WO2016138715A1 - 低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置 - Google Patents

低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置 Download PDF

Info

Publication number
WO2016138715A1
WO2016138715A1 PCT/CN2015/084172 CN2015084172W WO2016138715A1 WO 2016138715 A1 WO2016138715 A1 WO 2016138715A1 CN 2015084172 W CN2015084172 W CN 2015084172W WO 2016138715 A1 WO2016138715 A1 WO 2016138715A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
silicon oxide
thin film
oxide film
polysilicon film
Prior art date
Application number
PCT/CN2015/084172
Other languages
English (en)
French (fr)
Inventor
牛亚男
刘超
贺增胜
陈蕾
张玉军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15883770.8A priority Critical patent/EP3267468A4/en
Priority to US14/908,678 priority patent/US9842735B2/en
Publication of WO2016138715A1 publication Critical patent/WO2016138715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3085Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Definitions

  • Embodiments of the present invention relate to a method of fabricating a low temperature polysilicon film and a thin film transistor, a thin film transistor, a display panel, and a display device.
  • a thin film transistor that drives a display device by applying a driving voltage
  • a driving voltage is used in a large amount.
  • Amorphous silicon (a-Si) materials with good stability and processability have been used in the active layer of the TFT, but the carrier mobility of the a-Si material is low, and it is not possible to satisfy a large-sized, high-resolution display device.
  • the requirements in particular, cannot meet the requirements of the next generation of Active Matrix Organic Light Emitting Device (AMOLED).
  • AMOLED Active Matrix Organic Light Emitting Device
  • polycrystalline silicon especially low temperature polysilicon thin film transistors, have gradually replaced amorphous silicon thin film transistors with higher electron mobility, better liquid crystal characteristics and less leakage current. Become the mainstream of thin film transistors.
  • the preparation process of polysilicon film can be divided into two categories: one is high temperature process, the temperature is higher than 600 ° C in the preparation process, the substrate uses expensive quartz, and the other is low temperature process, the whole process temperature is lower than 600 ° C, Low-cost polysilicon (LTPS) technology has gradually replaced amorphous silicon technology into the mainstream of thin-film transistor development.
  • LTPS Low-cost polysilicon
  • the crystallization of polycrystalline silicon has been low-temperature polysilicon. The focus of field research.
  • Embodiments of the present invention provide a method for preparing a low temperature polysilicon film, a thin film transistor, and a display device.
  • a method for preparing a low temperature polysilicon film comprising:
  • the preparation method further includes: after the amorphous silicon film is formed into an initial polysilicon film,
  • the hydrogenated initial polysilicon film is patterned, the initial polysilicon film in the predetermined region is retained, and the initial polysilicon film in other regions than the predetermined region is removed to obtain a target low temperature polysilicon film.
  • the thickness of the silicon oxide film located in the predetermined region is 5 nm to 20 nm.
  • the thickness of the silicon oxide film located in other regions than the predetermined region is 1/2 of the thickness of the silicon oxide film in the predetermined region.
  • the preparation method further includes: after patterning the silicon oxide film over the initial polysilicon film, before patterning the hydrogenated initial polysilicon film,
  • the surface of the initial polysilicon film is subjected to a smoothing treatment.
  • the material of the silicon oxide film is silicon dioxide.
  • the pattern of forming the silicon oxide film covering the amorphous silicon film includes:
  • the photoresist completely retained region and the photoresist portion remaining region are etched to form a pattern of the silicon oxide film.
  • the preparation method further includes:
  • the surface of the amorphous silicon film is subjected to a hydrogenation treatment and a cleaning treatment before forming a pattern of the silicon oxide film covering the amorphous silicon film.
  • the embodiment of the invention further provides a low temperature polysilicon film, which is prepared by any of the preparation methods described above.
  • An embodiment of the present invention further provides a method for fabricating a thin film transistor, comprising: forming a pattern of mutually insulated active layers and gate electrodes on a substrate, and source electrodes and leakage currents respectively electrically connected to the active layers a pattern of a pole, the active layer being a low temperature polysilicon film, the low temperature polysilicon thin
  • the film is prepared by any one of the preparation methods, and the predetermined region is a region where the active layer is located.
  • the embodiment of the invention further provides a thin film transistor which is prepared by the method for preparing the thin film transistor.
  • Embodiments of the present invention also provide a display panel including the thin film transistor.
  • the embodiment of the invention further provides a display device, which comprises the above display panel provided by the embodiment of the invention.
  • FIG. 1 is a schematic flow chart of a method for preparing a low temperature polysilicon film according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a pattern for forming a silicon oxide film according to an embodiment of the present invention
  • 3a to 3j are schematic cross-sectional views showing the steps of the preparation method provided by the respective embodiments.
  • the preparation process of low-temperature polysilicon film mainly includes solid phase crystallization (Solid Phase Crystallization, SPC), Metal-Induced Lateral Crystallization (MILC), Excimer Laser Annealing (ELA) and other technologies.
  • ELA technology is widely used in the crystallization of amorphous silicon in the industry due to its high mobility and productivity.
  • Excimer laser annealing is to apply a high-power laser beam to the surface of the amorphous silicon film to be crystallized. Due to the extremely strong ultraviolet light absorption capability of silicon, the a-Si film can be made in a very short time (about 50 ns to 150 ns).
  • the surface becomes molten at a high temperature of 1000 ° C or higher in an instant, and after the laser pulse is stopped, the amorphous silicon cooled crystal in the molten state becomes polycrystalline silicon.
  • the polycrystalline silicon film prepared by excimer laser annealing has large grain size, good spatial selectivity, high doping efficiency, few intragranular defects, good electrical properties and high mobility. It is the best low temperature polysilicon film at present.
  • the conventional method for preparing low-temperature polysilicon film by excimer laser annealing is generally as follows: depositing an amorphous silicon (a-Si) film layer on the buffer layer, and then treating the surface of the amorphous silicon film, using excimer A low-temperature polysilicon film can be obtained by crystallizing the amorphous silicon film by a laser annealing process.
  • a-Si amorphous silicon
  • a low-temperature polysilicon film can be obtained by crystallizing the amorphous silicon film by a laser annealing process.
  • the uniformity of the prepared polysilicon film layer is better. Poor, so that the products prepared by the polysilicon film (such as thin film transistors, etc.) have large differences in performance.
  • the uniformity of polycrystalline silicon films prepared by ELA technology is relatively poor, thereby affecting the performance of products prepared from polycrystalline silicon films.
  • a method for preparing a low-temperature polysilicon film provided by an embodiment of the present invention, as shown in FIG. 1, may include the following steps:
  • the method for preparing the low-temperature polysilicon film provided by the embodiment of the invention is characterized in that the amorphous silicon film is covered with a silicon oxide film, and the thickness of the silicon oxide film in the predetermined region is greater than the preset The thickness of the silicon oxide film in other regions outside the region, so that when the polycrystalline silicon film is crystallized by the excimer laser, the silicon oxide film is used as the insulating layer, so that the temperature of the amorphous silicon film can be maintained, which is advantageous for Crystallization of crystalline silicon.
  • the predetermined region is a region where a low-temperature polysilicon film is to be formed
  • the thickness of the silicon oxide film in the predetermined region is thicker to better maintain the temperature of the amorphous film in the predetermined region during the crystallization treatment, thereby
  • the crystal grain size of the polysilicon formed in the predetermined region is large; and the thickness of the silicon oxide film in other regions except the predetermined region is thin, and the temperature of the amorphous silicon film in other regions can be prevented from being sharply temperature
  • the falling causes the crystallization environment at the boundary of the preset region to be unstable, thereby affecting the uniformity of the grain size of the polysilicon formed at the boundary of the predetermined region. Therefore, the above method provided by the embodiment of the present invention can not only make the formed low-temperature polysilicon film have a larger grain size, but also can make the low-temperature polysilicon film uniform.
  • the substrate may be only one substrate, and of course, may be a substrate on which other film layers are formed.
  • the base substrate may refer to a substrate on which a buffer layer is formed on a substrate.
  • the preparation method may further include: after the amorphous silicon film is formed into the initial polysilicon film in step S103,
  • the hydrogenated initial polysilicon film is patterned, the initial polysilicon film in the predetermined region is retained, and the initial polysilicon film in the region other than the predetermined region is removed to obtain the target low temperature polysilicon film.
  • the thickness of the silicon oxide film located in the predetermined region is controlled to be between 5 nm and 20 nm, and may be set to other values according to actual preparation requirements.
  • the thickness of the silicon oxide film in the region other than the predetermined region is 1/4 of the thickness of the silicon oxide film in the predetermined region. /4.
  • the thickness of the silicon oxide film in the region other than the predetermined region is 1/2 of the thickness of the silicon oxide film in the predetermined region.
  • the preparation method may further include: after patterning the silicon oxide film over the initial polysilicon film, before patterning the hydrogenated initial polysilicon film,
  • the surface of the initial polysilicon film is smoothed.
  • the material of the silicon oxide film is silicon dioxide (SiO 2 ).
  • a pattern of forming a silicon oxide film covering the amorphous silicon film, as shown in FIG. 2 may include the following steps:
  • the preparation method provided by the embodiment of the present invention may further include: before forming the amorphous silicon film, before forming the pattern of the silicon oxide film covering the amorphous silicon film,
  • the surface of the amorphous silicon film is subjected to hydrogenation treatment and cleaning treatment to improve the quality of the low temperature polysilicon film.
  • the preparation method provided by the embodiment of the present invention is illustrated by an example below.
  • the example method can include the following steps:
  • S301 forms an amorphous silicon film 01 on the base substrate 1, as shown in Fig. 3a.
  • S302 forms a silicon oxide film 02 on the amorphous silicon film 01 as shown in Fig. 3b.
  • a silicon oxide film can be formed on an amorphous silicon film by a deposition method.
  • the material of the silicon oxide film may be silicon dioxide (SiO 2 ), and the thickness of the silicon oxide film is controlled to be between 5 nm and 20 nm.
  • the surface of the amorphous silicon film should be subjected to a hydrogenation treatment and a cleaning treatment before step S302.
  • S303 is coated with a photoresist layer 03 on the silicon oxide film 02, as shown in FIG. 3c;
  • the material of the photoresist layer may be a positive photoresist or a negative photoresist.
  • S304 uses a mask to expose and develop the photoresist layer 03 to obtain a photoresist completely reserved area A and a photoresist partially reserved area B, and the photoresist completely reserved area A corresponds to the preset area S, as shown in FIG. 3d. Shown.
  • S305 performs equal-thick etching on the photoresist completely reserved region A and the photoresist portion remaining region B until the thickness of the silicon oxide film 02 in the photoresist portion remaining region B is the oxidation in the photoresist completely remaining region A
  • the etching of the silicon film 02 is stopped at about 1/2 of the thickness, and the photoresist is completely protected.
  • the remaining area A still has a pattern of the photoresist film 03 forming the silicon oxide film 02, as shown in Fig. 3e.
  • S306 removes the photoresist layer 03 remaining on the silicon oxide film 02 to obtain a pattern of the silicon oxide film 02, as shown in Fig. 3f.
  • Fig. 3g is a structural view when the laser starts to be irradiated
  • Fig. 3h is a structural view in which the initial polysilicon film 04 has been formed.
  • S308 removes the silicon oxide film 02 over the initial polysilicon film 04 and hydrogenates the initial polysilicon film as shown in Fig. 3i.
  • the hydrogenated initial polysilicon film 04 is patterned, the initial polysilicon film 04 in the predetermined region S is retained, and the initial polysilicon film 04 in the region other than the predetermined region S is removed to obtain the target low-temperature polysilicon film. 05, as shown in Figure 3j.
  • the above embodiment produces the target low-temperature polysilicon film in a predetermined region by the above steps S301 to S309. Since the amorphous silicon film is covered with a silicon oxide film during the preparation process, and the thickness of the silicon oxide film in the predetermined region is larger than the thickness of the silicon oxide film in the region other than the predetermined region, When the polycrystalline silicon film is crystallized by the excimer laser, the silicon oxide film is used as the heat insulating layer, so that the temperature of the amorphous silicon film can be maintained, which is favorable for the crystallization of the amorphous silicon.
  • the predetermined region is a region where a low-temperature polysilicon film is to be formed
  • the thickness of the silicon oxide film in the predetermined region is thicker to better maintain the temperature of the amorphous film in the predetermined region during the crystallization treatment, thereby
  • the crystal grain size of the polysilicon formed in the predetermined region is large; and the thickness of the silicon oxide film in other regions except the predetermined region is thin, and the temperature of the temperature of the amorphous silicon film in other regions can be avoided.
  • the sharp drop causes the crystallization environment at the boundary of the preset region to be unstable, thereby affecting the uniformity of the grain size of the polysilicon formed at the boundary of the preset region. Therefore, the above method provided by the embodiment of the present invention can not only make the crystal grain size of the formed low-temperature polysilicon film large, but also ensure the uniformity of the low-temperature polysilicon film.
  • the embodiment of the present invention further provides a low-temperature polysilicon film. Since the low-temperature polysilicon film is prepared by any of the preparation methods provided by the embodiments of the present invention, the low-temperature polysilicon film not only has a large grain size. Moreover, the uniformity is better.
  • an embodiment of the present invention further provides a method for fabricating a thin film transistor, comprising: forming a pattern of mutually insulated active layers and gate electrodes on a substrate, and source electrodes electrically connected to the active layers, respectively. And the pattern of the drain electrode.
  • the active layer is a low-temperature polysilicon film, and the low-temperature polysilicon film is prepared by using any one of the preparation methods provided by the embodiments of the present invention, and the preset area is The area where the source layer is located.
  • the implementation of the method for preparing the thin film transistor can be referred to the implementation of the preparation method of the low-temperature polysilicon film described above, and the repeated description is omitted. .
  • an embodiment of the present invention further provides a thin film transistor. Since the thin film transistor is prepared by the method for preparing the thin film transistor provided by the embodiment of the present invention, the low temperature polysilicon film not only has a large grain size, but also Uniformity is preferred.
  • an embodiment of the present invention further provides a display panel including the above-mentioned thin film transistor provided by the embodiment of the present invention.
  • the thin film transistor can be used as a switching element to control a pixel or as a driving element to drive a pixel.
  • an embodiment of the present invention further provides a display device, including the above display panel provided by the embodiment of the present invention.
  • the display device can be: a liquid crystal display panel, an electronic paper, an organic light emitting diode (OLED) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like having any display function.
  • Product or part can be: a liquid crystal display panel, an electronic paper, an organic light emitting diode (OLED) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like having any display function.
  • Product or part is not limited to, a navigation device, and the like having any display function.
  • the display device is suitable for various types of displays such as a liquid crystal display, an organic electroluminescence display, an inorganic electroluminescence display, and an Active Matrix/Organic Light Emitting Diode (AMOLED).
  • displays such as a liquid crystal display, an organic electroluminescence display, an inorganic electroluminescence display, and an Active Matrix/Organic Light Emitting Diode (AMOLED).
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • the method for preparing a low-temperature polysilicon film, the thin film transistor and the display device provided by the embodiment of the invention, wherein the amorphous silicon film is covered with a silicon oxide film, and the thickness of the silicon oxide film in the predetermined region is greater than the preset area.
  • the thickness of the silicon oxide film in other regions such that when the polycrystalline silicon film is crystallized by the excimer laser, the silicon oxide film is used as the heat insulating layer, so that the temperature of the amorphous silicon film can be maintained, which is advantageous for Crystallization of crystalline silicon.
  • the predetermined region is a region where a low-temperature polysilicon film is to be formed
  • the thickness of the silicon oxide film in the predetermined region is thicker to better maintain the temperature of the amorphous film in the predetermined region during the crystallization treatment, thereby
  • the crystal grain size of the polysilicon formed in the predetermined region is large; and the thickness of the silicon oxide film in other regions except the predetermined region is thin, and the temperature of the amorphous silicon film in other regions can be avoided.
  • the sharp drop causes the crystallization environment at the boundary of the preset region to be unstable, thereby affecting the uniformity of the grain size of the polysilicon formed at the boundary of the predetermined region. Therefore, the method provided by the embodiment of the invention can not only make the crystal grain size of the formed low-temperature polysilicon film larger, but also ensure the uniformity of the low-temperature polysilicon film.

Abstract

一种低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置,该方法包括在衬底基板(1)上形成非晶硅薄膜(01);形成覆盖所述非晶硅薄膜(01)的氧化硅薄膜(02)的图形,位于预设区域内的所述氧化硅薄膜(02)的厚度大于除了所述预设区域之外其它区域内的氧化硅薄膜(02)的厚度;以及采用准分子激光照射所述氧化硅薄膜(02),使所述非晶硅薄膜(01)形成初始多晶硅薄膜(04),位于所述预设区域内的初始多晶硅薄膜(04)为目标低温多晶硅薄膜(05)。这样制备的多晶硅薄膜的多晶硅的晶粒尺寸更均匀。

Description

低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置 技术领域
本发明的实施例涉及一种低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置。
背景技术
在各种显示装置的像素单元中,通过施加驱动电压来驱动显示装置的薄膜晶体管(Thin Film Transistor,TFT)被大量使用。在TFT的有源层一直使用稳定性和加工性较好的非晶硅(a-Si)材料,但是a-Si材料的载流子迁移率较低,不能满足大尺寸、高分辨率显示器件的要求,特别是不能满足下一代有源矩阵式有机发光显示器件(Active Matrix Organic Light Emitting Device,AMOLED)的要求。与非晶硅(a-Si)薄膜晶体管相比,多晶硅尤其是低温多晶硅薄膜晶体管具有更高的电子迁移率、更好的液晶特性以及较少的漏电流,已经逐渐取代非晶硅薄膜晶体管,成为薄膜晶体管的主流。
多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英;另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此,低温多晶硅(Low Temperature Poly Silicon,LTPS)技术已逐渐取代非晶硅技术成为薄膜晶体管研发的主流,在低温多晶硅的制备中,多晶硅的晶化问题一直是低温多晶硅领域研究的重点。
发明内容
本发明实施例提供了一种低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置。
根据本发明的实施例,提供一种低温多晶硅薄膜的制备方法,包括:
在衬底基板上形成非晶硅薄膜;
形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形,其中,位于预设区域内的所述氧化硅薄膜的厚度大于除了所述预设区域之外的其它区域内的氧化硅薄膜的厚度;以及
采用准分子激光照射所述氧化硅薄膜,使所述非晶硅薄膜形成初始多晶 硅薄膜,其中,位于所述预设区域内的初始多晶硅薄膜为目标低温多晶硅薄膜。
在一个示例中,所述制备方法还包括:在所述非晶硅薄膜形成初始多晶硅薄膜之后,
去除所述初始多晶硅薄膜上方的氧化硅薄膜;
对所述初始多晶硅薄膜进行氢化处理;以及
对经过氢化处理后的初始多晶硅薄膜进行构图,保留位于所述预设区域内的初始多晶硅薄膜,去除除了所述预设区域之外的其它区域内的初始多晶硅薄膜,得到目标低温多晶硅薄膜。
在一个示例中,位于所述预设区域内的氧化硅薄膜的厚度为5nm~20nm。
在一个示例中,位于除了所述预设区域之外的其它区域内的氧化硅薄膜的厚度是位于所述预设区域内的所述氧化硅薄膜的厚度1/2。
在一个示例中,所述制备方法还包括:在去除所述初始多晶硅薄膜上方的氧化硅薄膜之后,对经过氢化处理后的初始多晶硅薄膜进行构图之前,
对所述初始多晶硅薄膜表面进行光滑化处理。
在一个示例中,所述氧化硅薄膜的材料为二氧化硅。
在一个示例中,形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形包括:
在所述非晶硅薄膜上形成氧化硅薄膜;
在所述氧化硅薄膜上涂覆光刻胶层,使用掩膜板对所述光刻胶层进行曝光显影,得到光刻胶完全保留区域和光刻胶部分保留区域,且所述光刻胶完全保留区域对应于所述预设区域;以及
对光刻胶完全保留区域和光刻胶部分保留区域进行刻蚀,形成氧化硅薄膜的图形。
在一个示例中,所述制备方法还包括:
在形成非晶硅薄膜之后,形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形之前,对所述非晶硅薄膜的表面进行氢化处理和清洗处理。
本发明实施例还提供了一种低温多晶硅薄膜,所述低温多晶硅薄膜为所述任一种制备方法制备而成。
本发明实施例还提供了一种薄膜晶体管的制备方法,包括:在衬底基板上形成相互绝缘的有源层和栅电极的图形,以及分别与所述有源层电连接的源电极和漏电极的图形,所述有源层为低温多晶硅薄膜,所述低温多晶硅薄 膜采用所述任一种制备方法制备而成,且所述预设区域为所述有源层所在的区域。
本发明实施例还提供了一种薄膜晶体管,所述薄膜晶体管由所述薄膜晶体管的制备方法制备而成。
本发明实施例还提供了一种显示面板,包括所述薄膜晶体管。
本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述显示面板。
附图说明
以下将结合附图对本发明的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本发明,其中:
图1为本发明实施例提供的低温多晶硅薄膜的制备方法的流程示意图;
图2为本发明实施例提供的形成氧化硅薄膜的图形的流程示意图;
图3a至图3j分别为采用各实施例提供的制备方法执行各步骤后的剖面结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本文使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其它元件或者物件。“上”、“下”、等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
低温多晶硅薄膜制备工艺主要有固相晶化(Solid Phase Crystallization, SPC)、金属诱导横向晶化(Meta-Induced Lateral Crystallization,MILC)、准分子激光退火(Excimer Laser Annealing,ELA)等技术。ELA技术以其产品较高的迁移率及产率,被业界普遍用于非晶硅的晶化。准分子激光退火是将高功率的激光束作用于待晶化非晶硅薄膜表面,由于硅极强的紫外光吸收能力,在极短的时间内(约50ns~150ns)可使a-Si薄膜表面在瞬间达到1000℃以上的高温而变成熔融状态,激光脉冲停止后,熔融状态的非晶硅冷却结晶变为多晶硅。采用准分子激光退火技术制备的多晶硅薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷少、电学特性好、迁移率较高,是目前综合性能最好的低温多晶硅薄膜。
采用准分子激光退火工艺制备低温多晶硅薄膜的传统方法一般为:先在缓冲层上沉积一层非晶硅(a-Si)薄膜层,然后对非晶硅薄膜的表面进行处理后,采用准分子激光退火工艺对该非晶硅薄膜进行晶化处理就可以得到低温多晶硅薄膜。但是在采用准分子激光退火工艺对该非晶硅薄膜进行晶化处理的过程中,由于晶粒尺寸对激光功率以及制备时气氛环境等非常敏感,因此制备得到的多晶硅薄膜膜层的均匀性较差,从而使得由该多晶硅薄膜制备的产品(如薄膜晶体管等)性能差异较大。
采用ELA技术制备的多晶硅薄膜的均匀性相对差,从而影响由多晶硅薄膜制备的产品的性能。
下面结合附图,对本发明实施例提供的低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置的具体实施方式进行详细地说明,附图中各膜层厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本发明实施例提供的一种低温多晶硅薄膜的制备方法,如图1所示,可以包括以下步骤:
S101、在衬底基板上形成非晶硅薄膜;
S102、形成覆盖非晶硅薄膜的氧化硅薄膜的图形,其中,位于预设区域内的氧化硅薄膜的厚度大于除了预设区域之外其它区域内的氧化硅薄膜的厚度;
S103、采用准分子激光照射氧化硅薄膜,使非晶硅薄膜形成初始多晶硅薄膜,其中,位于预设区域内的初始多晶硅薄膜为目标低温多晶硅薄膜。
本发明实施例提供的上述低温多晶硅薄膜的制备方法,由于非晶硅薄膜上覆盖有氧化硅薄膜,且位于预设区域内的氧化硅薄膜的厚度大于除了预设 区域之外其它区域内的氧化硅薄膜的厚度,这样在采用准分子激光对多晶硅薄膜进行晶化处理时,利用氧化硅薄膜作为保温层,使非晶硅薄膜的温度可以得到保持,有利于非晶硅的晶化。由于预设区域是要形成低温多晶硅薄膜的区域,因此位于预设区域内的氧化硅薄膜的厚度较厚,以较好的保持晶化处理时预设区域内的非晶薄膜的温度,从而使得预设区域内形成的多晶硅的晶粒尺寸较大;并且,在除了预设区域之外其它区域内的氧化硅薄膜的厚度较薄,可以避免其它区域内的非晶硅薄膜的温度的温度急剧下降、造成预设区域边界处晶化环境不稳定,从而影响预设区域边界处形成的多晶硅的晶粒尺寸的均匀性。因此,本发明实施例提供的上述方法,不仅可以使得形成的低温多晶硅薄膜的晶粒尺寸较大,并且可以使得低温多晶硅薄膜的均匀性。
需要说明的是,在本发明实施例提供的制备方法中,衬底基板可以仅是一块基板,当然也可以是上面形成有其它膜层的基板。
例如,衬底基板可以指一基板上面形成有缓冲层的基板。
所述制备方法还可以包括:在步骤S103使非晶硅薄膜形成初始多晶硅薄膜之后,
去除初始多晶硅薄膜上方的氧化硅薄膜;
对初始多晶硅薄膜进行氢化处理;以及
对经过氢化处理后的初始多晶硅薄膜进行构图,保留位于预设区域内的初始多晶硅薄膜,去除除了预设区域之外的其它区域内的初始多晶硅薄膜,得到目标低温多晶硅薄膜。
例如,在本发明实施例提供的所述制备方法中,将位于预设区域内的氧化硅薄膜的厚度控制在5nm~20nm之间,也可以根据实际制备需要设置为其他数值。
例如,在本发明实施例提供的所述制备方法中,位于除了预设区域之外的其它区域内的氧化硅薄膜的厚度是位于预设区域内的氧化硅薄膜的厚度的1/4-3/4。又例如,位于除了预设区域之外的其它区域内的氧化硅薄膜的厚度是位于预设区域内的氧化硅薄膜的厚度的1/2。
例如,为了使后期制备的低温多晶硅薄膜的表面光滑,所述制备方法还可以包括:在去除初始多晶硅薄膜上方的氧化硅薄膜之后,对经过氢化处理后的初始多晶硅薄膜进行构图之前,
对初始多晶硅薄膜表面进行光滑化处理。
例如,在本发明实施例提供的所述制备方法中,氧化硅薄膜的材料为二氧化硅(SiO2)。
例如,在本发明实施例提供的所述制备方法中,形成覆盖非晶硅薄膜的氧化硅薄膜的图形,如图2所示,可以包括以下步骤:
S201、在非晶硅薄膜上形成氧化硅薄膜;
S202、在氧化硅薄膜上涂覆光刻胶层,使用掩膜板对光刻胶层进行曝光显影,得到光刻胶完全保留区域和光刻胶部分保留区域,且光刻胶完全保留区域对应于预设区域;以及
S203、对光刻胶完全保留区域和光刻胶部分保留区域进行刻蚀,形成氧化硅薄膜的图形。
例如,本发明实施例提供的所述制备方法还可以包括:在形成非晶硅薄膜之后,形成覆盖非晶硅薄膜的氧化硅薄膜的图形之前,
对非晶硅薄膜的表面进行氢化处理和清洗处理,以使低温多晶硅薄膜的质量。
下面通过一个示例说明本发明实施例提供的所述制备方法。该示例方法可以包括以下步骤:
S301在衬底基板1上形成非晶硅薄膜01,如图3a所示。
S302在非晶硅薄膜01上形成氧化硅薄膜02,如图3b所示。
例如,可以采用沉积方法在非晶硅薄膜上形成氧化硅薄膜。
例如,氧化硅薄膜的材料可以为二氧化硅(SiO2),氧化硅薄膜的厚度控制在5nm~20nm之间。
例如,为了保证低温多晶硅薄膜的质量,在步骤S301之后,在步骤S302之前,还应该对非晶硅薄膜的表面进行氢化处理和清洗处理。
S303在氧化硅薄膜02上涂覆光刻胶层03,如图3c所示;
例如,光刻胶层的材料可以为正性光刻胶,也可以为负性光刻胶。
S304使用掩膜板对光刻胶层03进行曝光显影,得到光刻胶完全保留区域A和光刻胶部分保留区域B,且光刻胶完全保留区域A对应于预设区域S,如图3d所示。
S305对光刻胶完全保留区域A和光刻胶部分保留区域B进行等厚度刻蚀,直到光刻胶部分保留区域B内的氧化硅薄膜02的厚度为光刻胶完全保留区域A内的氧化硅薄膜02的厚度的1/2左右停止刻蚀,得到在光刻胶完全保 留区域A仍然残留有光刻胶层03的形成氧化硅薄膜02的图形,如图3e所示。
S306去除氧化硅薄膜02上残留的光刻胶层03,得到氧化硅薄膜02的图形,如图3f所示。
S307采用准分子激光照射氧化硅薄膜02,使非晶硅薄膜01形成初始多晶硅薄膜04,如图3g和图3h所示。图3g为激光开始照射时的结构图,图3h为已经形成初始多晶硅薄膜04的结构图。
S308去除初始多晶硅薄膜04上方的氧化硅薄膜02,并对初始多晶硅薄膜进行氢化处理,如图3i所示。
S309对经过氢化处理后的初始多晶硅薄膜04进行构图,保留位于预设区域S内的初始多晶硅薄膜04,去除除了预设区域S之外的其它区域内的初始多晶硅薄膜04,得到目标低温多晶硅薄膜05,如图3j所示。
上述实施例通过上述步骤S301至S309,在预设的区域内制得目标低温多晶硅薄膜。由于在制备过程中,在非晶硅薄膜上覆盖有氧化硅薄膜,且位于预设区域内的氧化硅薄膜的厚度大于除了预设区域之外的其它区域内的氧化硅薄膜的厚度,这样在采用准分子激光对多晶硅薄膜进行晶化处理时,利用氧化硅薄膜作为保温层,使非晶硅薄膜的温度可以得到保持,有利于非晶硅的晶化。由于预设区域是要形成低温多晶硅薄膜的区域,因此位于预设区域内的氧化硅薄膜的厚度较厚,以较好的保持晶化处理时预设区域内的非晶薄膜的温度,从而使预设区域内形成的多晶硅的晶粒尺寸较大;并且,在除了预设区域之外的其它区域内的氧化硅薄膜的厚度较薄,可以避免其它区域内的非晶硅薄膜的温度的温度急剧下降、造成预设区域边界处晶化环境不稳定,从而影响预设区域边界处形成的多晶硅的晶粒尺寸的均匀性。因此,本发明实施例提供的上述方法,不仅可以使形成的低温多晶硅薄膜的晶粒尺寸较大,并且可以保证低温多晶硅薄膜的均匀性。
基于同一发明构思,本发明实施例还提供了一种低温多晶硅薄膜,由于该低温多晶硅薄膜由本发明实施例提供的任一种制备方法制备而成,因此该低温多晶硅薄膜不仅晶粒尺寸较大,而且均匀性较佳。
基于同一发明构思,本发明实施例还提供了一种薄膜晶体管的制备方法,包括在衬底基板上形成相互绝缘的有源层和栅电极的图形,以及分别与有源层电连接的源电极和漏电极的图形。有源层为低温多晶硅薄膜,该低温多晶硅薄膜采用本发明实施例提供的任一种制备方法制备而成,且预设区域为有 源层所在的区域。由于该薄膜晶体管的制备方法解决问题的原理与前述一种低温多晶硅薄膜的制备方法相似,因此该薄膜晶体管的制备方法的实施可以参见前述低温多晶硅薄膜的制备方法的实施,重复之处不再赘述。
基于同一发明构思,本发明实施例还提供了一种薄膜晶体管,由于该薄膜晶体管由本发明实施例提供的上述薄膜晶体管的制备方法制备而成,因此该低温多晶硅薄膜不仅晶粒尺寸较大,而且均匀性较佳。
基于同一发明构思,本发明实施例还提供了一种显示面板,包括本发明实施例提供的上述薄膜晶体管。例如,该薄膜晶体管可作为开关元件来控制像素,或是用作驱动元件来驱动像素。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述显示面板。该显示装置可以为:液晶显示面板、电子纸、有机发光二极管(Organic Light Emitting Diode,OLED)面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置适用于液晶显示器、有机电致发光显示器、无机电致发光显示器、有源矩阵有机发光二极管显示器(Active Matrix/Organic Light Emitting Diode,AMOLED)等多种类型的显示器。
本发明实施例提供的一种低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置,由于非晶硅薄膜上覆盖有氧化硅薄膜,且位于预设区域内的氧化硅薄膜的厚度大于除了预设区域之外的其它区域内的氧化硅薄膜的厚度,这样在采用准分子激光对多晶硅薄膜进行晶化处理时,利用氧化硅薄膜作为保温层,使非晶硅薄膜的温度可以得到保持,有利于非晶硅的晶化。由于预设区域是要形成低温多晶硅薄膜的区域,因此位于预设区域内的氧化硅薄膜的厚度较厚,以较好的保持晶化处理时预设区域内的非晶薄膜的温度,从而使预设区域内形成的多晶硅的晶粒尺寸较大;并且,在除了预设区域之外的其它区域内的氧化硅薄膜的厚度较薄,可以避免由于其它区域内的非晶硅薄膜的温度的急剧下降造成预设区域边界处晶化环境不稳定,从而影响预设区域边界处形成的多晶硅的晶粒尺寸的均匀性的现象。因此,本发明实施例提供的方法,不仅可以使形成的低温多晶硅薄膜的晶粒尺寸较大,并且可以保证低温多晶硅薄膜的均匀性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化和替换,这些变化和替换都应涵盖在本发明的保护范围之内。本发明的保护范围以所述权利要求的保护范围为准。
本申请要求于2015年03月03日提交的名称为“低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置”的中国专利申请No.201510095020.6的优先权,其全文通过引用合并于本文。

Claims (13)

  1. 一种低温多晶硅薄膜的制备方法,包括:
    在衬底基板上形成非晶硅薄膜;
    形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形,其中,位于预设区域内的所述氧化硅薄膜的厚度大于除了所述预设区域之外其它区域内的氧化硅薄膜的厚度;以及
    采用准分子激光照射所述氧化硅薄膜,使所述非晶硅薄膜形成初始多晶硅薄膜,其中,位于所述预设区域内的初始多晶硅薄膜为目标低温多晶硅薄膜。
  2. 如权利要求1所述的制备方法,还包括:在所述非晶硅薄膜形成初始多晶硅薄膜之后,
    去除所述初始多晶硅薄膜上方的氧化硅薄膜;
    对所述初始多晶硅薄膜进行氢化处理;以及
    对经过氢化处理后的初始多晶硅薄膜进行构图,保留位于所述预设区域内的初始多晶硅薄膜,去除除了所述预设区域之外的其它区域内的初始多晶硅薄膜,得到目标低温多晶硅薄膜。
  3. 如权利要求1或2所述的制备方法,其中,位于所述预设区域内的氧化硅薄膜的厚度为5nm~20nm。
  4. 如权利要求1-3任一项所述的制备方法,其中,位于除了所述预设区域之外的其它区域内的氧化硅薄膜的厚度是位于所述预设区域内的所述氧化硅薄膜的厚度1/2。
  5. 如权利要求1-4任一项所述的制备方法,还包括:在去除所述初始多晶硅薄膜上方的氧化硅薄膜之后,对经过氢化处理后的初始多晶硅薄膜进行构图之前,
    对所述初始多晶硅薄膜表面进行光滑化处理。
  6. 权利要求1-5任一项所述的制备方法,其中,所述氧化硅薄膜的材料为二氧化硅。
  7. 如权利要求1-6任一项所述的制备方法,其中,形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形,包括:
    在所述非晶硅薄膜上形成氧化硅薄膜;
    在所述氧化硅薄膜上涂覆光刻胶层,使用掩膜板对所述光刻胶层进行曝光显影,得到光刻胶完全保留区域和光刻胶部分保留区域,且所述光刻胶完全保留区域对应于所述预设区域;以及
    对光刻胶完全保留区域和光刻胶部分保留区域进行刻蚀,形成氧化硅薄膜的图形。
  8. 如权利要求1-6任一项所述的制备方法,还包括:在形成非晶硅薄膜之后,形成覆盖所述非晶硅薄膜的氧化硅薄膜的图形之前,
    对所述非晶硅薄膜的表面进行氢化处理和清洗处理。
  9. 一种低温多晶硅薄膜,其中,所述低温多晶硅薄膜由权利要求1-8任一项所述的制备方法制备而成。
  10. 一种薄膜晶体管的制备方法,包括:在衬底基板上形成相互绝缘的有源层和栅电极的图形,以及分别与所述有源层电连接的源电极和漏电极的图形,其中,所述有源层为低温多晶硅薄膜,所述低温多晶硅薄膜采用如权利要求1-8任一项所述的制备方法制备而成,且所述预设区域为所述有源层所在的区域。
  11. 一种薄膜晶体管,其中所述薄膜晶体管由权利要求10所述的制备方法制备而成。
  12. 一种显示面板,包括如权利要求11所述的薄膜晶体管。
  13. 一种显示装置,包括如权利要求12所述的显示面板。
PCT/CN2015/084172 2015-03-03 2015-07-16 低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置 WO2016138715A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15883770.8A EP3267468A4 (en) 2015-03-03 2015-07-16 Preparation method for low temperature polysilicon thin film and thin film transistor, thin film transistor , display panel and display device
US14/908,678 US9842735B2 (en) 2015-03-03 2015-07-16 Method of manufacturing low temperature polycrystalline silicon thin film and thin film transistor, thin film transistor, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510095020.6 2015-03-03
CN201510095020.6A CN104658891B (zh) 2015-03-03 2015-03-03 低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置

Publications (1)

Publication Number Publication Date
WO2016138715A1 true WO2016138715A1 (zh) 2016-09-09

Family

ID=53249875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084172 WO2016138715A1 (zh) 2015-03-03 2015-07-16 低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置

Country Status (4)

Country Link
US (1) US9842735B2 (zh)
EP (1) EP3267468A4 (zh)
CN (1) CN104658891B (zh)
WO (1) WO2016138715A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658891B (zh) 2015-03-03 2019-03-15 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置
CN105140114A (zh) * 2015-09-10 2015-12-09 深圳市华星光电技术有限公司 基板制备方法
CN105468873B (zh) * 2015-12-24 2018-08-14 中北大学 硅基光波导激光表面光滑化仿真方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121752A (ja) * 1997-10-14 1999-04-30 Hitachi Ltd 半導体装置及びその製造方法
US20040240821A1 (en) * 2003-05-30 2004-12-02 The Regents Of The University Of California Direct-patterned optical waveguides on amorphous silicon films
CN1979778A (zh) * 2005-11-29 2007-06-13 群康科技(深圳)有限公司 薄膜晶体管制造方法
CN103681776A (zh) * 2013-12-24 2014-03-26 京东方科技集团股份有限公司 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示装置
CN104538310A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、tft、阵列基板及显示装置
CN104658891A (zh) * 2015-03-03 2015-05-27 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090646A (en) * 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP3460170B2 (ja) * 1997-02-03 2003-10-27 シャープ株式会社 薄膜トランジスタ及びその製造方法
JP2002299632A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd 半導体装置及びアクティブマトリクス型表示装置
TWI316736B (en) * 2003-05-02 2009-11-01 Au Optronics Corp Method of fabricating polysilicon film by excimer laser crystallization process
TWI294648B (en) * 2003-07-24 2008-03-11 Au Optronics Corp Method for manufacturing polysilicon film
CN100413016C (zh) * 2003-08-07 2008-08-20 友达光电股份有限公司 多晶硅薄膜的制造方法
TWI310585B (en) * 2003-10-14 2009-06-01 Ind Tech Res Inst Method of controlling polysilicon crystallization
US7683373B2 (en) * 2004-10-05 2010-03-23 Samsung Mobile Display Co., Ltd. Thin film transistor and method of fabricating the same
US7560365B2 (en) * 2005-09-14 2009-07-14 Industrial Technology Research Institute Method of semiconductor thin film crystallization and semiconductor device fabrication
JP2008085251A (ja) * 2006-09-29 2008-04-10 Sony Corp 薄膜半導体装置、表示装置、および薄膜半導体装置の製造方法
CN101235534A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 高压固相晶化法
US20080233718A1 (en) * 2007-03-21 2008-09-25 Jia-Xing Lin Method of Semiconductor Thin Film Crystallization and Semiconductor Device Fabrication
CN101647121B (zh) * 2007-08-24 2011-05-25 夏普株式会社 电路基板和显示装置
CN101359634A (zh) * 2008-09-27 2009-02-04 上海广电光电子有限公司 薄膜晶体管阵列基板制造方法
US8013339B2 (en) * 2009-06-01 2011-09-06 Ishiang Shih Thin film transistors and arrays with controllable threshold voltages and off state leakage current
US8021960B2 (en) * 2009-10-06 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
PT105039A (pt) * 2010-04-06 2011-10-06 Univ Nova De Lisboa Ligas de óxidos tipo p baseados em óxidos de cobre, óxidos estanho, óxidos de ligas de estanho-cobre e respectiva liga metálica, e óxido de níquel, com os respectivos metais embebidos, respectivo processo de fabrico e utilização
JP2012004371A (ja) * 2010-06-17 2012-01-05 Sony Corp 薄膜トランジスタおよび表示装置
WO2012153365A1 (ja) * 2011-05-10 2012-11-15 パナソニック株式会社 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
CN102655089B (zh) * 2011-11-18 2015-08-12 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法
WO2013080248A1 (ja) * 2011-11-29 2013-06-06 パナソニック株式会社 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置
TW201336086A (zh) * 2012-02-29 2013-09-01 Hon Hai Prec Ind Co Ltd 薄膜電晶體
KR102147849B1 (ko) * 2013-08-05 2020-08-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
CN103700695B (zh) * 2013-12-25 2017-11-03 深圳市华星光电技术有限公司 低温多晶硅薄膜及其制备方法、晶体管
US9324739B1 (en) * 2014-11-03 2016-04-26 Ishiang Shih Thin film transistors with metal oxynitride active channels for electronic displays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121752A (ja) * 1997-10-14 1999-04-30 Hitachi Ltd 半導体装置及びその製造方法
US20040240821A1 (en) * 2003-05-30 2004-12-02 The Regents Of The University Of California Direct-patterned optical waveguides on amorphous silicon films
CN1979778A (zh) * 2005-11-29 2007-06-13 群康科技(深圳)有限公司 薄膜晶体管制造方法
CN103681776A (zh) * 2013-12-24 2014-03-26 京东方科技集团股份有限公司 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示装置
CN104538310A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、tft、阵列基板及显示装置
CN104658891A (zh) * 2015-03-03 2015-05-27 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、薄膜晶体管及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267468A4 *

Also Published As

Publication number Publication date
US20170004970A1 (en) 2017-01-05
CN104658891B (zh) 2019-03-15
US9842735B2 (en) 2017-12-12
EP3267468A4 (en) 2018-10-31
CN104658891A (zh) 2015-05-27
EP3267468A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2735629B1 (en) Method of manufacturing low temperature polysilicon film, thin film transistor and manufacturing method thereof
US9559159B2 (en) Low-temperature polysilicon membrane and preparation method thereof, thin-film transistor and display device
US9620646B2 (en) Array substrate, manufacturing method thereof and display device
US10192975B2 (en) Low temperature polycrystalline silicon thin film transistor
US9773813B2 (en) Thin film transistor and a manufacturing method thereof, array substrate and a manufacturing method thereof, display device
WO2015180269A1 (zh) 一种阵列基板、其制作方法及显示装置
US10699905B2 (en) Low-temperature polysilicon (LTPS), thin film transistor (TFT), and manufacturing method of array substrate
WO2016202062A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
WO2015188594A1 (zh) 多晶硅层及显示基板的制备方法、显示基板
CN105655352B (zh) 低温多晶硅tft阵列基板的制作方法
US10693011B2 (en) Thin film transistor array substrate, method of manufacturing the same, and display device including thin film transistor substrate
WO2017028499A1 (zh) 低温多晶硅薄膜、薄膜晶体管及各自制备方法、显示装置
WO2016138715A1 (zh) 低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置
WO2017067336A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
EP3241239B1 (en) Method for manufacturing thin film transistor and related active layer for thin film transistor, thin film transistor, array substrate, and display apparatus
WO2015192558A1 (zh) 低温多晶硅薄膜晶体管、其制备方法及阵列基板与显示装置
WO2015131498A1 (zh) 阵列基板及其制备方法,显示面板,和显示装置
WO2018145515A1 (zh) 薄膜晶体管及其制作方法、显示基板和显示装置
US20150249006A1 (en) Method of defining poly-silicon growth direction
US10355033B2 (en) Manufacturing method of polycrystalline silicon thin film and manufacturing method of thin film transistor array substrate
CN108831894A (zh) 低温多晶硅薄膜的制作方法、低温多晶硅薄膜及低温多晶硅tft基板
CN106783532A (zh) 一种低温多晶硅薄膜的制备方法、薄膜晶体管、阵列基板以及液晶显示面板
WO2019214509A1 (zh) 显示基板、显示装置及显示基板的制作方法
WO2019223195A1 (zh) Tft阵列基板的制作方法及tft阵列基板
WO2017020542A1 (zh) 薄膜晶体管及其制作方法、阵列基板以及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14908678

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883770

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015883770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015883770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE