
JP6098706B1 (en) Scroll compressor
US11976653B2 (en) Scroll compressor with suppressed reduction of rotational moment
JP5773922B2 (en) Scroll compressor
US8939741B2 (en) Scroll compressor
KR102481673B1 (en) Scroll compressor
WO2024062859A1 (en) Electric compressor
EP3824186B1 (en) Scroll compressor
WO2020152767A1 (en) Scroll compressor
KR100279607B1 (en) Turbo compressor
JP2013139760A (en) Scroll compressor
WO2018021058A1 (en) Scroll compressor
JP2014101835A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955135

Country of ref document: EP

Kind code of ref document: A1