WO2016138628A1 - 传输数据的方法、装置和设备 - Google Patents

传输数据的方法、装置和设备 Download PDF

Info

Publication number
WO2016138628A1
WO2016138628A1 PCT/CN2015/073543 CN2015073543W WO2016138628A1 WO 2016138628 A1 WO2016138628 A1 WO 2016138628A1 CN 2015073543 W CN2015073543 W CN 2015073543W WO 2016138628 A1 WO2016138628 A1 WO 2016138628A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
zero
signature
data stream
elements
Prior art date
Application number
PCT/CN2015/073543
Other languages
English (en)
French (fr)
Inventor
王磊
张舜卿
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580030492.1A priority Critical patent/CN106464337B/zh
Priority to PCT/CN2015/073543 priority patent/WO2016138628A1/zh
Priority to EP15883685.8A priority patent/EP3258614B1/en
Publication of WO2016138628A1 publication Critical patent/WO2016138628A1/zh
Priority to US15/694,582 priority patent/US10171142B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, apparatus and apparatus for data processing.
  • MIMO Multiple-Input Multiple-Output
  • Antennas transmit and receive to improve communication quality. It can make full use of space resources, realize multiple transmission and multiple reception through multiple antennas, and can increase the system channel capacity by multiple times without increasing spectrum resources and antenna transmission power, showing obvious advantages and being regarded as next generation mobile.
  • the core technology of communication is a technology of communication.
  • the transmitting end device maps the data signal to be sent to the multiple antennas by using space-time mapping, and the receiving end device performs space-time decoding on the signals received by the respective antennas to recover the data sent by the transmitting end device. signal.
  • Embodiments of the present invention provide a method, an apparatus, and a device for transmitting data, which can improve utilization efficiency of time-frequency resources.
  • a method for transmitting data comprising: determining, by a source device, a signature matrix S according to a layer number L of a data stream and a number R of receiving antennas used by the receiving device, wherein the signature matrix S includes L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R first numbers arranged in a second dimension direction An element, the R first elements are in one-to-one correspondence with R receiving antennas, and the R first elements comprise at least one zero element and at least one non-zero element, R ⁇ 2, and the L first element sequences are different from each other.
  • the data stream corresponding to the L time layer corresponds to the same time-frequency resource, L ⁇ 2; the transmitting end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, and pre-predicts the data stream of the L layer according to the precoding matrix P.
  • the precoding matrix P includes L second element sequences arranged along the first dimension direction, and the L second element sequences are in one-to-one correspondence with the L first element sequence. And the L second element sequences are in one-to-one correspondence with the L layer data stream; the transmitting end device sends the pre-coded L layer data stream and the information for indicating the signature matrix S to the receiving end device.
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, each second element sequence including the first dimension direction Arranging T second elements, the R second element sequences are in one-to-one correspondence with R receiving antennas used by the receiving end device, and the T second element sequences are respectively connected with T transmitting antennas used by the transmitting end device.
  • the second intermediate matrix performs singular value decomposition processing to determine a zero subspace of the second intermediate matrix; determining a third intermediate matrix according to the zero subspace of the second intermediate matrix and the first intermediate matrix; Performing a singular value decomposition process on the matrix to determine an orthogonal subspace of the third intermediate matrix; determining a first pre
  • the precoding matrix is determined according to the orthogonal subspace of the third intermediate matrix and the zero subspace of the second intermediate matrix.
  • the i-th second element sequence of P includes: determining a target from orthogonal subspaces of the third intermediate matrix according to a maximum value of the plurality of singular values obtained by performing singular value decomposition processing on the third intermediate matrix a sequence; determining an i-th second element sequence of the precoding matrix P according to the target sequence and the zero subspace of the second intermediate matrix.
  • the sending end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, including: the sending end device according to the channel The matrix H, the signature matrix S and the power allocation matrix D, determine a precoding matrix P, wherein the power allocation matrix D is used for power allocation between the data streams of the L layer.
  • the generating the number according to the number K and the location of the non-zero elements in the i-th first element sequence included in the signature matrix S An intermediate matrix includes: generating a first intermediate matrix according to a quantity K and a position of a non-zero element in the i-th first element sequence included in the signature matrix S, wherein the K second element sequence and the ith One of the K non-zero elements in the first element sequence, the position of the kth second element sequence in the channel matrix H and the first of the K non-zero elements The positions of the k non-zero elements in the i-th first element sequence are the same, k ⁇ [1, K]; and the number of zero elements in the i-th first element sequence included in the signature matrix S
  • generating a second intermediate matrix comprising: generating a second intermediate matrix according to the number M and positions of the zero elements in the i-th first element sequence included in the signature
  • the sending end device determines the signature matrix according to the layer number L of the data stream and the number R of receiving antennas used by the receiving end device. S, comprising: determining, according to a mapping relationship between the plurality of parameter sets and the plurality of signature matrices stored in advance, from the plurality of signature matrices, determining a signature matrix S corresponding to the number of layers L and the number R, wherein Each parameter set includes a layer value of a data stream and a quantity value of an air domain resource.
  • the layer number L of the data stream is greater than the number R of the receiving antennas.
  • the non-zero element has a value of one.
  • the sending end device is a network device
  • the receiving end device is a terminal device
  • the sending end device is a terminal device
  • the receiving end is The device is a network device.
  • a method for transmitting data comprising: receiving, by a receiving device, data sent by a transmitting device and information indicating a signature matrix S, wherein the data includes L-layer data subjected to pre-coding processing Flow, the L layer data stream is generated by the sending end device performing bit mapping processing on the L layer bit information according to the preset constellation point set, and the L layer data stream is corresponding to the same a time-frequency resource, the signature matrix S includes L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes a second sequence R first elements arranged in a dimension direction, the R first elements are in one-to-one correspondence with R receiving antennas, the R first elements comprise at least one zero element and at least one non-zero element, and the precoding process is the transmitting end
  • the device performs according to the channel matrix H and the signature matrix S, wherein the channel matrix H corresponds to a channel between
  • the receiving end device performs demodulation processing on the pre-coded L layer data stream according to the signature matrix S and the constellation point set, including: The receiving end device performs channel estimation to determine data to be demodulated based on the pre-coded L layer data stream; the receiving end device determines a codebook according to the signature matrix S and the constellation point set; the receiving end device is configured according to the The codebook performs iterative processing on the data to be demodulated by the message passing algorithm MPA.
  • the sending end device is a network device
  • the receiving end device is a terminal device
  • the sending end device is a terminal device
  • the receiving end is The device is a network device.
  • an apparatus for transmitting data comprising: a determining unit, configured to determine a signature matrix S according to a layer number L of a data stream and a number R of receiving antennas used by the receiving end device, where
  • the signature matrix S includes L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R arranged in a second dimension direction.
  • the R first elements are in one-to-one correspondence with R receiving antennas, the R first elements comprise at least one zero element and at least one non-zero element, R ⁇ 2, the L first element sequences are in phase with each other Different, L layer, the data stream corresponding to the same time-frequency resource, L ⁇ 2; for determining a precoding matrix P according to the channel matrix H and the signature matrix S; and processing unit for using the precoding matrix P for the L layer
  • the data stream is subjected to precoding processing, wherein the channel matrix H corresponds to a channel between the apparatus and the receiving end device, and the precoding matrix P includes L second element sequences arranged along the first dimension direction, L second element sequences
  • the L first element sequence is in one-to-one correspondence, and the L second element sequences are in one-to-one correspondence with the L layer data stream; the sending unit is configured to send the pre-coded L layer data stream to the receiving end device and Used to indicate the signature matrix S Information.
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, each second element sequence including the first dimension direction Aligning the T second elements, the R second element sequences are in one-to-one correspondence with the R receiving antennas used by the receiving device, and the T second element sequences are in one-to-one correspondence with the T transmitting antennas used by the device.
  • the second intermediate matrix performs singular value decomposition processing to determine the a zero subspace of the second intermediate matrix; for determining a third intermediate matrix according to the zero subspace of the second intermediate matrix and the first intermediate matrix; and performing singular value decomposition processing on the third intermediate matrix to determine the An orthogonal subspace of the third intermediate matrix; configured to determine an i-th second element sequence of the precoding matrix P according to the orthogon
  • the determining unit is specifically configured to use a maximum of the plurality of singular values obtained by performing singular value decomposition processing on the third intermediate matrix. And determining a target sequence from the orthogonal subspace of the third intermediate matrix; and determining an i-th second element sequence of the precoding matrix P according to the target sequence and the zero subspace of the second intermediate matrix.
  • the determining unit is specifically configured to determine a precoding matrix P according to the channel matrix H, the signature matrix S, and the power allocation matrix D, where The power allocation matrix D is used for power allocation between the data streams of the L layer.
  • the determining unit is specifically configured to use, according to the number of non-zero elements in the i-th first element sequence included in the signature matrix S. And a position, the first intermediate matrix is generated, wherein the K second element sequences are in one-to-one correspondence with the K non-zero elements in the ith first element sequence, and the kth of the K second element sequences
  • the position of the second element sequence in the channel matrix H is the same as the position of the kth non-zero element of the K non-zero elements in the ith first element sequence, k ⁇ [1, K];
  • the determining unit is specifically configured to use, according to the mapping relationship between the multiple parameter sets and the plurality of pre-stored signature matrices,
  • the signature matrix In the signature matrix, a signature matrix S corresponding to the number of layers L and the number R is determined, wherein each parameter set includes a layer value of one data stream and a quantity value of an air domain resource.
  • the layer number L of the data stream is greater than the number R of the receiving antennas.
  • the non-zero element has a value of one.
  • the device is a network device, the receiving device is a terminal device, or the device is a terminal device, and the receiving device is a network device.
  • a fourth aspect provides an apparatus for transmitting data, the apparatus comprising: a receiving unit, configured to receive data sent by a sending end device and information used to indicate a signature matrix S, wherein the data includes a pre-coded L a layer data stream, the L layer data stream is generated by the source device performing bit mapping processing on the L layer bit information according to the preset constellation point set, where the L layer data stream corresponds to the same time frequency resource, and the signature matrix S includes L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R first elements arranged in a second dimension direction
  • the R first elements are in one-to-one correspondence with R receiving antennas, and the R first elements include at least one zero element
  • the channel matrix H corresponds to a channel between the transmitting device and the device, and the precoding matrix P includes L second element sequences arranged along the first dimension direction;
  • Processing means for processing the set of the pre-coded data stream in the L layer performs demodulation processing based on the signature and the constellation points S matrix, to obtain the L-bit information layer.
  • the processing unit is specifically configured to perform channel estimation to determine data to be demodulated based on the pre-coded L layer data stream;
  • the sending end device is a network device, the device is a terminal device, or the sending end device is a terminal device, and the device is a network device. .
  • a fifth aspect provides an apparatus for transmitting data, the apparatus comprising: a bus; a processor coupled to the bus; a memory coupled to the bus; a transmitter coupled to the bus; wherein the processor passes the bus Calling a program stored in the memory for determining a signature matrix S according to the number of layers L of the data stream and the number R of receiving antennas used by the receiving device, wherein the signature matrix S includes the first dimension direction L first element sequences, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R first elements arranged along a second dimension direction, the R first The elements are in one-to-one correspondence with R receiving antennas, the R first elements include at least one zero element and at least one non-zero element, R ⁇ 2, the L first element sequences are different from each other, and the L layer data streams correspond to the same time Frequency resource, L ⁇ 2; for determining a precoding matrix P according to the channel matrix H and the signature matrix S, and performing precoding processing on the L layer according
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, and each second element sequence includes a direction along the first dimension Aligning the T second elements, the R second element sequences are in one-to-one correspondence with the R receiving antennas used by the receiving device, and the T second element sequences are in one-to-one correspondence with the T transmitting antennas used by the device.
  • the second intermediate matrix performs singular value decomposition processing to determine the first Null subspace matrix intermediate; according to the second null subspace matrix and intermediate the first intermediate matrix, determining a third intermediate moment a matrix for performing singular value decomposition processing on the third intermediate matrix to determine an orthogonal subspace of the third intermediate matrix; and zeros for the orthogonal subspace and the second intermediate matrix according to the third intermediate matrix Subspace, determining the i
  • the processor is specifically configured to use a maximum of multiple singular values obtained by performing singular value decomposition processing on the third intermediate matrix. And determining a target sequence from the orthogonal subspace of the third intermediate matrix; and determining an i-th second element sequence of the precoding matrix P according to the target sequence and the zero subspace of the second intermediate matrix.
  • the processor is specifically configured to determine a precoding matrix P according to the channel matrix H, the signature matrix S, and the power allocation matrix D, where The power allocation matrix D is used for power allocation between the data streams of the L layer.
  • the processor is specifically configured to use the number K of non-zero elements in the i-th first element sequence included in the signature matrix S. And a position, the first intermediate matrix is generated, wherein the K second element sequences are in one-to-one correspondence with the K non-zero elements in the ith first element sequence, and the kth of the K second element sequences
  • the position of the second element sequence in the channel matrix H is the same as the position of the kth non-zero element of the K non-zero elements in the ith first element sequence, k ⁇ [1, K];
  • Generating a second intermediate matrix according to the number M and positions of the zero elements in the i-th first element sequence included in the signature matrix S, wherein the M second element sequences and the ith first element sequence are One-to-one correspondence of M zero elements, the position of the mth second element sequence in the M second element sequence in the channel matrix H and the mth non
  • the processor is specifically configured to use a mapping relationship between the multiple parameter sets and the plurality of pre-stored signature matrices,
  • a signature matrix S corresponding to the number of layers L and the number R is determined, wherein each parameter set includes a layer value of one data stream and a quantity value of an air domain resource.
  • the layer number L of the data stream is greater than the number R of the receiving antennas.
  • the value of the non-zero element is 1.
  • the device is a network device, the receiving device is a terminal device, or the device is a terminal device, and the receiving device is a network device.
  • an apparatus for transmitting data comprising: a bus; a processor coupled to the bus; a memory coupled to the bus; a receiver coupled to the bus; wherein the processor passes the bus And a program stored in the memory is used to control the receiver to receive data sent by the sender device and information for indicating the signature matrix S, wherein the data includes a pre-coded L-layer data stream, the L The layer data stream is generated by the source device performing bit mapping processing on the L layer bit information according to the preset constellation point set, where the L layer data stream corresponds to the same time frequency resource, and the signature matrix S includes the first dimension direction.
