JP3832468B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP3832468B2
JP3832468B2 JP2003432123A JP2003432123A JP3832468B2 JP 3832468 B2 JP3832468 B2 JP 3832468B2 JP 2003432123 A JP2003432123 A JP 2003432123A JP 2003432123 A JP2003432123 A JP 2003432123A JP 3832468 B2 JP3832468 B2 JP 3832468B2
Authority
JP
Japan
Prior art keywords
discharge port
valve
reed valve
flow path
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003432123A
Other languages
Japanese (ja)
Other versions
JP2005188420A (en
Inventor
洋文 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003432123A priority Critical patent/JP3832468B2/en
Priority to US10/582,497 priority patent/US20070148026A1/en
Priority to PCT/JP2004/018829 priority patent/WO2005064160A1/en
Priority to CNA2004800362810A priority patent/CN1890467A/en
Publication of JP2005188420A publication Critical patent/JP2005188420A/en
Application granted granted Critical
Publication of JP3832468B2 publication Critical patent/JP3832468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、圧縮機に関し、特に、吐出圧力損失の低減対策に係るものである。   The present invention relates to a compressor, and particularly relates to measures for reducing discharge pressure loss.

従来より、圧縮機は、例えば空気調和装置などに設けられて冷媒回路の冷媒を圧縮するのに用いられている。この種の圧縮機としては、例えば、密閉型のケーシング内に圧縮機構と該圧縮機構を駆動する電動機とが収納された回転式圧縮機が知られている。   Conventionally, a compressor is provided, for example, in an air conditioner or the like and used to compress the refrigerant in the refrigerant circuit. As this type of compressor, for example, a rotary compressor in which a compression mechanism and an electric motor that drives the compression mechanism are housed in a sealed casing is known.

上記圧縮機構では、電動機を駆動すると、シリンダ室でピストンが旋回運動を行う。この旋回運動に伴い、低圧の冷媒が吸入口から吸入室に吸い込まれると共に、圧縮室では冷媒が圧縮されて高圧となり、吐出口よりケーシング内へ吐出される。   In the compression mechanism, when the electric motor is driven, the piston performs a turning motion in the cylinder chamber. Along with this turning motion, the low-pressure refrigerant is sucked into the suction chamber from the suction port, and the refrigerant is compressed to a high pressure in the compression chamber and discharged from the discharge port into the casing.

上記吐出口には、一般に平板状のリード弁が設けられている。上記リード弁は、圧縮室が所定値以上の高圧になると、先端側の弁体が撓んで吐出口を開く動作を行う一方、圧縮室からケーシング内に冷媒が吐出されると、リード弁自身が持つバネ力によって吐出口を閉じる動作を行う。   The discharge port is generally provided with a flat reed valve. The reed valve operates to open the discharge port by bending the valve body on the tip side when the pressure in the compression chamber becomes higher than a predetermined value.On the other hand, when refrigerant is discharged from the compression chamber into the casing, the reed valve itself The discharge port is closed by the spring force.

ところで、上記圧縮機構においては、一旦圧縮した冷媒が再膨張し、圧縮機の効率が低下するという問題があった(再膨張損失)。つまり、冷媒の吐出が完了しても、吐出口の容積内、いわゆる死容積内に高圧の冷媒が残ってしまい、この冷媒が圧縮室で再び膨張するので容積効率が低下する。   By the way, in the said compression mechanism, there existed a problem that the refrigerant | coolant once compressed re-expanded and the efficiency of a compressor fell (re-expansion loss). That is, even if the discharge of the refrigerant is completed, the high-pressure refrigerant remains in the volume of the discharge port, that is, the so-called dead volume, and the refrigerant expands again in the compression chamber, so that the volumetric efficiency decreases.

そこで、上述した問題に対して、吐出口に嵌入する突起部を設けたいわゆるポペット弁タイプのリード弁を備えた圧縮機が提案されている(例えば、特許文献1参照)。この特許文献1では、吐出が完了すると、リード弁の突起部が吐出口に嵌入して死容積を減少させるので、死容積における冷媒の残存量が低減する。
特開2001−280254号公報
In view of the above problems, a compressor including a so-called poppet valve type reed valve provided with a protrusion that fits into the discharge port has been proposed (for example, see Patent Document 1). In this patent document 1, when the discharge is completed, the protrusion of the reed valve is fitted into the discharge port to reduce the dead volume, so that the remaining amount of refrigerant in the dead volume is reduced.
JP 2001-280254 A

しかしながら、上述した特許文献1の圧縮機では、リード弁の最大リフト時(全開時)に吐出口に形成される流路の途中にリード弁の突起部によって流路面積が狭くなる箇所が生じるおそれがある。これにより、流路面積の減少による流動抵抗が発生し、吐出圧力損失が増大するという問題があった。また、リード弁の最大リフト時には、冷媒が高速で流れるために流動抵抗が大きくなる傾向にあるので、流路面積の減少がより一層吐出圧力損失の増大に繋がるという問題があった。   However, in the compressor disclosed in Patent Document 1 described above, there is a possibility that a portion where the flow path area becomes narrow due to the protrusion of the reed valve is generated in the middle of the flow path formed at the discharge port when the reed valve is fully lifted (when fully opened). There is. As a result, there is a problem in that a flow resistance is generated due to a decrease in the flow path area, and the discharge pressure loss increases. Further, at the time of maximum lift of the reed valve, since the refrigerant flows at a high speed and the flow resistance tends to increase, there is a problem that the reduction of the flow path area further increases the discharge pressure loss.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、少なくとも流速が増大するリード弁の最大リフト時において、吐出口に流路面積が減少する箇所のない流路を形成し、吐出圧力損失の低減を図ることである。   The present invention has been made in view of such a point, and an object of the present invention is to provide a flow path in which the flow area does not decrease at the discharge port at least during the maximum lift of the reed valve in which the flow rate increases. To reduce the discharge pressure loss.

具体的に、第1の発明は、圧縮機構(20)の吐出口(29)を開閉するリード弁(41)を備え、該リード弁(41)が弁平板部(41a)と、該弁平板部(41a)の先端側に形成されて吐出口(29)を出入りする弁突起部(41b)とを備えている圧縮機を前提としている。上記吐出口(29)は、入口(29a)から出口(29b)に向かって拡がるテーパ状に形成され、上記弁突起部(41b)は、先端に向かって先細となり、上記吐出口(29)とほぼ同じテーパ状に形成されている。 Specifically, the first invention includes a reed valve (41) for opening and closing the discharge port (29) of the compression mechanism (20), and the reed valve (41) includes a valve flat plate portion (41a) and the valve flat plate. The compressor is provided with a valve protrusion (41b) that is formed on the distal end side of the portion (41a) and enters and exits the discharge port (29). The discharge port (29) is formed in a tapered shape extending from the inlet (29a) toward the outlet (29b), and the valve protrusion (41b) is tapered toward the tip, and the discharge port (29) It is formed in substantially the same taper shape.

そして、上記吐出口(29)の入口(29a)の開口面積をS0とし、また上記リード弁(41)の最大リフト時における弁突起部(41b)と吐出口(29)との間に形成される流路の最小断面積をS1とし、また上記リード弁(41)の最大リフト時における弁平板部(41a)と吐出口(29)の出口(29b)の外縁部との間に形成される流路の最小断面積をS2とした場合、上記吐出口(29)の形状およびリード弁(41)の形状は、S2≧S1≧S0を満たすように形成されている。   The opening area of the inlet (29a) of the discharge port (29) is S0, and is formed between the valve protrusion (41b) and the discharge port (29) when the reed valve (41) is fully lifted. The minimum cross-sectional area of the flow path is S1, and is formed between the valve flat plate portion (41a) and the outer edge portion of the outlet (29b) of the discharge port (29) when the reed valve (41) is fully lifted. When the minimum cross-sectional area of the flow path is S2, the shape of the discharge port (29) and the shape of the reed valve (41) are formed so as to satisfy S2 ≧ S1 ≧ S0.

上記の発明では、図4に示すように、リード弁(41)の最大リフト時に吐出口(29)における各部の流路面積S0、S1およびS2がS2≧S1≧S0の関係を満たしているため、吐出口(29)の流路において流路面積が狭くなる箇所がなくなる。つまり、圧縮された流体は、吐出口(29)の入口(29a)より流入してから、吐出口(29)と弁突起部(41b)との間隙を流れて吐出口(29)と弁平板部(41a)との間隙を通過するまでの間、一度も流量が絞られることなく流れる。これにより、流路面積減少によって生じる流動抵抗が抑えられ、吐出圧力損失が低減される。特に、流体が高速で流れて流動抵抗が大きくなるる上記リード弁(41)の最大リフト時であるため、より効果的に吐出圧力損失が低減されることになる。   In the above invention, as shown in FIG. 4, the flow passage areas S0, S1, and S2 of the discharge port (29) satisfy the relationship of S2 ≧ S1 ≧ S0 when the reed valve (41) is fully lifted. In the channel of the discharge port (29), there is no portion where the channel area becomes narrow. In other words, the compressed fluid flows from the inlet (29a) of the discharge port (29) and then flows through the gap between the discharge port (29) and the valve projection (41b), and the discharge port (29) and the valve plate. Until it passes through the gap with the part (41a), it flows without being reduced. Thereby, the flow resistance caused by the flow path area reduction is suppressed, and the discharge pressure loss is reduced. In particular, since the reed valve (41) is at the maximum lift when the fluid flows at a high speed and the flow resistance increases, the discharge pressure loss is more effectively reduced.

さらに、上記の発明では、吐出口(29)における流路面積S1、すなわち吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積が確実に大きくなる。したがって、上記流路面積S1が吐出口(29)の入口(29a)の開口面積S0よりも確実に同等以上に大きくなる。   Furthermore, in the above invention, the flow path area S1 at the discharge port (29), that is, the minimum cross-sectional area of the flow channel formed between the discharge port (29) and the valve protrusion (41b) is reliably increased. Therefore, the flow path area S1 is surely equal to or larger than the opening area S0 of the inlet (29a) of the discharge port (29).

また、第2の発明は、上記第1の発明において、上記吐出口(29)の出口(29b)の外縁部に弁平板部(41a)が接するシート部(22b)が形成されている。 Further, according to a second aspect, in the first aspect, a seat portion (22b) in which the valve flat plate portion (41a) is in contact with an outer edge portion of the outlet (29b) of the discharge port (29) is formed.

上記の発明では、弁平板部(41a)と吐出口(29)の出口(29b)の外縁部とが接触してシールされる。したがって、上記吐出口(29)の内面と弁突起部(41b)とが接触してシールする場合のように弁突起部(41b)を吐出口(29)の形状に合わす必要がないので、弁突起部(41b)が吐出口(29)より小さく形成される。これにより、吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積S1が確実に大きくなる。   In the above invention, the valve flat plate portion (41a) and the outer edge portion of the outlet (29b) of the discharge port (29) come into contact with each other and are sealed. Therefore, it is not necessary to match the valve protrusion (41b) to the shape of the discharge port (29) as in the case where the inner surface of the discharge port (29) and the valve protrusion (41b) are sealed to contact with each other. The protrusion (41b) is formed smaller than the discharge port (29). Thereby, the minimum cross-sectional area S1 of the flow path formed between the discharge port (29) and the valve protrusion (41b) is reliably increased.

したがって、第1の発明によれば、吐出口(29)の入口(29a)の開口面積S0、リード弁(41)の最大リフト時における弁突起部(41b)と吐出口(29)との間に形成される流路の最小断面積S1およびリード弁(41)の最大リフト時における弁平板部(41a)とシート部(22b)との間に形成される流路の最小断面積S2が、S2≧S1≧S0の関係を満たすように吐出口(29)の形状およびリード弁(41)の形状を形成するようにしたので、流体が吐出口(29)の入口(29a)から流入してシート部(22b)と弁平板部(41a)との間隙を通過するまでの間、一度も流量を絞ることなく流すことができる。したがって、流速が増大して流動抵抗の影響をより受ける高速運転時において、流路面積減少による流動抵抗の発生を防止できるので、吐出圧力損失を効果的に低減することができる。この結果、効率の向上を図ることができる。   Therefore, according to the first invention, the opening area S0 of the inlet (29a) of the discharge port (29), and between the valve protrusion (41b) and the discharge port (29) when the reed valve (41) is fully lifted. The minimum cross-sectional area S1 of the flow path formed between the valve flat plate portion (41a) and the seat portion (22b) at the time of the maximum lift of the reed valve (41), Since the shape of the discharge port (29) and the shape of the reed valve (41) are formed so as to satisfy the relationship of S2 ≧ S1 ≧ S0, fluid flows from the inlet (29a) of the discharge port (29). It can flow without reducing the flow rate until it passes through the gap between the seat portion (22b) and the valve flat plate portion (41a). Therefore, at the time of high-speed operation that is more affected by the flow resistance due to an increase in the flow velocity, it is possible to prevent the occurrence of flow resistance due to the reduction of the flow path area, thereby effectively reducing the discharge pressure loss. As a result, efficiency can be improved.

