KR20230124136A - Automotive Orbiter Compressor - Google Patents

Automotive Orbiter Compressor Download PDF

Info

Publication number
KR20230124136A
KR20230124136A KR1020220020755A KR20220020755A KR20230124136A KR 20230124136 A KR20230124136 A KR 20230124136A KR 1020220020755 A KR1020220020755 A KR 1020220020755A KR 20220020755 A KR20220020755 A KR 20220020755A KR 20230124136 A KR20230124136 A KR 20230124136A
Authority
KR
South Korea
Prior art keywords
orbiter
cylinder
refrigerant
compressor
suction
Prior art date
Application number
KR1020220020755A
Other languages
Korean (ko)
Inventor
권윤기
김기범
김성준
임혁주
임정택
Original Assignee
두원중공업(주)
학교법인 두원학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두원중공업(주), 학교법인 두원학원 filed Critical 두원중공업(주)
Priority to KR1020220020755A priority Critical patent/KR20230124136A/en
Publication of KR20230124136A publication Critical patent/KR20230124136A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

The present invention provides an automotive orbiter compressor comprising: a fixed cylinder having a suction passage formed to guide refrigerant flowing in from the outside into the inside, discharging the introduced refrigerant, and having a suction auxiliary groove formed on the bottom of the cylinder; a protrusion formed protruding inside the fixed cylinder; an orbiter cylinder installed to pivot inside the fixed cylinder and having an insertion groove formed on one side; and a cylinder block inserted into the insertion groove and movably installed between the fixed cylinder and the protrusion. The suction auxiliary groove moves the refrigerant inside the orbiter cylinder. According to the automotive orbital compressor, the suction auxiliary groove is formed so that the refrigerant flowing in from the outside flows smoothly into an inner chamber disposed inside the orbiter cylinder located inside the compressor, thereby preventing a decrease in the suction efficiency and volumetric efficiency of the compressor.

Description

차량용 오비터 압축기{Automotive Orbiter Compressor}Automotive Orbiter Compressor {Automotive Orbiter Compressor}

본 발명은 차량용 오비터 압축기에 관한 것으로, 더욱 상세하게는, 외부에서 유입된 냉매를 압축기하기 위해 실린더 내부의 작동공간에 오비터가 배치되고, 상기 오비터가 선회운동을 하여 상기 실린더 내부에 압축실을 형성하는 차량용 오비터 압축기에 관한 것이다.The present invention relates to an orbiter compressor for vehicles, and more particularly, an orbiter is disposed in a working space inside a cylinder to compress refrigerant introduced from the outside, and the orbiter rotates to compress the inside of the cylinder. It relates to an orbiter compressor for a vehicle forming a seal.

일반적으로 압축기로 가장 널리 사용되고 있는 왕복동식 압축기는 피스톤의 왕복운동을 이용하여 가스를 압축하는 방식으로 압축된 가스의 토출이 피스톤 왕복운동 1회당 1번 발생한다.In general, a reciprocating compressor, which is most widely used as a compressor, compresses gas using the reciprocating motion of a piston, and discharge of the compressed gas occurs once per piston reciprocating motion.

이러한 간혈적인 토출 특성으로 인해 가스의 맥동과 소음이 수반되며, 구동 동력과 또는 구동부와 연결된 회전축의 회전운동을 피스톤의 왕복운동으로 바꾸어 주는 과정에서의 불균형력이 발생하므로 진동을 피할 수 없다.Due to this intermittent discharge characteristic, gas pulsation and noise are accompanied, and vibration is unavoidable because unbalanced force occurs in the process of converting the driving power or the rotational motion of the rotating shaft connected to the driving unit into the reciprocating motion of the piston.

또한, 왕복동식에서는 흡입 및 토출 밸브의 채용이 불가피하여 압축비가 높은 경우 체적효율이 급감하고 에너지 소모가 커지게 된다.In addition, in the reciprocating type, the adoption of suction and discharge valves is unavoidable, and when the compression ratio is high, the volumetric efficiency sharply decreases and energy consumption increases.

이러한 왕복동 압축기의 단점으로 인해 새로운 작동방식의 압축기들이 많이 제안되었다.Due to the disadvantages of these reciprocating compressors, many compressors with new operation methods have been proposed.

이러한 새로운 개념의 압축기 가운데 하나로 선회운동하는 압축기구, 즉 오비터 압축기가 제안되었다.As one of these new concept compressors, a rotational compression mechanism, that is, an orbiter compressor, has been proposed.

도 1을 참조하면, 종래기술의 오비터 압축기(1)에 관한 것으로, 오비터 압축기는 경판 후면에 올담링(Oldham)과 같은 자전방지 기구를 적용하면 크랭크축(10) 회전에 따라 선회베인(오비터)(20)은 환형의 실린더(30) 내에서 선회운동하게 된다.Referring to FIG. 1, it relates to an orbiter compressor 1 of the prior art. When an anti-rotation mechanism such as an Oldham ring is applied to the rear surface of the head plate, the orbiter compressor rotates the turning vane according to the rotation of the crankshaft 10 ( Orbiter) (20) rotates within the annular cylinder (30).

오비터 압축기(1)의 작동원리를 살펴보면, 선회베인(오비터)(20)을 환형의 실린더(30) 내에서 운동하도록 위치시키면, 환형의 실린더(30) 내벽면과 선회베인(오비터)(20)의 외벽, 그리고 돌출부의 외측면과 선회베인(오비터)(20)의 내면 사이에 압축실(30a)들이 형성되며, 상기 압축실(30a)에는 흡입유로(F1)가 형성된다. 여기서, 선회베인(오비터)(20)의 선회운동에 따라 이들 압축실(30a) 내의 가스는 흡입-압축-토출 과정을 거치게 된다.Looking at the operating principle of the orbiter compressor (1), if the orbiter (orbiter) 20 is positioned so as to move within the annular cylinder 30, the inner wall surface of the annular cylinder 30 and the orbiter vane (orbiter) Compression chambers 30a are formed between the outer wall of the 20, the outer surface of the protrusion and the inner surface of the orbiter 20, and the suction passage F1 is formed in the compression chamber 30a. Here, the gas in these compression chambers 30a undergoes a suction-compression-discharge process according to the orbital motion of the orbiting vane (orbiter) 20 .

여기서, 미설명 부호 40은 냉매가 흡입되는 흡입구이며, 50은 인버터가 설치되는 인버터부이다.Here, reference numeral 40 denotes a suction port through which refrigerant is sucked, and 50 denotes an inverter unit in which an inverter is installed.

이러한 압축방식은 연속적이므로 가스 맥동이 거의 없고, 왕복운동하는 메카니즘이 없으므로 소음과 진동이 크게 감소하며, 흡입밸브가 없는 구조이므로 흡입밸브 통과 손실이 없다.Since this compression method is continuous, there is almost no gas pulsation, and since there is no reciprocating mechanism, noise and vibration are greatly reduced.

또한, 선회베인의 내,외 양쪽에 압축실(30a)들이 형성되므로 공간 활용이 높아져 압축기의 소형화를 이룰 수 있다.In addition, since the compression chambers 30a are formed on both the inside and outside of the turning vane, space utilization is increased and the compressor can be miniaturized.

종래의 오비터 압축기는 오비터 실린더를 기준으로 안쪽과 바깥쪽 압축챔버가 구분되어 있는 특징으로 종래의 오비터 압축기는 이 두 개의 챔버와 동시에 연통되는 큰 흡입유로를 구비하였다. 이는 전동식이 아닌 기계식 구조를 사용하여 흡입냉매가 모터실(흡입실)을 지나치지 않아도 되는 구조를 가지고 있기 때문이다. 하지만, 차량용 오비터 압축기는 모터와 인버터 냉각을 위하여 모터실(흡입실)에 냉매가 유입되어야 하므로 종래의 오비터 압축기와 다른 흡입유로를 구비해야 되는 문제점이 있다.Conventional Orbiter compressors are characterized in that inner and outer compression chambers are divided based on the Orbiter cylinder, and the Conventional Orbiter compressor has a large suction passage that communicates with these two chambers at the same time. This is because it has a structure in which the suction refrigerant does not have to pass through the motor chamber (suction chamber) by using a mechanical structure rather than an electric one. However, since the refrigerant must flow into the motor room (suction chamber) for cooling the motor and the inverter, the vehicle orbiter compressor has a problem in that it has to have a suction flow path different from that of the conventional orbiter compressor.

대한민국 등록특허 제10-0581570호(발명의 명칭 : 리니어 슬라이더를 갖는 선회베인 압축기)Republic of Korea Patent Registration No. 10-0581570 (Title of Invention: Swing vane compressor with linear slider)

본 발명은 상기와 같은 문제점을 해결하기 위해 창출된 것으로, 모터실(흡입실)에서 유입된 냉매를 실린더 내부에 흡입보조홈을 형성하여 내부 챔버측으로 전달하는 차량용 오비터 압축기를 제공하는데 목적이 있다.The present invention was created to solve the above problems, and an object of the present invention is to provide a vehicle orbiter compressor that transfers the refrigerant introduced from the motor room (suction chamber) to the inner chamber by forming a suction auxiliary groove inside the cylinder. .

본 발명은, 외부에서 유입되는 냉매가 내부로 유도되도록 흡입유로가 형성되고, 상기 유입된 냉매를 토출하며, 바닥면에 흡입보조홈이 형성된 고정실린더; 상기 고정실린더 내부에 돌출 형성된 돌출부; 상기 고정실린더 내부에 선회 운동하게 설치되며, 일 측에 삽입홈이 형성된 오비터실린더; 및 상기 삽입홈에 삽입되며, 상기 고정실린더와 돌출부 사이에 이동 가능하게 설치되는 실린더블럭을 포함하되, 상기 흡입보조홈은, 상기 오비터실린더 내측으로 냉매를 이동시키는 차량용 오비터 압축기를 제공한다.The present invention, a suction flow path is formed so that the refrigerant flowing in from the outside is guided to the inside, discharges the introduced refrigerant, and a fixed cylinder with a suction auxiliary groove formed on the bottom surface; a protrusion protruding from the inside of the fixed cylinder; an orbiter cylinder installed inside the fixed cylinder to rotate and having an insertion groove formed on one side thereof; and a cylinder block inserted into the insertion groove and movably installed between the fixed cylinder and the protrusion, wherein the suction assist groove moves the refrigerant into the orbiter cylinder.

상기 고정실린더는, 외부에서 유입된 냉매를 흡입보조홈 측으로 가이드하며, 내측에 수평한 제1수평면이 형성된 가이드부와, 상기 제1수평면에 인접하게 형성되며, 상기 오비터실린더의 선회 운동에 의해 압축된 냉매가 선택적으로 토출되는 제1냉매토출구가 형성될 수 있다.The fixed cylinder guides the refrigerant introduced from the outside toward the suction auxiliary groove, and is formed adjacent to a guide portion having a first horizontal surface formed therein, and formed adjacent to the first horizontal surface, by the turning motion of the orbiter cylinder. A first refrigerant outlet through which compressed refrigerant is selectively discharged may be formed.

상기 돌출부는, 외주면에 상기 제1수평면과 평행하게 형성된 제2수평면과, 상기 제2수평면에 인접하게 형성되며, 상기 오비터실린더의 선회 운동에 의해 압축된 냉매가 선택적으로 토출되는 제2냉매토출구가 형성될 수 있다.The protruding part has a second horizontal surface formed parallel to the first horizontal surface on an outer circumferential surface and a second refrigerant outlet formed adjacent to the second horizontal surface and through which the refrigerant compressed by the orbital motion of the orbiter cylinder is selectively discharged. can be formed.

상기 실린더블럭은, 상기 제1수평면 및 제2수평면의 면에서만 이동 가능하게 설치될 수 있다.The cylinder block may be installed to be movable only in the first horizontal plane and the second horizontal plane.

본 발명에 따른 차량용 오비터 압축기에 의하면, 흡입보조홈이 형성되어 외부에서 유입되는 냉매를 압축기 내부에 배치된 오비터실린더 내부에 배치된 내측 챔버까지 냉매 유입이 원활히 진행되어 압축기의 흡입효율 및 체적효율 감소를 방지할 수 있다.According to the vehicle orbiter compressor according to the present invention, a suction assisting groove is formed so that the refrigerant introduced from the outside is smoothly introduced into the inner chamber disposed inside the orbiter cylinder disposed inside the compressor, thereby improving the suction efficiency and volume of the compressor. Efficiency reduction can be avoided.

도 1은 종래 기술에 따른 오비터 압축기의 단면도,
도 2는 본 발명의 실시예에 따른 차량용 오비터 압축기의 사시도,
도 3은 도 2에 나타낸 차량용 오비터 압축기의 정면도,
도 4는 도 2에 나타낸 차량용 오비터 압축기의 사용상태도,
도 5는 도 2에 나타낸 차량용 오비터 압축기의 부분 단면도이다.
1 is a cross-sectional view of an orbiter compressor according to the prior art;
2 is a perspective view of an orbiter compressor for a vehicle according to an embodiment of the present invention;
3 is a front view of the vehicle orbiter compressor shown in FIG. 2;
4 is a state diagram of a vehicle orbiter compressor shown in FIG. 2;
FIG. 5 is a partial cross-sectional view of the vehicle orbiter compressor shown in FIG. 2 .

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is only exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical scope of protection of the present invention should be determined by the technical spirit of the appended claims.

이하부터는, 도 2 내지 도 5를 참조하여, 본 발명의 실시예에 따른 차량용 오비터 압축기(100)의 구성에 대해 설명하도록 한다. Hereinafter, the configuration of the vehicle orbiter compressor 100 according to an embodiment of the present invention will be described with reference to FIGS. 2 to 5 .

도 2 및 도 3을 참조하면, 본 발명의 차량용 오비터 압축기(100)는 고정실린더(110), 돌출부(120), 오비터실린더(130) 및 실린더블럭(140)을 포함한다. Referring to FIGS. 2 and 3 , the vehicle orbiter compressor 100 of the present invention includes a fixed cylinder 110, a protrusion 120, an orbiter cylinder 130, and a cylinder block 140.

상기 고정실린더(110)는 외부에서 유입되는 냉매가 내부로 전달되도록 흡입유로(F1)가 형성되고, 상기 유입된 냉매를 토출하며, 상기 고정실린더(110) 경판 바닥면에 일정 깊이의 홈으로 형성된 흡입보조홈(110a)이 형성된다.The fixed cylinder 110 has a suction flow path F1 formed so that the refrigerant introduced from the outside is transferred to the inside, discharges the introduced refrigerant, and is formed as a groove of a certain depth on the bottom surface of the head plate of the fixed cylinder 110. Suction auxiliary groove (110a) is formed.

여기서, 상기 흡입보조홈(110a)은 상기 흡입유로(F1)에서 유입된 냉매를 오비터실린더(130) 내측으로 냉매를 유도하여, 상기 오비터실린더(130)의 선회 운동에 의해 압축하게 된다.Here, the suction auxiliary groove 110a guides the refrigerant introduced from the suction passage F1 to the inside of the orbiter cylinder 130, and compresses it by the turning motion of the orbiter cylinder 130.

또한, 상기 고정실린더(110)는 가이드부(111)가 형성되고, 상기 가이드부(111)는 외부에서 유인된 냉매를 흡입보조홈(110a)측으로 가이드하며, 내측에 수평한 제1수평면(111a)이 형성된다. 또한, 상기 제1수평면(111a)에 인접하게 형성되며, 상기 오비터실린더(130)의 회전 운동에 의해 압축된 냉매가 선택적으로 토출되는 제1냉매토출구(111b)가 형성된다.In addition, the fixed cylinder 110 is formed with a guide part 111, and the guide part 111 guides the refrigerant drawn from the outside toward the suction auxiliary groove 110a, and the first horizontal surface 111a horizontal to the inside. ) is formed. In addition, a first refrigerant outlet 111b is formed adjacent to the first horizontal surface 111a and through which the refrigerant compressed by the rotational motion of the orbiter cylinder 130 is selectively discharged.

상기 돌출부(120)는 상시 고정실린더(110) 내부에 돌출 형성된다. 여기서, 상기 돌출부(120)의 외주면에 상기 제1수평면(111a)과 평행하게 형성된 제2수평면(121a)이 형성된다. 또한, 상기 제2수평면(121a)에 인접하게 형성되며, 상기 오비터실린더(130)의 선회 운동에 의해 압축된 냉매가 선택적으로 토출되는 제2냉매토출구(121b)가 형성된다.The protruding part 120 is always protrudingly formed inside the fixed cylinder 110 . Here, a second horizontal surface 121a formed parallel to the first horizontal surface 111a is formed on the outer circumferential surface of the protrusion 120 . In addition, a second refrigerant outlet 121b is formed adjacent to the second horizontal surface 121a and through which the refrigerant compressed by the orbital motion of the orbiter cylinder 130 is selectively discharged.

상기 오비터실린더(130)는 상기 돌출부(120)에 선회 운동하게 설치되며, 일 측에 삽입홈(130a)이 형성된다.The orbiter cylinder 130 is installed in a pivoting motion on the protruding part 120, and an insertion groove 130a is formed on one side.

상기 실린더블럭(140)은 상기 삽입홈(130a)에 삽입되며, 상기 고정실린더(110)와 돌출부(120) 사이에 이동 가능하게 설치되며, 상기 제1수평면(111a) 및 제2수평면(121a)의 면에서만 이동 가능하게 설치된다.The cylinder block 140 is inserted into the insertion groove 130a and is movably installed between the fixed cylinder 110 and the protrusion 120, and the first horizontal surface 111a and the second horizontal surface 121a It is installed to be movable only on the side of the

도 4를 참조하면, 본 발명의 차량용 오비터 압축기(100)의 동작에 따른 상태를 나타냈다. Referring to FIG. 4 , states according to the operation of the vehicle orbiter compressor 100 according to the present invention are shown.

도 4에 도시된 바와 같이 상기 고정실린더(110)와 상기 오비터실린더(130)가 선회 운동을 하여 외부에서 유입되는 냉매를 압축하는 것으로서, 이를 좀 더 구체적으로 설명하면 다음과 같다. As shown in FIG. 4, the fixed cylinder 110 and the orbiter cylinder 130 perform a pivoting motion to compress the refrigerant introduced from the outside. This will be described in more detail as follows.

최초의 작동상태(0°)(a)에서는 외부에서 유입되는 냉매가 내부로 전달되도록 흡입보조홈(110a)을 통과하여 상기 오비터실린더(130)의 내측챔버(110b)로 냉매가 유동하게 되고, 상기 외측챔버(110c)는 흡입이 거의 완료가 된 상태이고, 상기 내측챔버(110b)는 흡입보조홈(110a)을 통해 냉매를 흡입하고, 냉매를 흡입하지 않는 측에서 압축을 하고 상기 제2냉매토출구(121b)측으로 냉매 토출이 동시에 이루어진다. In the initial operating state (0°) (a), the refrigerant flows into the inner chamber 110b of the orbiter cylinder 130 through the suction auxiliary groove 110a so that the refrigerant introduced from the outside is transferred to the inside. , The outer chamber 110c is in a state in which suction is almost completed, and the inner chamber 110b sucks the refrigerant through the suction auxiliary groove 110a, compresses it on the side that does not suck the refrigerant, and the second The refrigerant is discharged simultaneously toward the refrigerant discharge port 121b.

90°회전된 상태(b)에서는 상기 외측챔버(110c)는 압축과 상기 제1냉매토출구(111b)측으로 냉매 토출이 동시에 이루어지고, 상기 내측챔버(110b)는 흡입보조홈(110a)을 통해 냉매 흡입이 거의 완료되고, 냉매를 흡입하지 않는 측에서 압축이 거의 완료된 상태가 된다.In the state (b) rotated by 90°, the outer chamber 110c is compressed and the refrigerant is discharged toward the first refrigerant discharge port 111b at the same time, and the inner chamber 110b passes the refrigerant through the suction auxiliary groove 110a. The suction is almost completed, and the compression is almost completed on the side not sucking the refrigerant.

180°회전된 상태(c)에서는 외부에서 유입되는 냉매가 흡입유로(F1)를 통과하여 상기 오비터실린더(130)의 외측챔버(110c)로 냉매가 유동하게 되고, 상기 외측챔버(110c)는 흡입유로(F1)를 통해 냉매를 흡입하고, 냉매를 흡입하지 않는 측에서 압축을 하고 상기 제1냉매토출구(111b)측으로 냉매 토출이 동시에 이루어지며, 상기 내측챔버(110b)는 흡입이 거의 완료가 된 상태이고, 냉매를 흡입하지 않는 측에서 압축이 거의 완료된 상태가 된다.In the 180° rotated state (c), the refrigerant introduced from the outside passes through the suction passage F1 and the refrigerant flows into the outer chamber 110c of the orbiter cylinder 130, and the outer chamber 110c The refrigerant is sucked through the suction passage F1, the refrigerant is compressed on the side that does not suck the refrigerant, and the refrigerant is discharged to the first refrigerant discharge port 111b at the same time, and the inner chamber 110b is almost completely sucked. , and compression is almost completed on the side where the refrigerant is not sucked.

270°회전된 상태(d)에서는 상기 외측챔버(110c)는 흡입유로(F1)를 통해 냉매 흡입이 거의 완료되고, 냉매를 흡입하지 않는 측에서 압축이 거의 완료된 상태가 되며, 상기 내측챔버(110b)는 흡입보조홈(110a)을 통해 냉매를 흡입하고, 냉매를 흡입하지 않는 측에서 압축을 하고 상기 제2냉매토출구(121b)측으로 냉매 토출이 동시에 이루어진다. In the state (d) rotated by 270°, the outer chamber 110c is almost completely sucked in the refrigerant through the suction passage F1, and the compression is almost completed on the side that does not suck the refrigerant, and the inner chamber 110b ) sucks in the refrigerant through the suction auxiliary groove 110a, compresses it on the side that does not suck in the refrigerant, and discharges the refrigerant to the second refrigerant outlet 121b at the same time.

도 5를 참조하면, 외부에서 유입되는 냉매가 흡입보조홈(110a)을 통해 내부로 전달되는 흡입유로(F1) 및 냉매유로(F2)를 나타냈다.Referring to FIG. 5 , a suction passage F1 and a refrigerant passage F2 through which refrigerant introduced from the outside is transferred to the inside through the auxiliary suction groove 110a are shown.

도면에서 도시된 바와 같이 외부에서 유입된 냉매가 상기 고정실린더(110)의 저면에서 유입되고, 유입된 냉매는 상기 가이드부(111)에 의해 외측챔버(110c)로 유도되고, 상기 흡입보조홈(110a)을 통해 내측챔버(110b)로 유도된다. 상기 흡입보조홈(110a)을 통과한 냉매는 상기 오비터실린더(130) 내측으로 토출되어 상기 고정실린더(110) 내부까지 유동하게 된다.As shown in the figure, the refrigerant introduced from the outside is introduced from the bottom of the fixed cylinder 110, the introduced refrigerant is guided to the outer chamber 110c by the guide part 111, and the suction auxiliary groove ( 110a) is guided to the inner chamber 110b. The refrigerant passing through the suction auxiliary groove 110a is discharged into the orbiter cylinder 130 and flows to the inside of the fixed cylinder 110 .

100 : 차량용 오비터 압축기
110 : 고정실린더 110a : 흡입보조홈
110b : 내측챔버 110c : 외측챔버
111 : 가이드부 111a : 제1수평면
111b : 제1냉매토출구 120 : 돌출부
121a : 제2수평면 121b : 제2냉매토출구
130 : 오비터실린더 130a : 삽입홈
140 : 실린더블럭 F1 : 흡입유로
F2 : 냉매유로
100: vehicle orbiter compressor
110: fixed cylinder 110a: suction auxiliary groove
110b: inner chamber 110c: outer chamber
111: guide part 111a: first horizontal surface
111b: first refrigerant outlet 120: protrusion
121a: second horizontal surface 121b: second refrigerant discharge port
130: Orbiter cylinder 130a: Insertion groove
140: cylinder block F1: suction flow path
F2: refrigerant flow

Claims (4)

외부에서 유입되는 냉매가 내부로 유도되도록 흡입유로가 형성되고, 상기 유입된 냉매를 토출하며, 바닥면에 흡입보조홈이 형성된 고정실린더;
상기 고정실린더 내부에 돌출 형성된 돌출부;
상기 고정실린더 내부에 선회 운동하게 설치되며, 일 측에 삽입홈이 형성된 오비터실린더; 및
상기 삽입홈에 삽입되며, 상기 고정실린더와 돌출부 사이에 이동 가능하게 설치되는 실린더블럭을 포함하되,
상기 흡입보조홈은, 상기 오비터실린더 내측으로 냉매를 이동시키는 차량용 오비터 압축기.
a fixed cylinder having a suction flow path so that the refrigerant introduced from the outside is guided to the inside, discharging the introduced refrigerant, and having an auxiliary suction groove formed on a bottom surface;
a protrusion protruding from the inside of the fixed cylinder;
an orbiter cylinder installed inside the fixed cylinder to rotate and having an insertion groove formed on one side thereof; and
It is inserted into the insertion groove and includes a cylinder block movably installed between the fixed cylinder and the protrusion,
The suction auxiliary groove moves the refrigerant into the orbiter cylinder.
청구항 1에 있어서,
상기 고정실린더는,
외부에서 유입된 냉매를 흡입보조홈 측으로 가이드하며, 내측에 수평한 제1수평면이 형성된 가이드부와,
상기 제1수평면에 인접하게 형성되며, 상기 오비터실린더의 선회 운동에 의해 압축된 냉매가 선택적으로 토출되는 제1냉매토출구가 형성된 차량용 오비터 압축기.
The method of claim 1,
The fixed cylinder,
A guide part for guiding the refrigerant introduced from the outside to the side of the suction auxiliary groove and having a first horizontal surface formed therein;
A vehicle orbiter compressor having a first refrigerant outlet formed adjacent to the first horizontal surface and selectively discharging the refrigerant compressed by the orbital motion of the orbiter cylinder.
청구항 2에 있어서,
상기 돌출부는, 외주면에 상기 제1수평면과 평행하게 형성된 제2수평면과,
상기 제2수평면에 인접하게 형성되며, 상기 오비터실린더의 선회 운동에 의해 압축된 냉매가 선택적으로 토출되는 제2냉매토출구가 형성된 차량용 오비터 압축기.
The method of claim 2,
The protruding part has a second horizontal surface formed parallel to the first horizontal surface on an outer circumferential surface;
A vehicle orbiter compressor having a second refrigerant outlet formed adjacent to the second horizontal surface and through which the refrigerant compressed by the orbital motion of the orbiter cylinder is selectively discharged.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 실린더블럭은,
상기 제1수평면 및 제2수평면의 면에서만 이동 가능하게 설치되는 차량용 오비터 압축기.
The method according to any one of claims 1 to 3,
The cylinder block,
A vehicle orbiter compressor installed to be movable only in the first horizontal plane and the second horizontal plane.
KR1020220020755A 2022-02-17 2022-02-17 Automotive Orbiter Compressor KR20230124136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220020755A KR20230124136A (en) 2022-02-17 2022-02-17 Automotive Orbiter Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220020755A KR20230124136A (en) 2022-02-17 2022-02-17 Automotive Orbiter Compressor

Publications (1)

Publication Number Publication Date
KR20230124136A true KR20230124136A (en) 2023-08-25

Family

ID=87846992

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220020755A KR20230124136A (en) 2022-02-17 2022-02-17 Automotive Orbiter Compressor

Country Status (1)

Country Link
KR (1) KR20230124136A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581570B1 (en) 2004-10-06 2006-05-23 엘지전자 주식회사 A orbiting vane compressor having a linear slider

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581570B1 (en) 2004-10-06 2006-05-23 엘지전자 주식회사 A orbiting vane compressor having a linear slider

Similar Documents

Publication Publication Date Title
JP5828863B2 (en) Gas compressor
JP5826692B2 (en) Gas compressor
US6203301B1 (en) Fluid pump
KR102379081B1 (en) Scroll compressor
KR20130011864A (en) Scroll compressor
JP3832468B2 (en) Compressor
KR20230124136A (en) Automotive Orbiter Compressor
JP2005513339A (en) Suction mechanism of rotary compressor
KR20100081810A (en) Rotary compressor
JP2876922B2 (en) Rolling piston type compressor
JP2013194549A (en) Gas compressor
KR20050062995A (en) Discharge apparatus for rotary system twin compressor
KR20080029077A (en) Compressor
KR100234777B1 (en) Structure for reducing compression loss of hermetic rotary compressor
JP5843729B2 (en) Gas compressor
KR100360236B1 (en) Structure for reducing gas-leakage of scrollcompressor
KR100498378B1 (en) Apparatus for reduce the noise of scroll compressor
KR102663577B1 (en) Electro-compressor
KR20230132650A (en) Leak-proof cylinder block of orbiter compressor for vehicle
KR100343731B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100317378B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100434401B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100394241B1 (en) Apparatus for reducing the chattering noise of scroll compressor
KR101065930B1 (en) Compressor
KR100309289B1 (en) Wankel compressor without discharge valve