  • the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R first elements arranged along a second dimension direction, the R first The elements are in one-to-one correspondence with R receiving antennas, and the R first elements include at least one zero element and at least one non-zero element, and the precoding process is performed by the transmitting end device according to the channel matrix H and the The name matrix S, wherein the channel matrix H corresponds to a channel between the transmitting device and the device, the precoding matrix P includes L second element sequences arranged along the first dimension direction; Demodulating the pre-coded L-layer data stream according to the signature matrix S and the constellation point set to obtain the L-layer bit information.
  • the processor is specifically configured to perform channel estimation to determine data to be demodulated based on the pre-coded L-layer data stream;
  • the signature matrix S and the set of constellation points determine a codebook; and is used for performing a message passing algorithm MPA iterative process on the data to be demodulated according to the codebook.
  • the sending end device is a network device, the device is a terminal device, or the sending end device is a terminal device, and the device is a network device. .
  • the transmitting device determines the sparsity according to the number of spatial resources used by the receiving device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted.
  • the signature matrix S is generated, and the precoding matrix P is generated based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial domain resource is sparse, and the receiving device can
  • the signature matrix uses the sparseness of the distribution of each layer of the data stream on the spatial domain resource to restore the multi-layer data stream corresponding to the same time-frequency resource, thereby enabling the transmission of the multi-layer data stream through the same time-frequency resource, thereby improving The efficiency of the use of time-frequency resources.
  • FIG. 1 is a schematic diagram of a communication system to which the method of transmitting data of the present invention is applied.
  • FIG. 2 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a processing procedure of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the present invention describes various embodiments in connection with a terminal device.
  • Terminal device (UE, User Equipment), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device may be a device for communicating with the mobile device, such as a network side device, and the network side device may be a BTS in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • Base Transceiver Station, base station may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be an eNB in LTE (Long Term Evolution) or eNodeB (Evolutional Node B), or a relay station or an access point, or an in-vehicle device, a wearable device, and a network-side device in a future 5G network.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network side device 102, and the network side device 102 may include a plurality of antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be by those of ordinary skill in the art As will be appreciated, they can all include multiple components (e.g., processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.) associated with signal transmission and reception.
  • components e.g., processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device can acquire (eg, generate, receive from another communication device, or save in a memory, etc.) to be transmitted to the wireless communication through a channel.
  • a certain number of data bits of the receiving device may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the method 200 includes:
  • the sending end device determines a signature matrix S according to the layer number L of the data stream and the number R of receiving antennas used by the receiving end device, where the signature matrix S includes L first element sequences arranged along the first dimension direction.
  • the L first element sequences are in one-to-one correspondence with the L layer data stream, and each of the first element sequences includes R first elements arranged along a second dimension direction, and the R first elements are combined with R receiving antennas
  • the R first elements comprise at least one zero element and at least one non-zero element, R ⁇ 2, the L first element sequences are different from each other, and the L layer data stream corresponds to the same time-frequency resource, L ⁇ 2;
  • the transmitting end device determines a precoding matrix P according to the channel matrix H and the signature matrix S, and performs precoding processing on the L layer according to the precoding matrix P, where the channel matrix H and the transmitting end Corresponding to a channel between the device and the receiving device, the precoding matrix P includes L second element sequences arranged along the first dimension direction, and the L second element sequences and the L first element sequence are one by one Correspondingly, the L second element sequences are in one-to-one correspondence with the L layer data stream;
  • the transmitting end device sends the pre-coded L layer data stream and the information for indicating the signature matrix S to the receiving end device.
  • the sending end device is a network device
  • the receiving end device is a terminal device
  • the sender device is a terminal device, and the receiver device is a network device.
  • the transmitting device may be a network device (for example, a network side device such as a base station), and the receiving device may be a terminal device (for example, a user device), that is, the method 200 may be applied to downlink transmission.
  • a network device for example, a network side device such as a base station
  • the receiving device may be a terminal device (for example, a user device), that is, the method 200 may be applied to downlink transmission.
  • the sender device may also be a terminal device (for example, a user device), and the receiver device may be a network device (for example, a network side device such as a base station), that is, the method 200 may be applied to uplink transmission.
  • a terminal device for example, a user device
  • the receiver device may be a network device (for example, a network side device such as a base station), that is, the method 200 may be applied to uplink transmission.
  • the network device may perform bit mapping processing (also referred to as modulation processing) on the multi-layer information bits that need to be sent to the terminal device according to the preset constellation point set to generate the L layer.
  • Data stream ie, L modulation symbol sequences
  • the network device can multiplex the same time-frequency resource with the network device for data transmission. That is, the L layer data stream corresponds to the same time-frequency resource.
  • the time-frequency resource may be a time-frequency resource block composed of one or more REs (may also be It is called a time-frequency resource group), and the one or more REs have the same position in the time domain (ie, corresponding to the same symbol) and the same position in the frequency domain (ie, corresponding to the same carrier).
  • REs Resource Element
  • the method and the process of performing the bit mapping process based on the constellation point set may be the same as the prior art (for example, the modulation process in the LTE system), and a detailed description thereof will be omitted herein to avoid redundancy.
  • the network device can determine the number R of receiving antennas (or airspace resources) used by the terminal device to receive the L-layer data.
  • the number of receiving antennas can be understood as the number of antenna ports used by the terminal device when receiving the L layer data, and can also be understood as the number of antennas used by the terminal device when receiving the L layer data, or is understood as other This understanding is applicable to all embodiments of the present invention, and will not be described below.
  • the number of transmit antennas can be understood similarly to the number of receive antennas.
  • the number of transmitting antennas (or airspace resources) used by the network device for transmitting the L layer data is recorded as T.
  • the number of receiving antennas can be understood as the number of antenna ports used by the network device to transmit the L-layer data, and can also be understood as the number of antennas used by the network device to transmit the L-layer data.
  • the terminal device may send information indicating the number R of the receiving antennas to the network device in advance (for example, at the time of access), or the number R of the receiving antennas may also be used as user information in advance.
  • the storage network element is stored in the system, so that the network device can obtain the information indicating the number R of the receiving antennas when acquiring the user information from the storage network element.
  • the receiving antenna may be all or part of an antenna that can be used by the terminal device
  • the transmitting antenna may be all or part of an antenna that can be used by the network device, and the present invention does not. Specially limited.
  • the network device can determine the sign according to the number of layers L of the number of streams and the number R of receiving antennas. Name matrix.
  • the dimension of the matrix includes rows and columns, that is, the first dimension direction may be the row direction of the matrix, and the second dimension direction may be the column direction of the matrix; or the first dimension may be the column direction of the matrix.
  • the second dimension may be the row direction of the matrix, and the present invention is not particularly limited. In order to facilitate understanding and explanation, the following description will be made by taking the row direction as the first dimension direction as an example unless otherwise specified.
  • the size of the signature matrix S may be R ⁇ L, that is, the signature matrix S may include R row element sequences and L column element sequences (ie, the first element sequence).
  • the elements in each column element sequence are sparse, that is, each column element sequence (including R elements) has at least one zero element and at least one non-zero element.
  • the L first element sequences are different from each other, and specifically, the distribution positions of the zero elements and the non-zero elements in the L first element sequences are different from each other.
  • the value of the non-zero element may be set to one.
  • the number of non-zero elements in each column of the signature matrix S may be the same or different, and the present invention is not particularly limited.
  • the signature matrix S can be expressed as:
  • the signature matrix S can be expressed as:
  • the signature matrix S can be expressed as:
  • each column of the signature matrix S includes at least one non-zero element and at least one zero element, and The distribution positions of the zero elements and the non-zero elements between the column elements of the signature matrix S may be different.
  • the L first element sequences are in one-to-one correspondence with the L layer data stream, and then, the L first element sequence and the L layer data are combined with the precoding process for the L layer data stream.
  • a one-to-one correspondence between streams is described in detail.
  • the sending end device determines the signature matrix S according to the layer number L of the data stream and the number R of receiving antennas used by the receiving end device, including:
  • Determining, from the plurality of signature matrices, a signature matrix S corresponding to the number of layers L and the number R, wherein each parameter set is based on a mapping relationship between a plurality of parameter sets and a plurality of signature matrices stored in advance Includes a layer value for a data stream and a quantity value for an airspace resource.
  • the number of data stream layers and the number of spatial domain resources may be indexed, and a plurality of signature matrices are pre-stored in the network device, and a parameter set consisting of a layer value and a self-speech resource quantity value is used. Can correspond to one or more signature matrices. Thereby the network device can find the signature matrix S according to the specific values of L and R determined as described above.
  • the network device determines a channel matrix H corresponding to the channel, where the channel between the network device and the terminal device can be represented as T airspace resources used by the network device and R airspace resources used by the terminal device.
  • the set of channels formed, that is, the channel matrix H can be expressed as:
  • r ⁇ (1, R), t ⁇ (1, T), h rt represents the Rth antenna of the terminal device (ie, an example of the receiving antenna) and the tth of the network device determined according to the above channel estimation.
  • the value of the channel gain formed by the antenna ie, an example of a transmit antenna).
  • the method for determining the channel matrix H as the network device may be similar to the prior art.
  • the network device may determine the channel matrix H according to the feedback of the terminal device, or the network device may also determine the channel matrix based on the channel detection technology.
  • H the invention is not particularly limited.
  • the network device can determine the precoding matrix P based on the channel matrix H and the signature matrix S determined as described above.
  • the signature matrix S and the precoding matrix P each have L elements in the first dimension direction, for example, have L columns. Further, each column of the signature matrix S has a correspondence relationship with each column of the precoding matrix P. For example, the signature matrix S and the precoding matrix P have the same sequence number corresponding to each other, for example, the i th of the signature matrix S The column corresponds to the ith column of the precoding matrix P, i ⁇ [1, L].
  • each column of the precoding matrix P can be determined according to each column of the signature matrix S, thereby determining the precoding matrix P.
  • the sending end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, including:
  • the transmitting end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, so that the ith layer data stream after the precoding process is in the corresponding ith first element sequence
  • the energy on the corresponding airspace resource is zero or approximately zero, i ⁇ [1,L].
  • the L columns of the precoding matrix P are in one-to-one correspondence with the L layer data streams, and each column of the precoding matrix P is used for precoding the corresponding layer quantity stream respectively. deal with.
  • the L columns of the precoding matrix P correspond to the L columns of the signature matrix S as described above, and each column of the signature matrix S contains R elements one-to-one corresponding to the R receiving antennas used by the terminal device ( That is, the first element), therefore, each of the precoding matrices P generated based on the signature matrix S also corresponds to the above-described receiving antenna.
  • each column of the signature matrix S has sparsity (ie, has at least one zero element and at least one non-zero element)
  • the ith column of the precoding matrix P generated by the signature matrix S is obtained.
  • the energy distribution of the i-th layer data on the R receiving antennas is also sparse.
  • the network device can make the pre-coded processing
  • the energy of the i-layer data stream on the spatial resource corresponding to the zero element in the corresponding i-th first element sequence is zero or near It seems to be zero, and thus, the terminal device can demodulate the L layer bit information corresponding to the L layer data stream by using an iterative algorithm such as an information transfer algorithm according to the sparsity (hereinafter, the process will be described in detail).
  • the energy enumerated above can enable the energy of the i-th layer data stream after the pre-coding process to be zero or nearly zero on the spatial resource corresponding to the zero element in the corresponding i-th first element sequence.
  • the solution is merely illustrative, and the present invention is not limited thereto.
  • the i-th layer data stream after the pre-coding process may be in the corresponding i-th based on the sparsity of each column of the signature matrix S.
  • the energy on the spatial resource corresponding to the zero element in the first element sequence is: a value that does not affect other layer data carried on the spatial domain resource, or the i-th layer data stream after the pre-coding process is
  • the energy on the spatial resource corresponding to the zero element in the corresponding i-th first element sequence is: a value that the terminal device can recognize as interference and can exclude the interference caused by the terminal device.
  • the ith layer data stream after the precoding process can be made on the spatial resource corresponding to the zero element in the corresponding i-th first element sequence (ie, the i-th column of the signature matrix S)
  • the generation method of the precoding matrix P (specifically, the i-th column of the precoding matrix P) whose energy is zero or approximately zero is described in detail.
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, and each second element sequence includes T second elements arranged along the first dimension direction, the R second The element sequence is in one-to-one correspondence with the R receiving antennas used by the receiving device, and the T second element sequences are in one-to-one correspondence with the T transmitting antennas used by the transmitting device, and
  • the transmitting end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, including:
  • the generation method of each column (ie, the second element sequence) in the precoding matrix P is similar.
  • the first column in the precoding matrix P is used (ie, at the first).
  • the generation process of the first second element sequence in the dimension direction is taken as an example for explanation.
  • the signature matrix S can be expressed as:
  • the channel matrix H can be expressed as:
  • the network device can determine the first column of the signature matrix S (ie, the first first element sequence in the first dimension direction), namely:
  • the network device may determine a first intermediate matrix H 1 for generating a first column of the precoding matrix P (ie, a first second element sequence in the first dimension direction), the first intermediate matrix H
  • the number of rows included by 1 i.e., the sequence of second elements in the direction of the second dimension
  • the two rows included in the first intermediate matrix H 1 may be the rows of the channel matrix H corresponding to the non-zero elements in the first column of the signature matrix S.
  • the network device may determine a second intermediate matrix for generating a first column of the precoding matrix P (ie, a first second element sequence in the first dimension direction)
  • the second intermediate matrix The number of rows included (i.e., the sequence of second elements in the direction of the second dimension) is the same as the number of zero elements in the first column of the signature matrix S, as described above, here 2.
  • the second intermediate matrix The two rows included may be the rows of the channel matrix H corresponding to the zero elements in the first column of the signature matrix S.
  • the first intermediate matrix is generated according to the number K and the location of the non-zero elements in the i-th first element sequence included in the signature matrix S, including:
  • Generating a second intermediate matrix according to the number M and the position of the zero elements in the i-th first element sequence included in the signature matrix S including:
  • the signature matrix S and the channel matrix H each have R element sequences in the second dimension direction, for example, having R rows.
  • each row in the channel matrix H and each row in the signature matrix S may have the following correspondence:
  • the signature matrix S and the channel matrix H have the same row of arrangement positions (or serial numbers) corresponding to each other.
  • the rth row of the signature matrix S corresponds to the rth row of the channel matrix H, r ⁇ (1, R).
  • the correspondence between the R rows of the signature matrix S enumerated above and the R rows of the channel matrix H is merely exemplary, and the present invention is not limited thereto as long as it can ensure that the network device and the terminal device use the same rule.
  • a one-to-one correspondence between the R rows of the signature matrix S and the R rows of the channel matrix H may be determined.
  • the row corresponding to the first element and the second element in the first column of the S in the channel matrix H may be selected, that is, the first row and the second row of the channel matrix H constitute the first for the signature matrix S
  • the first intermediate matrix H 1 of a column hereinafter, referred to as the first intermediate matrix H 1 ), namely:
  • the third row and the fourth row constitute a second intermediate matrix for the first column of the signature matrix S (hereinafter, referred to as the second intermediate matrix ),which is:
  • the network device can pair the second intermediate matrix Performing a singular value decomposition process to determine the second intermediate matrix Zero subspace Moreover, the process can be similar to the prior art method of performing singular value decomposition processing on a matrix to determine a zero subspace of the matrix.
  • the second intermediate matrix Zero subspace Is a matrix of 8 rows and 6 columns, and The number of rows 8 is based on The number of columns is determined.
  • the network device can be based on the first intermediate matrix H 1 and the second intermediate matrix determined as described above Zero subspace Determining a third intermediate matrix for the first column of the signature matrix S (hereinafter, referred to as the third intermediate matrix ).
  • the third intermediate matrix Is the network device pair first intermediate matrix H 1 and second intermediate matrix Zero subspace
  • the matrix of 2 rows and 6 columns is determined after matrix multiplication processing.
  • the network device can work on the third intermediate matrix Performing a singular value decomposition process to determine the third intermediate matrix Orthogonal subspace Moreover, the process may be similar to the prior art method of performing singular value decomposition processing on the matrix to determine the orthogonal subspace of the matrix. Here, in order to avoid redundancy, detailed description thereof is omitted.
  • the third intermediate matrix Orthogonal subspace Is a matrix of 6 rows and 2 columns, and The number of lines 6 is based on The number of columns is determined.
  • determining, according to the orthogonal subspace of the third intermediate matrix and the zero subspace of the second intermediate matrix, the i-th second element sequence of the precoding matrix P including:
  • the network device can be from the orthogonal subspace And determining a corresponding one of the larger singular values as the element sequence q 1 corresponding to the first column of the signature matrix S (ie, an example of the target sequence, hereinafter referred to as the element sequence q 1 ), wherein the element The sequence q 1 is a sequence of elements including 6 elements. Furthermore, the network device can determine the sequence of elements As a sequence of elements for determining a column in the precoding matrix P corresponding to the first column of the signature matrix S (ie, the first column of the precoding matrix P), wherein the sequence of elements Is the network device to the second intermediate matrix Zero subspace Determined by matrix multiplication processing with the element sequence q 1 , including a sequence of 6 elements.
  • a network device can determine the sequence of elements:
  • the sending end device determines the precoding matrix P according to the channel matrix H and the signature matrix S, including:
  • the transmitting device determines a precoding matrix P according to the channel matrix H, the signature matrix S and the power allocation matrix D, wherein the power allocation matrix D is used for power allocation between the data streams of the L layer.
  • the terminal device can determine that the precoding matrix P is:
  • D is a diagonal matrix for power distribution, and can be set according to actual needs, and the setting method can be similar to the prior art.
  • D is a diagonal matrix for power distribution, and can be set according to actual needs, and the setting method can be similar to the prior art.
  • detailed description thereof is omitted.
  • the foregoing method for determining the precoding matrix P is merely exemplary, and the present invention is not limited thereto.
  • the power allocated by the default L layer data stream is the same, it may not be applicable.
  • the transmitting end device may perform precoding processing on the L layer data stream according to the precoding matrix P determined as described above, for example, may generate a column vector according to the above 6 layer data stream.
  • x 1 represents a data stream corresponding to the first column of the precoding matrix P (for example, the first layer data stream)
  • x 2 represents a data stream corresponding to the second column of the precoding matrix P (for example, a layer 2 data stream)
  • x 3 represents a data stream corresponding to the third column of the precoding matrix P (for example, a layer 3 data stream)
  • x 4 represents a data stream corresponding to the fourth column of the precoding matrix P (eg, a fourth layer data stream)
  • x 5 represents a data stream corresponding to the fifth column of the precoding matrix P (eg, a fifth layer data stream)
  • x 6 represents a sixth column of the precoding matrix P The corresponding data stream (for example, the sixth layer data stream).
  • the network device performs matrix multiplication processing on the precoding matrix P and the above column vector.
  • each layer of the precoding matrix P generated as described above may be separately performed on the corresponding layer of data streams. Process (eg, multiply) and superimpose the results obtained.
  • the number of streams per layer subjected to the precoding process can be sparsely distributed among the R spatial resources, that is, the i th layer data stream is only carried in the i th column of the signature matrix S (ie, the first part of the signature matrix S)
  • An example of a sequence of i first elements) is a spatial resource corresponding to a non-zero element, and the capability distribution of the i-th data stream in the spatial resource corresponding to the zero element in the i-th column of the signature matrix S is zero or approximate Zero.
  • FIG. 3 is a schematic diagram showing the processing procedure of the above method 200.
  • information bits # can be generated. 1- to the information bit #L corresponding to the modulation symbol sequence X#1 to X#L, wherein the modulation symbol sequence X#1 to X#L correspond to the same time-frequency resource, for example, the same RE, generated based on the above
  • Each of the columns of the precoding matrix P that is, the first element sequence #1 to the first element sequence #L
  • the number of the foregoing spatial resources and the number of time-frequency resources are merely exemplary, and the present invention is not limited thereto.
  • the network device may send the L-layer data stream that has undergone the pre-coding process as described above to the terminal device through the T air-space resources.
  • the network device can transmit information indicating the signature matrix S to the terminal device.
  • the same plurality of signature matrices may be stored in the network device and the terminal device, and the plurality of signature matrices are indexed according to the same rule, for example, the same index is assigned to the same signature matrix. Therefore, the network device can send the index number of the signature matrix S to the terminal device.
  • the information indicating the signature matrix S may be carried in a data packet of the L layer data stream, or may be independent of the transmission of the L layer data stream, and the invention is not particularly limited.
  • An embodiment of the method for transmitting data according to the present invention may be: the transmitting device pre-codes the layer 1 data stream according to the precoding matrix P, and sets the number of data stream layers to 1, and the data stream before precoding. do Pre-coded data stream is recorded then:
  • P(i) is a matrix of size [t, l].
  • t is the number of transmit antennas used by the transmitting device to transmit the layer 1 data stream
  • Is a matrix of size [t, t-(rd j )]
  • q j is a matrix of size [t-(rd j ), 1]
  • r is a receiving antenna used by the receiving device to receive a layer 1 data stream
  • the number, d j is the number of non-zero elements in the jth column of the matrix q
  • D is a diagonal matrix for power allocation of each layer of data streams, and D is optional.
  • ⁇ j and V j can pass Perform singular value decomposition processing to obtain, namely:
  • ind(1) ..., ind(d j ) denote the index number of the non-zero element (ie, "1") in the j-th column in the matrix S
  • H j corresponds to the first ind(1) of the matrix H ,..,ind(d j ) column.
  • H j is a matrix of size [d j , t].
  • ind(1) .., ind(rd j ) denote the index number of the zero element (ie, "0") in the jth column in the matrix S, Corresponding to the ind(1), .., ind(rd j ) column of the matrix H, where Is a matrix of size [rd j ,t].
  • the matrix S is a signature matrix of size [r, l], and each element of the matrix is composed of "0" or “1", and the number of "1"s of the jth column of the matrix S is d j .
  • r, l can also be other values.
  • pre-coding the layer 1 data stream according to the precoding matrix P may be processed by the processing unit or processing. To complete.
  • the device embodiment will not be described again.
  • the reception processing of data transmitted by the network device by the terminal device (that is, an example of the receiving device) will be described in detail.
  • the terminal device may receive the L-layer data stream and the information indicating the signature matrix S, and determine, according to the signature matrix S, a sparse distribution of each layer of the quantity flow in the R airspace resources, thereby, the terminal device
  • the L layer data stream may be demodulated according to the sparse distribution, and the L layer information bits corresponding to the L layer data stream are demodulated by using a preset constellation point set.
  • the terminal device can calculate the L layer data stream to be demodulated according to Equation 1 below.
  • y represents the data (or signal) received by the terminal device.
  • the HP corresponds to the channel between the network device and the terminal device and the precoding matrix P described above, and the terminal device can determine its specific value by channel estimation based on the pilot signal.
  • n indicates white noise, and the determination method thereof can be similar to the prior art.
  • the determination method thereof can be similar to the prior art.
  • a detailed description thereof will be omitted.
  • x represents the L layer data stream to be demodulated.
  • the terminal device may perform an iterative process on the x by using a codebook algorithm (MPA, Message Passing Algorithm) to demodulate the L layer bit information.
  • MPA codebook algorithm
  • the codebook is composed of two or more code words.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in the codebook.
  • the codeword may be a multi-dimensional complex domain vector having a dimension of two or more dimensions for representing a mapping relationship between data and two or more modulation symbols, the modulation symbol including at least one zero modulation symbol and at least For a non-zero modulation symbol, the data may be binary bit data or multi-dimensional data.
  • the relationship between the zero modulation symbol and the non-zero modulation symbol may be zero, and the number of modulation symbols is not less than the number of non-zero modulation symbols.
  • a codebook consists of two or more codewords.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in the codebook. Moreover, each codeword included in the same codebook may be different.
  • the location of the zero modulation symbol in the codebook may be determined according to the location of the zero element in the matrix of the signature matrix S, and the non-zero in the codebook may be determined according to the value of the modulation symbol in the constellation point set.
  • the value of the modulation symbol is adjusted so that the above codebook can be determined, thereby enabling demodulation based on MPA iterative processing.
  • the MPA iterative process can be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the number L of layers of the data stream is greater than the number R of the receiving antennas.
  • an airspace resource for example, an antenna
  • MIMO Multiple-Input Multiple-Output
  • the receiving end device can demodulate the L layer data stream according to the sparse distribution of the L layer data stream on the R spatial resources, and therefore, the number of layers L of the data stream It can be larger than the number R of the receiving antennas, thereby breaking the limitation of the prior art.
  • the requirement for the number of antennas is reduced, and the hardware cost is greatly saved, which can facilitate the implementation of the device. Miniaturization.
  • the number of the receiving end devices may be one or more, and the present invention is not particularly limited.
  • the receiving end device is multiple, for the target receiving end device, if the L layer data is used. Only part of the layer data is sent to the target receiving end device, and the sending end device may further send indication information indicating the location of the partial layer data to the target receiving end device, so that the target receiving end device can be based on the indication information. , get useful data from the L layer data.
  • the transmitting end device determines the signature matrix S having sparsity according to the number of spatial domain resources used by the receiving end device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted. And generating a precoding matrix P based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial resource is sparse, and the receiving device can use the signature matrix according to the signature matrix.
  • FIG. 4 shows a schematic flow diagram of a method 300 of transmitting data in accordance with an embodiment of the present invention as described from a receiving end device. As shown in FIG. 4, the method 300 includes:
  • the receiving end device receives the data sent by the sending end device and the information used to indicate the signature matrix S, where the data includes the pre-coded L layer data stream, where the L layer data stream is preset by the sending end device according to the preset
  • the constellation point set is generated by performing bit mapping processing on the L layer bit information, and the L layer data stream corresponds to the same time frequency resource
  • the signature matrix S includes L first element sequences arranged in the first dimension direction, and the L pieces
  • the first element sequence is in one-to-one correspondence with the L layer data stream, and each of the first element sequences includes R first elements arranged along a second dimension direction, and the R first elements are in one-to-one correspondence with R receiving antennas, R
  • the first element includes at least one zero element and at least one non-zero element
  • the precoding process is performed by the transmitting end device according to the channel matrix H and the signature matrix S, wherein the channel matrix H and the transmitting end device and the Corresponding to a channel between the receiving end devices, the precoding
  • the receiving end device demodulates the pre-coded L layer data stream according to the signature matrix S and the constellation point set to obtain the L layer bit information.
  • the receiving end device demodulates the pre-coded L-layer data stream according to the signature matrix S and the constellation point set, including:
  • the receiving end device performs channel estimation to determine data to be demodulated based on the pre-coded L layer data stream
  • the receiving end device determines the codebook according to the signature matrix S and the constellation point set;
  • the receiving end device performs an iterative process on the data to be demodulated by the message passing algorithm MPA according to the codebook.
  • the sending end device is a network device
  • the receiving end device is a terminal device
  • the sender device is a terminal device, and the receiver device is a network device.
  • the operation of the transmitting device in the method 300 is similar to the operation of the transmitting device in the method 200, and the action of the receiving device in the method 300 is similar to the action of the receiving device in the method 200.
  • the description is omitted. Its detailed description.
  • the transmitting end device determines the signature matrix S having sparsity according to the number of spatial domain resources used by the receiving end device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted. And generating a precoding matrix P based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial resource is sparse, and the receiving device can use the signature matrix according to the signature matrix.
  • FIGS. 1 through 4 a method of transmitting data according to an embodiment of the present invention is described in detail with reference to FIGS. 1 through 4.
  • FIGS. 5 and 6 an apparatus for data processing according to an embodiment of the present invention will be described in detail with reference to FIGS. 5 and 6.
  • FIG. 5 shows a schematic block diagram of an apparatus 400 for transmitting data in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the determining unit 410 is configured to determine a signature matrix S according to the layer number L of the data stream and the number R of receiving antennas used by the receiving end device, wherein the signature matrix S includes L first elements arranged along the first dimension direction a sequence, the L first element sequences are in one-to-one correspondence with the L layer data stream, each first element sequence includes R first elements arranged along a second dimension direction, the R first elements and R receiving antennas One-to-one correspondence, R first elements include at least one zero element and at least one non-zero element, R ⁇ 2, the L first element sequences are different from each other, and the L layer has the same data stream a time-frequency resource, L ⁇ 2; for determining a precoding matrix P according to the channel matrix H and the signature matrix S;
  • the processing unit 420 is configured to perform precoding processing on the data stream of the L layer according to the precoding matrix P, where the channel matrix H corresponds to a channel between the device and the receiving end device, and the precoding matrix P includes L second element sequences arranged along the first dimension direction, the L second element sequences are in one-to-one correspondence with the L first element sequence, and the L second element sequences are in one-to-one correspondence with the L layer data stream ;
  • the sending unit 430 is configured to send, to the receiving end device, the L layer data stream subjected to the precoding process and information for indicating the signature matrix S.
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, and each second element sequence includes T second elements arranged along the first dimension direction, the R second The element sequence is in one-to-one correspondence with the R receiving antennas used by the receiving device, and the T second element sequences are in one-to-one correspondence with the T transmitting antennas used by the device, and
  • the determining unit is specifically configured to generate a first intermediate matrix, where the first intermediate matrix includes the R second element sequences according to the number K and the position of the non-zero elements in the i-th first element sequence included in the signature matrix S K second element sequences in ;
  • a third intermediate matrix is determined according to the zero subspace of the second intermediate matrix and the first intermediate matrix
  • the determining unit is specifically configured to determine a target sequence from orthogonal subspaces of the third intermediate matrix according to a maximum value of the plurality of singular values obtained by performing singular value decomposition processing on the third intermediate matrix;
  • the determining unit is specifically configured to determine a precoding matrix P according to the channel matrix H, the signature matrix S, and the power allocation matrix D, where the power allocation matrix D is used for power allocation between the data streams of the L layer. .
  • the determining unit is specifically configured to generate a first intermediate matrix according to the quantity K and a position of the non-zero elements in the i-th first element sequence included in the signature matrix S, where the K second element sequence One-to-one correspondence with K non-zero elements in the i-th first element sequence, the position of the k-th second element sequence in the K second element sequence in the channel matrix H and the K non-zero
  • the kth non-zero element in the element has the same position in the i-th first element sequence, k ⁇ [1, K];
  • the determining unit is specifically configured to determine, according to a mapping relationship between the plurality of parameter sets and the plurality of signature matrices stored in advance, from the plurality of signature matrices, determine the number of layers L and the number R A signature matrix S, wherein each parameter set includes a layer value of a data stream and a quantity value of an air domain resource.
  • the number L of layers of the data stream is greater than the number R of the receiving antennas.
  • the non-zero element has a value of one.
  • the device is a network device, and the receiving device is a terminal device, or
  • the device is a terminal device, and the receiving device is a network device.
  • the apparatus 400 for transmitting data may correspond to a transmitting end device (for example, a network device or a terminal device) in the method of the embodiment of the present invention, and each unit in the apparatus 400 for transmitting data, that is, a module and the above
  • a transmitting end device for example, a network device or a terminal device
  • each unit in the apparatus 400 for transmitting data that is, a module and the above
  • the other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein for brevity.
  • the transmitting end device determines the signature matrix S having sparsity according to the number of spatial domain resources used by the receiving end device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted. And generating a precoding matrix P based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial resource is sparse
  • the receiving device can restore the multi-layer data stream corresponding to the same time-frequency resource by utilizing the sparsity of the distribution of each layer of the data stream on the spatial resource, thereby enabling the same time-frequency resource to be realized.
  • the transmission of multi-layer data streams improves the utilization efficiency of time-frequency resources.
  • FIG. 6 shows a schematic block diagram of an apparatus 500 for transmitting data in accordance with an embodiment of the present invention.
  • the apparatus 500 includes:
  • the receiving unit 510 is configured to receive data sent by the sending end device and information for indicating the signature matrix S, where the data includes a pre-coded L layer data stream, where the L layer data stream is the The set of constellation points is generated by performing bit mapping processing on the L layer bit information, and the L layer data stream corresponds to the same time frequency resource, and the signature matrix S includes L first element sequences arranged along the first dimension direction, and the L The first element sequence is in one-to-one correspondence with the L layer data stream, and each of the first element sequences includes R first elements arranged in a second dimension direction, and the R first elements are in one-to-one correspondence with R receiving antennas.
  • the R first elements include at least one zero element and at least one non-zero element, and the precoding process is performed by the transmitting end device according to the channel matrix H and the signature matrix S, wherein the channel matrix H and the transmitting end device Corresponding to channels between the devices, the precoding matrix P comprising L second element sequences arranged along the first dimension direction;
  • the processing unit 520 is configured to perform demodulation processing on the pre-coded L-layer data stream according to the signature matrix S and the constellation point set to obtain the L-layer bit information.
  • the processing unit is specifically configured to perform channel estimation to determine data to be demodulated based on the pre-coded L layer data stream;
  • the codebook is composed of two or more codewords, and the codeword may be a multi-dimensional complex domain vector for indicating a mapping relationship between data and two or more modulation symbols, the modulation The symbol includes at least one zero modulation symbol and at least one non-zero modulation symbol.
  • the sending end device is a network device, and the device is a terminal device, or
  • the sender device is a terminal device, and the device is a network device.
  • the apparatus 500 for transmitting data may correspond to a receiving end device (for example, a network device or a terminal device) in the method of the embodiment of the present invention, and each unit in the apparatus 500 for transmitting data is a module and the above
  • the other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 300 in FIG. 4, and are not described herein again for brevity.
  • the transmitting end device is empty according to the use of the receiving end device
  • the number of domain resources and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted, the signature matrix S having sparsity is determined, and the pre-coding matrix P is generated based on the signature matrix S, and the pre-coding can be performed.
  • the distribution of each layer of data stream processed by the matrix P on the spatial domain resource is sparse, and the receiving end device can utilize the sparsity of the distribution of each layer of the data stream on the spatial domain resource according to the signature matrix, and restore corresponding to The multi-layer data stream of the same time-frequency resource can realize the transmission of the multi-layer data stream through the same time-frequency resource, thereby improving the utilization efficiency of the time-frequency resource.
  • FIGS. 1 through 4 a method of transmitting data according to an embodiment of the present invention is described in detail with reference to FIGS. 1 through 4.
  • FIGS. 7 and 8 an apparatus for data processing according to an embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8.
  • FIG. 7 shows a schematic block diagram of an apparatus 600 for transmitting data in accordance with an embodiment of the present invention.
  • the device 600 includes:
  • processor 620 connected to the bus
  • the processor by using the bus, invokes a program stored in the memory, for determining a signature matrix S according to a layer number L of the data stream and a number R of receiving antennas used by the receiving device, where the signature matrix S includes L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R first numbers arranged in a second dimension direction An element, the R first elements are in one-to-one correspondence with R receiving antennas, and the R first elements comprise at least one zero element and at least one non-zero element, R ⁇ 2, and the L first element sequences are different from each other.
  • L layer the data stream corresponds to the same time-frequency resource, L ⁇ 2;
  • the precoding matrix P includes L second element sequences arranged along the first dimension direction, the L second element sequences are in one-to-one correspondence with the L first element sequence, and the L a second element sequence corresponding to the L layer data stream;
  • the channel matrix H includes R second element sequences arranged along the second dimension direction, and each second element sequence includes T second elements arranged along the first dimension direction, the R second The element sequence is in one-to-one correspondence with the R receiving antennas used by the receiving device, and the T second The sequence of elements corresponds to the T transmit antennas used by the device, and
  • the processor is specifically configured to generate a first intermediate matrix according to the number K and a position of non-zero elements in the i-th first element sequence included in the signature matrix S, where the first intermediate matrix includes the R second element sequences K second element sequences in ;
  • a third intermediate matrix is determined according to the zero subspace of the second intermediate matrix and the first intermediate matrix
  • the processor is specifically configured to determine a target sequence from orthogonal subspaces of the third intermediate matrix according to a maximum value of the plurality of singular values obtained by performing singular value decomposition processing on the third intermediate matrix;
  • the processor is specifically configured to determine a precoding matrix P according to the channel matrix H, the signature matrix S, and the power allocation matrix D, where the power allocation matrix D is used for power allocation between the data streams of the L layer. .
  • the processor is specifically configured to generate a first intermediate matrix according to the number K and location of the non-zero elements in the i-th first element sequence included in the signature matrix S, where the K second element sequences One-to-one correspondence with K non-zero elements in the i-th first element sequence, the position of the k-th second element sequence in the K second element sequence in the channel matrix H and the K non-zero
  • the kth non-zero element in the element has the same position in the i-th first element sequence, k ⁇ [1, K];
  • the processor is specifically configured to determine, according to a mapping relationship between the plurality of parameter sets and the plurality of pre-stored signature matrices, from the plurality of signature matrices, determine the number of layers L and the number R A signature matrix S, wherein each parameter set includes a layer value of a data stream and a quantity value of an air domain resource.
  • the number L of layers of the data stream is greater than the number R of the receiving antennas.
  • the non-zero element has a value of one.
  • the device is a network device, and the receiving device is a terminal device, or
  • the device is a terminal device, and the receiving device is a network device.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 600 may be embedded or may be a transmitting device (such as a network device such as a base station or a terminal device), and may further include a carrier that accommodates the transmitting circuit and the receiving circuit to allow the device 600 and the remote location to be performed. Data transmission and reception.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 600 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as buses in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 600 for transmitting data may correspond to a transmitting device (for example, a network device or a terminal device) in the method of the embodiment of the present invention, and each unit in the device 600 that transmits data and the module and the above
  • a transmitting device for example, a network device or a terminal device
  • each unit in the device 600 that transmits data and the module and the above The other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein for brevity.
  • the transmitting end device determines the signature matrix S having sparsity according to the number of spatial domain resources used by the receiving end device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted. And generating a precoding matrix P based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial resource is sparse, and the receiving device can use the signature matrix according to the signature matrix.
  • FIG. 7 shows a schematic block diagram of an apparatus 600 for transmitting data in accordance with an embodiment of the present invention.
  • the device 700 includes:
  • processor 720 connected to the bus
  • the receiver receives data sent by the sending end device and information for indicating the signature matrix S, wherein the data includes a pre-coded L layer data stream, and the L layer data stream is a preset constellation of the sending end device according to the preset
  • the point set is generated by performing bit mapping processing on the L layer bit information, and the L layer data stream corresponds to the same time frequency resource
  • the signature matrix S includes L first element sequences arranged along the first dimension direction, and the L first The element sequence is in one-to-one correspondence with the L layer data stream, and each of the first element sequences includes R first elements arranged along a second dimension direction, and the R first elements are in one-to-one correspondence with R receiving antennas, R first An element includes at least one zero element and at least one non-zero element
  • the precoding process is performed by the transmitting end device according to a channel matrix H and the signature matrix S, wherein the channel matrix H and the transmitting end device and the device 700 Corresponding to the channel
  • the processor is specifically configured to perform channel estimation to determine data to be demodulated based on the pre-coded L layer data stream;
  • the codebook is composed of two or more codewords, and the codeword may be a multi-dimensional complex domain vector for indicating a mapping relationship between data and two or more modulation symbols, the modulation The symbol includes at least one zero modulation symbol and at least one non-zero modulation symbol.
  • the sending end device is a network device, and the device is a terminal device, or
  • the sender device is a terminal device, and the device is a network device.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 700 may be embedded or may be a receiving device (such as a network device such as a base station or a terminal device), and may further include a carrier that accommodates the transmitting circuit and the receiving circuit to allow the device 700 and the remote location to be performed. Data transmission and reception.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 700 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as buses in the figure.
  • the decoder in a specific different product may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 700 for transmitting data may correspond to a receiving end device (for example, a network device or a terminal device) in the method of the embodiment of the present invention, and each unit in the device 700 that transmits data and the module and the above
  • a receiving end device for example, a network device or a terminal device
  • each unit in the device 700 that transmits data and the module and the above The other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 300 in FIG. 4, and are not described herein again for brevity.
  • the transmitting end device determines the signature matrix S having sparsity according to the number of spatial domain resources used by the receiving end device and the number of layers of the multi-layer data stream corresponding to the same time-frequency resource to be transmitted. And generating a precoding matrix P based on the signature matrix S, so that the distribution of each layer of the data stream processed by the precoding matrix P on the spatial resource is sparse, and the receiving device can use the signature matrix according to the signature matrix.
  • Each layer of data stream is on the airspace resource
  • the sparsity of the distribution reduces the multi-layer data stream corresponding to the same time-frequency resource, thereby enabling the transmission of the multi-layer data stream through the same time-frequency resource, thereby improving the utilization efficiency of the time-frequency resource.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present invention may be integrated in one processing unit
  • each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供了一种传输数据的方法、装置和设备,能够提高对时频资源的利用效率,该方法包括:发送端设备根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S;该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,并根据该预编码矩阵P对L层该数据流进行预编码处理;该发送端设备向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。

Description

传输数据的方法、装置和设备 技术领域
本发明涉及通信领域,并且更具体地,涉及数据处理的方法、装置和设备。
背景技术
多输入输出(Multiple-Input Multiple-Output,简称为“MIMO”)技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,使信号通过发送端设备与接收端设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
具体地说,发送端设备通过空时映射将要发送的数据信号映射到多根天线上发送出去,接收端设备将各根天线接收到的信号进行空时译码从而恢复出发送端设备发送的数据信号。
随着无线通信技术的发展和普及,无线通信的业务量也大幅度增长,如何提高对有限的接收天线的利用效率,成为目前亟需解决的问题。
发明内容
本发明实施例提供一种传输数据的方法、装置和设备,能够提高对时频资源的利用效率。
第一方面,提供了一种传输数据的方法,该方法包括:发送端设备根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一时频资源,L≥2;该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,并根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该发送端设备和 该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;该发送端设备向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。
结合第一方面,在第一方面的第一种实现方式中,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二元素序列与该发送端设备使用的T个发射天线一一对应,以及该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,包括:根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列;根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩阵;对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列,包括:根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,包括:该发送端设备根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,包括:根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];以及该根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,包括:根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,该发送端设备根据该数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,包括:基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,该数据流的层数L大于该接收天线的数量R。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,该非零元素的值为1。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,该发送端设备为网络设备,该接收端设备为终端设备,或该发送端设备为终端设备,该接收端设备为网络设备。
第二方面,提供了一种传输数据的方法,该方法包括:接收端设备接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一 时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;该接收端设备根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
结合第二方面,在第二方面的第一种实现方式中,该接收端设备根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,包括:该接收端设备进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;该接收端设备根据该签名矩阵S和该星座点集合,确定码本;该接收端设备根据该码本对该待解调数据进行消息传递算法MPA迭代处理。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该发送端设备为网络设备,该接收端设备为终端设备,或该发送端设备为终端设备,该接收端设备为网络设备。
第三方面,提供了一种传输数据的装置,该装置包括:确定单元,用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一时频资源,L≥2;用于根据信道矩阵H和该签名矩阵S,确定预编码矩阵P;处理单元,用于根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该装置和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;发送单元,用于向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S 的信息。
结合第三方面,在第三方面的第一种实现方式中,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二元素序列与该装置使用的T个发射天线一一对应,以及该确定单元具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列;用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];用于对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;用于根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩阵;用于对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;用于根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,该确定单元具体用于根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;用于根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,该确定单元具体用于根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,该确定单元具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第 二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,该确定单元具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,该数据流的层数L大于该接收天线的数量R。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,该非零元素的值为1。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,该装置为网络设备,该接收端设备为终端设备,或该装置为终端设备,该接收端设备为网络设备。第四方面,提供了一种传输数据的装置,该装置包括:接收单元,用于接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该装置之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;处理单元,用于根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
结合第四方面,在第四方面的第一种实现方式中,该处理单元具体用于进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;
用于根据该签名矩阵S和该星座点集合,确定码本;用于根据该码本对 该待解调数据进行消息传递算法MPA迭代处理。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,该发送端设备为网络设备,该装置为终端设备,或该发送端设备为终端设备,该装置为网络设备。
第五方面,提供了一种传输数据的设备,该设备包括:总线;与该总线相连的处理器;与该总线相连的存储器;与该总线相连的发射器;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一时频资源,L≥2;用于根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,并根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该设备和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;用于控制该发射器向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。
结合第五方面,在第五方面的第一种实现方式中,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二元素序列与该设备使用的T个发射天线一一对应,以及该处理器具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列;用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];用于对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;用于根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩 阵;用于对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;用于根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第五方面及其上述实现方式,在第五方面的第二种实现方式中,该处理器具体用于根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;用于根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
结合第五方面及其上述实现方式,在第五方面的第三种实现方式中,该处理器具体用于根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
结合第五方面及其上述实现方式,在第五方面的第四种实现方式中,该处理器具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
结合第五方面及其上述实现方式,在第五方面的第五种实现方式中,该处理器具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
结合第五方面及其上述实现方式,在第五方面的第六种实现方式中,该数据流的层数L大于该接收天线的数量R。
结合第五方面及其上述实现方式,在第五方面的第七种实现方式中,该非零元素的值为1。
结合第五方面及其上述实现方式,在第五方面的第八种实现方式中,该 设备为网络设备,该接收端设备为终端设备,或该设备为终端设备,该接收端设备为网络设备。
第六方面,提供了一种传输数据的设备,该设备包括:总线;与该总线相连的处理器;与该总线相连的存储器;与该总线相连的接收器;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于控制该接收器接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;用于根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
结合第六方面,在第六方面的第一种实现方式中,该处理器具体用于进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;用于根据该签名矩阵S和该星座点集合,确定码本;用于根据该码本对该待解调数据进行消息传递算法MPA迭代处理。
结合第六方面及其上述实现方式,在第六方面的第二种实现方式中,该发送端设备为网络设备,该设备为终端设备,或该发送端设备为终端设备,该设备为网络设备。
根据本发明的传输数据的方法、装置和设备,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明的传输数据的方法的通信系统的示意图。
图2是根据本发明一实施例的传输数据的方法的示意性流程图。
图3是根据本发明一实施例的传输数据的方法的处理过程示意图。
图4是根据本发明另一实施例的传输数据的方法的示意性流程图。
图5是根据本发明一实施例的传输数据的装置的示意性结构图。
图6是根据本发明另一实施例的传输数据的装置的示意性结构图。
图7是根据本发明一实施例的传输数据的设备的示意性结构图。
图8是根据本发明另一实施例的传输数据的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备 (UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
另外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本发明的传输数据的方法的通信系统的示意图。如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人 员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通 信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
图2示出了从发送端设备描述的根据本发明一实施例的传输数据的方法200的示意性流程图。如图2所示,该方法200包括:
S210,发送端设备根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一时频资源,L≥2;
S220,该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,并根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该发送端设备和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;
S230,该发送端设备向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。
可选地,该发送端设备为网络设备,该接收端设备为终端设备,或
该发送端设备为终端设备,该接收端设备为网络设备。
在本发明实施例中,发送端设备可以是网络设备(例如,基站等网络侧设备),接收端设备可以是终端设备(例如,用户设备),即,该方法200可以应用于下行传输。
或者,发送端设备可也可以是终端设备(例如,用户设备),接收端设备可以是网络设备(例如,基站等网络侧设备),即,该方法200可以应用于上行传输。
以下,为了便于理解和说明,以网络设备作为发送端设备(即,本发明是实施例的数据处理的方法200的执行主体)为例,对上述方法200的流程进行详细说明。
具体的,网络设备可以根据预设的星座点集合对需要发送给终端设备的多层信息比特,进行比特映射处理(也可以称为,调制处理),以生成L层 数据流(即,L个调制符号序列),需要说明的是,在使用本发明实施例的传输数据的方法200的通信系统100中,网络设备可以复用同一时频资源与网络设备进行数据传输,即,上述L层数据流对应同一时频资源。
作为上述同一时频资源,例如,在以资源单元(RE,Resource Element)为单位的时频资源划分方式下,上述时频资源可以是由一个或多个RE组成的时频资源块(也可以称为时频资源组),并且,该一个或多个RE在时域上的位置相同(即,对应相同的符号)且在频域上的位置相同(即,对应相同的载波)。
并且,基于星座点集合进行比特映射处理的方法和过程可以与现有技术(例如,LTE系统中的调制处理)相同,这里为了避免赘述省略其详细说明。
其后,网络设备可以确定终端设备所使用的用于接收该L层数据的接收天线(或者说,空域资源)的数量R。
其中,接收天线的数量可以理解为该终端设备接收该L层数据时所使用的天线端口的数量,也可以理解为该终端设备接收该L层数据时所使用的天线的数量,或者理解为其他和空域资源相关的物理含义,这种理解适用于本发明的所有实施例,以下不再赘述。发射天线的数量可以类似接收天线的数量理解。
类似地,在本发明实施例中,网络设备所使用的用于发送该L层数据的发射天线(或者说,空域资源)的数量记做T。
其中,接收天线的数量可以理解为是该网络设备发送该L层数据时所使用的天线端口的数量,也可以理解为该网络设备发送该L层数据时所使用的天线的数量。
并且,在本发明实施例中,终端设备可以预先(例如,在接入时)将指示上述接收天线的数量R的信息发送给网络设备,或者,上述接收天线的数量R也可以作为用户信息预先存储在系统中的存储网元,从而,网络设备可以在从该存储网元获取用户信息时一并获取指示上述接收天线的数量R的信息。
需要说明的是,在本发明实施例中,上述接收天线可以是终端设备所能够使用的天线的全部或部分,上述发射天线可以是网络设备所能够使用的天线的全部或部分,本发明并未特别限定。
其后,网络设备可以根据数量流的层数L和接收天线的数量R,确定签 名矩阵。
在本发明实施例中,矩阵的维度包括行和列,即,第一维度方向可以是矩阵的行方向,第二维度方向可以是矩阵的列方向;或者,第一维度可以是矩阵的列方向,第二维度可以是矩阵的行方向,本发明并未特别限定。为了便于理解和说明,下文在未特别说明的情况下,以行方向作为该第一维度方向为例,进行说明。
即,在本发明实施例中,签名矩阵S的规模可以为R×L,即,签名矩阵S可以包括R个行元素序列,L个列元素序列(即,第一元素序列)。其中,每个列元素序列中的元素均具有稀疏性,即,每个列元素序列(包括R个元素)中具有至少一个零元素和至少一个非零元素。
并且,在本发明实施例中,该L个第一元素序列彼此相异,具体地说,时L个第一元素序列中零元素和非零元素的分布位置彼此相异。
作为示例而非限定,在本发明实施例中,该非零元素的值可以设定为1。
另外,在本发明实施例中,签名矩阵S的各列中的非零元素的数量可以相同也可以相异,本发明并未特别限定。
例如,在R=4(即,终端设备所使用天线数量为4),L=6(即,所生成的调制符号序列的个数为6)时,该签名矩阵S可以表示为:
Figure PCTCN2015073543-appb-000001
或者,在R=4(即,终端设备所使用天线数量为4),L=6(即,所生成的调制符号序列的个数为6)时,该签名矩阵S可以表示为:
Figure PCTCN2015073543-appb-000002
或者,在R=8(即,终端设备所使用天线数量为8),L=12(即,所生成的调制符号序列的个数为12)时,该签名矩阵S可以表示为:
Figure PCTCN2015073543-appb-000003
应理解,以上列举的签名矩阵S的具体数值仅为示例性说明,本发明并未限定于此,只要能够确保该签名矩阵S的各列均包括至少一个非零元素和至少一个零元素,并且该签名矩阵S的各列元素之间零元素和非零元素的分布位置相异即可。
另外,在本发明实施例中,上述L个第一元素序列与L层数据流一一对应,随后,结合对L层数据流的预编码处理,对该L个第一元素序列与L层数据流之间的一一对应关系进行详细说明。
可选地,该发送端设备根据该数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,包括:
基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
具体地说,在本发明实施例中,可以数据流层数及空域资源数量为索引,在网络设备中预先存储多个签名矩阵,由一个层数值和一个自语资源数量值构成的一个参数集合可以对应一个或多个签名矩阵。从而网络设备可以根据如上所述确定的L和R的具体值,查找到该签名矩阵S。
其后,网络设备确定与该信道相对应的信道矩阵H,其中,上述网络设备与终端设备之间的信道可以表示为网络设备所使用的T个空域资源与终端设备所使用的R个空域资源构成的信道集合,即,该信道矩阵H可以表示为:
Figure PCTCN2015073543-appb-000004
其中,r∈(1,R),t∈(1,T),hrt表示根据上述信道估计确定的由终端设备 的第R个天线(即,接收天线的一例)与网络设备的第t个天线(即,发射天线的一例)构成的信道增益的取值。
需要说明的是,作为网络设备确定上述信道矩阵H的方法可以与现有技术相似,例如,网络设备可以根据终端设备的反馈确定上述信道矩阵H或者网络设备也可以基于信道检测技术确定上述信道矩阵H,本发明并未特别限定。
其后,网络设备可以根据如上所述确定的信道矩阵H和签名矩阵S,确定预编码矩阵P。
在本发明实施例中,签名矩阵S与预编码矩阵P在第一维度方向上均具有L个元素,例如,具有L列。并且,该签名矩阵S的各列与预编码矩阵P的各列存在对应关系,例如,该签名矩阵S与预编码矩阵P中,序号相同的列彼此对应,例如,该签名矩阵S的第i列与预编码矩阵P的第i列相对应,i∈[1,L]。
从而,在本发明实施例中,可以根据签名矩阵S的各列确定预编码矩阵P的各列,进而确定预编码矩阵P。
可选地,该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,包括:
该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,以使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列中的零元素所对应的空域资源上的能量为零或近似为零,i∈[1,L]。
具体地说,在本发明实施例中,预编码矩阵P的L列与L层数据流一一对应,并且,预编码矩阵P的每列分别用于对所对应的一层数量流的预编码处理。另外,由于如上所述预编码矩阵P的L列与签名矩阵S的L列相对应,并且签名矩阵S的每列均包含与终端设备所使用的R个接收天线一一对应的R个元素(即,第一元素),因此,基于该签名矩阵S生成的所述预编码矩阵P每列也与上述接收天线相对应。并且,由于签名矩阵S的每列均具有稀疏性(即,具有至少一个零元素和至少一个非零元素),因此,在通过基于该签名矩阵S生成的所述预编码矩阵P的第i列,对i层数据进行预编码处理后,该第i层数据的在R个接收天线上的能量分布也具有稀疏性,因此,利用该稀疏性,网络设备能够使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列中的零元素所对应的空域资源上的能量为零或近 似为零,从而,终端设备能够根据该稀疏性,利用信息传递算法等迭代算法解调出该L层数据流所对应的L层比特信息(随后,对该过程进行详细说明)。
应理解,以上列举的能够使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列中的零元素所对应的空域资源上的能量为零或近似为零的方案仅为示例性说明,本发明并不限定于此,例如,也可以基于签名矩阵S的每列的稀疏性,使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列中的零元素所对应的空域资源上的能量为:不对在该空域资源上承载的其他层数据造成影响的数值,或者,使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列中的零元素所对应的空域资源上的能量为:为终端设备能够识别其为干扰,并能够将其所造成的干扰排除的数值。
下面,对能够使经该预编码处理后的第i层数据流在所对应的第i个第一元素序列(即,签名矩阵S的第i列)中的零元素所对应的空域资源上的能量为零或近似为零的预编码矩阵P(具体的说是,预编码矩阵P的第i列)生成方法进行详细说明。
可选地,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二元素序列与该发送端设备使用的T个发射天线一一对应,以及
该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,包括:
根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列,并根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];
对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;
根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩阵;
对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;
根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
在本发明中,预编码矩阵P中各列(即,第二元素序列)的生成方法相似,为了避免赘述,在以下说明中,以对预编码矩阵P中第一列(即,在第一维度方向上的第一个第二元素序列)的生成过程为例,进行说明。并且,作为示例而非限定,以在R=4(即,终端设备接收该L层数据所使用天线数量为4),L=6(即,数据层数为6),T=8(即,网络设备发送该L层数据所使用天线数量为8)时的生成过程为例,进行说明。
此情况下,签名矩阵S可以表示为:
Figure PCTCN2015073543-appb-000005
信道矩阵H可以表示为:
Figure PCTCN2015073543-appb-000006
具体地说,当i=1时,网络设备可以确定签名矩阵S的第一列(即,在第一维度方向上的第一个第一元素序列),即:
Figure PCTCN2015073543-appb-000007
其后,网络设备可以确定用于生成预编码矩阵P的第一列(即,在第一维度方向上的第一个第二元素序列)的第一中间矩阵H1,该第一中间矩阵H1所包括的行(即,在第二维度方向上的第二元素序列)的数量与签名矩阵S的第一列中的非零元素的数量相同,这里为2。并且,该第一中间矩阵H1所包括的2个行可以为上述信道矩阵H中与该签名矩阵S的第一列中的非零元素相对应的行。
类似的,网络设备可以确定用于生成预编码矩阵P的第一列(即,在第一维度方向上的第一个第二元素序列)的第二中间矩阵
Figure PCTCN2015073543-appb-000008
该第二中间矩阵
Figure PCTCN2015073543-appb-000009
所包括的行(即,在第二维度方向上的第二元素序列)的数量与签名矩阵 S的第一列中的零元素的数量相同,如上所述,这里为2。并且,该第二中间矩阵
Figure PCTCN2015073543-appb-000010
所包括的2个行可以为上述信道矩阵H中与该签名矩阵S的第一列中的零元素相对应的行。
可选地,该根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,包括:
根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];以及
该根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,包括:
根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
具体地说,在本发明实施中,签名矩阵S与信道矩阵H在第二维度方向上均具有R个元素序列,例如,具有R行。并且,信道矩阵H中的各行与签名矩阵S中的各行之间可以具有以下对应关系:
该签名矩阵S与信道矩阵H中,排列位置(或者说,序号)相同的行彼此对应,例如,该签名矩阵S的第r行与信道矩阵H的第r行相对应,r∈(1,R)。
应理解,以上列举的签名矩阵S的R行与信道矩阵H的R行之间的对应关系仅为示例性说明,本发明并不限定于此,只要能够确保网络设备和终端设备使用相同的规则确定签名矩阵S的R行与信道矩阵H的R行之间的一一对应关系即可。
此情况下,R=4,T=8,L=6,i=1,K=2。
并且,由于签名矩阵S的第一列中的非零元素是该签名矩阵S的第一列中的第一个(k=1)元素和第二个(k=2)元素,因此,网络设备可以选择信道矩阵H中与该S的第一列中的第一个元素和第二个元素相对应的行,即,信道矩阵H的第一行和第二行构成针对该签名矩阵S的第一列的第一中间矩 阵H1(以下,简称第一中间矩阵H1),即:
Figure PCTCN2015073543-appb-000011
类似的,签名矩阵S的第一列中的零元素是该S的第一列中的第三个(m=3)元素和第四个(m=4)元素,因此,可以选择信道矩阵H中的第三行和第四行构成针对该签名矩阵S的第一列的第二中间矩阵
Figure PCTCN2015073543-appb-000012
(以下,简称第二中间矩阵
Figure PCTCN2015073543-appb-000013
),即:
Figure PCTCN2015073543-appb-000014
其后,网络设备可以对第二中间矩阵
Figure PCTCN2015073543-appb-000015
进行奇异值分解处理,以确定该第二中间矩阵
Figure PCTCN2015073543-appb-000016
的零子空间
Figure PCTCN2015073543-appb-000017
并且,该过程可以与现有技术中对矩阵进行奇异值分解处理以确定该矩阵的零子空间的方法相似。
其中,该第二中间矩阵
Figure PCTCN2015073543-appb-000018
的零子空间
Figure PCTCN2015073543-appb-000019
是规模为8行6列的矩阵,并且,
Figure PCTCN2015073543-appb-000020
的行数8是根据
Figure PCTCN2015073543-appb-000021
的列数确定的。
并且,网络设备可以根据第一中间矩阵H1和如上所述确定的第二中间矩阵
Figure PCTCN2015073543-appb-000022
的零子空间
Figure PCTCN2015073543-appb-000023
确定针对签名矩阵S的第一列的第三中间矩阵
Figure PCTCN2015073543-appb-000024
(以下,简称第三中间矩阵
Figure PCTCN2015073543-appb-000025
)。
其中,第三中间矩阵
Figure PCTCN2015073543-appb-000026
是网络设备对第一中间矩阵H1和第二中间矩阵
Figure PCTCN2015073543-appb-000027
的零子空间
Figure PCTCN2015073543-appb-000028
进行矩阵乘处理后确定的,规模为2行6列的矩阵。
之后,网络设备可以对第三中间矩阵
Figure PCTCN2015073543-appb-000029
进行奇异值分解处理,以确定该第三中间矩阵
Figure PCTCN2015073543-appb-000030
的正交子空间
Figure PCTCN2015073543-appb-000031
并且,该过程可以与现有技术中对矩阵进行奇异值分解处理以确定该矩阵的正交子空间的方法相似,这里,为了避免赘述,省略其详细说明。
其中,第三中间矩阵
Figure PCTCN2015073543-appb-000032
的正交子空间
Figure PCTCN2015073543-appb-000033
是规模为6行2列的矩阵,并且,
Figure PCTCN2015073543-appb-000034
的行数6是根据
Figure PCTCN2015073543-appb-000035
的列数确定的。
可选地,该根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列,包括:
根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;
根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
具体地说,网络设备可以从正交子空间
Figure PCTCN2015073543-appb-000036
中,确定所对应的奇异值较 大的一列,作为与该签名矩阵S的第一列相对应的元素序列q1(即目标序列的一例,以下,简称元素序列q1),其中,该元素序列q1为包括6个元素的元素序列。进而,网络设备可以确定元素序列
Figure PCTCN2015073543-appb-000037
作为用于确定预编码矩阵P中与该签名矩阵S的第一列相对应的列(即,预编码矩阵P的第一列)的元素序列,其中,该元素序列
Figure PCTCN2015073543-appb-000038
是网络设备对该第二中间矩阵
Figure PCTCN2015073543-appb-000039
的零子空间
Figure PCTCN2015073543-appb-000040
和元素序列q1进行矩阵乘处理后确定的,包括6个元素的序列。
类似的,网络设备可以确定元素序列:
Figure PCTCN2015073543-appb-000041
Figure PCTCN2015073543-appb-000042
应理解,以上列举的确定确定元素序列q1的方法仅为示例性说明,本发明并未限定于此,其他能够基于奇异值分解处理获得正交子空间并从该正交子空间确定元素序列q1的方法均落入本发明别的保护范围内。
可选地,该发送端设备根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,包括:
该发送端设备根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
具体地说,终端设备可以确定预编码矩阵P为:
Figure PCTCN2015073543-appb-000043
其中,D为用于功率分配的对角矩阵,可以根据实际需要进行设定,并且,设定的方法可以与现有技术类似,这里,为了避免赘述,省略其详细说明。
应理解,以上列举的确定确定预编码矩阵P的方法仅为示例性说明,本发明并不限定于此,例如,在默认为L层数据流的分配的功率相同的情况下,也可以不适用上述功率分配矩阵D。
其后,发送端设备可以根据如上所述确定的预编码矩阵P对L层数据流进行预编码处理,例如,可以根据上述6层数据流,生成列向量
Figure PCTCN2015073543-appb-000044
其中,x1表示与预编码矩阵P的第一列相对应的数据流(例如,第一层 数据流),x2表示与预编码矩阵P的第二列相对应的数据流(例如,第二层数据流),x3表示与预编码矩阵P的第三列相对应的数据流(例如,第三层数据流),x4表示与预编码矩阵P的第四列相对应的数据流(例如,第四层数据流),x5表示与预编码矩阵P的第五列相对应的数据流(例如,第五层数据流),x6表示与预编码矩阵P的第六列相对应的数据流(例如,第六层数据流)。
并且,网络设备对预编码矩阵P与上述列向量进行矩阵乘处理。
应理解,以上列举的预编码处理方式仅为示例性说明,本发明并未限定于此,例如,也可以根据如上所述生成的预编码矩阵P各列分别对所对应的一层数据流进行处理(例如,相乘)并将所获得的结果进行叠加。
从而,能够使经该预编码处理后的每层数量流在R个空域资源中稀疏地分布,即,第i层数据流仅承载在签名矩阵S的第i列(即,签名矩阵S的第i个第一元素序列的一例)中非零元素所对应的空域资源中,而第i层数据流在签名矩阵S的第i列中零元素所对应的空域资源中的能力分布为零或近似为零。
图3示出了上述方法200的处理过程的示意图,如图3所示,对L层信息比特(即,信息比特#1~信息比特#L)进行映射处理后,可以生成分别与信息比特#1~信息比特#L相对应的调制符号序列X#1~X#L,其中,该调制符号序列X#1~X#L对应同一时频资源,例如,同一RE,在基于如上所述生成的预编码矩阵P的各列(即,第一元素序列#1~第一元素序列#L)对调制符号序列X#1~X#L进行预编码处理后,能够使各调制符号序列稀疏地分布在接收端设备所使用的空域资源(即,天线#1~天线#4)上。需要说明的是,上述空域资源的数量和时频资源的数量仅为示例性说明,本发明并未限定于此。
网络设备可以将如上所述进过预编码处理后的L层数据流,通过上述T个空域资源发送至终端设备。
并且,网络设备可以将指示上述签名矩阵S的信息发送至终端设备。
这里,在本发明实施例中,可以在网络设备和终端设备中存储相同的多个签名矩阵,并按照相同的规则对该多个签名矩阵进行索引,例如,为同一个签名矩阵分配相同的索引号,从而,网络设备可以将该签名矩阵S的索引号发送给终端设备。
需要说明的是,在本发明实施例中,该指示上述签名矩阵S的信息可以承载于L层数据流的数据包中,也可以独立于L层数据流的发送,本发明并未特别限定。
下面结合实现过程描述本发明传输数据的方法的实施例可以为:发送端设备根据预编码矩阵P进行对l层数据流进行预编码,设数据流层数为l,预编码之前的数据流记做
Figure PCTCN2015073543-appb-000045
预编码处理后的数据流记做
Figure PCTCN2015073543-appb-000046
则:
Figure PCTCN2015073543-appb-000047
其中,
Figure PCTCN2015073543-appb-000048
这里,P(i)是规模为[t,l]的矩阵。t为发送端设备发射该l层数据流所使用的发射天线的数目,
Figure PCTCN2015073543-appb-000049
是规模为[t,t-(r-dj)]的矩阵,qj是规模为[t-(r-dj),1]的矩阵,r为接收端设备接收l层数据流所使用的接收天线的数目,dj是矩阵q中第j列非零元素的个数,D为用于对各层数据流进行功率分配的对角矩阵,D为可选的。
其中,qj是Vj的第t列,t是矩阵Σj的最大值的索引。
并且,Σj和Vj可以通过对
Figure PCTCN2015073543-appb-000050
进行奇异值分解处理获得,即:
Figure PCTCN2015073543-appb-000051
其中,
Figure PCTCN2015073543-appb-000052
是规模为[dj,t-(r-dj)]的矩阵。
Figure PCTCN2015073543-appb-000053
Figure PCTCN2015073543-appb-000054
的后t-(r-dj)列,与
Figure PCTCN2015073543-appb-000055
的最小的t-(r-dj)个奇异值相对应,
Figure PCTCN2015073543-appb-000056
Figure PCTCN2015073543-appb-000057
的零子空间。
Figure PCTCN2015073543-appb-000058
可以通过对
Figure PCTCN2015073543-appb-000059
进行奇异值分解处理获得,即:
Figure PCTCN2015073543-appb-000060
Figure PCTCN2015073543-appb-000061
其中,H1~Hl以及
Figure PCTCN2015073543-appb-000062
可以根据矩阵H和矩阵S获得。
即,设ind(1),..,ind(dj)表示矩阵S中的第j列中非零元素(即,“1”)的索引号,Hj对应矩阵H的第ind(1),..,ind(dj)列。其中,Hj是规模为[dj,t]的矩阵。
设ind(1),..,ind(r-dj)表示矩阵S中的第j列中零元素(即,“0”)的索引号,
Figure PCTCN2015073543-appb-000063
对应矩阵H的第ind(1),..,ind(r-dj)列,其中,
Figure PCTCN2015073543-appb-000064
是规模为[r-dj,t]的矩阵。
矩阵S是规模为[r,l]的签名矩阵,由“0”或“1”构成矩阵的各元素,矩阵S的第j列的“1”的数量为dj
例如,设r=4,l=6,则矩阵S可以表示为:
Figure PCTCN2015073543-appb-000065
再例如,设r=4,l=6,则矩阵S可以表示为:
Figure PCTCN2015073543-appb-000066
当然r,l也可以为其他值。
上述描述的实现过程的传输数据的实施例中,所有的各个参数的表现形式可以多样,字母可以替换为其他字母。
上述描述的实现过程的传输数据的实施例虽然以方法方式来体现,但其技术特征也适用于装置实施例,其中根据预编码矩阵P进行对l层数据流进行预编码可以由处理单元或者处理器来完成。装置实施例就不在赘述了。
下面,对终端设备(即,接收端设备的一例)所进行的针对网络设备发送的数据的接收处理进行详细描述。
具体地说,终端设备可以接收到上述L层数据流和指示上述签名矩阵S的信息,并根据该签名矩阵S,确定每层数量流在R个空域资源中的稀疏分布情况,从而,终端设备可以根据该稀疏分布情况,解调出上述L层数据流,并利用预设星座点集合,解调出该L层数据流所对应的L层信息比特。
例如,终端设备可以根据以下公式1计算出待解调的L层数据流。
y=HPx+n         公式1
其中,y表示该终端设备接收到的数据(或者说,信号)。
HP与网络设备与终端设备之间的信道以及上述预编码矩阵P相对应,终端设备可以通过基于导频信号的信道估计,确定其具体值。
n表示白噪声,其确定方法可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
x表示待解调的L层数据流。
在本发明实施例中,终端设备可以采用码本对该x进行消息传递算法(MPA,Message Passing Algorithm)迭代处理,以解调出L层比特信息。
其中,码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系。
码字可以为多维复数域向量,其维数为两维或两维以上,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号,数据可以为二进制比特数据或者多元数据可选的,零调制符号和非零调制符号的关系可以为零调制符号个数不少于非零调制符号个数。
码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系。并且,同一码本包括的各码字可以是相异的。
在本发明实施例中,可以根据上述签名矩阵S矩阵中零元素的位置,确定码本中零调制符号的位置,并且,可以根据上述星座点集合中的调制符号的值确定码本中非零调制符号的值,从而能够确定出上述码本,进而能够实现基于MPA迭代处理的解调。并且,基于MPA迭代处理可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
应理解,以上列举的终端设备的解调方法仅为示例性说明,本发明并不限定于此,其他能够利用数量在传输资源上的稀疏性分别进行解调的方法均落入本发明的保护范围内。
可选地,该数据流的层数L大于该接收天线的数量R。
具体地说,在现有技术中,在例如多入多出(MIMO,Multiple-Input Multiple-Output)等技术中,一个空域资源(例如,一根天线)只能够用于 接收一层数据流,因此,数据流的层数必须小于或等于接收端所使用的天线的数量。
与此相对,在本发明实施例中,由于接收端设备可以根据L层数据流在R个空域资源上的稀疏分布情况,解调出上述L层数据流,因此,该数据流的层数L可以大于该接收天线的数量R,从而突破了现有技术的限制,在传输相同层数的数据流的情况下,减少了对天线数量的要求,极大地节约的硬件成本,能够有利于实现设备的小型化。
在本发明实施例中,接收端设备的数量可以是一个也可以是多个,本发明并未特别限定,当该接收端设备是多个时,针对一个目标接收端设备,如果上述L层数据中仅有部分层数据是发送给该目标接收端设备的,发送端设备还可以向该目标接收端设备发送指示上述部分层数据位置的指示信息,从而,该目标接收端设备能够基于该指示信息,从L层数据中获取有用数据。
根据本发明的传输数据的方法,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
图4示出了从接收端设备描述的根据本发明一实施例的传输数据的方法300的示意性流程图。如图4所示,该方法300包括:
S310,接收端设备接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;
S320,该接收端设备根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
可选地,该接收端设备根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,包括:
该接收端设备进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;
该接收端设备根据该签名矩阵S和该星座点集合,确定码本;
该接收端设备根据该码本对该待解调数据进行消息传递算法MPA迭代处理。
可选地,该发送端设备为网络设备,该接收端设备为终端设备,或
该发送端设备为终端设备,该接收端设备为网络设备。
上述方法300中发送端设备的动作与上述方法200中发送端设备的动作相似,并且,上述方法300中接收端设备的动作与上述方法200中接收端设备的动作相似这里,为了避免赘述,省略其详细说明。
根据本发明的传输数据的方法,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
以上,结合图1至图4详细说明了根据本发明实施例的传输数据的方法,下面,结合图5和图6详细说明根据本发明实施例的数据处理的装置。
图5示出了根据本发明实施例的传输数据的装置400的示意性框图。如图5所示,该装置400包括:
确定单元410,用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一 时频资源,L≥2;用于根据信道矩阵H和该签名矩阵S,确定预编码矩阵P;
处理单元420,用于根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该装置和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;
发送单元430,用于向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。
可选地,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二元素序列与该装置使用的T个发射天线一一对应,以及
该确定单元具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列;
用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];
用于对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;
用于根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩阵;
用于对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;
用于根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
可选地,该确定单元具体用于根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;
用于根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵 P的第i个第二元素序列。
可选地,该确定单元具体用于根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
可选地,该确定单元具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];
用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
可选地,该确定单元具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
可选地,该数据流的层数L大于该接收天线的数量R。
可选地,该非零元素的值为1。
可选地,该装置为网络设备,该接收端设备为终端设备,或
该装置为终端设备,该接收端设备为网络设备。
根据本发明实施例的传输数据的装置400可对应于本发明实施例的方法中的发送端设备(例如,网络设备或终端设备),并且,传输数据的装置400中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明的传输数据的装置,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏 性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
图6示出了根据本发明实施例的传输数据的装置500的示意性框图。如图6所示,该装置500包括:
接收单元510,用于接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该装置之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;
处理单元520,用于根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
可选地,该处理单元具体用于进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;
用于根据该签名矩阵S和该星座点集合,确定码本;
用于根据该码本对该待解调数据进行消息传递算法MPA迭代处理。
可选地,该码本由两个或两个以上的码字组成,该码字可以为多维复数域向量,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
可选地,该发送端设备为网络设备,该装置为终端设备,或
该发送端设备为终端设备,该装置为网络设备。
根据本发明实施例的传输数据的装置500可对应于本发明实施例的方法中的接收端设备(例如,网络设备或终端设备),并且,传输数据的装置500中的各单元即模块和上述其他操作和/或功能分别为了实现图4中的方法300的相应流程,为了简洁,在此不再赘述。
根据本发明的传输数据的装置,发送端设备根据接收端设备所使用的空 域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
以上,结合图1至图4详细说明了根据本发明实施例的传输数据的方法,下面,结合图7和图8详细说明根据本发明实施例的数据处理的设备。
图7示出了根据本发明实施例的传输数据的设备600的示意性框图。如图7所示,该设备600包括:
总线610;
与该总线相连的处理器620;
与该总线相连的存储器630;
与该总线相连的发射器640;
其中,该处理器通过该总线,调用该存储器中存储的程序,以用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异,L层该数据流对应同一时频资源,L≥2;
用于根据信道矩阵H和该签名矩阵S,确定预编码矩阵P,并根据该预编码矩阵P对L层该数据流进行预编码处理,其中,该信道矩阵H与该设备600和该接收端设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,且该L个第二元素序列与该L层数据流一一对应;
用于控制该发射器向该接收端设备发送经该预编码处理的L层数据流和用于指示该签名矩阵S的信息。
可选地,该信道矩阵H包括沿该第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿该第一维度方向排列的T个第二元素,该R个第二元素序列与该接收端设备使用的R个接收天线一一对应,该T个第二 元素序列与该设备使用的T个发射天线一一对应,以及
该处理器具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,该第一中间矩阵包括该R个第二元素序列中的K个第二元素序列;
用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,该第二中间矩阵包括该R个第二元素序列中的M个第二元素序列,该K个第二元素序列与该M个第二元素序列相异,M=R-K,i∈[1,L];
用于对该第二中间矩阵进行奇异值分解处理,以确定该第二中间矩阵的零子空间;
用于根据该第二中间矩阵的零子空间和该第一中间矩阵,确定第三中间矩阵;
用于对该第三中间矩阵进行奇异值分解处理,以确定该第三中间矩阵的正交子空间;
用于根据该第三中间矩阵的正交子空间和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
可选地,该处理器具体用于根据对该第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从该第三中间矩阵的正交子空间中确定目标序列;
用于根据该目标序列和该第二中间矩阵的零子空间,确定该预编码矩阵P的第i个第二元素序列。
可选地,该处理器具体用于根据信道矩阵H、该签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,该功率分配矩阵D用于L层该数据流之间的功率分配。
可选地,该处理器具体用于根据该签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,该K个第二元素序列与该第i个第一元素序列中的K个非零元素一一对应,该K个第二元素序列中的第k个第二元素序列在该信道矩阵H中的位置与该K个非零元素中的第k个非零元素在该第i个第一元素序列中的位置相同,k∈[1,K];
用于根据该签名矩阵S所包括的第i个第一元素序列中零元素的数量M 和位置,生成第二中间矩阵,其中,该M个第二元素序列与该第i个第一元素序列中的M个零元素一一对应,该M个第二元素序列中的第m个第二元素序列在该信道矩阵H中的位置与该M个非零元素中的第m个非零元素在该第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
可选地,该处理器具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从该多个签名矩阵中,确定与该层数L及该数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
可选地,该数据流的层数L大于该接收天线的数量R。
可选地,该非零元素的值为1。
可选地,该设备为网络设备,该接收端设备为终端设备,或
该设备为终端设备,该接收端设备为网络设备。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,设备600可以嵌入或者本身可以就是发送端设备(例如基站等网络设备,或者终端设备),还可以包括容纳发射电路和接收电路的载体,以允许设备600和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。设备600的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输数据的设备600可对应于本发明实施例的方法中的发送端设备(例如,网络设备或终端设备),并且,传输数据的设备600中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明的传输数据的设备,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
图7示出了根据本发明实施例的传输数据的设备600的示意性框图。如图7所示,该设备700包括:
总线710;
与该总线相连的处理器720;
与该总线相连的存储器730;
与该总线相连的接收器740;
其中,该处理器通过该总线,调用该存储器中存储的程序,以用于控制 该接收器接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,该数据包括经过预编码处理的L层数据流,该L层数据流是该发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,该L层数据流对应同一时频资源,该签名矩阵S包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,该预编码处理是该发送端设备根据信道矩阵H和该签名矩阵S进行的,其中,该信道矩阵H与该发送端设备和该设备700之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列;
用于根据该签名矩阵S和该星座点集合对该经过预编码处理的L层数据流进行解调处理,以获取该L层比特信息。
可选地,该处理器具体用于进行信道估计,以确定基于该经过预编码处理的L层数据流的待解调数据;
用于根据该签名矩阵S和该星座点集合,确定码本;
用于根据该码本对该待解调数据进行消息传递算法MPA迭代处理。
可选地,该码本由两个或两个以上的码字组成,该码字可以为多维复数域向量,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
可选地,该发送端设备为网络设备,该设备为终端设备,或
该发送端设备为终端设备,该设备为网络设备。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,设备700可以嵌入或者本身可以就是接收端设备(例如基站等网络设备,或者终端设备),还可以包括容纳发射电路和接收电路的载体,以允许设备700和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。设备700的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线。具体的不同产品中解码器可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑 框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输数据的设备700可对应于本发明实施例的方法中的接收端设备(例如,网络设备或终端设备),并且,传输数据的设备700中的各单元即模块和上述其他操作和/或功能分别为了实现图4中的方法300的相应流程,为了简洁,在此不再赘述。
根据本发明的传输数据的设备,发送端设备根据接收端设备所使用的空域资源的数量和需要传输的对应于同一时频资源的多层数据流的层数,确定具有稀疏性的签名矩阵S,并基于该签名矩阵S生成预编码矩阵P,能够使经该预编码矩阵P处理后的每层数据流在该空域资源的上的分布具有稀疏性,接收端设备能够根据该签名矩阵,利用每层数据流在该空域资源的上的 分布的稀疏性,还原对应于同一时频资源的多层数据流,从而,能够实现通过同一时频资源传输多层数据流,提高了对时频资源的利用效率。
应理解,以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元 中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种传输数据的方法,其特征在于,所述方法包括:
    发送端设备根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,所述L个第一元素序列彼此相异,L层所述数据流对应同一时频资源,L≥2;
    所述发送端设备根据信道矩阵H和所述签名矩阵S,确定预编码矩阵P,并根据所述预编码矩阵P对L层所述数据流进行预编码处理,其中,所述信道矩阵H与所述发送端设备和所述接收端设备之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列,所述L个第二元素序列与所述L第一元素序列一一对应,且所述L个第二元素序列与所述L层数据流一一对应;
    所述发送端设备向所述接收端设备发送经所述预编码处理的L层数据流和用于指示所述签名矩阵S的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述信道矩阵H包括沿所述第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿所述第一维度方向排列的T个第二元素,所述R个第二元素序列与所述接收端设备使用的R个接收天线一一对应,所述T个第二元素序列与所述发送端设备使用的T个发射天线一一对应,以及
    所述发送端设备根据信道矩阵H和所述签名矩阵S,确定预编码矩阵P,包括:
    根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,所述第一中间矩阵包括所述R个第二元素序列中的K个第二元素序列;
    根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,所述第二中间矩阵包括所述R个第二元素序列中的M个第二元素序列,所述K个第二元素序列与所述M个第二元素序列相异,M=R-K,i∈[1,L];
    对所述第二中间矩阵进行奇异值分解处理,以确定所述第二中间矩阵的零子空间;
    根据所述第二中间矩阵的零子空间和所述第一中间矩阵,确定第三中间矩阵;
    对所述第三中间矩阵进行奇异值分解处理,以确定所述第三中间矩阵的正交子空间;
    根据所述第三中间矩阵的正交子空间和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第三中间矩阵的正交子空间和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列,包括:
    根据对所述第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从所述第三中间矩阵的正交子空间中确定目标序列;
    根据所述目标序列和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送端设备根据信道矩阵H和所述签名矩阵S,确定预编码矩阵P,包括:
    所述发送端设备根据信道矩阵H、所述签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,所述功率分配矩阵D用于L层所述数据流之间的功率分配。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,包括:
    根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,所述K个第二元素序列与所述第i个第一元素序列中的K个非零元素一一对应,所述K个第二元素序列中的第k个第二元素序列在所述信道矩阵H中的位置与所述K个非零元素中的第k个非零元素在所述第i个第一元素序列中的位置相同,k∈[1,K];以及
    所述根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,包括:
    根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和 位置,生成第二中间矩阵,其中,所述M个第二元素序列与所述第i个第一元素序列中的M个零元素一一对应,所述M个第二元素序列中的第m个第二元素序列在所述信道矩阵H中的位置与所述M个非零元素中的第m个非零元素在所述第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述发送端设备根据所述数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,包括:
    基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从所述多个签名矩阵中,确定与所述层数L及所述数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述数据流的层数L大于所述接收天线的数量R。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述非零元素的值为1。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述发送端设备为网络设备,所述接收端设备为终端设备,或
    所述发送端设备为终端设备,所述接收端设备为网络设备。
  10. 一种传输数据的方法,其特征在于,所述方法包括:
    接收端设备接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,所述数据包括经过预编码处理的L层数据流,所述L层数据流是所述发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,所述L层数据流对应同一时频资源,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,所述预编码处理是所述发送端设备根据信道矩阵H和所述签名矩阵S进行的,其中,所述信道矩阵H与所述发送端设备和所述接收端设备之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列;
    所述接收端设备根据所述签名矩阵S和所述星座点集合对所述经过预编码处理的L层数据流进行解调处理,以获取所述L层比特信息。
  11. 根据权利要求10所述的方法,其特征在于,所述接收端设备根据所述签名矩阵S和所述星座点集合对所述经过预编码处理的L层数据流进行解调处理,包括:
    所述接收端设备进行信道估计,以确定基于所述经过预编码处理的L层数据流的待解调数据;
    所述接收端设备根据所述签名矩阵S和所述星座点集合,确定码本;
    所述接收端设备根据所述码本对所述待解调数据进行消息传递算法MPA迭代处理。
  12. 根据权利要求11所述的方法,其特征在于,所述码本由两个或两个以上的码字组成,所述码字可以为多维复数域向量,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述发送端设备为网络设备,所述接收端设备为终端设备,或
    所述发送端设备为终端设备,所述接收端设备为网络设备。
  14. 一种传输数据的装置,其特征在于,所述装置包括:
    确定单元,用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,所述L个第一元素序列彼此相异,L层所述数据流对应同一时频资源,L≥2;用于根据信道矩阵H和所述签名矩阵S,确定预编码矩阵P;
    处理单元,用于根据所述预编码矩阵P对L层所述数据流进行预编码处理,其中,所述信道矩阵H与所述装置和所述接收端设备之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列,所述L个第二元素序列与所述L第一元素序列一一对应,且所述L个第二元素序列与所述L层数据流一一对应;
    发送单元,用于向所述接收端设备发送经所述预编码处理的L层数据流和用于指示所述签名矩阵S的信息。
  15. 根据权利要求14所述的装置,其特征在于,所述信道矩阵H包括沿所述第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿所述第一维度方向排列的T个第二元素,所述R个第二元素序列与所述接收端设备使用的R个接收天线一一对应,所述T个第二元素序列与所述装置使用的T个发射天线一一对应,以及
    所述确定单元具体用于根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,所述第一中间矩阵包括所述R个第二元素序列中的K个第二元素序列;
    用于根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,所述第二中间矩阵包括所述R个第二元素序列中的M个第二元素序列,所述K个第二元素序列与所述M个第二元素序列相异,M=R-K,i∈[1,L];
    用于对所述第二中间矩阵进行奇异值分解处理,以确定所述第二中间矩阵的零子空间;
    用于根据所述第二中间矩阵的零子空间和所述第一中间矩阵,确定第三中间矩阵;
    用于对所述第三中间矩阵进行奇异值分解处理,以确定所述第三中间矩阵的正交子空间;
    用于根据所述第三中间矩阵的正交子空间和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  16. 根据权利要求15所述的装置,其特征在于,所述确定单元具体用于根据对所述第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最大值,从所述第三中间矩阵的正交子空间中确定目标序列;
    用于根据所述目标序列和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,所述确定单元具体用于根据信道矩阵H、所述签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,所述功率分配矩阵D用于L层所述数据流之间的功率分配。
  18. 根据权利要求14至17中任一项所述的装置,其特征在于,所述确定单元具体用于根据所述签名矩阵S所包括的第i个第一元素序列中非零元 素的数量K和位置,生成第一中间矩阵,其中,所述K个第二元素序列与所述第i个第一元素序列中的K个非零元素一一对应,所述K个第二元素序列中的第k个第二元素序列在所述信道矩阵H中的位置与所述K个非零元素中的第k个非零元素在所述第i个第一元素序列中的位置相同,k∈[1,K];
    用于根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,所述M个第二元素序列与所述第i个第一元素序列中的M个零元素一一对应,所述M个第二元素序列中的第m个第二元素序列在所述信道矩阵H中的位置与所述M个非零元素中的第m个非零元素在所述第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
  19. 根据权利要求14至18中任一项所述的装置,其特征在于,所述确定单元具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从所述多个签名矩阵中,确定与所述层数L及所述数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
  20. 根据权利要求14至19中任一项所述的装置,其特征在于,所述数据流的层数L大于所述接收天线的数量R。
  21. 根据权利要求14至20中任一项所述的装置,其特征在于,所述非零元素的值为1。
  22. 根据权利要求14至21中任一项所述的装置,其特征在于,所述装置为网络设备,所述接收端设备为终端设备,或
    所述装置为终端设备,所述接收端设备为网络设备。
  23. 一种传输数据的装置,其特征在于,所述装置包括:
    接收单元,用于接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,所述数据包括经过预编码处理的L层数据流,所述L层数据流是所述发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,所述L层数据流对应同一时频资源,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一 个零元素和至少一个非零元素,所述预编码处理是所述发送端设备根据信道矩阵H和所述签名矩阵S进行的,其中,所述信道矩阵H与所述发送端设备和所述装置之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列;
    处理单元,用于根据所述签名矩阵S和所述星座点集合对所述经过预编码处理的L层数据流进行解调处理,以获取所述L层比特信息。
  24. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于进行信道估计,以确定基于所述经过预编码处理的L层数据流的待解调数据;
    用于根据所述签名矩阵S和所述星座点集合,确定码本;
    用于根据所述码本对所述待解调数据进行消息传递算法MPA迭代处理。
  25. 根据权利要求24所述的装置,其特征在于,所述码本由两个或两个以上的码字组成,所述码字可以为多维复数域向量,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
  26. 根据权利要求23至25中任一项所述的装置,其特征在于,所述发送端设备为网络设备,所述装置为终端设备,或
    所述发送端设备为终端设备,所述装置为网络设备。
  27. 一种传输数据的设备,其特征在于,所述设备包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    与所述总线相连的发射器;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于根据数据流的层数L和接收端设备所使用的接收天线的数量R,确定签名矩阵S,其中,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,所述L个第一元素序列彼此相异,L层所述数据流对应同一时频资源, L≥2;
    用于根据信道矩阵H和所述签名矩阵S,确定预编码矩阵P,并根据所述预编码矩阵P对L层所述数据流进行预编码处理,其中,所述信道矩阵H与所述设备和所述接收端设备之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列,所述L个第二元素序列与所述L第一元素序列一一对应,且所述L个第二元素序列与所述L层数据流一一对应;
    用于控制所述发射器向所述接收端设备发送经所述预编码处理的L层数据流和用于指示所述签名矩阵S的信息。
  28. 根据权利要求27所述的设备,其特征在于,所述信道矩阵H包括沿所述第二维度方向排列的R个第二元素序列,每个第二元素序列包括沿所述第一维度方向排列的T个第二元素,所述R个第二元素序列与所述接收端设备使用的R个接收天线一一对应,所述T个第二元素序列与所述设备使用的T个发射天线一一对应,以及
    所述处理器具体用于根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,所述第一中间矩阵包括所述R个第二元素序列中的K个第二元素序列;
    用于根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,所述第二中间矩阵包括所述R个第二元素序列中的M个第二元素序列,所述K个第二元素序列与所述M个第二元素序列相异,M=R-K,i∈[1,L];
    用于对所述第二中间矩阵进行奇异值分解处理,以确定所述第二中间矩阵的零子空间;
    用于根据所述第二中间矩阵的零子空间和所述第一中间矩阵,确定第三中间矩阵;
    用于对所述第三中间矩阵进行奇异值分解处理,以确定所述第三中间矩阵的正交子空间;
    用于根据所述第三中间矩阵的正交子空间和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器具体用于根据对所述第三中间矩阵进行奇异值分解处理所得到的多个奇异值中的最 大值,从所述第三中间矩阵的正交子空间中确定目标序列;
    用于根据所述目标序列和所述第二中间矩阵的零子空间,确定所述预编码矩阵P的第i个第二元素序列。
  30. 根据权利要求27至29中任一项所述的设备,其特征在于,所述处理器具体用于根据信道矩阵H、所述签名矩阵S和功率分配矩阵D,确定预编码矩阵P,其中,所述功率分配矩阵D用于L层所述数据流之间的功率分配。
  31. 根据权利要求27至30中任一项所述的设备,其特征在于,所述处理器具体用于根据所述签名矩阵S所包括的第i个第一元素序列中非零元素的数量K和位置,生成第一中间矩阵,其中,所述K个第二元素序列与所述第i个第一元素序列中的K个非零元素一一对应,所述K个第二元素序列中的第k个第二元素序列在所述信道矩阵H中的位置与所述K个非零元素中的第k个非零元素在所述第i个第一元素序列中的位置相同,k∈[1,K];
    用于根据所述签名矩阵S所包括的第i个第一元素序列中零元素的数量M和位置,生成第二中间矩阵,其中,所述M个第二元素序列与所述第i个第一元素序列中的M个零元素一一对应,所述M个第二元素序列中的第m个第二元素序列在所述信道矩阵H中的位置与所述M个非零元素中的第m个非零元素在所述第i个第一元素序列中的位置相同,m∈[1,M],M=R-K。
  32. 根据权利要求27至31中任一项所述的设备,其特征在于,所述处理器具体用于基于多个参数集合与预先存储的多个签名矩阵之间的映射关系,从所述多个签名矩阵中,确定与所述层数L及所述数量R相对应的签名矩阵S,其中,每个参数集合包括一个数据流的层数值和一个空域资源的数量值。
  33. 根据权利要求27至32中任一项所述的设备,其特征在于,所述数据流的层数L大于所述接收天线的数量R。
  34. 根据权利要求27至33中任一项所述的设备,其特征在于,所述非零元素的值为1。
  35. 根据权利要求27至34中任一项所述的设备,其特征在于,所述设备为网络设备,所述接收端设备为终端设备,或
    所述设备为终端设备,所述接收端设备为网络设备。
  36. 一种传输数据的设备,其特征在于,所述设备包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    与所述总线相连的接收器;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于控制所述接收器接收发送端设备发送的数据和用于指示签名矩阵S的信息,其中,所述数据包括经过预编码处理的L层数据流,所述L层数据流是所述发送端设备根据预设的星座点集合对L层比特信息进行比特映射处理后生成的,所述L层数据流对应同一时频资源,所述签名矩阵S包括沿第一维度方向排列的L个第一元素序列,所述L个第一元素序列与所述L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,所述R个第一元素与R个接收天线一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,所述预编码处理是所述发送端设备根据信道矩阵H和所述签名矩阵S进行的,其中,所述信道矩阵H与所述发送端设备和所述设备之间的信道相对应,所述预编码矩阵P包括沿所述第一维度方向排列的L个第二元素序列;
    用于根据所述签名矩阵S和所述星座点集合对所述经过预编码处理的L层数据流进行解调处理,以获取所述L层比特信息。
  37. 根据权利要求36所述的设备,其特征在于,所述处理器具体用于进行信道估计,以确定基于所述经过预编码处理的L层数据流的待解调数据;
    用于根据所述签名矩阵S和所述星座点集合,确定码本;
    用于根据所述码本对所述待解调数据进行消息传递算法MPA迭代处理。
  38. 根据权利要求37所述的设备,其特征在于,所述码本由两个或两个以上的码字组成,所述码字可以为多维复数域向量,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号。
  39. 根据权利要求36至38中任一项所述的设备,其特征在于,所述发送端设备为网络设备,所述设备为终端设备,或
    所述发送端设备为终端设备,所述设备为网络设备。
PCT/CN2015/073543 2015-03-03 2015-03-03 传输数据的方法、装置和设备 WO2016138628A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580030492.1A CN106464337B (zh) 2015-03-03 2015-03-03 传输数据的方法、装置和设备
PCT/CN2015/073543 WO2016138628A1 (zh) 2015-03-03 2015-03-03 传输数据的方法、装置和设备
EP15883685.8A EP3258614B1 (en) 2015-03-03 2015-03-03 Data transmission method, apparatus and device
US15/694,582 US10171142B2 (en) 2015-03-03 2017-09-01 Data transmission method, apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073543 WO2016138628A1 (zh) 2015-03-03 2015-03-03 传输数据的方法、装置和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/694,582 Continuation US10171142B2 (en) 2015-03-03 2017-09-01 Data transmission method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2016138628A1 true WO2016138628A1 (zh) 2016-09-09

Family

ID=56849089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073543 WO2016138628A1 (zh) 2015-03-03 2015-03-03 传输数据的方法、装置和设备

Country Status (4)

Country Link
US (1) US10171142B2 (zh)
EP (1) EP3258614B1 (zh)
CN (1) CN106464337B (zh)
WO (1) WO2016138628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837344A (zh) * 2019-02-15 2020-10-27 Oppo广东移动通信有限公司 确定配置参数的方法、终端设备和网络设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631836B (zh) * 2017-03-24 2021-07-16 华为技术有限公司 数据传输方法和装置
CN108631835B (zh) * 2017-03-24 2022-04-12 中兴通讯股份有限公司 一种传输方式的信令指示方法及装置
CN109787668B (zh) * 2017-11-15 2023-10-20 华为技术有限公司 通信方法、通信装置和系统
CN113938165B (zh) * 2020-07-14 2023-04-25 青岛海信电子产业控股股份有限公司 一种天线适配方法及用户设备
CN114513236B (zh) * 2020-11-16 2023-10-27 中国移动通信有限公司研究院 一种多天线预编码方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291192A (zh) * 2007-04-18 2008-10-22 中兴通讯股份有限公司 时分双工方式下下行多用户多输入多输出的预编码方法
CN101582752A (zh) * 2009-06-23 2009-11-18 重庆邮电大学 一种lte-a中预编码mimo的信道抵消接收方法
CN102594519A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 用于多用户多输入多输出下行传输的方法
US20130044800A1 (en) * 2011-08-17 2013-02-21 Fujitsu Limited Wireless device and communication control program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346038B2 (en) * 2002-05-11 2008-03-18 Accton Technology Corporation Method for generating 2D OVSF codes in multicarrier DS-CDMA systems
JP2009055228A (ja) * 2007-08-24 2009-03-12 Sony Corp 無線通信システム、無線通信装置及び無線通信方法
US8566328B2 (en) 2010-12-21 2013-10-22 Facebook, Inc. Prioritization and updating of contact information from multiple sources
US8917787B2 (en) * 2011-03-22 2014-12-23 Hitachi, Ltd. Systems and methods for creating a downlink precode for communication system with per-antenna power constraints
KR102069538B1 (ko) 2012-07-12 2020-03-23 삼성전자주식회사 멀티미디어 요소의 배치를 위한 마크업을 구성하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291192A (zh) * 2007-04-18 2008-10-22 中兴通讯股份有限公司 时分双工方式下下行多用户多输入多输出的预编码方法
CN101582752A (zh) * 2009-06-23 2009-11-18 重庆邮电大学 一种lte-a中预编码mimo的信道抵消接收方法
CN102594519A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 用于多用户多输入多输出下行传输的方法
US20130044800A1 (en) * 2011-08-17 2013-02-21 Fujitsu Limited Wireless device and communication control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258614A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837344A (zh) * 2019-02-15 2020-10-27 Oppo广东移动通信有限公司 确定配置参数的方法、终端设备和网络设备
CN111837344B (zh) * 2019-02-15 2022-01-11 Oppo广东移动通信有限公司 确定配置参数的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US10171142B2 (en) 2019-01-01
CN106464337B (zh) 2020-01-21
EP3258614A1 (en) 2017-12-20
CN106464337A (zh) 2017-02-22
EP3258614B1 (en) 2019-07-31
US20180013472A1 (en) 2018-01-11
EP3258614A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2016138628A1 (zh) 传输数据的方法、装置和设备
EP3232592B1 (en) Sending-end device
WO2016090587A1 (zh) 数据处理的方法、装置和设备
CN106922213B (zh) 传输信息的方法、装置和设备
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
CN107409295B (zh) 传输下行控制信息的方法和装置
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
CN110784292B (zh) 参考信号的处理方法和装置
WO2019029716A1 (zh) 处理数据的方法和装置
CN111371478B (zh) 预编码方法和装置及信息传输方法和装置
WO2016141540A1 (zh) 协作译码的方法和、基站和用户设备
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置
CN108322283B (zh) 数据发送技术
WO2018082530A1 (zh) 数据处理方法和发送设备
WO2018058484A1 (zh) 传输信道信息的方法、终端设备和网络设备
WO2023216873A1 (zh) 一种信号传输方法及装置
WO2020237538A1 (zh) 信号处理的方法、终端设备和网络设备
WO2017049640A1 (zh) 一种预编码方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015883685

Country of ref document: EP