さらに、第1の発明によれば、吐出口(29)を入口(29a)から出口(29b)に向かって拡がるテーパ状に形成し、且つ弁突起部(41b)も先端に向かって先細となる吐出口(29)とほぼ同じテーパ状に形成したため、例えば吐出口(29)を円筒状に形成した場合に比べて、リード弁(41)の最大リフト時における吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積S1を大きくすることができる。したがって、この最小断面積S1を流路面積S0より確実に同等以上に大きくできるので、流路面積減少による流動抵抗の発生を確実に防止することができる。 Further, according to the first invention, the discharge port (29) is formed in a taper shape extending from the inlet (29a) to the outlet (29b) , and the valve protrusion (41b) is also tapered toward the tip. Because it is formed in the same taper shape as the discharge port (29) , for example, the discharge port (29) and the valve protrusion at the time of maximum lift of the reed valve (41) compared to the case where the discharge port (29) is formed in a cylindrical shape. The minimum cross-sectional area S1 of the flow path formed between (41b) can be increased. Therefore, the minimum cross-sectional area S1 can be surely made equal to or larger than the flow path area S0, so that it is possible to reliably prevent the occurrence of flow resistance due to the reduction of the flow path area.

また、第2の発明によれば、吐出口(29)の出口(29b)の外縁部にシート部(22b)を設けるようにしたので、例えば吐出口(29)の内面をシート面に形成して弁突起部(41b)との接触によってシールする場合に比べて、弁突起部(41b)の形状を吐出口(29)の形状に合わす必要がないので、弁突起部(41b)の大きさを吐出口(29)より小さく形成することができる。これにより、上述した流路面積S1をより大きくとることができるので、流路面積減少による流動抵抗の発生を確実に防止することができる。 According to the second invention, since the sheet portion (22b) is provided at the outer edge of the outlet (29b) of the discharge port (29), for example, the inner surface of the discharge port (29) is formed on the sheet surface. Compared to sealing by contact with the valve projection (41b), the shape of the valve projection (41b) does not need to match the shape of the discharge port (29), so the size of the valve projection (41b) Can be formed smaller than the discharge port (29). Thereby, since the flow path area S1 mentioned above can be taken larger, generation | occurrence | production of the flow resistance by flow path area reduction can be prevented reliably.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態》
本実施形態の圧縮機は、図1および図2に示すように、いわゆる回転ピストン型のロータリー圧縮機(1)で構成されている(以下、単に「圧縮機」という)。この圧縮機(1)は、ドーム型のケーシング(10)内に、圧縮機構(20)と該圧縮機構(20)を駆動する電動機(30)とが収納され、全密閉型に構成されている。また、この圧縮機(1)は、電動機(30)がインバータ制御されて容量が段階的または連続的に可変となる可変容量型の圧縮機に構成されている。そして、この圧縮機(1)は、電動機(30)によって圧縮機構(20)を駆動することにより、例えば、冷媒を吸入、圧縮した後に吐出して冷媒回路内で循環させるものである。
<< Embodiment of the Invention >>
As shown in FIGS. 1 and 2, the compressor according to this embodiment includes a so-called rotary piston type rotary compressor (1) (hereinafter simply referred to as “compressor”). The compressor (1) is configured as a completely sealed type in which a compression mechanism (20) and an electric motor (30) for driving the compression mechanism (20) are housed in a dome-shaped casing (10). . The compressor (1) is configured as a variable capacity compressor in which the electric motor (30) is inverter-controlled so that the capacity is variable stepwise or continuously. And this compressor (1) drives a compression mechanism (20) with an electric motor (30), for example, sucks and compresses a refrigerant, then discharges it and circulates it in a refrigerant circuit.

上記ケーシング(10)の下部には、吸入管(14)が設けられ、上部には、吐出管(15)が設けられている。   A suction pipe (14) is provided at the lower part of the casing (10), and a discharge pipe (15) is provided at the upper part.

上記圧縮機構(20)は、シリンダ(21)と、フロントヘッド(22)と、リヤヘッド(23)と、ピストン(24)とを備え、シリンダ(21)の上端にフロントヘッド(22)が、下端にリヤヘッド(23)が固定されている。   The compression mechanism (20) includes a cylinder (21), a front head (22), a rear head (23), and a piston (24), and the front head (22) is disposed at the upper end of the cylinder (21). The rear head (23) is fixed to the base.

上記シリンダ(21)は、厚肉の円筒状に形成されている。そして、上記シリンダ(21)の内周面とフロントヘッド(22)の下端面とリヤヘッド(23)の上端面との間には、円柱状のシリンダ室(25)が区画形成されている。このシリンダ室(25)は、該シリンダ室(25)内でピストン(24)が回転動作をするように構成されている。   The cylinder (21) is formed in a thick cylindrical shape. A cylindrical cylinder chamber (25) is defined between the inner peripheral surface of the cylinder (21), the lower end surface of the front head (22), and the upper end surface of the rear head (23). The cylinder chamber (25) is configured such that the piston (24) rotates in the cylinder chamber (25).

上記電動機(30)は、ステータ(31)とロータ(32)とを備えている。上記ロータ(32)には、駆動軸(33)が連結されている。この駆動軸(33)は、ケーシング(10)内の中心を通り、且つシリンダ室(25)を上下方向に貫通している。上記フロントヘッド(22)およびリヤヘッド(23)には、駆動軸(33)を支持するための軸受部(22a,23a)がそれぞれ形成されている。   The electric motor (30) includes a stator (31) and a rotor (32). A drive shaft (33) is coupled to the rotor (32). The drive shaft (33) passes through the center of the casing (10) and penetrates the cylinder chamber (25) in the vertical direction. The front head (22) and the rear head (23) are formed with bearing portions (22a, 23a) for supporting the drive shaft (33), respectively.

上記駆動軸(33)は、本体部(33b)と、シリンダ室(25)に位置する偏心部(33a)とによって構成されている。この偏心部(33a)は、本体部(33b)よりも大径に形成され、駆動軸(33)の回転中心から所定量偏心している。そして、この偏心部(33a)には、圧縮機構(20)のピストン(24)が装着されている。図2に示すように、このピストン(24)は、円環状に形成され、その外周面がシリンダ(21)の内周面と実質的に一点で接触するように形成されている。   The drive shaft (33) is constituted by a main body (33b) and an eccentric part (33a) located in the cylinder chamber (25). The eccentric portion (33a) is formed to have a larger diameter than the main body portion (33b), and is eccentric by a predetermined amount from the rotation center of the drive shaft (33). A piston (24) of the compression mechanism (20) is attached to the eccentric part (33a). As shown in FIG. 2, the piston (24) is formed in an annular shape, and its outer peripheral surface is formed so as to be substantially in contact with the inner peripheral surface of the cylinder (21) at one point.

上記シリンダ(21)には、該シリンダ(21)の径方向に沿ってブレード溝(21a)が形成されている。このブレード溝(21a)には、長方形の板状に形成されたブレード(26)がシリンダ(21)の径方向へ摺動可能に装着されている。上記ブレード(26)は、ブレード溝(21a)内に設けられたスプリング(27)によって径方向内方へ付勢され、先端が常にピストン(24)の外周面に接触している。   A blade groove (21a) is formed in the cylinder (21) along the radial direction of the cylinder (21). A blade (26) formed in a rectangular plate shape is mounted in the blade groove (21a) so as to be slidable in the radial direction of the cylinder (21). The blade (26) is urged radially inward by a spring (27) provided in the blade groove (21a), and the tip always contacts the outer peripheral surface of the piston (24).

上記ブレード(26)は、シリンダ(21)の内周面とピストン(24)の外周面との間のシリンダ室(25)を吸入室(25a)と圧縮室(25b)とに区画している。そして、上記シリンダ(21)には、該シリンダ(21)の外周面から内周面へ径方向に貫通し、吸入管(14)と吸入室(25a)とを連通する吸入口(28)が形成されている。また、上記フロントヘッド(22)には、駆動軸(33)の軸方向に貫通し、圧縮室(25b)とケーシング(10)内の空間とを連通する吐出口(29)が形成されている。   The blade (26) partitions the cylinder chamber (25) between the inner peripheral surface of the cylinder (21) and the outer peripheral surface of the piston (24) into a suction chamber (25a) and a compression chamber (25b). . The cylinder (21) has a suction port (28) penetrating in a radial direction from the outer peripheral surface to the inner peripheral surface of the cylinder (21) and communicating the suction pipe (14) and the suction chamber (25a). Is formed. The front head (22) is formed with a discharge port (29) that penetrates in the axial direction of the drive shaft (33) and communicates the compression chamber (25b) and the space in the casing (10). .

上記フロントヘッド(22)には、吐出口(29)を開閉するための吐出弁機構(40)が設けられている。なお、上記フロントヘッド(22)には、上面を覆うマフラー(44)が取り付けられている。   The front head (22) is provided with a discharge valve mechanism (40) for opening and closing the discharge port (29). A muffler (44) that covers the upper surface is attached to the front head (22).

図3に示すように、上記吐出弁機構(40)は、リード弁(41)と弁押さえ(42)とを備えている。上記リード弁(41)は、弁押さえ(42)が上方から重ねられ、フロントヘッド(22)と弁押さえ(42)との間に挟まれている。そして、上記リード弁(41)および弁押さえ(42)は、基端側で締付ボルト(43)によってフロントヘッド(22)に固定されている。   As shown in FIG. 3, the discharge valve mechanism (40) includes a reed valve (41) and a valve presser (42). The reed valve (41) has a valve retainer (42) overlapped from above, and is sandwiched between the front head (22) and the valve retainer (42). The reed valve (41) and the valve retainer (42) are fixed to the front head (22) by a fastening bolt (43) on the base end side.

上記吐出口(29)は、圧縮室(25b)に開口する入口(29a)と、ケーシング(10)内の空間に開口する出口(29b)とを備えている。そして、上記吐出口(29)は、入口(29a)から出口(29b)に向かって拡がるテーパ状に形成されている。   The discharge port (29) includes an inlet (29a) that opens to the compression chamber (25b) and an outlet (29b) that opens to a space in the casing (10). And the said discharge outlet (29) is formed in the taper shape expanded toward an exit (29b) from an entrance (29a).

上記リード弁(41)は、薄板状の弁平板部(41a)を備えている。この弁平板部(41a)の先端側には、吐出口(29)に向かって突出する弁突起部(41b)が形成されている。つまり、上記リード弁(41)は、いわゆるポペット弁に構成されている。この弁突起部(41b)は、先端に向かって先細となる吐出口(29)とほぼ同じテーパ状に形成されている。そして、上記リード弁(41)は、開閉時に弁突起部(41b)が吐出口(29)に出入りするように構成されている。また、上記吐出口(29)の出口(29b)の外縁部は、凸状に形成され、リード弁(41)の弁平板部(41a)のシート部(22b)に構成されている。つまり、上記リード弁(41)は、シリンダ室(25)の圧縮室(25b)が所定の高圧になると、弁平板部(41a)が弁押さえ(42)の先端の湾曲形状に沿って撓むと共に弁突起部(41b)が吐出口(29)から出て開き、高圧のガス冷媒を圧縮室(25b)からケーシング(10)内へ吐出するように構成されている。一方、上記リード弁(41)は、ガス冷媒が吐出されて圧縮室(25b)が低圧になると、リード弁(41)自身がもつバネ力によって弁突起部(41b)が吐出口(29)に入り、弁平板部(41a)がシート部(22b)に接触して吐出口(29)を閉じるように構成されている。なお、この吐出口(29)の閉時においては、リード弁(41)の弁突起部(41b)が吐出口(29)の容積をほぼ占有する状態となる。   The reed valve (41) includes a thin plate-shaped valve flat plate portion (41a). A valve protrusion (41b) that protrudes toward the discharge port (29) is formed on the distal end side of the valve flat plate portion (41a). That is, the reed valve (41) is a so-called poppet valve. The valve protrusion (41b) is formed in the same taper shape as the discharge port (29) that tapers toward the tip. The reed valve (41) is configured such that the valve protrusion (41b) enters and exits the discharge port (29) when opening and closing. Moreover, the outer edge part of the exit (29b) of the said discharge outlet (29) is formed in convex shape, and is comprised by the sheet | seat part (22b) of the valve flat plate part (41a) of a reed valve (41). That is, in the reed valve (41), when the compression chamber (25b) of the cylinder chamber (25) reaches a predetermined high pressure, the valve flat plate portion (41a) bends along the curved shape of the tip of the valve retainer (42). At the same time, the valve protrusion (41b) is opened out from the discharge port (29) and is configured to discharge high-pressure gas refrigerant from the compression chamber (25b) into the casing (10). On the other hand, in the reed valve (41), when gas refrigerant is discharged and the compression chamber (25b) becomes low pressure, the valve protrusion (41b) is brought into the discharge port (29) by the spring force of the reed valve (41) itself. The valve flat plate portion (41a) comes into contact with the seat portion (22b) and closes the discharge port (29). When the discharge port (29) is closed, the valve protrusion (41b) of the reed valve (41) almost occupies the volume of the discharge port (29).

また、上記吐出口(29)の形状およびリード弁(41)の形状は、本発明の特徴として、図4に示すように、リード弁(41)の最大リフト時、つまり弁突起部(41b)が吐出口(29)から最大限出た状態において、各部の流路面積S0、S1およびS2がS2≧S1≧S0の関係を満たすように形成されている。なお、上記図4では、弁押さえ(42)や締付ボルト(43)を省略して示している。   As shown in FIG. 4, the shape of the discharge port (29) and the shape of the reed valve (41) are as shown in FIG. 4 when the reed valve (41) is fully lifted, that is, the valve protrusion (41b). Is formed so that the flow passage areas S0, S1 and S2 of each part satisfy the relationship of S2 ≧ S1 ≧ S0. In FIG. 4, the valve retainer (42) and the fastening bolt (43) are omitted.

上記流路面積S0は、吐出口(29)の入口(29a)の開口面積を示している。上記流路面積S1は、吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積を示している。また、上記流路面積S2は、吐出口(29)の出口(29b)の外縁部であるシート部(22b)と弁平板部(41a)との間に形成される流路の最小断面積を示している。つまり、これら流路面積S0〜S2は、それぞれ吐出口(29)の入口部、吐出口(29)の内部および吐出口(29)の出口部における最小の流路面積を示している。   The channel area S0 indicates the opening area of the inlet (29a) of the discharge port (29). The channel area S1 indicates the minimum cross-sectional area of the channel formed between the discharge port (29) and the valve protrusion (41b). The flow path area S2 is the minimum cross-sectional area of the flow path formed between the seat portion (22b) that is the outer edge portion of the outlet (29b) of the discharge port (29) and the valve flat plate portion (41a). Show. That is, these flow channel areas S0 to S2 indicate the minimum flow channel areas at the inlet portion of the discharge port (29), the inside of the discharge port (29), and the outlet portion of the discharge port (29), respectively.

そして、上記吐出口(29)およびリード弁(41)の形状は、リード弁(41)の最大リフト時に上記流路面積S0〜S2が順に同等以上に大きくなるように形成されている。すなわち、上記リード弁(41)の最大リフト時において吐出口(29)における流路は、流路面積の狭くなる箇所がないように形成されている。したがって、流量が最大となる上記リード弁(41)の最大リフト時において、圧縮室(25b)の流体は、吐出口(29)に流入してケーシング(10)内の空間に吐出されるまで一度も流量が絞られることなく流れることになる。   The shapes of the discharge port (29) and the reed valve (41) are formed such that the flow passage areas S0 to S2 are sequentially increased to be equal to or larger when the reed valve (41) is fully lifted. That is, when the reed valve (41) is fully lifted, the flow path in the discharge port (29) is formed so that there is no portion where the flow path area becomes narrow. Therefore, at the time of the maximum lift of the reed valve (41) where the flow rate is maximum, the fluid in the compression chamber (25b) flows into the discharge port (29) and is discharged into the space in the casing (10) once. Will flow without being reduced.

また、上記吐出口(29)が入口(29a)から出口(29b)に向かって拡がるテーパ状に形成されていることから、例えば吐出口(29)が円筒状に形成された場合に比べて、リード弁(41)の最大リフト時に流路面積S1、すなわち吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積が大きくなる。したがって、流路面積S1が流路面積S0より確実に同等以上に大きくなる。   Further, since the discharge port (29) is formed in a tapered shape that expands from the inlet (29a) toward the outlet (29b), for example, compared to the case where the discharge port (29) is formed in a cylindrical shape, When the reed valve (41) is fully lifted, the flow path area S1, that is, the minimum cross-sectional area of the flow path formed between the discharge port (29) and the valve protrusion (41b) increases. Therefore, the channel area S1 is surely equal to or larger than the channel area S0.

また、上記吐出口(29)の出口(29b)の外縁部にシート部(22b)が設けられていることから、例えば吐出口(29)の内面と弁突起部(41b)とが接触してシールする場合のように弁突起部(41b)の形状を吐出口(29)の形状に合わす必要がないので、弁突起部(41b)の大きさを吐出口(29)より小さく形成できる。これにより、吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積S1が大きくなる。   Further, since the sheet portion (22b) is provided at the outer edge of the outlet (29b) of the discharge port (29), for example, the inner surface of the discharge port (29) and the valve protrusion (41b) are in contact with each other. Since the shape of the valve protrusion (41b) does not need to match the shape of the discharge port (29) as in the case of sealing, the size of the valve protrusion (41b) can be made smaller than the discharge port (29). Thereby, the minimum cross-sectional area S1 of the flow path formed between the discharge port (29) and the valve protrusion (41b) is increased.

上記吐出口(29)およびリード弁(41)の形状は、例えば吐出口(29)の入口(29a)の直径φDおよび吐出口(29)のテーパ角θを調整することによって設定される。また、必要に応じて上記リード弁(41)の最大リフト量Hを調整することにより、上述した各流路面積S0〜S2の関係を満たすようにしてもよい。   The shapes of the discharge port (29) and the reed valve (41) are set, for example, by adjusting the diameter φD of the inlet (29a) of the discharge port (29) and the taper angle θ of the discharge port (29). Moreover, you may make it satisfy | fill the relationship of each flow-path area S0-S2 mentioned above by adjusting the maximum lift amount H of the said reed valve (41) as needed.

−運転動作−
次に、上述した圧縮機(1)の運転動作について説明する。
-Driving action-
Next, the operation of the compressor (1) described above will be described.

まず、上記電動機(30)に通電すると、ロータ(32)が回転し、該ロータ(32)の回転が駆動軸(33)を介して圧縮機構(20)のピストン(24)に伝達される。これによって、上記圧縮機構(20)が所定の圧縮動作を行う。   First, when the electric motor (30) is energized, the rotor (32) rotates, and the rotation of the rotor (32) is transmitted to the piston (24) of the compression mechanism (20) via the drive shaft (33). Thereby, the compression mechanism (20) performs a predetermined compression operation.

具体的に、図2を参照しながら圧縮機構(20)の圧縮動作について説明する。上記ピストン(24)が電動機(30)の駆動によって図の右回り(時計回り)に回転すると、その回転に従って吸入室(25a)の容積が拡大し、該吸入室(25a)に低圧の冷媒が吸入口(28)を介して吸入される。この吸入室(25a)への冷媒の吸入は、ピストン(24)がシリンダ室(25)を回転して再び吸入口(28)のすぐ右側でシリンダ(21)とピストン(24)とが接触する状態となるまで続く。   Specifically, the compression operation of the compression mechanism (20) will be described with reference to FIG. When the piston (24) is rotated clockwise (clockwise) in the figure by driving the electric motor (30), the volume of the suction chamber (25a) is increased according to the rotation, and a low-pressure refrigerant is supplied to the suction chamber (25a). Inhaled through inlet (28). In the suction of the refrigerant into the suction chamber (25a), the piston (24) rotates the cylinder chamber (25), and the cylinder (21) and the piston (24) come into contact with each other immediately on the right side of the suction port (28). Continue until state is reached.

上記のように、ピストン(24)が1回転して冷媒の吸入が終了すると、冷媒が圧縮される圧縮室(25b)が形成される。なお、この圧縮室(25b)の隣には、新たな吸入室(25a)が形成され、該吸入室(25a)への冷媒の吸入が繰り返される。上記圧縮室(25b)の冷媒は、ピストン(24)の回転に伴って圧縮室(25b)の容積が減少することにより、圧縮される。この圧縮室(25b)が所定の高圧になると、リード弁(41)の弁突起部(41b)が吐出口(29)から出て開く。上記圧縮室(25b)の冷媒は、吐出口(29)の入口(29a)より流入して吐出口(29)と弁突起部(41b)との間隙を流れ、シート部(22b)と弁平板部(41a)との間隙を流れてケーシング(10)内に吐出される。そして、上記高圧の冷媒が吐出されて圧縮室(25b)が低圧になると、リード弁(41)の弁突起部(41b)が自身の剛性(バネ力)によって吐出口(29)に入り、弁平板部(41a)がシート部(22b)に接触して吐出口(29)を閉じる。このように、冷媒の吸入、圧縮および吐出が繰り返される。   As described above, when the piston (24) rotates once and the suction of the refrigerant is completed, a compression chamber (25b) in which the refrigerant is compressed is formed. A new suction chamber (25a) is formed next to the compression chamber (25b), and the suction of the refrigerant into the suction chamber (25a) is repeated. The refrigerant in the compression chamber (25b) is compressed by reducing the volume of the compression chamber (25b) as the piston (24) rotates. When the compression chamber (25b) reaches a predetermined high pressure, the valve protrusion (41b) of the reed valve (41) exits from the discharge port (29) and opens. The refrigerant in the compression chamber (25b) flows in from the inlet (29a) of the discharge port (29) and flows through the gap between the discharge port (29) and the valve projection (41b), and the seat portion (22b) and the valve plate It flows through the gap with the part (41a) and is discharged into the casing (10). When the high-pressure refrigerant is discharged and the compression chamber (25b) becomes low pressure, the valve protrusion (41b) of the reed valve (41) enters the discharge port (29) by its own rigidity (spring force), and the valve The flat plate portion (41a) contacts the sheet portion (22b) to close the discharge port (29). In this manner, refrigerant suction, compression, and discharge are repeated.

ここで、高速運転時において、吐出流量が多くなり、リード弁(41)のリフト量(撓み量)が最大となるが、圧縮室(25b)の冷媒は、吐出口(29)の入口(29a)より流入してからシート部(22b)と弁平板部(41a)との間隙を通過するまでの間、一度も流量が絞られることなく流れる。したがって、冷媒の流速が増大して流動抵抗の影響をより受ける高速運転時において、流路面積減少による流動抵抗の発生を防止できる。これにより、吐出圧力損失を効果的に低減することができる。   Here, during high-speed operation, the discharge flow rate increases and the lift amount (deflection amount) of the reed valve (41) is maximized, but the refrigerant in the compression chamber (25b) flows into the inlet port (29a) of the discharge port (29). ) Until it passes through the gap between the seat part (22b) and the valve flat plate part (41a). Therefore, it is possible to prevent the occurrence of flow resistance due to the reduction of the flow path area during high-speed operation where the flow rate of the refrigerant increases and the flow resistance is more affected. Thereby, discharge pressure loss can be reduced effectively.

−実施形態の効果−
以上説明したように、本実施形態によれば、吐出口(29)の入口(29a)の開口面積S0、リード弁(41)の最大リフト時における弁突起部(41b)と吐出口(29)との間に形成される流路の最小断面積S1およびリード弁(41)の最大リフト時における弁平板部(41a)とシート部(22b)との間に形成される流路の最小断面積S2が、S2≧S1≧S0の関係を満たすように吐出口(29)の形状およびリード弁(41)の形状を形成するようにしたので、圧縮室(25b)の冷媒が吐出口(29)の入口(29a)から流入してシート部(22b)と弁平板部(41a)との間隙を通過するまでの間、一度も流量を絞ることなく流すことができる。したがって、冷媒の流速が増大して流動抵抗の影響をより受ける高速運転時において、流路面積減少による流動抵抗の発生を防止できる。これにより、吐出圧力損失を効果的に低減することができる。
-Effect of the embodiment-
As described above, according to the present embodiment, the opening area S0 of the inlet (29a) of the discharge port (29), the valve protrusion (41b) and the discharge port (29) when the reed valve (41) is fully lifted. The minimum cross-sectional area S1 of the flow path formed between and the minimum cross-sectional area of the flow path formed between the valve flat plate portion (41a) and the seat portion (22b) when the reed valve (41) is fully lifted Since the shape of the discharge port (29) and the shape of the reed valve (41) are formed so that S2 satisfies the relationship of S2 ≧ S1 ≧ S0, the refrigerant in the compression chamber (25b) is discharged from the discharge port (29). It can flow without reducing the flow rate until it flows from the inlet (29a) and passes through the gap between the seat portion (22b) and the valve flat plate portion (41a). Therefore, it is possible to prevent the occurrence of flow resistance due to the reduction of the flow path area at the time of high-speed operation that is more affected by the flow resistance due to an increase in the flow rate of the refrigerant. Thereby, discharge pressure loss can be reduced effectively.

また、上記吐出口(29)を入口(29a)から出口(29b)に向かって拡がるテーパ状に形成したため、例えば吐出口(29)を円筒状に形成した場合に比べて、リード弁(41)の最大リフト時に流路面積S1、すなわち吐出口(29)と弁突起部(41b)との間に形成される流路の最小断面積を大きくすることができる。したがって、流路面積S1を流路面積S0より確実に同等以上に大きくできるので、流路面積減少による流動抵抗の発生を確実に防止することができる。   In addition, since the discharge port (29) is formed in a tapered shape that expands from the inlet (29a) toward the outlet (29b), for example, compared to the case where the discharge port (29) is formed in a cylindrical shape, the reed valve (41) During the maximum lift, the flow area S1, that is, the minimum cross-sectional area of the flow path formed between the discharge port (29) and the valve protrusion (41b) can be increased. Therefore, since the flow path area S1 can be reliably made equal to or greater than the flow path area S0, it is possible to reliably prevent the occurrence of flow resistance due to the reduction of the flow path area.

また、上記吐出口(29)の出口(29b)の外縁部に弁平板部(41a)が接するシート部(22b)を設けるようにしたため、例えば吐出口(29)の内面をシート面に形成して弁突起部(41b)との接触によってシールする場合に比べて、弁突起部(41b)の形状を吐出口(29)の形状に合わす必要がないので、弁突起部(41b)の大きさを吐出口(29)より小さく形成することができる。これにより、上述した流路面積S1をより大きくとることができる。   In addition, since the sheet portion (22b) in contact with the valve flat plate portion (41a) is provided at the outer edge of the outlet (29b) of the discharge port (29), for example, the inner surface of the discharge port (29) is formed on the sheet surface. Compared to sealing by contact with the valve projection (41b), the shape of the valve projection (41b) does not need to match the shape of the discharge port (29), so the size of the valve projection (41b) Can be formed smaller than the discharge port (29). Thereby, the flow path area S1 mentioned above can be taken larger.

《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.

例えば、上記実施形態では、いわゆる回転ピストン型の圧縮機(1)について説明したが、本発明は、いわゆる揺動ピストン型やスクロール型の圧縮機などに適用してもよい。要するに、作用室である圧縮室(25b)の吐出口(29)にいわゆるポペット型のリード弁(41)が設けられた圧縮機であればよい For example, in the above embodiment, the so-called rotary piston type compressor (1) has been described, but the present invention may be applied to a so-called oscillating piston type or scroll type compressor. In short, any compressor in which a so-called poppet type reed valve (41) is provided at the discharge port (29) of the compression chamber (25b), which is the working chamber, may be used .

た、上記実施形態は、リード弁(41)のシート部(22b)を吐出口(29)の出口(29b)の外縁部に設けるようにしたが、吐出口(29)の内面にシート部を設けて弁突起部(41b)との接触によってシールするようにしてもよい。 Also, the above embodiment has been acceptable to provide the seat portion of the reed valve (41) and (22b) to the outer edge of the outlet (29 b) of the discharge port (29), the seat portion on the inner surface of the discharge port (29) May be provided and sealed by contact with the valve protrusion (41b).

以上説明したように、本発明は、各種流体を圧縮する圧縮機として有用である。   As described above, the present invention is useful as a compressor that compresses various fluids.

実施形態に係るロータリー圧縮機を示す断面構造図である。It is a sectional structure figure showing a rotary compressor concerning an embodiment. 実施形態に係る圧縮機構を示す横断面図である。It is a cross-sectional view showing a compression mechanism according to an embodiment. 実施形態に係る吐出弁機構を示す拡大断面図である。It is an expanded sectional view showing the discharge valve mechanism concerning an embodiment. 実施形態に係るリード弁の最大リフト時の開閉状態を示す断面図である。It is sectional drawing which shows the opening-and-closing state at the time of the maximum lift of the reed valve which concerns on embodiment.

符号の説明Explanation of symbols

1 圧縮機(ロータリー圧縮機)
20 圧縮機構
22b シート部
29 吐出口
29a 入口
29b 出口
41 リード弁
41a 弁平板部
41b 弁突起部
1 Compressor (rotary compressor)
20 Compression mechanism
22b Seat part
29 Discharge port
29a entrance
29b Exit
41 Reed valve
41a Valve plate
41b Valve protrusion

Claims (2)

圧縮機構(20)の吐出口(29)を開閉するリード弁(41)を備え、
該リード弁(41)は、弁平板部(41a)と、該弁平板部(41a)の先端側に形成されて吐出口(29)を出入りする弁突起部(41b)とを備えている圧縮機であって、
上記吐出口(29)は、入口(29a)から出口(29b)に向かって拡がるテーパ状に形成され
上記弁突起部(41b)は、先端に向かって先細となり、上記吐出口(29)とほぼ同じテーパ状に形成される一方、
上記吐出口(29)の入口(29a)の開口面積をS0とし、
上記リード弁(41)の最大リフト時における弁突起部(41b)と吐出口(29)との間に形成される流路の最小断面積をS1とし、
上記リード弁(41)の最大リフト時における弁平板部(41a)と吐出口(29)の出口(29b)の外縁部との間に形成される流路の最小断面積をS2とし、
上記吐出口(29)の形状およびリード弁(41)の形状が、
S2≧S1≧S0
を満たすように形成されている
ことを特徴とする圧縮機。
A reed valve (41) that opens and closes the discharge port (29) of the compression mechanism (20),
The reed valve (41) includes a valve flat plate portion (41a) and a valve protrusion (41b) formed on the distal end side of the valve flat plate portion (41a) and entering and exiting the discharge port (29). Machine,
The discharge port (29) is formed in a tapered shape extending from the inlet (29a) to the outlet (29b) ,
The valve protrusion (41b) tapers toward the tip and is formed in the same taper shape as the discharge port (29),
The opening area of the inlet (29a) of the discharge port (29) is S0,
S1 is the minimum cross-sectional area of the flow path formed between the valve protrusion (41b) and the discharge port (29) at the time of maximum lift of the reed valve (41),
S2 is the minimum cross-sectional area of the flow path formed between the valve flat plate portion (41a) and the outer edge of the outlet (29b) of the discharge port (29) when the reed valve (41) is at the maximum lift,
The shape of the discharge port (29) and the shape of the reed valve (41)
S2 ≧ S1 ≧ S0
A compressor characterized by being formed to satisfy the above .
請求項において、
上記吐出口(29)の出口(29b)の外縁部には、弁平板部(41a)が接するシート部(22b)が形成されている
ことを特徴とする圧縮機。
In claim 1 ,
A compressor characterized in that a sheet portion (22b) in contact with the valve flat plate portion (41a) is formed at an outer edge portion of the outlet (29b) of the discharge port (29).
JP2003432123A 2003-12-26 2003-12-26 Compressor Expired - Fee Related JP3832468B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003432123A JP3832468B2 (en) 2003-12-26 2003-12-26 Compressor
US10/582,497 US20070148026A1 (en) 2003-12-26 2004-12-16 Compressor
PCT/JP2004/018829 WO2005064160A1 (en) 2003-12-26 2004-12-16 Compressor
CNA2004800362810A CN1890467A (en) 2003-12-26 2004-12-16 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432123A JP3832468B2 (en) 2003-12-26 2003-12-26 Compressor

Publications (2)

Publication Number Publication Date
JP2005188420A JP2005188420A (en) 2005-07-14
JP3832468B2 true JP3832468B2 (en) 2006-10-11

Family

ID=34736462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432123A Expired - Fee Related JP3832468B2 (en) 2003-12-26 2003-12-26 Compressor

Country Status (4)

Country Link
US (1) US20070148026A1 (en)
JP (1) JP3832468B2 (en)
CN (1) CN1890467A (en)
WO (1) WO2005064160A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057425A (en) * 2006-08-31 2008-03-13 Daikin Ind Ltd Fluid machine and heat pump device
JP4974974B2 (en) * 2008-07-09 2012-07-11 三菱電機株式会社 Hermetic rotary compressor
JP4569708B2 (en) * 2008-12-05 2010-10-27 ダイキン工業株式会社 Refrigeration equipment
JP5644494B2 (en) * 2010-12-29 2014-12-24 ダイキン工業株式会社 Compressor
JP5429353B1 (en) * 2012-07-25 2014-02-26 ダイキン工業株式会社 Compressor
JP6130642B2 (en) * 2012-10-11 2017-05-17 三菱重工業株式会社 Compressor
CN103821726B (en) * 2014-02-11 2016-04-20 广东美芝制冷设备有限公司 Rotary compressor
JP6841009B2 (en) * 2016-11-15 2021-03-10 株式会社富士通ゼネラル Rotary compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172465A (en) * 1977-11-07 1979-10-30 Conbraco Industries, Inc. Check valve
JPS5536963U (en) * 1978-08-31 1980-03-10
JPS5665269U (en) * 1979-10-24 1981-06-01
JPS578958U (en) * 1980-06-16 1982-01-18
JPS57172970U (en) * 1981-04-27 1982-10-30
JPS6279986U (en) * 1985-11-06 1987-05-22
JPH01158576U (en) * 1988-04-19 1989-11-01
JPH0234776U (en) * 1988-08-30 1990-03-06
JP2002039070A (en) * 2000-07-26 2002-02-06 Hitachi Ltd Compressor
US6592346B2 (en) * 2001-10-16 2003-07-15 Carrier Corporation Compressor discharge valve

Also Published As

Publication number Publication date
US20070148026A1 (en) 2007-06-28
CN1890467A (en) 2007-01-03
WO2005064160A1 (en) 2005-07-14
JP2005188420A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US20040126259A1 (en) Vacuum preventing device of scroll compressor
JP3742862B2 (en) Compressor
JP5429353B1 (en) Compressor
US20030202886A1 (en) Vacuum preventing device for scroll compressor
JP3832468B2 (en) Compressor
US5213488A (en) Valved discharge mechanism of a refrigerant compressor
JP4119423B2 (en) Compressor
JP2005188421A (en) Compressor
WO2018083944A1 (en) Compressor
JP2008286154A (en) Compressor
KR20130011864A (en) Scroll compressor
JP2014129796A (en) Compressor
JP4215003B2 (en) Compressor muffler structure
JP2005180317A (en) Rotary compressor
JP4974974B2 (en) Hermetic rotary compressor
JP5338275B2 (en) Discharge valve mechanism and rotary compressor
JP2009047018A (en) Compressor
JP2000283062A (en) Rotary compressor
JP4024605B2 (en) Scroll compressor with valve structure
JP2008303887A (en) Muffler structure for compressor
JP2000045949A (en) Refrigerant compressor
JP2008303887A5 (en)
JP2005083296A (en) Compressor
KR20230124136A (en) Automotive Orbiter Compressor
JP2005016531A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R151 Written notification of patent or utility model registration

Ref document number: 3832468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees